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Abstract

SONET ADMs are dominant cost factors in
WDM/SONET rings. Whereas most previous papers
on the topic concentrated on the number of wavelengths as-
signed to a given set of lightpaths, more recent papers ar-
gue that the number of ADMs is a more realistic cost
measure. Some of these works discuss various heuristic al-
gorithms for this problem, and the best known result is
a 3/2 approximation in [1]. Through the study of the re-
lation between this problem and the problem of finding
maximum disjoint rings in a given set of lightpaths we man-
age to shed more light onto this problem and to develop a
10/7 + ε approximation for it.

1. Introduction

1.1. Background

A single fiber-optic cable offers a bandwidth that can po-
tentially carry information at the rate of several terabitsper
second, much faster than any electronic device can handle.
In order to utilize the potential of optical fiber, wavelength-
division multiplexing (WDM) is used. The bandwidth is
partitioned into a number of channels at different wave-
lengths. A single channel supplies bandwidth in the range
of gigabits per second, and several signals can be transmit-
ted through a fiber link simultaneously on different chan-
nels. The number of channels (wavelengths) available in
WDM systems is limited by the chosen technology. One of
the important parameters affected by the technology is the
network cost. Tunable lasers or arrays of fixed-wavelength
lasers are used to generate the laser beams that are to be
transmitted on the optical channels. Add/drop multiplexers
(ADMs) are employed at the network nodes to insert light-
waves into the fiber and extract them. Fixed-wavelength or
tunable filters and receivers are used at the receiving side
of a transmission. The electronic equipment is not required

to operate faster than a single optical channel, thus, WDM
allows existing electronic equipment to fully use the enor-
mous potential of optical fiber.

WDM ring networks are deployed by a growing number
of telecom carriers. The problem of minimizing the num-
ber of wavelengths has been extensively studied. Variants of
this problem such as to maximize the number of lightpaths
given a limited number of wavelengths (theMAXPC
problem) or minimize the blocking probability of a light-
path were also studied.

Recent studies (e.g.,[5],[9]) argue that a more realistic
cost measure is the number of ADMs used by the network.
Moreover, these studies concentrate on a ring topology for
various reasons. One of the commonly stated reasons is that
higher level networks which make use of the WDM net-
work cannot necessarily support arbitrary topologies. The
most widely deployed network above the WDM layer is the
SONET/SDH self-healing rings. These networks have to be
configured in rings for protection purposes.

We concentrate on the problem of minimizing the addi-
tional overhead resulting from the need of these lightpaths
to be configured as rings. This can be split into two prob-
lems:

• Assign a route to a lightpath; namely, choose one of
two possible directions on the ring such that the max-
imum number of lightpaths intersecting on an edge is
minimal. This is called the ring loading problem. In
[11] an optimal solution for the problem in directed
rings is given. As for undirected rings, a polynomial
time approximation scheme is given in [8].

• Given the routing above, assign wavelengths to the
paths such that the number of ADMs used by the sys-
tem is minimized. We focus on this problem. This
problem is studied in [3] for general topology, although
their motivation is slightly different.



1.2. Problem Definition

Given a WDM ring networkG = (V,E) such that
V = {0, 1, ..., n − 1} comprising optical nodes and a set
of full-duplex lightpathsL = {l1, l2, ...} such that for allj,
lj = (sj , ej) andsj , ej ∈ V , the wavelength assignment
problem assigns a wavelength to each lightpathli. The for-
ward part of the duplex lightpath(si, ei) traverses fromsi

to ei and the reverse part traverses fromei to si. Call si

the starting node andei the ending node.s(li)
def
= si and

e(li)
def
= ei.

Without loss of generality we assume that each lightpath
li is routed clockwise on the ring fromsi to ei. Under this
assumption the following definitions are valid.

Definition 1.1 l, l′ ∈ L are conflicting or overlapping ifl
andl′ have an edge in common. This is denoted asl � l′.

Definition 1.2 len(l) is the length of the lightpathl, namely
(e(l) − s(l))modn.

Definition 1.3 For any edgee ∈ E, its loadl(e) is the num-

ber of lightpaths containing it.Lmin
def
= mine∈El(e).

Definition 1.4 A proper coloring (or wavelength assign-
ment) ofL is a functionW : L 7→ N, such thatW (l) 6=
W (l′) wheneverl � l′.

Another assumption is thatL is given upfront, in other
words we study the static (off-line) WLA problem. This as-
sumption is reasonable for example in the case of very high-
speed pipes in the telecom environment.

Electrical TDM line-terminals terminate the lightpaths.
We assume this nodes are SONET/SDH add/drop multi-
plexers (ADMs). Each lightpathl uses two ADMs, one at
s(l) and another ate(l). Although ins(l) (resp.e(l)) only
the downstream (resp. upstream) ADM function is needed,
full ADMs will be installed on both nodes in order to com-
plete the protection path around the ring. The full configu-
ration would result in a number of SONET rings all circum-
venting a single optical ring. It follows that if two adjacent
lightpaths are assigned the same wavelength, then they are
used by the same SONET ring and the ADM in the com-
mon node can be shared by them. This would save the cost
of one ADM. With this in mind, we define our goal, as fol-
lows:

For each nodev of the ring, cost(v) is defined as the
number of different colors assigned to all lightpaths start-
ing or ending atv, namely:

∀v ∈ V, cost(v)
def
= |{W (l)|s(l) = v ∨ e(l) = v}| .

The goal is to minimize the total cost function:

cost(V ) =
∑

v∈V

cost(v).

A more convenient statement of the problem is discussed
in Section 2.2.

1.3. Previous Work

A number of previous works [5, 6, 9, 1] studied the min-
imum ADM problem in which each traffic stream has a pre-
determined routing. This is called also thearc versionof
the problem. The problem is proved to be inNP − hard
[9]. Several heuristics are proposed in [5, 9, 10], most of
which have approximation ratio at least3/2. Some of the
heuristics are proved to have approximation ratio at most
3+e
1+e = 1.537.... Note that an approximation ratio of2 is
trivial: optimum is at least the number of lightpaths and any
solution will use at most twice the number of lightpaths (one
at each endpoint).

The Preprocessed Iterative Matching heuristic proposed
in [1] solves thearc version of the minimum ADM prob-
lem and is shown to have an approximation ratio of3/2
which is the best known result. In the same paper thechord
versionof the problem is also addressed. In this version, the
routing of the lightpaths is not part of the input and they
are to be determined by the solution as well as their wave-
length assignments. An algorithm with approximation ratio
of 3/2 is proposed in [1] for this problem.

A 10/7 approximation algorithm is presented recently in
[4].

1.4. Our Contribution

Our main result is a10/7 + ε approximation algorithm
for the minimum ADM problem. We start by presenting an
algorithm which is a modified version of theAssign Firstal-
gorithm presented in [5] and prove its approximation ratio
to be between3/2 and11/7.

We then investigate the relationship between the approx-
imability of the maximum disjoint paths problem and the
approximability of thearc version of the minimum ADM
problem. Using good approximation algorithms for this
problem we manage to improve our first algorithm and ob-
tain a second algorithm with approximation ratio less than
1.48. Finally by using the same technique on the algorithm
presented in [3] we obtain an algorithm with approxima-
tion ratio at most10/7 + ε.

The rest of the paper is organized as follows: Section
2.1 gives some preliminary definitions and a formal state-
ment of the problem. In section 3 we present our first algo-
rithm, and in section 4 we analyze its performance. Section
5 presents and analyzes the improved algorithms. In sec-
tion 6 we present simulation results and discuss further re-
search directions.



2. Preliminaries

2.1. Notation and Definitions

Given a solution of the problem, we make the following
definitions.

Definition 2.1 A chain c is a maximal sequence of dis-
tinct consecutive lightpaths(l1, l2, ..., lk) assigned the same
wavelength by the solution, s.t.∀i > 1, s(li) = e(li−1) and
e(lk) 6= s(l1). s(l1) (resp.e(l1)) will be called the start of

the chain and will be denoted ass(c) (resp.e(c)). len(c)
def
=

∑k
i=1

len(li), or in other words(e(c) − s(c))modn.

Definition 2.2 A cyclec is a sequence of distinct consecu-
tive lightpaths(l1, l2, ..., lk) assigned the same wavelength
in the solution, s.t.∀i > 1, s(li) = e(li−1) and e(lk) =
s(l1).

As the elements of the chains and cycles are distinct, we
will refer to these sequences sets too.

Definition 2.3 The wavelength of a chain/cyclec is the

unique wavelength assigned to its lightpaths:W (c)
def
=

W (l1).

Definition 2.4 The (unique) chain/cycle that contains a
lightpathl is denoted byc(l).

For our algorithms we will use the following two defini-
tions, following [5] and [2], respectively.

Definition 2.5 ∀i ∈ V :

τi
def
= {l ∈ L|s(l) = i}

σi
def
= {l ∈ L|e(l) = i}

Xi
def
= {l ∈ L|i is a node ofl} \ (τi ∪ σi)

Yi
def
= Xi ∪ τi

Definition 2.6 The node graph of a nodei ∈ V is the bi-
partite graphGi = (τi, σi, Ei) where(l, l′) ∈ Ei ⊆ τi ×σi

wheneverl 6� l′.

2.2. Restatement of The Problem

Given a wavelengthw let cost(w) be the number of
nodesv thatw contributes1 to cost(v). Clearlycost(V ) =
∑

∞

w=1
cost(w). Now consider all the chains and cyclesc

such thatW (c) = w. If there is no lightpathl such that
W (l) = w and v ∈ {s(l), e(l)} then w contributes0
to cost(v), thusv contributes0 to cost(w). All the other
nodes contribute1 to cost(w). Thereforecost(w) is the
number of nodes of the chains (and cycles) coloredw. The
number of these nodes is exactly the number of lightpaths
in all those chains/cycles, plus the number of the chains.

This is because a cyclec has |c| nodes and a chainc′

has|c′| + 1 nodes. Summing over allw we conclude that
cost(V ) = |L| + The number of chains.

Since our goal is to minimize the number of ADMs and
not the number of wavelengths, we slightly change the state-
ment of the problem. In accordance with the above discus-
sion we are not concerned with the wavelength assignment
itself but only on the chains and cycles induced by the solu-
tion. Thus an optimal solution of the minimum ADM prob-
lem is a partitioning ofL into chains and cycles such that
the number of chains is minimum.

3. Algorithm PAF

In this section we present algorithm PAF (Preprocessed
Assign First). This algorithm is a modification of theAssign
First algorithm in [5]. We use the notations and definitions
of the previous section.

We first briefly describe the Assign First algorithm:

• The nodes of the ring are renumbered from0 to n − 1
such that0 is a node minimizing some objective func-
tion (which is not relevant in our case).

• All the lightpaths inY0 are colored with distinct col-
ors.

• The nodes are scanned from1 to n− 1. At each nodei
the lightpaths inτi are colored. This coloring is done in
the following manner: The colors of the lightpaths in
σi are preferred colors. The preferred colors are used
first, if they are exhausted, other colors are used from
lowest numbered first. If a color is not valid for a light-
path, the next color is tried.

Now we restate Assign First in our terminology:

• Renumber the nodes of the ring from0 to n − 1.

• Designate each lightpath inY0 as a chain by itself.

• Scan the nodes from1 to n − 1. At each nodei first
try to expand the chainsc ending ati, then form new
chains of the lightpaths inτi which have not yet joined
a chain.

PAF has two major differences from Assign First:

• It has a preprocessing phase.

• The attempts to expand the chains are done by trying
the maximum matching of thenode graph.

PAF (n, L) {
Preprocessing:
A) Remove a maximal set of cycles of two paths

from L.
B) Remove a maximal set of cycles fromL.

Processing:



For each pathl ∈ L do c(l) = (l)
For each nodei from 1 clockwise to0 do{

Find a maximum matchingMMi of the node
graphGi.
τ ′

i = The unmatched nodes ofτi.
σ′

i = The unmatched nodes ofσi.
G′

i =The complete bipartite graph
(τ ′

i , σ
′

i, τ
′

i × σ′

i).
Find a maximum matchingMM ′

i OFG′

i.
τ ′′

i = The unmatched nodes ofτ ′

i .
σ′′

i = The unmatched nodes ofσ′

i.
For each edge(a, b) ∈ MMi {

if len(c(a)) + len(c(b)) ≤ n
UNION (c(a), c(b))

else
failure

}
For each edge(a, b) ∈ MM ′

i unmatched
For each b inτ ′′

i start
For each b inσ′′

i end
}

}

The words failure, unmatched, start, end written in bold
in the code are events which are generated for the sake of the
analysis, otherwise they do nothing. Figure 1 describes the
four cases that may cause such an extension to fail. A solid
line depicts a chain consisting of one lightpath and dashed
line depicts a chain with at list two lightpaths.

4. Analysis

4.1. Correctness and Complexity

Once a lightpathl is added to a chain it is not added to
another one. This could happen only at nodes(l). This can
not happen twice, because of the property of the matching.
Therefore the output is a partitioning ofL.

During the execution of the algorithm a chain or cycle’s
length can not exceedn, because this is checked before ev-
ery potential extension of a chain. Moreover a lightpathl is
added to a chainc only at nodee(c) = s(l) in a manner con-
sistent with the definition of a chain. Thus every set in the
partitioning is a valid chain or cycle.

The algorithm runs in polynomial time as implied by the
following discussion: The removal of 2-cycles is done in
linear time in the input. To check the existence of a cycle
can be done withLmin calls toBFS or any shortest path
algorithm, therefore in polynomial time. At each node max-
imum bipartite matching can be found in polynomial time
using any maximum flow algorithm, all other operations can
be done in constant time.

4.2. Approximation Ratio

Let ALG be any deterministic algorithm solving an ap-
proximation problem. It is customary to denote byALG(I)
or simplyALG the cost of the solution of algorithmALG
on instanceI. SimilarlyOPT (I) or simplyOPT is the cost
of an optimal solution.

Lemma 4.1 If there exist two lightpathsl1, l2 forming a cy-
cle, there is an optimal solution in which they form a cycle.

Proof: Consider an optimal solutionOPT in which l1 and
l2 do not form a cycle. In this solutionl1 andl2 should be in
different chains or cyclesc1 andc2. We build a new solution
OPT ′ by taking all the chains and cycles ofOPT exceptc1

andc2 together with the cyclec′1 = (l1, l2) andc′2 = c1 ∪
c2 \ c′1. Consider three cases:

• Both c1 andc2 are cycles In this casec′1 andc′2 are cy-
cles, thusOPT = OPT ′.

• c1 is a cycle,c2 is a chain In this casec′1 is a cycle and
c′2 is a chain, againOPT = OPT ′.

• Both c1 andc2 are chains In this casec′1 is a cycle and
c′2 forms at most two chainsOPT ′ ≤ OPT .

In all casesOPT ′ ≤ OPT , therefore optimal.

�

It follows from the above lemma that the first step of
the preprocessing phase removes cycles which are guaran-
teed to be in an optimal solution. In other words if we can
find an optimal solution for the rest of the problem, our so-
lution will be optimal. LetR2 be set number of lightpaths
removed in the first step of the preprocessing step. Then:

PAF (L) = |R2| + PAF (L \ R2)

OPT (L) = |R2| + OPT (L \ R2)
PAF (L \ R2)

OPT (L \ R2)
≥ 1

Therefore:

PAF (L)

OPT (L)
=

|R2| + PAF (L \ R2)

|R2| + OPT (L \ R2)
≤

PAF (L \ R2)

OPT (L \ R2)

We conclude that the approximation ratio of the algorithm
on an instance without 2-cycles can be only worse than a
corresponding instance with 2-cycles. Without loss of gen-
erality, in the sequel we assume that no two lightpaths in the
input form a cycle, or in other words, there are no 2-cycles
in the instance.

During the execution of the algorithm each occurrence
of an unmatchedor failure event determines the end of a
chainci and the start of a chaincj . In this case we write:

• ci ≺F cj

• ci ≺U cj



i failure - A unmatched - Bfailure - B unmatched - Ai i i

0 0 0 0

depending on the event occurred.
For every start (resp. end) event we introduce the dummy

chainsi (resp.ei) and write:

• si ≺S ci

• ci ≺E ei

Observation 4.1 A chainc occurs once at the right side of
a≺ relation and once at the left side of a≺ relation.

Proof: A chain c participates in a left (resp. right) side of
a≺ relation, as a result of an event generated at nodee(c)
(resp.s(c)). It can be seen by code inspection that a chain
ie either extended or is involved in exactly one event.

�

Observation 4.2 A dummy chainsi (resp.ei) occurs once
at the right (resp. left) side of a≺ relation and never at the
right (resp. left) side of a≺ relation.

Because of the preceding observations, the graph of
the≺ relation can be partitioned into cycles and maximal
chains. Moreover the maximal chains start withsi nodes
and end withei nodes.

Definition 4.1 In order to avoid confusion we will call the
chains/cycles of the≺ relation super chains (cycles) and
will denote them by capital letters(C1, C2, ...).

Let Ci be a super cycle/chain.Li is the set of lightpaths

in the super cycle/chain, namelyLi
def
=

⋃

Ci.
Ui (resp.Fi, Si, Ei) is the number of the≺U (resp.≺F ,

≺S , ≺E) relationships inCi. Note that:

Si = Ei =

{

1 if Ci is a super chain
0 otherwise

U
def
=

∑

Ui andF
def
=

∑

Fi are the total number of≺U

and≺F relationships, or in other words the number of times
event − U andevent − F happen respectively.

S
def
=

∑

Si andE
def
=

∑

Ei are the total number of≺S

and≺E relationships, or in other words the number of times
start andend events happen respectively. Note thatS = E
which is in turn equal to the number of super chains. More-
overE =

∑n−1

i=0
max(0, |σi| − |τi|). Note that this number

is a function of the input and does not depend of the out-
put.

Let R = |L|, C the number of cycles removed in the pre-
processing phase of the algorithm andRC the number of
lightpaths in these cycles.

Let C∗ the number of cycles in the output of an optimal
algorithm andR∗

C the number of lightpaths in these cycles.

Lemma 4.2

2E + 2U + 3F + 2RC ≤ 2R (1)

Proof: Consider a super chain or cycleCi in the output
of the algorithm. For each≺U relationship inCi there
are at least two lightpaths inLi which are involved. For
each≺F relationship there are at least three lightpaths in-
volved. For each≺S or ≺E relationship there is at least
one lightpath involved. Each lightpath inLi is exactly in
one chain thus involved in two relationships. Therefore :
2Ui + 3Fi + Si + Ei ≤ 2 |Li|. Summing up over all
the super chains/cycles we obtain:S + E + 2U + 3F =
2U +3F +S +E = 2U +3F +2E ≤ 2

∑

|Li|. The light-
paths which are involved in events are those who survived
the preprocessing phase, therefore in

∑

|Li| = R − RC .

�

Lemma 4.3

U + F + 2C ≤ 2Lmin (2)

Proof: Consider the setYi of ligthpats crossing an edge
(i, i+1) such that|Yi| = Lmin. Every lightpath is involved
in two relationships. This is in particular true for the ligth-
paths inYi. On the other hand eachU or F event involves
at least one lightpath fromYi which survived the prepro-
cessing phase. The number of these lightpaths isLmin −C.
ThereforeU + F ≤ 2(Lmin − C).

�

Lemma 4.4

OPT ≥ R + E + U − RC + C. (3)

Proof: At each nodei, the paths ofσi can be classified as
follows:

• RC(i) paths removed by the preprocessing phase.

• E(i)+U(i): paths which did not take part in the max-
imum matching.



• |MMi| paths participating in the maximum matching.

Therefore,|MMi| = |σi|−RC(i)−E(i)−U(i). Summing

up over all nodesi and definingMM
def
=

∑n−1

i=0
|MMi| we

have:
MM = R − RC − E − U. (4)

Consider a maximum matchingMMi of the node graph af-
ter the removal of theC cycles of PAF and a maximum
matchingMM0

i of the node graph of nodei before any pre-
processing. Each pair of pathsp1 ∈ σi, p2 ∈ τi removed by
the preprocessing phase reduces the value of the maximum
matching at most by two. Therefore

|MMi| ≥
∣

∣MM0
i

∣

∣ − 2RC(i)

Summing over all nodes we haveMM ≥ MM0−2RC . In
fact we will later prove:

MM ≥ MM0 − 2RC + C (5)

On the other hand as it is pointed out in [9] and [3]:

OPT ≥ 2R − MM0

Combining with (5) and substituting the value ofMM in
(4) we get

OPT ≥ 2R − MM − 2RC + C

= 2R − (R − RC − E − U) − 2RC + C

= R + E + U − RC + C

as required.
It remains to prove inequality (5). It is sufficient to show

that in each one of theC cycles removed in the preprocess-
ing phase, there is at least one path that does not reduce
MM by two. Assume, by contradiction that there is a cy-
cle p1, p2, ..., pk removed in the preprocessing phase such
that each successive pair of pathspi−1, pi reducesMM by
two. This means that bothpi−1 andpi are matched to two
paths by OPT. Let these paths bebi−1 andai respectively
(see Figure 4.2). Considering the fact thatai, pi, bi is part
of a chain/cycle ofOPT :

len(ai) + len(pi) + len(bi) ≤ n

Summing over all nodesv1, v2, ..., vk:
∑

len(ai) +
∑

len(pi) +
∑

len(bi) ≤ nk

∑

len(pi) = n because they form a cycle, therefore
∑

len(ai) +
∑

len(bi) ≤ n(k − 1)

On the other hand:

len(ai) + len(bi−1) > n

for, otherwise they can be added to any matching which do
not include any of them, andMMi is not reduced by two.
Summing over all nodes, we get:

∑

len(ai) +
∑

len(bi) > nk

a contradiction.

�

The total length of the chains of OPT is at leastnLmin−
nC∗. Obviouslylen(c) < n for each chain. Therefore there
must be at leastn(Lmin − C∗)/n = Lmin − C∗ chains in
OPT .

OPT ≥ R + Lmin − C∗. (6)

Any algorithm should use at least one ADM for the be-
ginning of a lightpath and at least|σi| − |τi| ADMs at the
end of lightpaths ending at nodei. Therefore:

OPT ≥ R +
n−1
∑

i=0

max(0, |σi| − |τi|) = R + E

By our assumption all cycles consist of at least 3 light-
paths, thus:

3C ≤ RC (7)
3C∗ ≤ RC

∗ (8)

Our preprocessing phase removes a maximal number of
cycles. Therefore, each cycle ofOPT should contain at
least one lightpath from the cycles ofPAF , for, otherwise
there would be an entire cycle which is not removed by
PAF in the preprocessing phase. This would be a contra-
diction to the maximality of the cycles removed in the pre-
processing phase. We conclude:

C∗ ≤ RC · (9)

Obviously, the number of lightpaths in the chains of any so-
lution is at least as the load induced by them on any edge,
in particular on an edge of minimum load, Thus:

R − RC
∗ ≥ Lmin − C∗ (10)

Theorem 4.1
PAF

OPT
≤

11

7
.

Proof: Assume the contrary, i.e. that for someρ > 11/7,
PAF/OPT ≥ ρ. It is easy to see from the algorithm that
PAF = R + U + F + E. Then:

R + U + F + E > ρ · OPT (11)

We substituteρ = 11/7 and we seek for values of the
variables which may satisfy all the constraints found so far.
It can be shown that, the resulting Linear Program has no
feasible solution. Therefore the corresponding ILP does not
have a solution, a contradiction.

�
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4.3. A Lower Bound

The maximum disjoint cycles problem in a ring
(MDCR), is the problem of partitioningL into chains
and cycles, such that the number of cycles is maxi-
mum. Any algorithm solving the minimum ADM prob-
lem, is also solving theMDCR problem. Its performance
with respect the two problems may of course, be differ-
ent.

In [1] the PIM (Preprocessed Iterative Matching) algo-
rithm is presented and proven to have an approximation ra-
tio between4

3
and3

2
. A closer look to their proof reveals the

following, general lower bound:
Any algorithmALG with no performance guarantee on

the MDCR problem beyond maximality, has approxima-
tion ratio no better than4/3 for the minimum ADM prob-
lem.

The following improved lower bound is recently estab-
lished in [4]:

Lemma 4.5 Any algorithm ALG with no performance
guarantee on theMDCR problem beyond maximal-
ity, has approximation ratio no better than3/2 for the
minimum ADM problem.

Corollary 4.1 3/2 ≤ PAF/OPT ≤ 11/7.

5. Algorithms with Improved Preprocessing -
IPAF and IEMZ

5.1. The Motivation

In this section we develop algorithms with approxima-
tion ratio better than3/2. In view of the lower bound, this
necessarily requires a better performance guarantee on the
MDCR problem.

There is an infinite family of instances, such that for ev-
ery ε > 0 there is an instance on which the approximation
ratio of the Assign First algorithm is more than5/3 − ε.
This family of instances is omitted from this extended ab-
stract. Other algorithms which do not have the preprocess-
ing phase are proven in [1] to have approximation ratio of
exactly 3

2
. On the other handPAF has approximation ra-

tio at most11/7 which is better than5/3. This clearly indi-
cates that the preprocessing phase improves the algorithm.
Thus it is natural to investigate the approximability of the

problem with respect to this preprocessing phase, more pre-
cisely the part of the solution which consists of cycles.

In this section we analyze the performance ofPAF for
special cases and present an improved version of it which
is essentiallyPAF with improved preprocessing phase and
then combine the improved preprocessing phase with an al-
gorithm with approximation ratio3/2 and manage to reach
an approximation ratio of10/7 + ε.

Lemma 5.1 A 2 approximation to theMDCR problem,
implies a7/5 approximation to the minimum ADM prob-
lem.

Proof: We add the constraintC∗ ≤ 2C to the LP in the
proof of Theorem 4.1 and we show that the resulting LP has
no solution forρ > 7/5.

�

Corollary 5.1 PAF is a 7/5-approximation to the mini-
mum ADM problem for instances with no cycles.

The above result indicates that a better approximation
to theMDCR problem would lead a better approximation
to the minimum ADM problem. We proceed with an algo-
rithm with a better preprocessing phase.

5.2. Algorithm IPAFk

IPAFk{
Run preprocessing phase A ofPAF
Calculate all the possible cyclesc such that
|c| ≤ k
Find a maximum set packing (MSP) of these
cycles

Remove the maximum packing fromL
Run preprocessing phase B ofPAF
Run processing phase ofPAF

}

5.3. Analysis ofIPAFk

In the sequelshort cyclesare cycles containing at most
k lightpaths andlong cyclesare cycles with at leastk + 1
lightpaths. The calculation of all theshort cycles may be
done by choosing an edgee such thatl(e) = Lmin and try-
ing all the possible clockwise extensions of the lightpaths
passing through this edge. We repeat this processk − 1
times. The number of cycles withk lightpaths or less is at



mostLmin(Lmax)k−1, in other words there are a polyno-
mial number of cycles, and they can be computed in poly-
nomial time as described. Moreover each cycle is as a set
with at mostk elements. A(k/2+ ε)−approximation for
theMSP problem is given in ([7]), for allk ≥ 3. For any
fixed ε andk, the running time of the algorithm is polyno-
mial.

Note that for instances with cycles of at most 4 paths, our
preprocessing is a2-approximation for theMDCR prob-
lem, thenIPAFk is a7/5-approximation to the minimum
ADM problem. Generally:

Theorem 5.1
IPAF5

OPT
≤ 1.48

.

Proof: We define the following variables:
C∗

−
andC∗

+ are the number ofshort and long cycles
in an optimal solution. Similarly we defineC− andC+ are
defined similarly with respect to the solution obtained by
IPAFk. In the same way we defineR∗

C−
, R∗

C+, RC− and
RC+ as the number of lightpaths in these cycles. The fol-
lowing equalities are immediate:

C∗ = C∗

−
+ C∗

+ (12)
C = C−+ C+ (13)

R∗

C = R∗

C−
+ R∗

C+ (14)
RC = RC−+ RC+ (15)

as are the following inequalities:

3C∗

−
≤ R∗

C−
≤ kC∗

−
(16)

3C− ≤ RC− ≤ kC− (17)
(k + 1)C∗

+ ≤ R∗

C+ (18)
(k + 1)C+ ≤ RC+ (19)

Let C− be the maximum number of disjoint short cy-

cles. The MSP algorithm guaranteesC− ≥ C−

k/2+ε′ for ev-
ery ε′ > 0. On the other hand the optimal solution can not

include more thanC− short cycles. ThusC− ≥
C∗

−

k/2+ε′ . For
all ε′′ > 0, we have:

(k + ε′′)C− ≥ 2C∗

−
(20)

We extend the linear program in the proof of Theorem
4.1 by adding the above constraints. It can be shown that for
k = 5 andρ > 1.48, the resulting linear program has no
feasible solution.

�

5.4. Algorithm IEMZk

The following algorithm has the same preprocessing
phase asIPAFk, it solves the remaining instance using al-
gorithmEMZ introduced in [3].

IEMZk (n, L) {
Run preprocessing ofIPAFk

For each pathl ∈ L do c(l) = (l)
For each nodei from 1 clockwise to0 do{

Find a maximum matchingMMi of the node
graphGi.
τ ′

i = The unmatched nodes ofτi.
σ′

i = The unmatched nodes ofσi.
G′

i =The complete bipartite graph
(τ ′

i , σ
′

i, τ
′

i × σ′

i).
Find a maximum matchingMM ′

i OFG′

i.
τ ′′

i = The unmatched nodes ofτ ′

i .
σ′′

i = The unmatched nodes ofσ′

i.
For each edge(a, b) ∈ MMi

UNION (c(a), c(b))
For each edge(a, b) ∈ MM ′

i unmatched
For each b inτ ′′

i start
For each b inσ′′

i end
}
For each chain/cyclec do{

Let c = p1, p2, ..., pk

i=1;
For j=1 to k{

If pj+1 � pi {
split c into two chains such that
pj andpj+1 are in different chains
i = j + 1
failure

}
}

}
}

5.5. Analysis ofIEMZk

Lemma 5.2

2F + E + U + RC ≤ R

Proof: In the second phase ofEMZ algorithm, there is
a one-to-one mapping from theF events to the successful
matchings. This can be seen by the following simple argu-
ment taken from [3]: The first matching of a chain can not
be broken, because otherwise the total length of paths in-
volved are summing up to at leastn + 1, which means that
there is no edge joining them in the node graph, therefore
they can not be part of a matching. Therefore to any bro-
ken matching (F event) there is a corresponding unbroken
matching. In our notation this is denoted as:

F ≤ MM − F.

Substituting the value ofMM we get:

2F ≤ R − RC − E − U.



�

Theorem 5.2

IEMZ5

OPT
≤ 10/7 + ε

.

Sketch of Proof: It is easy to show that all the inequa-
tions that hold formIPAFk hold for IEMZk too, except
Lemma 4.2. We replace the corresponding constraint in the
linear program in the proof of Theorem 5.1 with the result of
Lemma 5.2 and get a new linear program. This linear pro-
gram has a solution forρ = 10/7 but no solution for any
ρ > 10/7. The details of the proof are omitted in this ver-
sion of the paper. We assume a solution forρ = 10/7+δ for
anyδ > 0, we compare it to a solution ofρ = 10/7. Con-
sidering the tightly satisfied constraints, we reach a contra-
diction.

�

6. Simulation Results, Conclusions and Open
Problems

The calculation of OPT is in NP-Hard. Therefore, we
compared the performance ofIPAF5 and PIM on 200 ran-
dom instances with10 ≤ n ≤ 16 and20 ≤ R ≤ 150.
IPAF5 led to better results for almost all the instances,
where the difference in the performance grows with the size
of the input, i.e. the number of the lightpaths.

In this work we investigated the relationship between the
arc version of the minimum ADM problem and the max-
imum disjoint cycles problem. We saw that on instances
without cycles we can obtain a7/5 − approximation and
generally we can not get better than3/2− approximation
if we can not perform better than the trivial greedy algo-
rithm for theMDCR problem. We presented the algorithm
IPAF5 which has a provable upper bound of1.48. Finally
we presented algorithmIEMZk which has the same pre-
processing phase and proved it to have an approximation ra-
tio at most10/7 + ε.

The algorithm presented in [4] has a preprocessing phase
removing short cycles and paths, whereas our preprocess-
ing phase removes short cycles only, thus answering affir-
matively an open question mentioned in [4].

A possible improvement to the preprocessing phase is to
modify it to choose the value ofk as a function ofR/Lmin

or alternatively to try different values fork and get the best
solution among them. This direction might lead to a prov-
able increase in the performance.

Another possible direction is to improve the preprocess-
ing phase by replacing the algorithm [7] which solves the
general MSP problem fork − sets with an algorithm that

achieves better performance by taking advantage of the
properties of thek − cycles.
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