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Abstract. The problem of grooming is central in studies of optical net-
works. In graph-theoretic terms, this can be viewed as assigning colors to
the lightpaths so that at most g of them (g being the grooming factor) can
share one edge. The cost of a coloring is the number of optical switches
(ADMs); each lightpath uses two ADM’s, one at each endpoint, and in
case g lightpaths of the same wavelength enter through the same edge
to one node, they can all use the same ADM (thus saving g — 1 ADMs).
The goal is to minimize the total number of ADMs. This problem was
shown to be NP-complete for ¢ = 1 and for a general g. Exact solutions
are known for some specific cases, and approximation algorithms for cer-
tain topologies exist for g = 1. We present an approximation algorithm
for this problem. For every value of g the running time of the algorithm
is polynomial in the input size, and its approximation ratio for a wide
variety of network topologies - including the ring topology - is shown
to be 2Ing + o(Ing). This is the first approximation algorithm for the
grooming problem with a general grooming factor g.

Keywords: Wavelength Assignment, Wavelength Division Multiplex-
ing(WDM), Optical Networks,Add-Drop Multiplexer(ADM), Traffic
Grooming.

1 Introduction

1.1 Background

Optical wavelength-division multiplexing (WDM) is today the most promising
technology, that enables us to deal with the enormous growth of traffic in com-
munication networks, like the Internet. A communication between a pair of nodes
is done via a lightpath, which is assigned a certain wavelength. In graph-theoretic
terms, a lightpath is a simple path in the network, with a color assigned to it.
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Most of the studies in optical networks dealt with the issue of assigning col-
ors to lightpaths, so that every two lightpaths that share an edge get different
colors.

When the various parameters comprising the switching mechanism in these
networks became clearer, the focus of studies shifted, and today a large portion
of the studies concentrates with the total hardware cost. The key point here
is that each lightpath uses two ADM’s, one at each endpoint. If two adjacent
lightpaths are assigned the same wavelength, then they can use the same ADM.
An ADM may be shared by at most two lightpaths. The total cost considered is
the total number of ADMs. Lightpaths sharing ADM’s in a common endpoint
can be thought as concatenated, so that they form longer paths or cycles. These
paths/cycles do not use any edge e € E twice, for otherwise they cannot use the
same wavelength which is a necessary condition to share ADM’s.

Moreover, in studying the hardware cost, the issue of grooming became central.
This problem stems from the fact that the network usually supports traffic that
is at rates which are lower than the full wavelength capacity, and therefore
the network operator has to be able to put together (= groom) low-capacity
demands into the high capacity fibers. In graph-theoretic terms, this can viewed
as assigning colors to the lightpaths so that at most g of them (g being the
grooming factor) can share one edge. In terms of ADMs, each lightpath uses two
ADM'’s, one at each endpoint, and in case g lightpaths of the same wavelength
enter through the same edge to one node, they can all use the same ADM (thus
saving g — 1 ADMs). The goal is to minimize the total number of ADMs. Note
that the above coloring problem is simply the case of g = 1.

We note that we deal with the single hop problem, where a connection is
carried along one wavelength. A nice review on traffic grooming problems can
be found in [1].

1.2 Previous Work

The problem of minimizing the number of ADMs for the case ¢ = 1 was in-
troduced in [2] for ring topology. The problem was shown to be NP-complete
for ring networks in [3]. An approximation algorithm for the ring topology with
approximation ratio of 3/2 was presented in [4], and was improved in [5[6] to
10/7 + € and 10/7 respectively. For a general topology [3] describes an algorithm
with approximation ratio of 8/5. The same problem was studied in [7], and an
algorithm with approximation ratio 3/2 + € was presented.

The notion of traffic grooming (¢ > 1) was introduced in [§] for the ring
topology. The problem was shown to be NP-complete in [J] for ring networks
and a general g. The uniform all-to-all traffic case, in which there is the same
demand between each pair of nodes, is studied in [9L[10] for various values of g;
an optimal construction for the uniform all-to-all problem, for the case g = 2 in
a path network was given in [IT].

The hardness results of [3L[0] are for ¢ = 1 and for general g, respectively. NP-
completeness results for ring and path networks are shown in [I2] for general
values of ¢ (in the strong sense) and for any fixed value of g.
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1.3 Owur Contribution

We present an approximation algorithm for the general instance of the traffic
grooming problem, namely general topology and general set of requests. The
approximation ratio of our algorithm is 2Ing + o(lng) in ring networks, with
arbitrary set of requests. The ring topology is the most widely studied topol-
ogy due to its implementation in SONET networks. Therefore and for matter of
presentation, our discussion deals only with ring topologies. The extensions are
briefly discussed in Section Bl Note that the approximation ratio of any algorithm
for this problem is between 1 and 2g. To the best of our knowledge this is the
first approximation algorithm for the grooming problem with a general groom-
ing factor g. In Section [2] we describe the problem and make some preliminary
observations. The algorithm presented in Section Bl and analyzed in Section [l
We conclude in Section Bl with possible extensions of this result and some open
problems. Some proofs are sketched or omitted in this Extended Abstract.

2 Problem Definition and Basic Observations

An instance of the traffic grooming problem is a triple (G, P, g) where G = (V, E)
is an undirected graph, P is a set of simple paths in G and g is a positive integer,
namely the grooming factor.

Given such an instance we define the following:

Definition 1. Given a subset Q C P and an edge e € E, Q. is the set of
paths from Q using edge e. lg(e) is the number of these paths, or in networking
terminology, the load induced on the edge e by the paths in Q. Lg is the mazimum
load induced by the paths in Q on any edge of G. When Q = P, we will omit
the indices and simply write l(e) and L instead of lp(e) and Lp respectively.
Formally,

VQ C PVee E:

def
Qe = {pEQ‘eep}
def

lQ(e) = |Qe|

def
Lq = maxig(e)
Definition 2. A coloring (or wavelength assignment) of (G, P) is a function
w: P Nt ={1,2,..}. We extend the definition of w on any subset Q of P
as w(Q) = Upecqw(p). For a coloring w, a color A\ and any Q@ C P, QY is the
subset of paths from Q colored X\ by w and Q¢ 1is the set of paths from Q, using
edge e and colored \ by w. Formally,

def

Qv Y w (N NQ = {p e Qup) = A}
v Y Q.nQy.
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Definition 3. A proper coloring (or wavelength assignment) w of (G, P, g) is a
coloring of P, in which for any edge e at most g paths using e are colored with
the same color. Formally, Y\ € NT, ij\u <g.

Definition 4. A coloring w is a W-coloring of Q C P, if it colors the paths of
Q using exactly W colors. Formally, if |w(Q)| = W. A set Q is W-colorable if
there exists a proper W -coloring for it.

For a W-coloring of P, we will assume w.l.0.g. that w(P) =1,2,..., W.

Observe that a set () C P is 1-colorable iff Lo < g.

Now we define the cost function #ADM, under the assumption that G is a
cycle.
Definition 5. For a coloring w of P, a subset Q@ C P and a node v € V, Q,
is the subset of paths from Q having an endpoint in v. Q) is the subset of
paths from Q, colored A by w. #ADM" (v) is the number of ADM’s operating
at wavelength A at node v.

For each pair v € V,\ € {1,2,...., W} we need one ADM operating at wave-
length X in node v iff there is at least one path colored A among the paths having
an endpoint at v. Formally,

Qv = {p € Qv is an endpoint of p}

def [ 071 v = 0
touches(Q,v) = {1 ({tlgarwise

endpoints(Q) e Z touches(Q,v)
veV

def
va)\ = QyN QE\U

#ADMY (v) = touches(Py’,v)
#ADMY(Q) = endpoints(QY)

#ADMY & wADMY (P)

#ADM" 2 S" g ADMY
A

Definition 6. For any subset Q C P and any subset U C V, Qu is the set of
paths in Q having at least one endpoint in U. Formally,

def
QU = U Qu
uelU
The traffic grooming problem is the optimization problem of finding a proper
coloring w of (G, P, g) minimizing #ADM™.
Observe that endpoints and consequently #ADM} are monotone non de-
creasing functions. Formally, if R C Q C P then
endpoints(R) < endpoints(Q)
#ADMY (R) < #ADM(Q).
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3 Algorithm GROOMBYSC(k)

Given an instance (G, P, g) of the traffic grooming problem, our algorithm has a
parameter k which depends only on g. The value of k£ will be determined in the
analysis (see Section HI).

The algorithm has three phases. During phase 1 it computes 1-colorable sets
and their corresponding weights. It considers subsets of the paths P, of size at
most k- g. Whenever a 1-colorable set is found, it is added to the list of relevant
sets, together with its corresponding weight. In phase 2 it finds a set cover of
P using subsets calculated in phase 1. It uses the GREEDYSC approximation
algorithm for the minimum weight set cover problem presented in [I3]. In phase
3 it transforms the set cover into a partition by eliminating intersections, then
colors the paths according the partition. Each set in the partition is colored with
one color.

1. Phase 1- Prepare the input for GREEDY:
S0
For each U C V, such that |U| < k {
For each @Q C Py, such that |Q] <k-g{
If @ is 1-colorable then {

S SU{Q}
weight[Q] = endpoints(Q) // weight]] is an associative
// array containing a weight for each set

}
}
}
2. Phase 2- Run GREEDYSC:
SC—GREEDY SC(S,weight).// Assume w.l.o.g SC={S1, Sa, ..., Sw}
3. Phase 3- Transform the Set Cover SC into a Partition PART"

PART « 0

For i =1to W {PART; — S;}

As long as there are two intersecting sets PART;, PART) {
PART; «— PART; \ PART;

}

For A =1 to W{

PART — PART U {PARTy)}
For each p € PART \{w(p) = A}

}

4 Analysis

4.1 Correctness

Claim. w calculated by the algorithm is a coloring.
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Proof. During phase 1, each path p € P is included at least in one set @ € S.
This is because the set {p} is considered during the loop and it is clearly found
to be 1-colorable. As SC is calculated in phase 2 a set cover of these sets, p is an
element of at least one set S; € SC. During phase 3 intersections are eliminated,
therefore p is an element of exactly one set of PART'. Therefore each p is assigned
exactly one value w(p) during phase 3. O

Lemma 1. w calculated by the algorithm is a proper coloring.

Proof. For every color A € {1,2,...,WW} the set of paths colored X is exactly
PART). It suffices to show that the sets PART), are 1-colorable.

A subset of an z-colorable set is z-colorable. By the code of phase 3 PART) C
Sx. By phase 1, Sy is 1-colorable, therefore PART) is 1-colorable. O

4.2 Running Time

Claim. The running time of GROOM BY SC(k) is polynomial in n = |P| and
m = |E|, for any given g and for all instances (G, P, g).

Proof. We will show that the running time of each one of the three phases is
poly(n,m).

— Phase 1:
The number of subsets of P considered during the first phase is O(n9*)
since their sizes are at most g- k. To check whether a set is 1-colorable takes
O(g-k-m) time. To calculate endpoints(Q) can be done in O(g - klog |Q]) =
O(g - k -logm) time.
For any constant g, k is determined as a function of g only. Then ¢g - k is a
constant. Therefore the running time of phase 1 is polynomial in n and m
for any given g.

— Phase 2:
The number of the sets in S is at most n9°*. The running time of GREEDYSC
is polynomial in |S| and |P|, namely poly(n?™* n) = poly(n).

— Phase 3:
The running time of phase 3 is polynomial in the size of the cover which is
in turn polynomial in n. a

4.3 Approximation Ratio

Lemma 2. Let H, :1+%—|—...—|—71L be the n-th harmonic number. GROOM BY SC
(k) is a Hg. (1 + 2,5) approximation algorithm for the traffic grooming problem
m ring networks.

Proof. Recall that in the Minimum Weight Set Cover problem, each subset S;
has an associated weight, weight[S;]. The weight of a cover is the sum of the
individual weights of its sets.
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Let w be the coloring returned by GROOM BY SC(k) and w* an optimal
coloring. We will use the shortcut #ADM* for #ADM™" .
On one hand

H#ADM"Y = Z H#ADMY = Z endpoints(PART))
A

< Z endpoints(S)) Z weight[Sy\] = weight(SC). (1)

On the other hand GREEDYSC is an H y-approximation algorithm, where f
is the maximum cardinality of the sets in the input. In our case f = ¢g- k. In
other words if SC* is a minimum weight set cover on the set S, we have

weight(SC) < Hy.p, weight(SC™). (2)
Clearly if SC' is an arbitrary set cover of S, by definition
weight(SC™) < weight(SC). (3)
Combining the inequalities (), ) and [B]) we get
#ADM™ < Hg.p, weight(SC)

for any set cover SC of S.
In the following claim we will show the existence of a set cover SC satisfying
weight(SC) < #ADM* (1 + 2,5)7 which implies

HADM™ < #ADM* H,, (1 + 25 ) . 0

Claim. There exists a set cover SC of S, such that weight(SC) < #ADM*
(1+2).

Proof. Let w*(P) ={1,2,..., W*}and 1 < A < W*. Consider the set V¥ of nodes
v such that ADM} (v) = 1, namely having an ADM operating at wavelength A
at node v. We divide V¥ into sets of k nodes starting from an arbitrary node
and going clockwise along the cycle (see Figure [Il). Let V) ; be the subsets of
nodes obtained in this way. Let

H#ADM; = |VY'| = kqgx + 7 (4)

where 7y = |V¥| mod k and 0 < ry < k.

Clearly V1 < j < qx,|Vaj| = k, and in case ry > 0 we have |V} 4, 41| < k.
In both cases |Vi ;| < k. Therefore, each V, ; is considered in the outer loop of
phase 1 of the algorithm, and hence, is added to S.

For Vy ; we define S ; to be the set of paths in P{" having their counter-
clockwise endpoint in V) ;. As V) ; has at most k nodes, and every node may
be the clockwise endpoint of at most g paths from a 1—colorable set, we have
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‘S A, ]" < g- k. Therefore, S ; is considered by the algorithm in the inner loop of
phase 1. Being 1-colorable it should be added to S, thus Sy ; € S.
Every p € Pj\"”* has its both endpoints in the sets V) ;. In particular, it has

its clockwise endpoint in V) ; for a certain j, thus it is an element of some

Sy, Therefore SCy < U, {Sx;} is a cover of P*". Considering all colors

1 < X < W* we conclude that SC def UKV:*I SCy is a cover of P.

Therefore SC' is a cover of P with sets from S. It remains to show that its
weight has the claimed property.

at most g paths

Fig. 1. The sets Vi ; and Sx; (k=4)

Summing up equation (@) over all possible values of A we obtain #ADM™* =
k> >\ qx+ >, ra, which implies:

ADM*
E @< # 1 (5)
)

We claim that Vj < gx, weight[Sy ;] = endpoints(Sy ;) < k+g. This is because:

— The endpoints of the paths with both endpoints in Sy ; are in V) ; and
Vx| = k.

— The number of paths having only the clockwise endpoint in set V) ; is at
most g. This follows from the observation that these paths should use the
unique edge in the clockwise cut of V) ;. As the set Sy ; is 1-colorable, the
number of these paths is at most g.
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For the set j = ¢g) + 1 (which exists only if 7y > 0) the above bound becomes
weight(Sx,gy+1) < Ta + ¢ - ¢ This is because:

— The endpoints of the paths with both endpoints in Sy 4,41 are in V) ¢, 41
and |V>\7q>\+1‘ =Tx-

— By the same argument as before, the paths having only the clockwise end-
point in V) 4,41 are at most g in number. When ¢y > 1, g < g - ¢\ and we
are done. Otherwise ¢y = 0 meaning that V) ; is the unique set. Then the
number of paths having exactly one endpoint in the set is zero.

Summing up for all 1 < j < gy + 1 we get:
a»
weight(SC)) < Z k+9)+ratg-an = (k+g)ax+ra+g-an = kax+72+29-

Summing up for all A and recalling ) and (&) we get:

weight(SC) Zwezght (SC») <Z kgx +7x+2g-q\) = #ADM™ + QQZ(])\
A b b
< #ADM* +2g #AIIZM - (1 + 2kg> #ADM*. 0

Theorem 1. There is a 2Ing + o(ln g)-approxzimation algorithm for the traffic
grooming problem in ring networks.

Proof. The approximation ratio p of GROOMBYSC(k) is at most H ., (1 + 2kg).
We substitute k£ = gIn g and get:

2 2
<H 1 < (1 +In(g%1 1
P = g21ng( +1Hg> _( + H(g Hg)) < +h’lg>

2
=(142lng+Inlng) (1+ >=2lng+o(lng) |

Ing

5 Discussion and Open Problems

We presented an approximation algorithm for ring networks, whose approxima-
tion ratio is 2Ing + o(In g). Note that the approximation ratio of any algorithm
for this problem is between 1 and 2g.

Our algorithm can be used in arbitrary networks. In some topologies the
analysis will yield a similar result. For this, note that the only point in the
analysis that used the fact that the topology is a ring is where we considered
the unique edge between the blocks of an optimal solution. Therefore a similar
analysis follows for any topology and set of demands in which any solution can
be partitioned in a similar way. This clearly includes all graphs which consists
of blocks By, B, ..., By, whose sizes are bounded by o < k (k is the parameter
used in our analysis) and at most 5 = O(1) edges connecting consecutive blocks
B; and Bi11 mod b-
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‘We mention few open problems which arise from this study.

— Improve the analysis of algorithm GROOM BY SC' (k).
— Find an algorithm with a better performance guarantee.
— Analyze algorithm GROOM BY SC(k) for general topology and set of re-

quests.
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