Tel-Aviv University
Raymond and Beverly Sackler Faculty of Exact Sciences
School of Computer Science

PROPERTYGUIDED VERIFICATION OF CONCURRENT
HEAP-MANIPULATING PROGRAMS

by
Eran Yahav

under the supervision of Dr. Mooly Sagiv

A thesis submitted
for the degree of Doctor of Philosophy

Submitted to the Senate of Tel-Aviv University
October 2004

To my parents.
To my dearest ones, Michal, Jonathan, Yaron,
and future number 3.

Abstract

Property-Guided Verification of Concurrent Heap-Manipulating Programs

Eran Yahav
Doctor of Philosophy
School of Computer Science
Tel-Aviv University

We address the problem of verifying properties of concurrent and sequential programs written in
languages, such as Java, that make extensive use of the heap to allocate—and deallocate—new objects
and threads. We present a framework for the verification of sequential and concurrent Java programs.
The framework combines thread scheduling information and information about the shape of the heap.
This leads to error-detection algorithms that are more precise than existing techniques. In contrast to
many existing verification techniques, our algorithms do not put a bound on the number of allocated
objects (and threads). We also present novel approaches that allow us to tie the cost of verification to the
nature of the property being verified. The combination of these techniques allows us to automatically
verify non-trivial properties of heap-manipulating programs that have not been automatically verified in

the past.

Vi

Acknowledgements

| have been fortunate to have Mooly Sagiv as my advisor. His knowledge, guidance, optimism,
enthusiasm, and above all—patience, were crucial in every step towards the completion of this thesis.

I would like to thank Ramalingam and John Field for two enjoyable and extremely fruitful summers
| spent at the IBM T.J. Watson Research Lab.

I would like to thank Tom Reps and Reinhard Wilhelm for their guidance, help, and support through-
out the course of this thesis. Working with them has been a real privilege.

I would like to thank Ran Shaham for many fruitful discussions, and for many insights that made
this work better. | also want to thank him for taking the time and effort of reading earlier drafts of this
thesis.

| would like to thank Roman Manevich for many discussions and for his endless efforts to provide
a solid experimental analysis framework. This work would have been impossible without his help and
support.

I would also like to thank Nurit Dor and Noam Rinetzky for reading earlier drafts of this thesis.

Special thanks to David Oren for patiently reviewing earlier drafts of most thesis chapters.

Vii

viii

Contents

1

Introduction 1
1.1 Thesis Contributions. e 3
1.2 HowtoReadthisThesis 5
1.3 OVEIVIEW o e 6
1.3.1 Specification. e 6
1.3.2 Integrated Verification and Property-Guided Abstraction. 10
1.3.3 Property Guided Abstraction—Specialized Abstractions. 13
1.3.4 \Verifying Temporal Properties 17
Verifying Safety Properties of Concurrent Java Programs Using 3-Valued Logic 21
2.1 Introduction. L 22
2.1.1 MainResultsand RelatedWork. 22
2.2 JavaConcurrency Model 26
2.3 AProgramModel e e 30
2.3.1 Representing Program Configurations via Logical Structures 30
2.3.2 Extracting Properties of Configurations using Logical Formulae. 33
2.3.3 A Structural Operational Semantics of Configurations 34
2.3.4 Safety Propertiesof JavaPrograms., 37
2.4 AnAbstract ProgramModel 38
2.4.1 Representing Abstract Program Configurationgwalued Logical Structures 38
242 AnAbstractSemantics. 41
243 Instrumentation 42
2.5 \Verifying Safety Properties 44
251 Deadlock. e 45
2.5.2 Shared AbstractData Types. 45
253 Thread State Errors. e 45
2.5.4 Unbounded Numberof Threads. 46

2.6 Prototype Implementation. e 48

Property-Guided Abstraction 51
3.1 Introduction. e 51
3.2 Terminology and Notation. e 57
3.3 Omission-Closed Properties in Polynomial Time. 58
3.4 Repeatable Enabling Sequence Properties. 64
3.5 \Verificationbycounting 68
3.5.1 Thelntuition. e 68
3.6 Programs with Width-Limited Aliasing. 69
3.6.1 Polynomial-Time Verification for Shallow Programs with Width-Limited Aliasiég
3.6.2 Width-Limited Aliasing in Non-Shallow Programs 72
3.7 Conclusion e 74
Verifying Temporal Heap Properties Specified via Evolution Logic 75
4.1 Introduction. L e 75
4.2 OVEIVIEW . . . o i e e e e e e e e 76
4.2.1 A Temporal Logic Supporting Evolution. 76
4.2.2 Overview of the Verification Procedure 77
423 RunningExample. 78
4.3 Trace-Based Evolution Semantics. o0 79
4.4 Expressing Trace Semantics using First-Order Logic 85
4.4.1 Representing Infinite Traces via First-Order Structures. 85
4.4.2 Exact Extraction of Trace Properties 86
4.4.3 Semanticsof Actions. 87
4.5 Exploring Finite Abstract Traces via Abstract Interpretatian. 87
4.5.1 AFinite Representation of Infinite Traces. 88
45,2 Abstract Interpretation L e 89
45.3 Property-Guided Instrumentation oL 92
4.6 RelatedWork. e 94
4.7 Conclusion e 94
4.8 Translation of ETLtaFOTC 94
Automatic Verification of Temporal Heap Properties 97
5.1 Introduction. 97
5.2 Evolution Temporal Logic. e e 100
5.21 Syntax e e e e e 100

5.2.2 Trace SEMaNntiCS v v v e e e e e e e e e e e 102

5.2.3 State-Based Semantics. 106

5.3 Abstract Semantics 107
5.3.1 Abstract Configurations. 0 108
5.3.2 AbstractSemantics. 109

5.4 First-Order Representation. e 110
5.4.1 ETL Existential State-Based Semantics as First-Order Transition System 110
542 Livenessand Progress. e 116
5.4.3 Safety Properties e 117

5.5 Conclusion e 118
Verifying Safety Properties using Separation and Heterogeneous Abstraction 119
6.1 Introduction. e 119
6.2 Safety Properties. 125
6.3 Separation Strategies. e e 126
6.4 Separation e 129
6.4.1 Background 130
6.4.2 Instrumentation For Separation 132
6.4.3 Additional Instrumentation.o 134

6.5 Heterogeneous Abstractian. 135
6.6 Prototype Implementation. e 139
6.7 Extensionsand FutureWork 141
Applications 143
7.1 Compile-Time Memory Management 143
7.1.1 Introduction e 144
7.1.2 Specifying Compile-Time Memory Management Properties via Heap Safety
Properties. e 148

7.1.3 Instrumented Concrete Semantics 151
7.1.4 AnAbstractSemantics. 155
715 EXtensions. 157

7.2 Automatically Verifying Concurrent Queue Algorithms. 161
7.2.1 Concurrent Queue Algorithms. 161
7.2.2 Vanilla Verification Attempt. 163
7.2.3 Refining the Vanilla Solution. 166
7.2.4 ExperimentalResults. 168

7.3 Solvingthe ApprenticeChallenge, 170

Xi

7.3.1 Problem Statement. e 170

7.3.2 Solution. 170

733 Results. e 170

8 Conclusions and Further Work 173
8.1 Conclusion e 173
8.2 Contrast with Closely RelatedWork 173
8.3 FurtherWork e 174
8.3.1 Property Guided Abstraction. 174

8.3.2 \Verification of Heap-Manipulating Programs. 175
Bibliography 176
A 2and 3-valued FOT¢ 187
Al Syntax. e e e e e e e e e 187
A.2 2-valued Interpretation. 188
A.3 3-valued Interpretation. 189

B Additional Proofs 191
B.1 ProofsforChaptef. e 191
B.1.1 Embedding Theorem, 195

B.2 ProofsforChaptes. e 197

C ETL Supplements 201
C.1 Additional Properties forMark AndSweep 201
C.2 Additional ETL Properties. 0 e e e 201
C.3 ETLwith PastOperators i i i i e e e e e e e 201

Xii

List of Tables

2.1 Predicates for partial Javasemantics.. o0 31
2.2 Operational semantics for concurrency statements. Actions above the two horizontal

lines are non-blocking, théock Lock(v) action is blocking. 36
2.3 Violations of safety properties detected inthischapter. 39
2.4 Instrumentation predicates for partial Java semantics.. 44
2.5 Preconditions for checking illegal and suspicious thread interactions.. 47

2.6 Number of configurations, and running times in seconds for the programs analyzed50

4.1 Web server ETL specification using predicatesof Tdl®e. 80
4.2 Predicates used to record information about a singleworld. 82
4.3 Tracepredicates. e e 85
4.4 Trace instrumentation predicates. 92
5.1 Predicates used for the example program. 101
5.2 Transitions in the FOTS for the property of Examplé.4 113
6.1 Predicates for partial Javasemantics.. 000 130
6.2 Additional predicates of the instrumented semantics. 132
6.3 Analysis results and cost for the benchmark programs.. 140
7.1 Predicates for partial Javasemantics.. 152
7.2 Use-attributes set by program statements., 154
7.3 Safety properties for non-blocking queue algorithm.. 165
7.4 Instrumentation predicates used in our example program. 167

7.5 Analysis results for variations of the queue algorithms — number of configurations
explored, space requirements, and analysistime. 169

C.1 Example programs and ETL specifications. 202

Xiii

XV

List of Figures

1.1 Overviewofthesischapters. 5

1.2 Specification languages used in this thesis classified by the kind of properties they destribe.

1.3 Afinite state automaton for the properead *;close 8
1.4 AnEasl specification for the propertygad *;close 10
1.5 A simple example program in which loss of precision in the two-phased approach leads
toafalsealarm.. 11
1.6 Two-phased analysisexample.. 12
1.7 Integrated analysisexample.. 13

1.8 Analysis of the example program using specialized abstraction derived from the prop-
ertyofinterest. e 14
1.9 Aninstrumented version of the example program instrumented to non-deterministically
choose a single File componentto be verified. 15
1.10 Analysis of the example program using simple separation.. 16
1.11 A simple example program reading from a component referencedryitely often. 18
1.12 Verifying propertyl.2for the program of Figl.11 19

2.1 (a) a simple program that uses a queue, (b) simplified Java source code for a queue

implementation.. e 27
2.2 Simplified Java source code for a Queueltem implementation.. 28
2.3 Aconcrete configuratioﬁg.g. 32
2.4 Statespaceexploration.. e e e 34
2.5 An abstract configuratiofiy 5 representinghe configurationg3 showninFig2.3 . 40
2.6 Concretization and predicate-update for an unbounded number of threads all performing

theapproveHead() method of the runningexample. 43
2.7 Instrumentation predicate_blocked(t). 43

2.8 An abstract configuratiofs g in which interference between the consumer and the
producerisdetected.. 46

2.9 Configurations arising in mutual exclusion with an unbounded number of threads. 47

XV

2.10
2.11

3.1
3.2
3.3
3.4
3.5
3.6

3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5
4.6

4.7
4.8

4.9
4.10

411

4.12

51
5.2
5.3
5.4

Configurations arising with explicitthreadnames.. 48
Configurations arising with canonical threadnames. 49
Program fragments illustrating the effect of aliasing on typestate verification. . . 54
An overview of our complexity results.. o oo 55
A finite-state automaton for the propergad *;close 58
Backwards exploration of the property automaton.. 61
The graph constructed by backward exploration of the automaton 8.Big.. 61
WP equations for predicates of the forh, S). We denote byA[z — y] the set ob-

tained by replacing any occurrencexoin Abyy.. oL 62
WP equations for the predicderor. o 63
An automaton for the propergpen “;read L. 64
flowequations for predicates of the foftd, o). L. 70
An iterative algorithm using predicates of the fdey S]. 71
Java fragment for worker thread in a web server with no explicit scheduling.. . . 78
Java code fragment for a web server with an explicit scheduler. 79
Interaction of first-order quantifiers and temporal operators. 84
A concrete trac?é’j dr r r e e e e e e e e e e 86
An abstract tracg) 4 that represents the concrete trﬁ?ﬁg. 89
An intermediate abstract trace, which represents the first stage of applying an action to
Thde o o e e 90
The resulting abstract trace after applying an actionByg(after advancingurrWorld). 90
Computing the set of abstract traces

and evaluating the properfyp)’. 91
Aninitial abstracttrac@,". 91
Jv.P(v)UQ(v) holds in all concrete traces that the abstract tfAcg represents, yet

Ju.P(v)UQ(v) evaluatestd/2onTy pitself. 92

Abstract trace with transworld equality instrumentation (Qrkalued transworld equal-

ityedgesareshown). L 93
In the abstract tracg, 15, Jv.P(v)UQ(v) evaluatestd. 94
Java source for the mark-phase procedure.. 98
A possible configuratio(i‘tE]_2 of the marking procedure.. 103
An abstract configuratiofis » that represents the concrete configuraﬁ(ﬁ_@ 108
One successor derived by application of rule (A6) to an initial configuration. . . . 113

XVi

5.5 Partial abstract interpretation of the example FOTS. Only part of the abstract configura-
tions are shown. Interpretation is continuedon bBi®. 114
5.6 Partial abstract interpretation of the example FOTS, continued frons BigOnly part

of the abstract configurationsareshown. 115
5.7 Abstract helpful transition fromug tomg. Lo oo 117
6.1 JDBCexamplesnippet.. e e e 120
6.2 Separation and heterogenous abstraction. 122

6.3 Program illustrating the difficulty of verifying that a file component is never read after
ithasbeenclosed.. 124
6.4 AnEasl specification for a simplified subset of the JDBCAPI.. 126
6.5 Concrete program configurations representing a possible program state (a)2& line
and (b) after execution of the statementat®& 131
6.6 An instrumentedasl specification for a simplified subset of the JDBC API with
single-choice separation strategy. 134
6.7 An abstract program configuration representing the concrete configuration 6f3d. 137

7.1 A program for creating and traversing a singly linked list. 147

7.2 A heap safety automatodnfgfy6 forfreey atline10.. 149

7.3 Concrete program configurations (a) before — and (b) immediately after execution of
= y.noatlinel0. 152

7.4 An abstract program configuration representing the concrete configuration @f3&). 155
7.5 Concretization, predicate-update including automaton transition updates, and abstrac-

tion for the statemertt = y.n atlinel0. 156
7.6 Aheap safety automatotfy, , for assign null toy.n at10. 158
7.7 A code snippet demonstrating the importance of assign-null analysis. 158

7.8 A program demonstrating exponential blowup due to simultaneous verification of the
free propertied (pt;, z)|1 <@ <k} . . . o 159
7.9 Java-like pseudo-code for (a) non-blocking queue, (b) two-lock queue, (c) queue-itesR.
7.10 A concrete configuratiorﬁ’?10 with two enqueueing and one dequeueing threads.. 164
7.11 An abstract configuratiabl; 1o representing the concrete configurat'(d?)10 of Fig. 7.10.165
7.12 A concrete configuratiotﬁg_l(l1 that is embedded 6’7 1o and violates queue connect-

edness (property PL). 166
7.13 Concrete configuratioﬁ‘g_13 using instrumentation predicates, and its canonical ab-

SractionC7.13. « v v e e e e e e e e e e 167
7.14 Source of the Apprentice Challenge. 171
7.15 Initial configuration for the apprentice challenge.. 171

XVii

7.16 Conceptual rewrite aficr() method..
8.1 Overviewof closelyrelatedwork.. o

C.1 Java source for the sweep-phase procedure..

XViii

Chapter 1

Introduction

Concurrent programming is becoming a common practice in modern software development. A concur-
rent program allows a number of activities to be performed together. This enables the programmer to
increase the availability and reactivity of his program, for example by allowing the user to perform other
activities while a long computation takes place concurrently.

The Java language brought concurrent programming to a wide-range of products and programmers
due to its natural support of multi-threading (a multithreaded program is a program which concurrently
executes a number of threads where ghchad may be viewed as a single sequential program). Java
concurrency is quite common, it can be found in commercial applications such as web-servers, Java
applets, multimedia applications and others. However, despite its being widespread, writing a correct
concurrent program is as hard and error-prone as ever.

While concurrent programming introduces additional strength in the design and implementation of
software systems, it also introduces problems that do not emerge in sequential programs (e.g., data-races
and deadlocks).

Debugging and testing of a concurrent program is a complicated task since the results of an execu-
tion may depend on the specific order in which threads are scheduled. Furthermore, the concurrency
model used by modern programming languages, such as Java, provides low-level concurrency-control
constructs that enable the programmer to create complicated and powerful synchronization schemes.

Although it is well known that programs using these concurrency models are hard to debug, existing
programming environments provide no compile-time support for checking the correctness of concurrent
behavior. For example, the Java language provides no means for compile-time checking and almost no
means for runtime checking of the correctness of concurrent behavior. This makes concurrent program-
ming in Java quite error-prone (e.gl0g 51]).

Generally, one would like to prove that a given concurrent program is correct with respect to some
specification with the same certainty one proves a mathematical theorem. This is the essence of program
verification.

2 CHAPTER1. INTRODUCTION

Ideally, the process of verification would be a fully automatic process taking a program and a spec-
ification as input and supplying a “yes/no” answer as to whether the program satisfies the specification.
Unfortunately, this problem is known to be undecidable, that is, it is possible to show that an automatic
solution cannot exist for arbitrary programs and specifications. Moreover, it is very difficult to specify
the full behavior of real software.

This research focuses on the use of sound program analysis techniques for the verification of con-
current Java programs. Once convinced that automatic verification is a subtle problem, one may wonder
why we believe that we can provide a reasonable solution. The main reason is that we do not attempt to
tackle the general problem of automatic verification, but rather focus on the following:

(a) using sound approximation of program behavior — use a static (compile-time) approximation of all
possible behaviors of a program. The approximation contains all possible behaviors of the program,
but may also contain some superfluous behaviors. Verifying the property against the approximated
behavior can only err on the safe side, that is, it detects all possible errors (since all “real” behaviors
are included), but may produéalse alarmsue to the superfluous behaviors included. That is, our
algorithms never miss an error but there are cases in which the property is reported to be violated,
where it is not violated in any real execution of the program. It is challenging to develop algorithms
that yield a tolerable number of false alarms.

(b) Concentrating on specific properties and not addressing full program correctness. This goes both
for the specification and the verification algorithm.

(c) Possibly safely omitting some aspects of program semantics (e.g., arithmetics).

(d) Considering a specific model of concurrency — the Java concurrency model which uses threads
communicating through shared-memory.

Two of the main challenges of software verification are handling heap-allocated storage and handling
dynamic allocation of objects and threads. These features are often ignored or handled in an imprecise
manner by existing verification and static-analysis approaches, especially for concurrent pr>ams [

One of the main problems addressed by our research is therefore:

Problem 1]Feasibility] Given a non-trivial concurrent Java program with dynamic allocation of objects
and threads, and a non-trivial property, is it possible to automatically verify that the program satisfies
the property of interest, while producing a tolerable number of false alarms?

Finite-state verification techniques have been successfully applied in the verification of hardware
systems and protocols (e.dl,7]). However, they cannot be immediately applied for verification of Java
programs, which support dynamic allocation of objects and threads with no a priori bound. The prob-
lem is that Java supports both unbounded data structures and unbounded control structures (dynamic

allocation of objects and threads).

1.1. THESISCONTRIBUTIONS 3

One of the promising approaches for automatic verification of software is to perform model-checking
(exhaustive state-space exploration) of an abstract finite-state model of the system at hand. A conser-
vative abstraction of the original system is used to simulate its behavior assuring that any property es-
tablished to hold for the abstract model is guaranteed to hold for the original system. The problem now
becomes a problem of finding the “right” abstraction mapping, an abstraction that maintains the neces-
sary observations for verifying the property of interest, and abstracts away non-essential information to
make verification feasible.

Abstract interpretatior?p] traditionally uses an abstraction mapping that is defined for some analy-
sis, and is independent of the specific property of interest. This allows abstract interpretation to be
applied automatically and uniformly to any arbitrary program. It allows the designer of the analysis to
develop a clever and complicated representation when the analysis is designed. However, an analysis
targeted at a wide range of properties has the major disadvantage of tying the cost of verification to the
finest property that should lwbservable That is, verification of a simple property may be as expensive
as verification of a complex property. Moreover, it could lead to a non-tolerable number of false alarms
when the domain is inappropriate for the property of interest. One of the challenges in that respect is
therefore deriving a specialized program analysis algorithm that is only as precise (and as expensive)
as needed. That is, how to use a given property specification to derive a program analysis algorithm in
a way that the property of interest remanisservablevhile as many other details of the original pro-
gram (irrelevant for verification of the property of interest) are abstracted away. This raises the second
problem addressed by this research:

Problem 2[Property-Guidedness]

(a) ConstructionGiven a non-trivial property, automatically construct a program analysis such that
the given property iobservablgfor a set of programs. We refer to such construction as being
property-guided.

(b) RefinemeniGiven a non-trivial property, and a program analysis algoritlital, how can the prop-
erty be used to refine the abstraction appliediy.

1.1 Thesis Contributions

In this section, we give a brief description of the main contributions of this thesis.

Specification

We have defined a specification language caliedlution Temporal Logi€¢ETL) for defining require-
ments on program behavior addressing both time and space. Unlike classical model checking, which

uses propositional temporal logic, we use a first-order temporal logic to specify temporal properties of

4 CHAPTER1. INTRODUCTION

heap evolutions; this logic allows domain changes to be expressed, which permits allocation and deal-
location to be modelled naturallt19. ETL and its verification algorithms are described in Chapfers
and>.

Automatic Verification

We have defined several algorithms for verifying ETL specification for concurrent Java-like programs
[115 119 95, 117, 114. Our algorithms are able to handle both safety and liveness properties specified
as ETL formulae. Our algorithms combine thread-scheduling information and information about the
shape of the heap. This leads to error-detection algorithms that are more precise than existing tech-
niques. In contrast with existing verification techniques, our algorithms do not put a bound on the
number of allocated objects (and threads). A basic algorithm for verifying non-temporal safety proper-
ties for concurrent programs is described in ChaptéZhapte and Chapteb describe algorithms for
verification of general ETL properties.

Property-Guided Abstraction

We have also investigated several techniques for guiding the abstraction by the property being verified,
resulting in more efficient and possibly more precise verification algorithms. In particular, we defined
techniques for automatic predicate derivation described in Chapaed for property-based separation

and heterogenous abstraction described in Chépter

One of the primary intuitions behind the algorithms presented in this part of the thesis is that main-
taining just the right correlation required between “analysis facts” can be the key to efficient and precise
verification: maintaining no correlations (independent attribute analysis) can lead to imprecision, while
maintaining all correlations (relational analysis) can lead to inefficiency.

Applications

The combination of the above techniques allows us to successfully verify non-trivial properties of con-
current and sequential heap-manipulating programs such as implementations of concurrent queue algo-
rithms [120. In particular, we verified partial correctness of the two-lock queue algorithm that is part of
thejava.util.concurrent package of JDK1.5. We have also used these techniques to establish
temporal properties for compile-time memory managem@sjt Rnd solve verification challenges such

as the apprentice challenge presented by J. MatHie Applications of our techniques are described in
Chapter7.

1.2. How TO READ THIS THESIS 5

Heap abstractions
t
L Canorical Abstraction
Chapter 6, Section 7.1

Chapter 2

L Sec. 7.2,7.3

- Chapter 3
e Shallow heaps
~ P
WAL i
a= i [A @
Frogram Co:ncurremcy Genleral "+ Fropeniy "
Complexity temporal Complexity

Figure 1.1: Overview of thesis chapters.

1.2 How to Read this Thesis

The contributions of this thesis are both theoretical and practical. This section gives an outline of thesis
chapters and describes two possible paths of going through the presented material.

In Chapter2, we describe a parametric framework for verifying safety properties of concurrent Java
programs; this partly answers Probl&mA preliminary version of this work appeared it1[5.

In Chapter3, we consider the problem ofpestate verificatiofor shallow programsi.e., programs
where pointers from program variables to heap-allocated objects are allowed, but where heap-allocated
objects may not themselves contain pointer fields. In this chapter we show how to construct a property-
guided abstraction for shallow programs and certain classes of properties. This chapter partly addresses
Problem2(a). A preliminary version of this work was published #1].

Chapterd and Chapteb show two verification approaches for verifying general temporal properties
of heap-manipulating programs. The abstraction used in this chapter is refined by the verified property,
thus partly addressing Problez(b). Preliminary versions of part of this work appearedlihg and in
[118.

In Chapter6, we show howseparation(decomposing a verification problem into a collection of
verification subproblems) can be used to improve the efficiency and precision of verification of safety
properties. A preliminary version of this work was publishedlih7].

Chapter7 describes applications of our framework for verifying various properties of concurrent

and sequential heap-manipulating programs. Preliminary versions of results summarized in this chapter
appeared in95], [120, and [114).

6 CHAPTER1. INTRODUCTION

Fig. 1.1shows a classification of thesis chapters ovardimensional cube. The dimensions of this
cube are:

Heap Abstraction Describes the strength of the applied heap-abstraction. Zero on this axis means that
no heap abstraction is used, thus forcing an assumed a priori bound on the number of allocated
objects and threads. The heap abstraction used in most chapters of this thesis is the canonical
abstraction, described in Chapter

Program Complexity Describes the complexity of the programs that could be handled. Along this
dimension we only distinguish between sequential and concurrent programs. Our treatment of
concurrent programs is described in Chajefo simplify presentation, the material in the rest
of the chapters is mostly presented in terms of sequential programs.

Property Complexity Describes the complexity of the properties that could be handled. Property com-
plexity ranges from non-temporal safety properties (e.g., as used in Cl2ptefull temporal
specification that support specification of liveness properties (e.g., Ckpter

The thesis could be read following a theoretical or a more practical track. Readers more interested
in the theoretical contributions of this thesis should read Ch&pt@€hapter3, Chapted, and Chapteb.
Readers more interested in practical contributions should read Cl2a@bapter6, and Chapter.

1.3 Overview

This section provides an informal overview of the content of this thesis. The section contains forward
references to chapters that formally discuss the presented material. The section is organized as follows.
Sectionl.3.1describes the various specification languages used in this thesis. Se8tRwontrasts our
integrated verification approach (integrating verification and pointer-analysis) with the common two-
phased approach, providing some intuition to its preferable precision, and showing how the abstraction
is refined by the property being verified (in the spirit of Probl&m)). In Sectionl.3.3we show how
specialized abstractions are constructed from user specifications (in the spirit of PR¢a)eririnally,

in Sectionl.3.4we discuss verification of temporal properties.

1.3.1 Specification

In this thesis, we use various specification languages for describing correctness properties of concurrent
and sequential heap-manipulating programs. Our choice of specification language in each chapter is
aimed to simplify presentation and describe the key concepts of the chapter with minimal specification

clutter.

1.3. OVERVIEW 7

Safety Liveness
Typestate
Single object finite automata Evolution Temporal Logic
(regular expressions (ETL)
ETL

First-Order Safety

Correlated objects Easl
FOTC (non temporal)
ETL

Figure 1.2: Specification languages used in this thesis classified by the kind of properties they describe.

The specification languages we use range from first-order logic with transitive cldSare”(,
through regular-expressions, and up to Evolution Temporal Logic (ETL) which is essentially a first-
order linear temporal logic. Fid..2 shows the specification languages used in this thesis, classified by
the kind of properties they describe. The dimensions of the table are:

Safety / LivenessA property may be classified as a safety property that requires that nothing “bad”
ever happens, or as a liveness property that requires that something “good” eventually happens.
In this thesis, we address both safety and liveness properties.

Single object / Correlated objects A property may require a correct behavior of each object indepen-
dently, or involve multiple correlated objects. When the correctness of a property may be verified
for a program object independently of other program objects, we classify the propersinagea
objectproperty. When the property involves multiple correlated objects, we classify itaise
lated objectgproperty. Single object safety properties are often referred typastatgroperties
[103. Multiple object safety properties are referred tdiest-order safetyproperties 84].

As an example, consider a File object that has two possible states:andclosed; supports two
operationsread() , andclose() ;and assumed to be in itwen state when created.
For this File component, we would like to specify the safety property:

a file is not read after it has been closed. (1.1

Since this property considers each file separately (and independently of other files), and requires
that nothing “bad” (read after close) ever happens, it is classified as a single-object safety property (also
referred to as a typestate property).

8 CHAPTER1. INTRODUCTION

read {read,close}

initial) close {read,close}
—_— —_—

Figure 1.3: A finite state automaton for the propadgd *; close .

Specification as a Non-Temporal Safety Property

A non-temporal safety property is a property that is evaluated in every global state of the program
(configuration) independently of other global states.

Propertyl.1 could be specified as the following non-temporal safety property:
Vv.=(closed(v) A read(v))

assuming that a unary predicatesed(v) is set to hold for a file when the file is closed, and a predicate
read(v) is set to hold for a file» when the file is being read from.

In Chapter2, we useFO formulae to describe non-temporal safety properties.

Specification via Regular Expressions

A safety property that specifies the behavior of each object independently of other objects (typestate
property) could be specified using a regular-expression, or equivalently by using a finite-automaton.
Technically, the regular-expression is taken to be a universally quantified specification that should hold
for all objects of the specified type.

Propertyl.1could be also specified as a simple regular expression observing the events of invoking
read() , andclose()

read *;close

When specifying a safety property using a regular expression, we adopt the convention that a regular
expressiony denotes th@refix closureof the set of sequences of operations defined biyor example,
when we writeread *; close we also consider(the empty sequence) anehd to be valid sequences.
This property could be equivalently specified using the finite automaton il &.

Chapter3 uses finite-automata and regular expressions for describing typestate properties that put
more emphasis on the sequence of events that may occur for an object in an execution of the program.
Finite-automata are also used to specify memory-management properties in 3eiction

!since all states butrr are accepting we do not mark accepting states in the figure.

1.3. OVERVIEW 9

Specification via ETL

Propertyl.1involves two events, closing a file, and reading from the file. While specification of this
property as a non-temporal safety property makes implicit assumption on how the pregicales
andclosed(v) are updated, or on when an error is reported (e.g., should an error be reported on close
after read?), specification via ETL exposes the legal sequences of events. The property

O(Vv.close(v) — [0 —read(v))

explicitly states that when an object has just been closed, it should not be read from in the future.
Intuitively, the meaning of thglobally temporal operator applied to an ETL formuta(denoted by
[¢) is thaty should hold forever from the current point of computation.

Chapterd uses Evolution Temporal Logic (ETL), a general specification language, to describe gen-
eral temporal properties of heap-manipulating programs.

In order to specify liveness properties, this thesis only uses ETL specifications (although in principle
we could have usediBhi-automata for subclasses of ETL, e.g. asliof]). For example, we could
write a property that requires that a referefaefers to an open file object infinitely often:

0 < Ju.f(v) A —closed(v) (1.2)

Where the temporal operateventuallyapplied to an ETL formula (denoted by >) intuitively
means that there exists a point in the future of the computation in whicblds, andf(v) is a unary
predicate representing the fact that the objeistpointed to by the reference variatble

While ETL is a general specification language, it is often more convenient to use alternative spec-
ification methods such as finite-automata or Besl specification language (see below) when only
interested in specifying safety properties.

Specification viaEasl

Easl [84] is a procedural specification language that can be used for specifying an abstract seman-
tics for a component (or a set of componentdglasl statements are a subset of Java statements
containing assignments, conditionals, looping constructs, and object alloc&asi. types are re-
stricted to booleans, heap-references, and built-in abstract Set and Map types. Easllyprovides
arequires statement to specify the correct usage constraints imposed by the component: it is the
responsibility of any program that uses the component to ensure that the condition specified by the
requires clause will hold at the corresponding program polds| supports object references and
dynamic allocation. This allows us to naturally express the structural relationships between the objects
of interest, as well as dynamic allocation of these objects.

Propertyl1.1 could be alternatively specified using tBasl specification language, as shown in
Fig. 1.4. In this specification, the state of a file object is modeled using a boolearchisled which

10 CHAPTER1. INTRODUCTION

class File {
boolean closed;

File) {

closed = false;

}
void read() {

requires !closed,;

}

void close() {
closed = true;

Figure 1.4: AnEasl specification for the propertyead *; close .

is initially set to false. Invokinglose() on a file object sets thelosed field to true, and invoking
read() requires that the file has not been closed (i.e., that the valdeséd is false).

Chapter6 uses théeasl specification language, that can express first-order safety properties (cor-
responding to the subclass of universally quantified safety properties in ETL).

1.3.2 Integrated Verification and Property-Guided Abstraction

A common approach to verification of heap-manipulating programs is to break the verification problem
into two phases: (i) a preprocessing phase in which a conservative finite approximation of the heap is
computed; (ii) a verification phase using the finite representation produced by the preprocessing phase.

This approach (referred to as ttveo-phased approaghs used in most existing verification frame-
works (e.g., 27,7, 19, 36]). One of its advantages is the fact that it allows the first phase to be performed
in a flow-insensitive manner, which is more scalable. However, while this approach is appealing due to
its simplicity and sometimes scalability, it may result in a significant loss of precision, and produce a
large number of false alarms. Moreover, in some cases, the loss of precision results with inefficiency
due to the exploration of a large number of superfluous states.

The verification algorithms described in this thesis have a common theme of performing an inte-
grated verification and pointer analysis. We refer to this approach astéggated approach

Generally, the analysis of combined abstract domains (e.g., our integrated approach) is more precise
than the combination of separate analyses of abstract domains (e.g., the two-phased a#ijodch) [
particular, in this section we demonstrate that even when using a rather limited (and scalable) points-to
analysis (in contrast to the shape analysis used in later sections) it may be profitable to use an integrated

analysis.

1.3. OVERVIEW 11

[1] while (...) {

[2] f = new File();

[3] f.read();

[4] f.close();

[5] /I do something
}

Figure 1.5: A simple example program in which loss of precision in the two-phased approach leads to a

false alarm.

Consider the code snippet in Fif}.5. A new File component is allocated and used in every loop
iteration. For this program, we would like to show that a file is never read after it has been closed.

Two-phased Approach

Fig. 1.6 shows the result of applying the two-phased approach for the purpose of verifying that a File
component is never read after it has been closed.

We omit the information for lineg and2, since the interesting program points are the ones im-
mediately after allocation, and immediately after closing the file. We assume that the preprocessing
phase applies a points-to algorithm based on an allocation-site abstract domain3g])g..THe col-
umn Pointer Analysis Phasshows the results of the pointer analysis. This could be computed in a
flow-insensitive manner.

In this thesis, we depict heap configurations as directed graphs. A node in the graph represents a
heap-allocated object. Nodes that potentially represent more than a single heap allocated objects are
calledsummary nodeand are depicted as nodes with double line boundaries. Properties of objects are
represented using edges from property symbol to the object node. Dashed edges in the graph represent
mayinformation. For example, the result of pointer analysi8 & a single summary node (abstract
object). All heap allocated objects summarized by this summary node are allocateds aépresented
by the solid edge fromite[2]. The dashed edge fromto this summary node represents the fact that it
may be pointed to by at this program point.

These notions will be formalized in future chapters.

In the finite-verification flow-sensitive phase, we start with the pointer information atliaed
initialize the state of the File component to be open (non-closed). Then, &t lihe file referenced by
f is read, and its state remains unchanged. When interpreting the statement afiagle referenced
by f should change its state and become closed. However, not all the objects representeddy
necessarily referenced Iby(in fact, it is clear that at most one object could be referencefl ayyany
given program point). Updating the statewf to be closed can therefore be unsound, as it fails to
represent some of the possible program states. To guarantee soundness, the steis wf be updated
to “unknown”, meaning that it may be either open or closed. This is depicted by using a dashed edge

12

CHAPTER 1.

INTRODUCTION

Program Point Pointer Analysis Phasg Verification Phase
1st Iteration 2nd Iteration
I oI I o R
A A A
site[2] sitg2] sitef2] closed
T o N O o]
) A b T
sitg[2] sitg[2] sitef2] closed
read may be erroneous
OB
.
A Ao
site[2] sitef2] closed

Figure 1.6: Two-phased analysis example.

from closed to u; in the figure.

This kind of update to the state of the object is knownagak updat€[13]), where the result of the
update is a set of possible states, including the old state. Weak updates often produce overconservative
results, producing a large number of false alarms.

Next, in the second verification iteration, the allocation at irdoes not change the possible state
for u;. Therefore, when reaching the invocatiorredd() at3, the referencé may be pointing to a
closed file, which causes the verification to produce an error. This reported error is a false alarm since

in the program of Figl.5, a file cannot be read after it has been closed.

Integrated Approach

We now show how an integrated approach successfully verifies that a file is not read after it has been
closed for the program of Fid..5.

Fig. 1.7 shows the stages of the integrated flow-sensitive verification algorithm. Again, we omit the
information for linesl and2. The integrated analysis also uses allocation-site based pointer abstraction,
as used in the two-phased approach, but integrating the pointer-analysis with the verification phase
allows us to refine the heap-abstraction using the state of the file (closed or open). Thus, objects allocated
at the same allocation site but in different states are abstracted to different elements in the abstract
domain.

First, at line3, f references an object allocated at lidghat is in the open (non-closed) state
(represented by the absence of an edge fedwred to u1). Then, at line3, the state of the object

remains unchanged. The statemtaolose() at line 4 has the effect of changing the state of the

1.3. OVERVIEW

13

Program Point 1st Iteration 2nd Iteration

B =) ()

A A A

sitg2) sitgf2] sitef2] closed
IR EEORRI=G

A A A

site[2] site[2] sitef2] closed
5] e ;o

A \ A

site[2] closed sitef2] closed

Figure 1.7: Integrated analysis example.

object referenced b to be closed. This kind of update to the state of the object is knovatrasg
update([13]), in which the update results with a new state without the need to record the old state of the
object as an alternative.

Next, in the second iteration at lirse f references an object allocated2atvhich is in the open
(non-closed) state. This is due to the allocatioR.inThe statement at lin@ doesn’t change the state,
and the the second iteration bélose() at line 4 results with the same abstract state we had in
the previous iteration on entry to lirie At this point of the algorithm, we reach a fixed-point, and no
new configurations arise. Since the property is never violated by these abstract configurations, we can

conclude that the property holds, and in our example program a file is never read after it has been closed.

Refining the heap abstraction by the state of the component (the File component in the above ex-
ample) is made possible by integrating the pointer-analysis with the verification phase which maintains
the state of the component. This is a special case of property-guided abstraction in which the property
being verified is used to refine the heap abstraction. This refinement provides a partial solution to Prob-
lem 2(b). In Chapte#, we will see how temporal properties are used to refine the heap abstraction in a
similar manner.

1.3.3 Property Guided Abstraction—Specialized Abstractions

Maintaining just the right correlation required between “analysis facts” can be the key to efficient and
precise verification. In this part of the thesis, we derive specialized abstractions by using the specified
property and possibly additional guidance provided by the user.

14 CHAPTER1. INTRODUCTION

Program Point 1st Iteration 2nd Iteration
3] ({f},{open,closed,err}) | ({f},{open,closed,err})
[4] ({f},{open,closed,err}) | ({f},{open,closed,err})
[5] ({f},{closed,err}) ({f},{closed,err})

Figure 1.8: Analysis of the example program using specialized abstraction derived from the property of

interest.

Using Specialized Abstraction

Chapter3 shows how to construct a specialized abstraction for certain kinds of properties and for a
restricted kind of programs calleshallow programs In shallow programs, pointers from program
variables to heap-allocated objects are allowed, but heap-allocated objects may not themselves contain
pointers. We use the class of shallow programs to investigate the relation of the complexity of verifica-
tion to the nature of the property being verified. The idea there is, again, to construct an abstraction that
integrates pointer information with information about the state of the verified component. Constructing
such specialized abstractions allows us to provide polynomial verification algorithms for certain kinds
of properties.

One of the algorithms presented in Cha@exan be immediately applied to verify the property of
interest in our example program. This algorithm (presented in Se8tiran be used to derive a poly-
nomial number of predicates of the forfd, S) for certain kinds of properties (under the assumption
that the analyzed programs are shallow). The intuitive meaning of a predicate of théAofis that
all reference variables in the sdtpoint to the same object (are aliased), and the object pointed to by
these references is in one of the states in thes&Ve also use a designated predidateor that holds
in a program-state if and only if the program-state contains an object in the erroestate

For the automaton of Fid..3, the construction algorithm produces the predicates:

({f}, {open,closed,err}), ({f},{closed, err}), ({f},{err}), Error

whereopen is the initial state of a File component.

Using these predicates in an independent attribute analysis on the (shallow) example program of
Fig. 1.5 results in the states shown in FiB.8, thus proving that the property holds for the example
program in polynomial time.

It is important to note that results in this chapter apply to programs that are sheitlowespect to
the type being verified.e., only objects of the verified type are required to be shallow and the rest of
the heap may have an arbitrary depth.

1.3. OVERVIEW 15

[1] while (...) {

[2] f = new File();

[3] if (chosen == null) {

[4] it (?) {

[5] chosen = f;

[6] }

[7] }

[8] f.read();

[9] f.close();

[10] /I do something
}

Figure 1.9: An instrumented version of the example program instrumented to non-deterministically
choose a single File component to be verified.

Using Separation

In Chapter6, we further investigate the idea of guiding the abstraction by user-specification, and allow
the user to provide a specification of how to decompose a verification problem into a number of inde-
pendent subproblems that could be verified independently in an efficient manner. In this chapter, we
also present a general frameworkhaterogeneous abstractiotizat allow different parts of the heap

to be abstracted using different degrees of precision, at different points during the analysis. We show
how to achieve more efficient verification by using the separation strategy (provided by the user) to
transform (instrument) a verification problem instance (consisting of a safety property specification and
an input program), and then utilize heterogeneous abstraction during the verification of the transformed
verification problem.

For our example program (Fid..5) and Propertyl.l, separation amounts to the simple idea of
verifying the property separately for each allocated file component. This could be viewed as verifying
the property for a singleepresentativdile (thechoserone) in the instrumented code of FIg9. In this
instrumented version of the program, each time a file is allocated, non-deterministic selection is applied
to choose a singlehoserfile, if one has not been already selected (in this thesis weis® ‘denote
a nondeterministic branch, as in lidg As a result, in any execution of the instrumented program,
at most one File component will be (nondeterministically) selected ashiberone. Our verification
procedure will only verify the correct usage of tblsoserfile component (referenced lofosen) in an
execution. By exploring all possibilities of nondeterministic choice fordheserfile component, our
verification method is guaranteed to represent all possible file components, and is therefore guaranteed
to be sound. Using this form of separation allows us to successfully verify the desired property. The
results of applying verification with separation to this example are shown irLHig.

The example program and property used here are extremely simple. In Chapéehandle a more

general setting involving first-order safety properties.

CHAPTER 1.

INTRODUCTION

16
Pt 1st Iteration 2nd Iteration 3rd Iteration
[8] f— f >@ @< chosen f> @< chosen
e ! AN F o]
chosen Sitg2] site[2] site[2] closed sitef2] closed site[2] closed
1—(w) () f%@
1 F o
site[2] sitel2] closed chosen Slte[Q] Slte[2] closed
[9] f— f >@ @< chosen f> @< chosen
T I AN F o T\
chosen Sitgf2] sitef2] sitef2] closed sitef2] closed sitef2] closed
() () —()
1 F o
site[2] site[2] closed chosen Slte[Q] Slte[Q] closed
[10] f— f >@ @< chosen f> @< chosen
/%\ ¢\ 4\ &V‘—. ¢\
chosen Sit€2] closed sitef2] closed Sit€]2] closed sitel2] closed Sit€l2] closed
() () @ o3
AN P A
site2] closed sitef2] closed chosen Slte{2] closed Sit€2] closed

Figure 1.10: Analysis of the example program using simple separation.

1.3. OVERVIEW 17

1.3.4 Verifying Temporal Properties

In Chapter4 and Chapteb we investigate two techniques for verifying general ETL specifications for
heap-manipulating programs. For example, we can verify Profaieztgr the program of Figl.11 The
technique of Chaptds performs verification by showing that the program does not satisfy the negation
of the original specification (also referred to as taation property. For Propertyl.2, the violation
property is:

v =< OVeaf(v) Vclosed(v)

In Chapter5, we show how to derive the following set of predicates from the violation property, by
taking the closure (all subformulae) of the ETLformula:

{{& OVYv.=f(v) Vclosed(v)), (O Vv.—f(v) V closed(v)), (Yv.=f(v) V closed(v)) }

These predicates correspond to future obligations that should be satisfied by the program’s exe-
cution. We denote byyp) the predicate recording the fact thatshould be satisfied by the future (or
present) of program execution. Initially, we require that the future of the execution satisfies the violation
property. As the analysis progresses, future obligations may be fulfilled, possibly leading to a repeatable
state in which no further obligations exist, thus satisfying the violation property.

Fig. 1.12shows part of the results produced in an attempt to verify Prode2tior the program of
Fig. 1.11 Initially, the predicatd > [Vv.~f(v) V closed(v)) holds, recording the fact that the future
of the computation should satisfy the prope@y(] Vv.—f(v) V closed(v). When the analysis reaches
line 5, the single file component becomes closed, satisfying the local property (v)Vclosed(v), and
thus possibly starting a continuous sequence for whichv.— f (v) V closed(v) holds. As a result, our
analysis takes two possibilities into account (producing two possible configurations at this point): (i) the
future of the computation from this point on satisfigs7v.—f (v) V closed(v); (ii) the property has not
stabilized yet, and the future of the computation should satisfy the initial progemty Vv.—f(v) V
closed(v). However, when the configuration recording possibility (i) above reache8 lite property
O Vu.—f(v) V closed(v) no longer holds, and this configuration is not propagated any further. When
the analysis terminates, it does so without finding a configuration that satisfies the violation property,
thus showing that Propertly.2 holds for the example program.

The example program and property used here are very simple. In particular, Prbjiediyes
not relate individuals (objects) across configurations and is essentially a propositional property over
propositions extracted from a first-order configuration. In Chagptge refer to such specifications as
temporally separablspecifications, and handle more general properties that may relate individuals of
different configurations.

The technique presented in Chaptarperates directly on abstract representation of traces and pro-
vides a conceptual model for the verification of heap-manipulating programs. In this technique, a possi-
bly infinite set of infinite traces is finitely represented by an abstract trace. ETL properties are translated

18 CHAPTER1. INTRODUCTION

[1] while (true) {

[2] f = new File();

[3] f.read();

[4] f.close();

[5] /I do something
}

Figure 1.11: A simple example program reading from a component referendethbgitely often.

into FOTC formulae that are evaluated directly over a first-order representation of abstract traces. For
brevity, we do not demonstrate the application of this technique in this overview section.

1.3.

OVERVIEW

19

Pt

1st Iteration

2nd lteration

3rd Iteration

r—()
A
sitel2]
(& O Vv~ f(v) V closed(v))

—0 @

N\
sitef2]

sitef2] closed
& OVYuf(v) V closed(v))

— @

A

Slte{2 sitef2] closed

(& O Vv f(v) V closed(v))

f%@ () f%@
I PN P
sitg]2] sitef2] closed SII€[2 site2] closed
(false) (false)
=) —() () ()
I I PN P
site[2] site[2] sitef2] closed Slte{2 sitef2] closed
(O OYv~f(v) Vclosed(v)) (<> Vv~ f(v) V closed(v)) (& O Vv~ f(v) V closed(v))
IP=c R NG
P P AN
Slte{2] closed site[2] closed site[2] closed site]2] closed
& O VYuf(v) V closed(v)) (& OVYv.~f(v) V closed(v)) (& OVYv.~f(v) V closed(v))
ST
AR S
roo r N R
Slte[2] closed site[2] closed site[2] closed sitel2] closed

(O Yv.~f(v) V closed(v))

(O VYv.mf(v) V closed(v))

([VYv.mf(v) V closed(v))

Figure 1.12: Verifying property.2for the program of Figl.11

20

CHAPTER 1.

INTRODUCTION

Chapter 2

Verifying Safety Properties of Concurrent
Java Programs Using 3-Valued Logic

We provide a parametric framework for verifying safety properties of concurrent Java programs. The
framework combines thread-scheduling information with information about the shape of the heap. This
leads to error-detection algorithms that are more precise than existing techniques. The framework also
provides the most precise shape-analysis algorithm for concurrent programs. In contrast to existing
verification techniques, we do not put a bound on the number of allocated objects. The framework even
produces interesting results when analyzing Java programs with an unbounded number of threads. The
framework is successfully applied to verify the following properties of a concurrent program:

e Concurrent manipulation of linked-list based ADT preserves the ADT datatype invariant. When
applied to concurrent queue implementations, this allows proving the correctness of the queue
algorithms (e.g., two-lock queue).

e The program does not perform inconsistent updates due to interference.
e The program does not reach a deadlock.
e The program does not produce runtime errors due to illegal thread interactions.

We also find bugs in erroneous versions of such implementations.

A prototype of our framework has been implemented and applied to interesting example programs.

“I have now in my hands,” my companion said, confidently,
“all the threads which have formed such a tangle..”
—Sir Arthur Conan DoyleA Study in Scarlet

21

22CHAPTERZ2. VERIFYING SAFETY PROPERTIES OFCONCURRENTJAVA PROGRAMSUSING 3-VALUED LOGIC

2.1 Introduction

Java provides low-level concurrency-control constructs that enable the programmer to create compli-
cated and powerful synchronization schemes. The Java language provides no means for compile-time
checking and almost no means for runtime checking of the correctness of concurrent behavior. This
makes concurrent programming in Java quite error-prone (&Qf})[

The theme of this chapter is to develop compile-time techniques for verifying safety properties
by detecting program configurations that may violate desired properties. This is a different task than
dynamic anomaly-detection techniques, which operate on a given input (and thus can only show the
presence of errors, not their absence).

2.1.1 Main Results and Related Work

In this chapter, we present a framework for verifying safety properties of concurrent Java programs. This
framework handles dynamic allocation of objects and references to objects. This allows us to analyze
programs that dynamically allocate thread objects, and even programs that create an unbounded number
of threads. Dynamic allocation of threads is common when implementing services in thread63g.g., [

ch. 6). For these programs, we can verify properties such as the absence of interference. Handling
dynamically allocated objects also allows us to model concurrent programs that manipulate linked-lists

in the most precise known way.

A Parametric Framework for Verifying Safety Properties

We provide a parametric framework for verifying safety properties of concurrent Java programs. We use
different instances of this framework (see Sect®h.]) to obtain static-analysis algorithms that have
the ability to verify different safety properties.

The semantics of Java can be described using a structural operational semantic9[eig tefrms
of configurationgor states). In our framework, the operational semantics of Java statements (and con-
ditions) is specified using a meta-language based on first-order logic with transitive-closure. The same
meta-language is also used to check that a safety property holds in a given configuration. Our frame-
work then computes a safe approximation of the (usually infinite) setamthable configurations.e.,
configurations that can arise during program execution. This can be formulated within the theory of
abstract interpretatior2fl]. The main idea is to conservatively represent many configurations using a
singleabstract configurationThe effect of every statement (and condition) on an abstract configuration
is then conservatively computed, yielding another abstract configuration. Also, the framework conserv-
atively verifies that all the “reachable abstract configurations” satisfy the desired safety property. Thus,
we may falsely report that a safety property may be violafi@ld€ alarm) but can never miss a violation.

2.1. INTRODUCTION 23

Our framework can be viewed as on-the-fly model checking for verifying safety properties of
programs. On-the-fly model checking does not require the construction of a global state graph as a
prerequisite for property verification. In order to handle dynamic creation and references to objects, we
use first-order logical structures to represent configurations of the prograstaté&space exploration
algorithm (see Fig2.4) is used to generate the configuratiseachablefrom an initial set of configu-
rations. The effect of every program statement is modeleactipnsspecified usindirst-order logical
formulae Our abstract configurations are bounded representations of logical structures. A (concrete)
configuration is automatically abstracted into an abstract configuration.

Many approaches were proposed to handle verification of unbounded data structures. Traditional
approaches consist of manually abstracting the data-structure into a simple finite state machine repre-
senting the states of the data-structure that are relevant to the verification probleml(s8,gLOR]).

Other, more recent approaches, use a combination of theorem-proving and model checking techniques
to automatically construct such abstractiohsg, 9].

Our framework should be contrasted with traditional model checking algorithms in which a bounded
representation is guaranteed by usimgpositional formulador actions. Moreover, most model check-
ing techniques perform an abstraction when the model is extracted, and apply actions with a fixed
number of propositional variablesl@]). This could be trivially encoded in our framework by using
only nullary predicates (and thus the number of individuals in a logical structure is immaterial). In
fact, our framework allows more general (and natural) modeling of programs by using unary and binary
predicates. This is crucial in order to handle dynamically allocated objects and references to objects
where the “name” of the object is unknown at compile-time. Even the techniqu8pffprmulated
for processes rather than threads) relies on explicit process names, and thus cannot handle dynamic
allocation of processes.

ESP R7] and SLAM [72] use a preceding pointer-analysis phase and use the results of this phase
to perform finite-state verification of sequential programs. Separating verification from pointer-analysis
may generally lead to imprecise results (see SedtiBrB). In contrast, our framework handles concur-
rent programs, and applies integrated verification and pointer analysis which is more precise.

Bandera 19| is a framework for translating Java programs to a program model acceptable by ex-
isting model checking tools. During translation, the model is reduced using slicing and other program
analyses.

[90] presents a new modular and customizable model checking framework. Similarly to ESP and
SLAM, this framework assumes that pointer-analysis is applied as a preprocessing phase, prior to veri-
fication.

JavaPathFindelbp] and Java2Spindl] translate Java source code to PROMELA representation.
The SPIN model-checkeb§] is then used to verify properties of the PROMELA program. Both these
tools put a bound on the number of allocated objects since it is imposed by SPIN. A variant of SPIN

24CHAPTERZ2. VERIFYING SAFETY PROPERTIES OFCONCURRENTJAVA PROGRAMSUSING 3-VALUED LOGIC

named dSPIN32] supports dynamic allocation of objects. However, since it uses no abstraction, it
can only handle bounded data-structures and a bounded number of thiehgse$ents a method for

the verification of parametric families of systems. A network grammar is used to construct a process
invariant that simulates all systems in the family. However, it cannot handle dynamic allocation of
objects.

Das, Dill, and ParkZ8] have used predicate abstraction to verify the properties of a cache coherence
algorithm and a concurrent garbage-collection algorithm. The garbage collection algorithm was verified
in the presence of a single mutator thread executing concurrently with the collector.

Saidi [92] presents new abstraction predicates but does not have the notion of summary nodes. Thus,
it cannot handle programs with an unbounded number of allocated objects. Moreover, our framework
presents a model checking algorithm that recognizes abstraction as suggested there.

In our framework, rather than having separate model-extraction and model checking phases, we
follow the abstract-interpretation approa@d]and cast our analysis in a syntax-directed manner.

Technically speaking, our framework is a generalization9d] |n the following aspects: (i) Pro-
gram configurations are used to model the global state of the program instead of modeling only the
relationships between heap-allocated objects. This allows us to combine thread scheduling information
with information about the shape of the heap. (ii) Program control-flow is not separately represented,
but instead the program location of each thread is maintained in the configuration which allows us to
handle an unbounded number of threads in a natural way. This is naturally coded in first-order logic as a
property of a thread (in contrast to model checking in which it is externally coded). Furthermore, it does
not require control-flow information to be computed in a separate earlier phase. This is an advantage
because the imprecision in control-flow computation could lead to imprecise results. (iii) We use the
standard interleaving model of concurrency. A slightly different generalization is us&@j]inghich
even allows the program to modify itself to support the semantics of Mobile Ambig#ts [

The FLAVERS system76] uses trace flow graphs with feasibility constraints, represented as finite-
state automata, to model the semantics of concurrent Java programs. An important difference between
our framework and FLAVERS is that our framework has the ability to model the dynamic creation
of objects and threads. Moreover, since every finite automaton can be coded in our framework, it
generalizes FLAVERS. However, the cost of doing that in our current implementation may be higher.

In [98], a framework for model checking distributed Java programs is presented. This framework
uses partial-order methods to reduce the size of the explored state-space. However, it uses no abstraction
and thus can only handle bounded data structures and a bounded number of threads. We intend to use
similar partial-order methods in future versions of our framework.

In [18], shape analysis of concurrent programs is used to reduce finite-state models of concurrent
Java programs. In this analysis, the number of threads is bounded. The algorithm presented is based on
[13], which uses a singlshape graptior each program location, and uses an abstraction which leads to

2.1. INTRODUCTION 25

overly imprecise results (e.g., in programs that traverse data structures based on allocation sites).

In [104], shape analysis of concurrent programs is used for eliminating synchronization. ¥&,in [
the algorithm presented is an extension bf][and suffers from the same imprecision. It should be
noted that despite the different goals of our work, it is significantly more precise. In particular, it always
performs strong updates.

In [3], static analysis is used to identify opportunities to eliminate unnecessary synchronization.
That work assumes a static control-flow-graph, and ignores thread-scheduling mechanisms.

Applications

We have used our framework to verify the properties listed below.

Interference Two threads are said faterferewhen they may both access a shared object simulta-
neously, and at least one of them is performing an update of the shared object. We use our framework
to locate read-write and write-write interference between threads {8pe Here, we benefit from the
fact that the analysis keeps track of both scheduling information and information about the shape of the
heap. For example, in a two-lock-queue (s&§,[also shown in the appendix) we are able to show that
write-write interference is not possible since writing is never performed on the same object.

Deadlock Our framework has been used to verify the absence of a few types of deadlocks: (i) total
deadlocks in which all threads are blocked. (ii) nested monitors deadlocks, which are very common in
Java (LOg) (iii) partial deadlocks created by threads cyclically waiting for one another.

We are also able to verify that a program complies with a resource-ordering policy, and thus cannot
produce a deadlock (seéd, ch. 8).

Shared ADT Our framework has been used to verify that a shared ADT, based on a linked-list,
preserves ADT properties under concurrent manipulation. Here, the strength of our technique is ob-
vious, since precise information about the structure of a scheduling queue can be used to precisely
reason about thread scheduling. In particular, our framework has been applied to verify the concur-
rent queue algorithms presented by Michael and Scot?1hWhich are in part implemented in the
java.util.concurrent package of JDK1.5. (a preliminary version of this case study appeared in
[120).

Our framework has also been applied to prove the correctness of the apprentice challenge, originally
presented by J. Moore as a challenge for Java verificafign [

For example, Fig2.1(a) shows a concurrent program using a queue. The implementation of the
gueue is given in Fig2.1(b) and Fig.2.2 This program is used as a running example throughout this
chapter. Our technique is able to show that the properties of the queue are correctly maintained by
this program without anfalse alarms Moreover, since the analysis is conservative, it is guaranteed to

report errors when analyzing an ill-synchronized version of the same queue (not shown here).

26CHAPTERZ2. VERIFYING SAFETY PROPERTIES OFCONCURRENTJAVA PROGRAMSUSING 3-VALUED LOGIC

lllegal Thread Interactions The Java semantics allows the programmer to introduce thread inter-
actions that are illegal and result in an exception during program execution (this is the only runtime
checking applied by Java for correctness of concurrent behavior). For example — starting a thread more
than once will result with alllegalThreadStateException being thrown. Our framework has

been used to detect such illegal interactions.

Prototype Implementation

We have implemented a prototype of our framework calg®1C [113. In Section2.6, we report
experimental results of applying this prototype to several small but interesting programs. We then
show a detailed case study of applying our framework to verify the correctness of concurrent queue
algorithms.

Currently, we do not perform interprocedural analysis and assume that procedures are inlined. Sup-
port for (recursive) procedures can be added by extending the approach descriBgd by [

The main disadvantage of our current implementation is that no optimizations are used, and thus
only small programs can be handled. However, we are encouraged by the precision of our results and
the simplicity of the implementation.

Outline of this Chapter

In Section2.2, we give a brief overview of Java’s concurrency model. SecZi@defines our formal

model which uses logical structures to represent program configurations. Sgdtgirows how mul-

tiple program configurations can be conservatively represented using a 3-valued logical structure. In
Section2.5, we show how our method can be used to detect several common concurrency errors. In
Section2.6, we describe the prototype implementation and results we have obtained using it to ana-
lyze a few small but interesting programs. Application of the framework to more realistic examples is
described in Chaptét.

2.2 Java Concurrency Model

We now give a short description of the Java concurrency-primitives used in this thesis. The reader is
referred to 17, 63, 67] for more details.
Java contains a few basic constructs and classes specifically designed to support concurrent pro-

gramming:
e The clasgava.lang.Thread , used to initiate and control new activities.

e Thesynchronized keyword, used to implement mutual exclusion.

2.2. hvA CONCURRENCYMODEL 27
class Producer implements Runnable { /I Queue.java
protected Queue q; class Queue {
private Queueltem head;
public void run() { private Queueltem tail;
g.put(vall); public void put(int value) {
} Ip1 Queueltem x _i = new Queueltem(value);
} Ips synchronized(this) {
class Consumer implements Runnable { lp3 if (tail == null) {
protected Queue q; lpa tail = x
lps head = x
public void run() { } else {
lps tail.Lnext = x i
val2 = q.take(); lp7 tail = x
} }
} lps }
class Approver implements Runnable { lpg }
protected Queue q; public Queueltem take() {
Ity synchronized(this) {
public void run() { Queueltem x _d = null;
g.approveHead(); lto if (head != null) {
} lts newHead = head.next;
} Ity x_d = head;
class Main { lts x_d.next = null;
public static void main(String[] args) lte head = newHead,;
Im1 Queue q = new Queue(); lt7 if (newHead == null) {
Ilmo Thread prd = new Thread(new Producer(q)); lts tail = null;
Ims Thread cns = new Thread(new Consumer(q)); }
Ilmy for(int i = 0; i < 3; i++) { }
Ims new Thread(new Approver(q)).start(); ltg }
} lt10 return x _d;
Ime prd.start(); }
Im7 cns.start(); public void approveHead() {
} lay synchronized(this) {
} las if (head != null)
lag head.approve();
lay }
(@) }
}

Figure 2.1: (a) a simple program that uses a queue, (b) simplified Java source code for a queue imple-

mentation.

(b)

28CHAPTERZ2. VERIFYING SAFETY PROPERTIES OFCONCURRENTJAVA PROGRAMSUSING 3-VALUED LOGIC

/I Queueltem.java

class Queueltem {
private Queueltem next;
private int value;
private boolean isApproved;

public void approve() {

}
}

Figure 2.2: Simplified Java source code for a Queueltem implementation.

e The methodsvait , notify , andnotifyAll defined injava.lang.Object , used to co-
ordinate activities across threads.

The constructor for th&hread class takes an object implementing Rennable interface as a
parameter. Th®unnable interface requires that the object implementthe() method. Threads
may be also created directly withoutRunnable object, by inheriting from th&hread class, and
overriding therun() method. However, in this thesis we prefer to always use Thread construction with
aRunnable object.

A thread iscreatedby executing anew Thread() allocation statement. A thread startedby
invoking thestart() method and starts executing then() method of the object implementing the
Runnable interface.

Initially, a program starts with executing theain() method by the main thread. Java assumes that
threads are scheduled arbitrarily.

The program shown in Fig2.1(a) contains3 classes implementing tHeunnable interface: a
Producer class, which puts items into a shared queue; a balimgsumer class, which takes items
from a shared queue and does not wait for an item if the queue is empty; &mpeover class, which
performs some computation on a queue element to approve it. The program starts by executing the
main() method, which creates a shared queue, a Producer thread, a Consumer thraakh@nager
threads. Threads in the example are started at labg|simg, andim.

Each Java object has a unique implicit lock associated with it. In addition, each object has an
associated block-set and wait-set for managing threads that are blocked on the object’s lock or waiting
on the object’s lock. When gynchronized(expr) statement is executed by a thregathe object
expressiorexpr is evaluated, and the resulting object’s lock is checked for availability. If the lock has
not beeracquiredby any other thread, successfully acquirgs If the lock has already been acquired
by another thread, the thread becomeslockedand is inserted into the lock’s block-set. A thread

2.2. AvA CONCURRENCYMODEL 29

may acquire more than one lock, and may acquire a lock more than once. When a thread leaves the
synchronized block, it unlocksthe lock associated with it. When a lock has been acquired more than
once (by the same thread), it is released only when a matching numirdookoperations is performed.

In the example shown in Fi@.1, we guarantee that the queue operations are atomic by putting
critical code into asynchronized(this) block.

A threadt may becomevaitingon a locki by invoking a call too.wait() onl’s object (0); a call
to o.wait() putst in I's wait-set.

Whent becomes waiting oh it releases the lock but does not release any other locks it acquired.
A waiting threadt can be only released by another thread involkinptify() , 0.notifyAll()
for the lockl or interrupt() on the thread.

Invoking notify() on an object removes an arbitrary thread from the object’s wait-set, and makes
it available for scheduling. InvokingotifyAll() on an object, removes all threads from the wait-
set, and makes them available for scheduling.

A threadt should only invokewait() , notify() and notifyAll() when it is holding the
object’s lock, otherwise an exception is thrown.

A threadt; may wait for another threatd to complete execution arjdin it, by invoking a call to
to.join(). If t2 is not yet started of; is already dead, the call fos.join() is ignored.

Java uses a variant of no-priority non-blocking monitdr§].[In no-priority monitors a notified
thread has no priority over blocked threads, or over a thread just reaching the monitor entrance. Notified
threads, blocked threads, and entering threads have the same priority when competing to acquire a lock.
Therefore, a notified thread does not resume execution immediately, but is moved to the block-set, and
competes to re-acquire the lock.

For the sake of simplicity and readability we make the following simplifying assumptions:

e We assume the identity of the lock feynchronized(exp) , and the target object of scheduling-
related methods, is given as a single reference variable rather than a general reference expression
as supported by the Java language. If the program uses a general expression, we normalize the
program by adding a temporary variable.

e Similarly, we assume the target object of scheduling-related methoasify()
notifyAll() ,wait() etc.) is given as a single reference variable.

e We assume that the memory-model provides sequential consistency. This assumption abstracts
away the actual details of the memory model and is common to all Java verification frameworks.
While our framework is expressive enough for expressing the lower-level semantics involving the
actual memory-model, the behavior of that model under abstraction remains an issue for further
research.

30CHAPTERZ2. VERIFYING SAFETY PROPERTIES OFCONCURRENTJAVA PROGRAMSUSING 3-VALUED LOGIC

e For the sake of clarity, we do not present here the semantics for multiple acquisitions of a lock by
the same thread.

e We may handle additional Java features such as exceptions and dynamic binding in a conservative

manner.

2.3 A Program Model

In this section we lay the ground for our analysis of Java programs. In SetBohwe use logical
structures to represent the global state of a multithreaded program. S2&idases logical formulae

as meta-language to extract interesting properties of a configuration such as mutual exclusion. Then, in
Section2.3.3 we define a structural small step operational-semantics which manipulates configurations
using logical formulae. Finally, in Sectidh3.4 we describe the safety properties that are verified in

this chapter.

2.3.1 Representing Program Configurations via Logical Structures

First-order logical structures provide a natural formalism for representing the global state of a heap-
manipulating program — individuals of the first-order structure correspond to heap-allocated objects,
properties of objects are represented using unary predicates, and relationships between objects are rep-
resented using binary predicates. It is also possible to use first-order logical structures to model non
heap-allocated objects (such as integer values), as well as enforce a typing mechanism on objects by
using a unary predicate@_7'(v) to denote objects of typ#.

A program configuratiorencodes a global state of a program which consists of (i) a global store,
(i) the program-location of every thread, and (iii) the status of locks and threads, e.g., if a thread
is waiting for a lock. Technically, first-order logic with transitive-closure is used in this chapter to
express configurations and their properties in a parametric way. Formally, we assume that there is a
set of predicate symbolB for every analyzed program each with a fixed arity. Tehlecontains the
predicates used to analyze our example programs.

e The unary predicate(v) holds for objects that exist in the current configuration.
e The binary predicateq(v;, v2) holds for objects that are equal.

e A unary predicatés_T'(v) is used to denote the objects of type In particular, the unary pred-
icateis_thread(t) denotes objects that are threads, i.e., instances ¢avhdang.Thread

or its subclasses.

2.3. APROGRAM MODEL 31

Predicates Intended Meaning

e(v) v exists in the configuration

eq(v1,v2) v equals tavy

is.T(v) v is an object of typd”

zero(v) the individualv represents integer value zero
suce(vy, v2) v9 IS the successor value of

{at[lab](t) : lab € Labels} threadt is at labellab

{rv[fld](vi,v2) : fld € RFields} | field fid of the object; points to the objects
{iv[fld](v1,v2) : fld € IFields} | field fid of the objecw; has the value,

held_by(l,t) the lock! is held by the thread
blocked(t,1) the thread is blocked on the lock
waiting(t, 1) the thread is waiting on the lock

Table 2.1: Predicates for partial Java semantics.

e To model integer values, we introduce objects of type unsigned-integer, where the unary predicate
zero(v) is used to record the integer with the value zero, and the binary predicate, v2) to
record the successor relationship between integers.

e For every potential program-location (program lalieh of a thread;, there is a unary predicate
at[lab](t) which is true whert is atlab.

e For every class field and function paraméftdr , a binary predicatev|[fld](v;,v2) records the
fact that thefld field of the objecty; points to the object,.

e For every integer valued fieifld , a binary predicatév[f1d](v1, v2) that represents the integer
value of a field by relating an object to an individual representing an integer vatye

e The predicatesield_by(l,t), blocked(t,l) and waiting(t,l) model possible relationships be-
tween locks and threadsield_by(l,t) is true when the lock has been acquired by the thread
t, via a successfidynchronized statementblocked(t, 1) is true when the threatis blocked
on the lockl, as a result of an unsuccessfyinchronized statement.waiting(t, 1) is true

when the thread is waiting for the lock as a result of invoking wait() call.

Note that predicates in TabR1 are actually written in a generic way and can be applied to analyze
different Java programs by modifying the set of labels and fields.
A program configurations a2-valued logical structur€® = (U*, .%) where:

e U'is the infinite universe of the-valued structure. Each individual i represents an allocated

32CHAPTERZ2. VERIFYING SAFETY PROPERTIES OFCONCURRENTJAVA PROGRAMSUSING 3-VALUED LOGIC

/// T ~ ' s SN T " yd SN \\\ , //// . \\\\\ /,,/‘/ TS N
rvlhead] [<u0> rv[next] [<u 1>\ rv[next] <u2> rv[next| / <u3> | rvnext] /0 <ud> N\
"\ 1_by[head] / _1_by[next] / (J’_by [next] / N by[mext] T —— by[next] |
~ R s e Ttail Sl e S e P]
Vs B rv[tail] S \\f_by[mllJ//,
s T ~
,/ 7 rv[this] y N
[ST a3
I Condtis ~aifla 1]/
//,_4(\\(/ I o L S/ AN b
\/ < . \uﬂ[t‘hl,i /o<prd> N wv[x] / <ml> \\ 7o o<a 1> N ¢ <a2> \>
\ITbY[thl’S/Li"\ held_by \\>\ at[lp_6]/// _r_by[x_i] / N\ at[la_1]/ / \\\at[la_l]//
S T o S
AN R WY . /
N\ — rv[this AN /
A\ \“*\[_ ‘]‘\ / <ens> N\ S/
kN e —— blocked o atfle 1]/ 7
. T — N / - -
e rv[this] -

Figure 2.3: A concrete configuraticoj’ﬁ_g.

heap object (some of which may represent the threads of the program, and the configuration also
contains an infinite number of individuals representing the unsigned integers).

e /1 is the interpretation function mapping predicates to their truth-value in the structure, i.e., for
every predicate € P of arity k, /£ (p): U?* — {0, 1}

Usually, not all logical structures represent valid program configurations, therefore TVLA/3VMC
allows the programmer to introduce integrity constraints specifigd@&” (first order-logic with tran-
sitive closure) formulaedl]. The integrity constraints for integers are simply the Peano axioms encoded
using F'O formulae.

In this thesis, program configurations are depicted as directed graphs. Each existing individual of
the universe (one for which holds) is displayed as a node — objects of type thread are presented
as hexagonal nodes, other objects as round nodes. A unary pregdieateh holds for an individual
(node)u is drawn inside the node. Since only objects for which holds are shown, we do not draw
this predicate. In some of the figures, we use node names written inside angle brackets. Node names
are only used for ease of presentation and do not affect the analysis. A true binary predi¢catg)
is drawn as directed edge from to uy labeled with the predicate symbol. For brevity, the predicate
eq(v1,v2) is not shown, and the integer nodes are omitted when possible. Wenaseral sign () to
denote entities of the concrete domain (e(tf.denotes a concrete configuration C).

Example 2.3.1 The configuratiorC’th3 shown in Fig.2.3 corresponds to a global state of the example
program with 5 threads: a singlproducerthread (labeledprd) which acquired the queue’s lock, a
single consumetthread (labeled:ns) which is blocked on the queue’s lock, an@@provingthreads
(al,a2,a3) which haven't performed any action yet. The role of the predicatg|fld](o) will be
explained in future sections. For clarity of presentation, we omitRn@nable objects and present

only thread objects.

2.3. APROGRAM MODEL 33

All threads in the example use a single shared queue containing 5 {tes. ., u4}. The binary
predicaterv|[next|(o1, 02) records for each object; the target object referenced by itext field.

Note that the number of elements that actually exist in a universe is not bounded since the analyzed
program may allocate new non-thread individuals, new thread individuals, or both. We do not place a
bound on the number of allocated objects.

2.3.2 Extracting Properties of Configurations using Logical Formulae

Properties of a configuration can be extracted by evaluating a first-order logical formulae with transi-
tive closure £OTC) over configurations. The (standard) syntax and semantié&f¢ are given in
AppendixA.

In this thesis, we are mostly interested in properties that hold for objects that actually exist in a
configuration. We therefore define the following notion of relativization for a formula in negation normal

form (where negations only appear over predicates).

Definition 2.3.2 Given anFOTC formulay in negation normal form (NNF), we define theativiza-
tion ()€ of as follows:

PV, -5 vk)) = Njcicp €(0i) Ap(va, .oy vg)
P15 0))C = Ajcicy €(Vi) Ap(v1, .. vk)

For example, the following formula describes the fact that a lock pointed-to iithe field of a
thread, has been acquired by the thread, and is now being held by the thread.

3t, l.is_thread(t) A ro[this](t,1) A held_by(l,t)
the relativization of this formula is

Jt, le(t) N e(l) Aisthread(t) A rolthis](t,l) A held_by(l,t)

34CHAPTERZ2. VERIFYING SAFETY PROPERTIES OFCONCURRENTJAVA PROGRAMSUSING 3-VALUED LOGIC

which means that this formula will only evaluate to true in a configuration where both the thaead
the lock! actually exist.

In the rest of this chapter, unless stated otherwise, we assume that formulae are implicitly normalized
to NNF and relativized before evaluation

For ease of notation, we use the shorthand type.p £ Vv.is_type(v) — @. Which allows us to

write the above formula in a more readable form as:
3t: thread3l.rvlthis](t,1) A held_by(l,t)

Our experience indicates that it is quite natural to express configuration properties using first-order
logics.

Transitive closure is useful in the running example for expressing reachability. For example, the fact
that an element; in the queug is reachable fronmead , we write the formula:

Ju.rv[head](q, u) A rv[next]* (u, uy)

Note that the program-location of each thread can be used in a formula by using the appropriate
label. For example, consider a laldgl;; which corresponds to a critical section. We formalize the

mutual exclusion requirement using the following formula:

Vi, to: threa,d.(tl #* tg) — ﬁ(at[lmt] (tl) A at[lmt} (tg))

2.3.3 A Structural Operational Semantics of Configurations

Fig. 2.4 shows a state-space exploration. For each configurétisach thaiC' is not already anember
of the state-spacewe explore every configuratiafi’ that can be produced by applying some action to
the current configuratio@'.

Every resulting configuratiod”, is added to thestate-spaceising set union. The membership
operator used is set-membership, we will later use a generalized membership operator. In the case of
set membership, this algorithm is essentially the classic state-space exploration used in model checking
[17]. However, in contrast to model checking, there is no bound on the number of objects, and therefore
the state-space explored by this algorithm is not guaranteed to be finite. A possible solution for this
problem is given in Sectio.4.

Informally, anactionis characterized by the following kinds of information:

e Thepreconditionunder which the action is enabled, expressed as logical formula. This formula
may also include a designated free variabl® denote the “scheduled” thread on which the action
is performed. Our operational semantics is non-deterministic in the sense that many actions can
be enabled simultaneously and one of them is chosen for execution. In particular, it selects the
scheduled thread by an assignment;torhis implements the interleaving model of concurrency.

2.3. APROGRAM MODEL 35

initialize(Co) {
WorkSet = Co

}

explore() {

while WorkSet is not empty {
select and remove C from WorkSet
if not member(C, stateSpace) {

verify(C)
stateSpace’ = stateSpace U {C'}
for each action ac

for each C’ such that C =4 C’
WorkSet = WorkSet U {C'}

Figure 2.4: State space exploration.

e Enabled actions create a new configuration where the interpretations of every preditatdy
k is determined by evaluating a formufg (vy, v, . .., vx) which may use, v, . .., v, andt
as well as all other predicates ih

Table 2.2 defines the semantics of concurrency statements used in the running example. The table
lists a precondition and update formulae for each action. The value of a preglicate., . . ., vx) after

the update is given by a formula,,, ., . Predicates not given an update formulae are assumed

e UR)
to remain unchanged by the action. The set of actions is partitioned to blocking and non-blocking
actions. Blocking actions do not affect the program-location. Non blocking actions advance to the next
program-location by updating the[lab](ts) predicates for the thread.

A Java statement may be modeled by several alternative actions corresponding to the different be-
haviors of the statement.

When a precondition is enabled, it determines a thread (denot&gd that executes the action, and
an action to be taken. A Java statement may be modeled by several alternative actions corresponding to
the different behaviors of the statement.

The actionslock(v) and block Lock(v) correspond to the two possible behaviors on entry to a
synchronized(v) block: lock(v) is enabled when there exists no thread (other than the current
thread) that is holding the lock referenced fayblock Lock(v) is enabled when such a thread exists.

The actionunlock(v) corresponds to the release of the lock upon exit ofsjrechronized(v)
block. The actionwait(v) corresponds to invocation ofwait() . The actionsnotify(v) and

36CHAPTERZ2. VERIFYING SAFETY PROPERTIES OFCONCURRENTJAVA PROGRAMSUSING 3-VALUED LOGIC

Action Precondition Predicate-update
lock(v) -3t # ts.ro[v](ts, 1) Pheldby(ly) = held by(ly,t1) V (L1 =ts Nlp = 1)
A held-by(l, 1) Pblocked(t1,l,) = blocked(t1,11) A ((t1 #ts) V (I1 # 1))
unlock(v) rv[v](ts, 1) Pheldby(ly) = held by(ly,t1) A (t1 #ts Vi #1)
wait(v) rofv](ts, 1) Pheldby(ly 1) = held by(ly,t1) A (t1 #ts Vi #1)
Puaiting(tr,11) = waiting(t1,) V (t1 =ts Ny = 1)
notify(v) rufv](ts, 1) Puwaiting(tr,1) = waiting(t, 1) A (t1 # ty V11 #1)
N waiting(ty, 1) Dblocked(t1,,) = blocked(t1,11) V (t1 =ty ANl1 = 1)
ignored rvlv](ts,)
Notify(v) A =3ty waiting(ty, 1)
noti fyAll(v) | rofo](ts,) Guating(toin) = waiting(tr, 1) A (1 # 1)
A Tty waiting(ty, 1) Pblocked(t1,,) = blocked(t1,11) V (waiting(ty, 1) A (lh = 1))
ignored rv[v](ts, 1)
NotifyAll(v) | A =Tty waiting(ty,1)
blockLock(v) | 3t # ts.rv[v](ts,l) Oblocked(t:,1y) = blocked(t1,11) V (t1 =ts Nlp = 1)
A held_by(l,t)

Table 2.2: Operational semantics for concurrency statements. Actions above the two horizontal lines
are non-blocking, thélock Lock(v) action is blocking.

2.3. APROGRAM MODEL 37

ignoredNotify(v) correspond to the possible behaviors when calimptify() . notify(v) is
enabled when there exists a thread waiting on the lock referenceddnd the free variablg, in its
precondition corresponds to non-deterministic selection of the thread to be natjfieded N oti fy(v)
is enabled when no such thread exists. SimilatlyifyAll(v) andignoredNotifyAll(v) model the
behavior ofv.notifyAll() . Technically, the translation of a Java statement (and condition) to sev-
eral alternative actions can be performed by a front-end.

Formally, the meaning of actions is defined as follows:

Definition 2.3.3 We say thatC® = (U,.) rewrites into a configurationC’”’ = (U,/) (denoted by
C! =40 C’”') whereac is an action, if there exists an assignmehthat satisfies the precondition of
onC", and for every € P of arity k anduy, ..., u, € U,

Sp) (. uk) =

b
[[gop(vl,vg, . ,’Uk)]]g (Z[vl = U, V2 — U2, ...,Vg uk])

wherey,(v1, - - -, vg) is the formula forp given in Table2.2

We say that a configuratiof” transitively rewrites into a configuratiorC“' (denoted byC? =*
C¥) if there exists a (potentially empty) sequence of configuratishs- CZ,C%, ..., Ci = C¥ such
that foreach) < ¢ < n, Cf = C’EH.

2.3.4 Safety Properties of Java Programs

Given a set of initial configuration®,, the set ofeachableconfiguration€x is the set of configurations
that can be created by transitively rewriting a configuration fiéyn More formally, a configuration
C, € Cg iff there existsC € Cy.C =* C,.

A safety property is formalized using logical formulae. We say that a safety property of a program
holdsif all reachable configurations satisfy the formula specifying the property.

Our analysis described in Secti@rt.1aims at automatically verifying safety properties by guaran-
teeing to detect configurations where the properties are violated, if such configurations exist. Moreover,
we sometimes also show that a liveness property at some reachable configuration holds by showing that
a stronger safety property holds.

Table 2.3 lists some of the formulae used to detect configurations that violate a safety property.
Formulae for other safety properties may be defined similarly.

In the Read-Write (RW) Interference formula, the first line states that both individuaiglt,, are
different thread individuals, the second line states that thremcht labellr and the thread,, is at label
lw, and the third line states that the variablg of threadt,, and variabler, of threadt, reference the
same objecb. The labelw is assumed to be a label of a statement with a writing accesgr anldbel

of a statement with a reading access.

38CHAPTERZ2. VERIFYING SAFETY PROPERTIES OFCONCURRENTJAVA PROGRAMSUSING 3-VALUED LOGIC

Example 2.3.4 In Fig. 2.3 the RW-Interference formula evaluate9tfor the labeldt; (newHead =
head.next)andipg (tail.next = x _i) of the example program shown in F@y1(b). This is due
to the fact that synchronization prevents the consumer thteas) from being at labelt; when the
producer threadprd) is at labellpg.

Even if synchronization was dropped, and the consumer and producer threads were allowed to be at
Its and ipg correspondingly, RW-Interference would still evaluate to O sime&d andtail refer to
different objects.

The Write-Write (WW) Interference formula is similar to the RW Interference formula.

The Total Deadlock formula requires that for each thrigdldere exists a locksuch that is blocked
on!. This is a strict formulation of the problem that can be generalized (e.g., allowing some thread to
be in terminated state).

The Resource Ordering Criterion formula states that there exists a thieading a locki,, and
blocked on a lock; such that the ID ofs is greater than the ID df.

The Nested Monitors formula states thgf, is a separation node in the configuration graph with
respect to paths over the fidld . Thus, everyn -path from a node in the configuration graph reaching
o;n Passes through the nodg,;. Therefore, a nested-monitors deadlock may be created when a thread
becomes waiting on;,, while holding the lock of the objeet,,;.

The Missing Ownership formula states that there exists a thratddbell; which invokesy.wait()
or v.notify() and does not hold the lock of the objéctferenced by variable.

2.4 An Abstract Program Model

The state-space exploration algorithm of F2gd4 may be infeasible in programs with an unbounded
number of objects. In this section we describe how to create a conservative representation of the concrete
model presented in Secti@3in a way that provides both feasibility and high precision.

In Section2.4.1we use3-valued logical structures to conservatively represent multiple configura-
tions of a multithreaded program. Secti@rt.1presents the concept of embedding, which is crucial
for proving the correctness of our algorithm. Sectif.2presents the abstract semantics derived from
the concrete semantics presented in Seci@3 Finally, Section2.4.3shows how to improve the
precision of our analysis by adding instrumentation predicates.

2.4.1 Representing Abstract Program Configurations via-Valued Logical Structures

To make the analysis feasible, we conservatively represent multiple configurations using a single logical
structure but with an extra truth-valug¢2 denoting values which may bleand may be. The values

0 and1 are calleddefinite valuesvhereas the valug/2 is calledindefinite value We allow an abstract

2.4. AN ABSTRACTPROGRAM MODEL

39

Formula

Intended Meaning

Iy, ty: thread, o.(t, # ty)
A at[lr](t,;) A at[lw](ty)
A 10T (tw, 0) A TV[T0](tr, 0)

RW Interference between a thread)(at labelir
readingz,. fld and a threadt(,) at labellw
updatingz.,. fld, wherex, andz,,

are pointing to the same objegt

Ft1, twe: thread, o.(ty1 # tw2)
A at[lwi](t1) A at[lws](t2)

A TV[Xp1] (L1, 0) A rv[Tw2] (tw2, 0)

WW Interference between a threag {) at labellw,
writing z.,1.fld and a threadt(,,) at labellw,
updatingz.,o. fld, wherez,,; andx,,o

are pointing to the same objegt

Vt: thread.3l.blocked(t,1)

Total Deadlock

Jt: thread, 11, la.blocked(t, 1)
A held_by(ls, t) A —~idit(lz, 11)

Resource Ordering. A threads blocked on a lock
“smaller” than a lock it is holding.

Tty : thread, ogut, Oin-waiting(ty, 0in)
A held_by(oout, tw) A rvfin]*(oout, 0in)
AYop.((0p # 0out) N TV[IN]* (00ut, Op)
A rvfin]*(op, 0in)

— —(3t1, ta.rv[in](t1, 0p) A rolin(te, 0p))

Nested Monitors. A threat], is waiting

on an objecb;,, while holding the lock

of an object,,,; which structurally contains it,
thus preventing any other thread from notifyihg

t.at[ls](t) A rvv](t,1) A —held_by(l,t)

Missing Ownership. Thread invokingwait() or
v.notify() at labell; when not holding the lock
referenced by.

See Sectio2.5.2

Shared ADT

See Sectio2.5.3

Thread Interactions

Table 2.3: Violations of safety properties detected in this chapter.

40CHAPTERZ2. VERIFYING SAFETY PROPERTIES OFCONCURRENTJAVA PROGRAMSUSING 3-VALUED LOGIC

rv[tail] <ud=>
1_by[next]=1/2

r_by[tail]

blocked

Figure 2.5: An abstract configurati@r ;5 representinghe conﬁguratiorﬁg_3 shown in Fig.2.3

configuration to includessummary nodes.e., individuals that represent one or more individuals in a
represented concrete configuration. Technically, a summarymbds.(eq(u,u)) = 1/2.
Formally, anabstract configuratioris a3-valued logical structur€’ = (U, 1) where:

e U is the universe of th8-valued structure. Each individual i represents possibly many allo-

cated heap objects.

e . is the interpretation function mapping predicates to their truth-value in the structure, i.e., for
every predicate € P of arity k, «(p): U* — {0,1/2,1}. For exampley(p)(u) = 1/2 indicates
that the truth value gb may bel for some of the objects representedibgnd may also bé for

some of the objects representediby

Embedding

We now formally define how configurations are represented using abstract configurations. The idea
is that each individual from the (concrete) configuration is mapped into an individual in the abstract
configuration. More generally, it is possible to map individuals from an abstract configuration into an
individual in another less precise abstract configuration. The latter fact is important for our abstract
transformer.

Formally, letC = (U,:) andC’ = (U’,/') be abstract configurations. A functigh U — U’
such thatf is surjective is said t@mbedC into C’ if for each predicate of arity £, and for each

u1,...,ur € U one of the following holds:

Up(us,ug, ... up)) = ' (p(f (ur), fluz), - ., fur)))

or

V(p(f(ur), flu),. . f(ur))) = 1/2

2.4. AN ABSTRACTPROGRAM MODEL 41

We say that”’ represents”’ when there exists such an embeddjng

One way of creating an embedding functipis by usingcanonical abstractionCanonical abstrac-
tion maps concrete individuals to an abstract individual based on the values of the individuals’ unary
predicates. All individuals having the same values for unary predicate symbols are mappéalthg
same abstract individual.

Example 2.4.1 The abstract configuratio's 5 representsoncrete configuratioﬂ:’gg.

We use dashed-edges to dray-valued binary predicates, and nodes with double-line boundaries
to represent summary nodes.

The summary node labeled represents the threads, as, as which all have the same values for
the unary predicates. The summary node labeled bgpresents all queue items that are not directly
referenced by the queue’s head or tail. Note that the abstract configur@tigmepresents many config-
urations. For example, it represents any configuration with 3 or more queue items. In a similar fashion,
the abstract configuration represents configurations with one or more threads that reside dulabel

Note that the RW-Interference condition evaluate ¢wer the abstract configuratiofi 5.

2.4.2 An Abstract Semantics

We use the same simple algorithm from F2gé for exploration of the abstract state space. The oper-
ations used by the algorithm are modified to work for abstract configurationsreWngesrelation is
modified to conservatively model the effect of an action on the given abstract configuration (possibly
representing multiple configurations). In addition, the state-space exploration now starfs timg
the abstraction of initial configurations.

Implementing an algorithm for computing thewrite relation on abstract configurations is non-
trivial because one has to consider all possible relations on the set of represented (concrete) configura-
tions.

The best conservative effeof an action (also known as theduced effecbf an action) R5] is
defined by the following 3-stage semantics: (i) A concretization of the abstract configuration is per-
formed, resulting in all possible configuratiompresentedby the abstract configuration; (ii) The action
is applied to each resulting configuration; (iii) Abstraction of the resulting configurations is performed,
resulting in a set of abstract configuratiorpresentinghe results of the action.

Our prototype implementation described in Sec@odoperates directly on abstract configurations,
and obtains actions which are more conservative than the ones obtained by the best transformers. Our
experience shows that these actions are still precise enough to detect violations of the safety properties
as listed in Table.3, without producindalse alarmson our example programs.

Definition 2.4.2 We say that an abstract configurati@n rewrites into an abstract configuratiorC’
(denoted byC' =,. C’) whereac is an action, if forC' and forC’ there existe”# and C*' = (U, /%)

42CHAPTERZ2. VERIFYING SAFETY PROPERTIES OFCONCURRENTJAVA PROGRAMSUSING 3-VALUED LOGIC

such that: (i) C? is in the concretization of’, i.e., C representg’, (i) C is thecanonical abstraction
of C¥, (iii) there exists an assignme#tthat satisfies the precondition @ on C%, and for everyp € P
of arity k anduy, ..., u, € UY,

(), u) =

lop(vi, v, ... ,Uk-)]]g(z[vl > U, Ug > Uy .., U > Ug))

whereg,(vy, - - -, vy) is the formula forp given in Table2.2. We writeC' = C’ if for some actioruc
C =, C.

Example 2.4.3 The abstract configuratio@’ ¢ o shown in Fig2.6represents an unbounded number of
threads all at labela;. The actions for labela; are lock(this) andblock Lock(this).

The infinite set of configuratio®”> 60,1, C2.6,0,2.- - - } IS the set of (concrete) configurations after
concretization. After concretization the preconditions of the actions are evaluated. The precondition for
lock(v) evaluates td and the precondition foblock Lock(v) evaluates td). Thuslock(v) is applied.

The infinite set of configuratiods”> 61,1, C2.6,1,2,- - - } IS the set after the application ééck(v). The
set of abstract configurationS’> 6 2.1, C2.6,2,2 } IS the finite set of configurations after abstraction.

The membership operatotember(C, stateSpace) of Fig. 2.4can be modified to check if the con-
figurationC' is already represented by one of the configurationsadite Space. This is an optimization
for preventing exploration of redundant configurations.

2.4.3 Instrumentation

Instrumentation predicates record derived properties of individuals. Instrumentation predicates are de-
fined using a logical formula over core predicates. Updating an instrumentation predicate is part of the
predicate-update formulae of an action.

The information recorded by an instrumentation predicate in a configuration may be more precise
than evaluating the defining formula of the instrumentation predicate over the configuration. This is
known as thénstrumentation Principléntroduced in §1].

The mapping of individuals in a configuration into an abstract individual of an abstract configuration
is directed by the values of the unary predicates. By adding unary instrumentation predicates, one may
allow finer distinction between individuals, and thus may improve the precision of the analysis.

Example 2.4.4 Consider an unbounded number of threads competing to acquire a single shared lock.
Assume that a thread has already acquired the lock. The configurati@n; o1 shown in Fig.2.7 cor-
responds to a state in which some thread tried to acquire the lock and consequently became blocked on
the lock. In this configuration, the formukli, I.rv[this|(¢,1) A blocked(t,l) evaluates td /2. Config-

uration Cy 7 9 o shows the same global state when the instrumentation predicdfecked(t) is used.

2.4. AN ABSTRACTPROGRAM MODEL

initial
1v[this] .
C2.6,0
conc.
rofthis]
rv[this] rvfthis]
rofthis]
ot 2>
C26,0,1 Ca6,0,2 C26,0,3
after
rethis]
1w [thus]
. re[this] . rwthis]
update w
Ca6,1,1 Ca6,1,2 C26,1,3
after
. rv[this] .
abs. w
(2621 C26,2,2

Figure 2.6: Concretization and predicate-update for an unbounded number of threads all performing the

approveHead() method of the running example.

43

44CHAPTERZ2. VERIFYING SAFETY PROPERTIES OFCONCURRENTJAVA PROGRAMSUSING 3-VALUED LOGIC

Ca.7,0,1 C2.7.0,2

Figure 2.7: Instrumentation predicateblocked(t).

Now, one can check the existence of a blocked thread using the stored value of the instrumentation pred-
icateis_blocked(t), which evaluates td. Note that in this case evaluation of the original formula over
the configuration with instrumentation also evaluated tather than tol /2, but this is not always the

case.

2.5 \Verifying Safety Properties

We use the instrumentation predicates listed in T&bld¢o improve the precision of our analyses. The
following sections list a more precise formulation of the formulae of Tal3dy using instrumentation
predicates whenever possible.

2.5.1 Deadlock

We use thewait_for(ti,t2) instrumentation predicate to detect a cyeliait_for dependency. We
useslock(t) to track the resource-ordering local property for each thread. Thus, the resource ordering
violation can be formulated a¥.slock(t). The definition ofslock(t) uses the predicaté[id](vi, va)
which records the order between locks according to the value of ithefrelds. Each lock object is
assumed to have a unique id recorded inidtsfield (e.g., such an id could be provided using the
java.lang.Object 's hashCode() method). The predicate[id](l1,(2) is true when the id of; is
less than the id ok. The order between objects can be used for deadlock prevention by breaking cyclic
allocation request9[/].

The formula for nested-monitors deadlock is given below:

Tty 2 thread, oput, Oin.- waiting(ty, 0im) A held_by(oout, tw) A 7 fin](0out, 0in)
N VOP-((OP # Oout) \ rf[in](op, 0in) A1 flin](0out, Op) - W.S[m](op))

2.5. VERIFYING SAFETY PROPERTIES 45

Predicate Intended Meaning Defining Formula
is[fld](l1) 11 is referenced by the field fld ty,to.(t1 # to) —

of more than one object ro[fld](t1, 1) A rv[fld](t2,l2)
r_by[fld](1) lis referenced by the field fld Jo.rv[fld](o,1)

of some object

It[i fld](vy,v2) the value ofifld of v; is less than that ofy | Ji1, ie.ival[ifld](vy,i1)A

ivallifld](ve,iz) A succ* (i1, i2)

is_acquired(l) | lis acquired by a thread 3t.held by(l,t)

~ |

is_blocked|(t t is blocked on a lock Al.blocked(t,1)

is_waiting(t) t is waiting on a lock Al.waiting(t,1)

slock(t) t violates the resource ordering criterion | 3ly, ls.is_thread(t) A blocked(t, 1)
held_by(ly, t) A =lt[id](la, 1)

wait_for(ti,te) | t1 is waiting for a resource held by Aly.blocked(t1,1y) A held_by(ta,)

rf[fld](o1,02) | Objectos is reachable from objeet; using rv[fld]* (o1, 02)
a path offid edges

rtiref, fld](t,o0) | objecto is reachable from thread Jos.rv[v](t, o) A rv[next]*(ot, 0)
by a path starting with a single: f
edge followed by any number

of fld edges

Table 2.4: Instrumentation predicates for partial Java semantics.

46CHAPTERZ2. VERIFYING SAFETY PROPERTIES OFCONCURRENTJAVA PROGRAMSUSING 3-VALUED LOGIC

r_by[head]
r_byftail]

Figure 2.8: An abstract configurati@r g in which interference between the consumer and the producer

is detected.

2.5.2 Shared Abstract Data Types

We define a set of reachability predicates similar to the ones definéd]in\[Ve use the reachability

information to define invariants for ADT operations. For example:
e Atthe end of gput operation — the new item is reachable from the head of the queue.

e At the end of aake operation — the taken item is reachable from the taking thread and is no

longer reachable from the head of the queue.

2.5.3 Thread State Errors

We use instrumentation predicates to record thread-state informatiameated(t), ts_running(t),
ts_blocked(t), ts_waiting(t) andts_dead(t). In order to identify thread-state errors, we add precondi-
tions identifying when an action is illegal or suspicious. These preconditions are listed ir2Table

Example 2.5.1 Assume an erroneous version of the running example @f).in which an unsyn-
chronized version oput() is used. Configuratio’; s shown in Fig.2.8 demonstrates a possible
interference in the program identified by our analysis. In the configuraflogna consumer is trying to
take() thelastitem, and a producer is simultaneously tryingptd() an item.

2.5. VERIFYING SAFETY PROPERTIES 47

Problem Action Precondition Warning

Multiple v.start() rv[v](ty, dt) A ts_running(dt) IllegalThreadState Exception

starts rv[v](ty, dt) A ts_dead(dt) Dead thread cannot be re-started

Premature | v.stop() rv[v](ty, dt) A ts_created(dt) Thread stopped before started

stop

Missing vawait() rv[v](ty, 1) A —held_by(l,t) Illegal M onitor State Exception

ownership | v.notify() rv[v](ty, 1) A —held_by(l,t) Illegal M onitor State Exception
ru[v](ty, 1) A =3ty waiting(t,,) | A notify was ignored

Premature | v.join() rv[v](t,, dt) A ts_created(dt) Thread join before started

join

Late v.setDaemon() | rvlv](t,,dt) A ts_running(dt) Illegal M onitor State Exception

setDaemon

Table 2.5: Preconditions for checking illegal and suspicious thread interactions.

The consumer thread reached labgland is about to execute the action fewHead = head.next
The producer thread, having found that the queue is not empty, reachedpgbehd is about to exe-
cute thetail.next=x _i action. The RW-Interference formula from TaBI8 evaluates td for this
configuration since both threads reference the same okjedl >. Thus RW-Interference is detected.

It is important to note that if the queue has more than one item, RW-Interference is not introduced,
and our analysis will report that RW-Interference does not occur (die@el andtail refer to differ-
ent objects).

2.5.4 Unbounded Number of Threads

When a system consists of many identical threads, the state-space can be reduced by exploiting symme-
try.

In model checking, the global state of a system is usually described as a tuple containing thread
program-counters, and value assignments for shared vari@@le$ [38], symmetry is found between
process indices. In our framework, thread names are only determined by thread properties. Thus, there
is no need to explicitly define permutation-equivalence for symmetry reduclibe. mapping to the
canonic hames eliminates symmetry in the abstract state space.

We demonstrate the power of our abstraction by taking the example of a critical sectiorB8jpm [
and verifying that thenutual exclusiomproperty holds for amnbounded number of threads

Example 2.5.2 Consider thezpprove Head() method of class Queue. We would like to verify mutual
exclusion over the critical section protected $ynchronized(this) . For readability of this ex-

48CHAPTERZ2. VERIFYING SAFETY PROPERTIES OFCONCURRENTJAVA PROGRAMSUSING 3-VALUED LOGIC

Cs.9,0 - initial Cs.9,1 - thread inside critical section C; g » - other threads blocked

rv[this]

Figure 2.9: Configurations arising in mutual exclusion with an unbounded number of threads.

ample we define all labels inside the critical section as a single labgl The property we detect is
ty,ta.(t1 # t2) A at[leri)(t1) A at[leri)(t2)). The initial state for the analysis contains anbounded
number of threadeepresented by a summary node. FA shows three important abstract configura-
tions arising in the analysis of the example.

In addition, using thread names that are only determined by thread properties reduces the number of
equivalent interleavings that have to be considered. For example, consider a program with five threads,
each performing a single assignment to a local boolean variabitalized to false, setting its value to
true. That is, each thread executes the single statemént= true; [,. When the program termi-
nates, the local boolean varialll®f each thread is set to true. Analyzing this program with explicitly
named threads will result with25 possible interleavings that have to be considered (see2Fi@).
Analyzing the program in our approach will only consider a single (representative) interleaving (see
Fig.2.11).

2.6 Prototype Implementation

In this section, we briefly describe our prototype implementation and present experimental results of
applying the framework on a few small but interesting example programs. More elaborate experimental
results for the verification of concurrent queue algorithms are provided in Chapter

We have implemented a prototype of our framework caB®®C [113. Our implementation
is based on th&-valued logic engine of TVLA §4]. We applied the analyses to several small but
interesting programs. Tab®6 summarizes the programs we tested, with the number of configurations
created, and running times. Running times were measured using Sun’s JVM1.2.2 for Windows NT,
running on a 600MHZ Pentium 111

It is important to note that the cost of verification for an unbounded number of threads in our ap-

proach is doubly exponential in the number of predicates, while the cost of verification with explicit

2.6. FRROTOTYPEIMPLEMENTATION

2 t3 t4 t5
atfl 1] at[l 1] at[l 1] atfl 1] at[l 1]
initial
step 1 .

Figure 2.10: Configurations arising with explicit thread names.

initial

step 1

step 2

final

Figure 2.11: Configurations arising with canonical thread names.

49

50CHAPTERZ2. VERIFYING SAFETY PROPERTIES OFCONCURRENTJAVA PROGRAMSUSING 3-VALUED LOGIC

Program | Description Properties Config. | Time
swap swap list elements absence of dataraces 16 10
and deadlock
swapord | swap list elements absence of dataraces 1 12
with resource ordering and deadlock
stack non-synchronized stack absence of data races 184 304
sStack | synchronized stack absence of data races 104 330
mutex mutual exclusion mutex 33 2
with unbound threads
nestedMon| nested monitors absence of deadlock 42 7
prodCons | producer consumer absence of data races 416 68
sProdCong synchronized producer consumeabsence of data races 195 48
DP dining philosophers absence of deadlock 514 23
unbound threads

Table 2.6: Number of configurations, and running times in seconds for the programs analyzed.

thread names is exponential in the number of threads. As a result, verifying a property for an unbounded
number of threads is not only stronger, but sometimes more efficient than verifying the property for an
a priori bounded number of threads. For example, verifying mutual exclusion for the mutex program
with 5 explicitly named threads takes ovey seconds, whereas verification for an unbounded number
of threads takes onl¥ seconds.

In our prototype, the conservative effect of an action is implemented in terms gfothes and
coerce operations (seedfl] for more details). The soundness of our implementation is guaranteed by
a generalization of the embedding theorem @] [for infinite concrete configurations (see proof in
AppendixB.1.1).

The swap and swap_ord programs use two threads swapping items in a linked kistap does
not use resource ordering, and thus may deadleckp_ord uses resource ordering, and thus cannot
deadlock. stack and sStack are non-synchronized and synchronized versions of a Stack ADT ma-
nipulated by multiple threadsnutex is a simple program using mutual exclusion to protect a critical
section.prodcons andsProdCons are implementations of Queue ADT manipulated by producer and
consumer threads. The P program is an implementation of tloining philosophergproblem with an
unbounded number of philosopher threads.

While these example programs are small, the scenarios they explore are rather complicated (e.qg.,
nested monitors). We are encouraged by the fact that for these examples, our analysis concluded with
no false alarms. In Chapt@&r we explore more realistic example programs.

Chapter 3

Property-Guided Abstraction

In this chapter, we consider the problemtgpestate verificatiofior shallowprograms; i.e., programs
where pointers from program variables to heap-allocated objects are allowed, but where heap-allocated
objects may not themselves contain pointers. We prove a number of results relating the complexity of
verification to the nature of the finite state machine used to specify the property. Some properties are
shown to be intractable, but others which appear to be quite similar admit polynomial-time verification
algorithms. Our results serve to provide insight into the inherent complexity of important classes of
verification problems. In addition, the program abstractions used for the polynomial-time verification
algorithms may be of independent interest.

In solving a problem of this sort, the grand thing is to be able
to reason backward. ... In the everyday affairs of life
it is more useful to reason forward.
—Sir Arthur Conan DoyleA Study in Scarlet

3.1 Introduction

The desire for more reliable software has led to increasing interest in extended static checking: stati-
cally verifying whether a program satisfies certain desirable properties. A technique that has received
particular attention is that of finite state typestateverification (e.g., se€lPp3 102, 77, 21, 29, 6, 30,
44, 43, 60, 4]). In this model, objects of a given type exist in one of finitely matgtes the operations
permitted on an object depend on the state of the object, and the operations may potentially alter the
state of the object. The goal of typestate verification is to statically determine if the execution of a given
program may cause an operation to be performed on an object in a state where the operation is not
permitted.

Typestate verification can be used to check that objects satisfy certain kinds of temporal properties;

e.g., that an object is not used before it is initialized, or that a file is not used after it is closed. In this

51

52 CHAPTER 3. PROPERTYGUIDED ABSTRACTION

chapter, we will specify such properties using regular expressions or finite state automata that define the
set ofvalid sequences of operations that can be performed on an object.

Our goal in this chapter is to develop an initial understanding of how the difficulty of performing
typestate verification relates to thature of the property being verifiedmong other things, we will
show that not all finite state properties are equally hard to verify. For example, galailawprogram
(where pointers from program variables to heap-allocated objects are allowed, but where heap-allocated
objects may not themselves contain pointers), we show that verifying that a file is not read after it is
closed can be done ipolynomial time while verifying that a file is not read before it is opened is
PSPACE-Complete

While there has been much progress in many aspects of automated program verification, we are not
aware of any previous work relating the difficulty of typestate verification to properties of the finite state
automaton. This work is part of a broader effort to develop efficient program verification techniques
that are tailored to the property being verifi&dl

Typestate Verification and Shallow Programs

In order to meaningfully compare the complexity of verification algorithms, we need to make some
baseline assumptions about the precision of the analysis. In this chapter, we will use thertécation
to mean verification that igrecisemodulo the widely-used assumption that all paths in the program are
feasible. Specifically, given a finite state property, a path in a program is said to drecampath, if
execution along that path would cause an invalid sequence of operations to be performed on at least one
objectand the goal of typestate verification is to determine if a given program has any error path.
Typestate verification can be done in polynomial time if the program to be verified allows no inter-
variable aliasing. Conversely, it is a straightforward consequence of previous rédultd][that if a
program haswo or morelevels of pointers, typestate verification is PSPACE-hara this chapter,
we therefore concentrate on understanding the claskalfowprograms occupying a point in between
these extremes.
Assume we wish to perform typestate verification for objects of a #Hypé\ T-shallow program
is a well-typed procedure-free program where all variables are point@rsytped objects, and whose
statements are allocations (creation of a new object of iypeopy assignments (copying the value
of a variable to another), or invocations of an operation on a variable. Note that shallow programs
may contain multiple pointers to objects of type but allocated objects may not themselves contain
T-pointers. In other words, pointers in shallow programssirgle-leve[74]. Our results also apply to
programs that manipulate complex or recursive types where allocated objects contain goioveted
that those pointers cannot refer to objects of t§pePrograms that are shallow with respect to a given

!In the presence of recursive data structures, typestate verification is undeci2aB@.[

3.1. INTRODUCTION 53

type, e.g File , are not uncommon in practice.

Example: Verifying File Operations

Consider the problem of checking that a closed file is never read or closed again, which we will refer to as
read *;close . In general, we will use regular expressions to designate sequencakdobperations
on an object of a given type, where a sequence is valid iff it is a prefix of a string in the language defined
by the regular expression.

The principal difficulty in doing precise verification arises from determining hbasinginteracts
with operations on objects. Some prior work on typestate verification (27). Has employed a two-
step approach to the problem, in which an initial phase performs a conservative heap analysis of the
program, and a subsequent phase uses the information from the heap analysis to do typestate analysis.
However, we can see from the program fragments in Fi§utehat such an approach can sometimes
lead to imprecise results. One can easily verify that in both FigBr&sa) and3.1(b), all sequences
of file operations on a given object are prefixegedd *;close ; i.e., that noread ever follows a
close .

However, consider a two-phased approach in which the heap analysis is separate from the typestate
analysis. In Fig3.1(a), a precise (and correct) heap analysis will determine that program vaziable
at program poins2 may point to the object created €@ or the object created afl . Furthermore, a
precise typestate analysis will determine that the object creatdd@iuld be in eclosedstate as2. A
two-phased analysis must therefore erroneously conclude that the read could be performed on a closed
file. Similarly, in Fig.3.1(b), any conservative heap analysis would determine that objects created at
program points3 ands5 could reach the read statemensdt In addition, a typestate analysis would
also determine that the objects created at program pstsnds5 could be in a closed state 4.
The analysis would, however, not be able to discoverftian never point to a closed objecisdt, and
would incorrectly indicate a possible error. In this chapter we show that for a certain class of problems
(includingread *;close), itis possible to formulate a precise polynomial-time verification algorithm
for shallow programs.

Main Results

The main complexity results established in this chapter are as follows (in all cases except the last one,

we assume that programs are shallow):

¢ V\erification is in P for omission-closed properties: a property is said to be omission-closed if
every subsequence of a valid sequence is also a valid sequence. (Exaaglé: close .)

e Verification is NP-Complete for acyclic programs (i.e., programs without loops) and PSPACE-
complete for arbitrary programs for properties with a repeatable enabling sequence: a property

54

CHAPTER 3. PROPERTYGUIDED ABSTRACTION

sO:x := new (); s3:f := new ();
sl:y := new (); while (7) {
z = y; s4 : f.read();
£ (7) { i (7) {

y.close(); f.close();

z = x; sb:f := new ();
} }
s2: z.read(); }

@) (b)

Figure 3.1: Program fragments illustrating the effect of aliasing on typestate verification.

is said to have a repeatable enabling sequence if there is an automaton state where a particular
sequence of operations is invalid, but sequences of the fgimy are valid for some3. Example:

open ";read .

An integer-valued functiorf is said to be a bound on the shortest error path length for a typestate
property if every erroneous program of sizés guaranteed to have an error path of lenfith)

or less. If PSPACE is not equal to NP, then no polynomial bound exists for the shortest error path
length for properties with a repeatable enabling sequence. (In other words, it may not be possible
to find short, i.e., polynomial size error paths in the worst case.)

Verification is in P for acyclic programs for almost-omission-closed properties: a property is
said to be almost-omission-closed if there is an intégsuch that every subsequence of a valid
sequence of length greater thais also valid. Exampleopen ;read . Note that any property
with only finitely many valid sequences is trivially almost-omission-closed.

Verification is in P for almost-omission-closed properties that have a polynomial bound on the
shortest error path length.

A program is said to have a maximum aliasing widthkoff there is no path in the program
that will produce an object pointed to by more thaulifferent variables. Arbitrary finite state
properties for programs of size with a maximum aliasing width of may be verified in time
O(n¥+1) for programs of size..

Alias analysis and typestate verification are NP-hard for programs with maximum aliasing width
of three and aliasing depth of two. (A program is said to have aliasing depth of two if the program

contains pointers to pointers).

3.1. INTRODUCTION 55
Example Definition Acyclic Cyclic Bounded Aliasing
Programs| Programs Width
(Shallow) | (Shallow) | Shallow| Non-
shallow
Ommission-| read *;close Ya3y. P P P NP-hard
Closed Valid(a5v)
= Valid(a~y)
Almost- open ; read JkVafry. P Poly. Err. Path
Ommission- (laBy] = kA General: ?
Closed Valid(af))
= Valid(avy)
Repeatable | open*;read Jafy. NP PSPACE
Enabling Valid(a3y)A | complete complete
Sequence —Valid(ary)
Other (lock ;unlock)* ? ?

Figure 3.2: An overview of our complexity results.

The results above are summarized in @ in terms of the properties of regular expressions which
define the properties to be verified (the notation used there will be defined in Sé@jion

The polynomial-time verification results summarized above use program abstractions that may be
of independent interest—in particular, they may prove useful as the starting point for developing more
general abstractions for non-shallow programs (e.g., in a manner simil&4jjo [The bulk of the
abstractions we use apeedicate abstractionf49]; however we show in the sequel that the choice of
predicates used in a predicate abstraction can have a dramatic impact on the efficiency of the resulting
analysis. Our predicate vocabularies are carefully designed to yield efficient analyses without sacrificing
precision. In addition, in Sectia® 5, we develop a novehtegerabstraction, which is based counting
the number of program paths along which a simple property holds true; this in turn allows inferring
whether a more complex property holds.

Related Work

There has been significant recent interest in a variety of property verification techniques, many of them
focusing on typestate verification. While significant progress has been made in improving the precision
and efficiency of verification, developing verification techniques that are sufficiently precise and scalable

to handle industrial-size applications for a wide variety of problems is still a challenge, and motivates

56 CHAPTER 3. PROPERTYGUIDED ABSTRACTION

our work here.

One of the open challenges in typestate verification is an adequate treatment of aliasing. Some
approaches avoid the issue: e.g., the original work on typestate verificai8n102 did not allow
any aliasing; more recent work on typestate verification based on linear 8fjeddo restricts aliasing
severely. Other approaches (e.g7]) perform alias analysis and typestate verification separately: an
initial phase performs a conservative alias analysis for the program, and a subsequent phase uses the
information from the alias analysis to do typestate verification. However, this can lead to imprecise
results, as illustrated by the examples in Bd.

A second challenge to practical verification is dealing with infeasible program paths @lg., [
10)). Das et al. 7] address this issue using efficient path-sensitive algorithms (which eliminate certain
infeasible paths from consideration during analysis), but do not track certain additional information,
e.g., aliasing, precisely. Our algorithms do not address the question of path sensitivity, but there could
be merit in combining aspects of our approach with those that eliminate infeasible paths.

One of the primary intuitions behind the algorithms presented in this chapter (for shallow programs)
is that maintaining just the right correlation required between “analysis facts” can be the key to efficient
and precise verification: maintaining no correlations (independent attribute analysis) can lead to impre-
cision, while maintaining all correlations (relational analysis) can lead to inefficiency. Cliagitexvs
one way to exploit this intuition for verification of arbitrary (i.e. non-shallow) programs as well.

Several recent verification approachBsg3] combine predicate abstractioAd], counterexample-
guided refinement of the predicate vocabuldr][and exploration of the resulting abstract state space
using model-checking. These techniques use symbolic and theorem-proving techniques to identify a set
P of predicates relevant to the problem of interest, then model-check the resulting finite state system
over a state space constructed from the powerset laticd™uefalset - Thjs process iterates with in-
creasingly larger sets of predicates until a satisfactory result is obtained. In principle, these algorithms
have the potential to avoid imprecision due to both aliasing and path infeasibility. However, the worst-
case complexity of aingleiteration is exponential in the number of predicates. By contrast, while
most of the algorithms we present are based on abstractions by a set of pre@icatesanalysis is
based on the function-space lattiQe— {false maybé, and runs in time linear in the size §f. This
approach yields polynomial-time algorithms, while none of the techniques based on model-checking
have a polynomial-time worst-case complexity for the same problems (even though they may utilize a
smaller number of predicates than our algorithm). Our selection of predicates ensures that the use of
the smaller function space lattice results in no loss of precision, i.e., we ensure that our abstraction is
complete(e.g., see46]). Finally, the predicate abstractions we use are dependent solely on the nature
of the typestate problem being verified, and do not require expensive predicate discovery at verification
time.

Finally, we note that our lower bound results follow the tradition set by earlier complexity results

3.2. TERMINOLOGY AND NOTATION 57

due to Landi and Ryde®B[l] and Muth and Debray74].

3.2 Terminology and Notation

In this section, we provide some basic definitions that we will use in the rest of the chapter.

Definition 3.2.1 (Shallow Program) A shallow programis a<Stmt> defined by the following context-
free grammar, where the denotes a nondeterministic branch (i.e., an uninterpreted conditional). All
variables<Var> in the language are references to objects of type T. All operat@s> in the lan-
guage are methods supported by type T.

<Stmt> = <Var> := <Var> | <Var> = new() | <Var>.<Op>()
| <Stmt>;<Stmt> | if (?) <Stmt> [else <Stmt>]
| Label: <Stmt> | goto Label

We will make the simplifying assumption that when a program begins execution all program variables
point to separate objects (i.e., initialized to non-aliased values), and all objects reside in their initial state.
In other respects, the semantics of shallow programs is completely standard, and we will not formalize
it here. We will, however, appeal to the intuitive notion gath p through a progran® (or P-path): a
valid sequence of statements starting’at entry.

In this chapter, we will study safety properties of shallow programs. Although safety properties
could be specified via temporal logics (e.g., LTI7]), we will use finite automata or regular expressions
to simplify the presentation. Formally:

Definition 3.2.2 (Prefix-Closed Safety Automaton)A prefix-closed safety propertf is represented
by a finite state automaton (FS&) = (3, @, d,init, @ \ {err}) whereX is the automaton alphabet
consisting of observable operatiordg s the set of automaton statéds the transition function mapping
a state and an operation to a successor sti#, € () is a distinguishednitial state err € Q is a
distinguishederror statefor which for everys € 3, §(err,o) = err, and all states inQ) \ {err} are
accepting states. We say thgtis the successor of a stateon operationop whend(q,0p) = ¢'.
Given a sequence of operations= 0p; 0ps; . . .; 0P}, we write Valid-(«) or a € Validg whena is
accepted byF, and we write Invalig-(«) whena is not accepted byF.

For brevity, we will refer to safety properties using a regular expression representing the language ac-
cepted by an automaton, rather than specifying the automaton itself. When specifying a safety property

using a regular expression, we will adopt the convention that a regular expresdemotes th@refix

58 CHAPTER 3. PROPERTYGUIDED ABSTRACTION

read {read,close}

{read,close}

closed
g2

Figure 3.3: A finite-state automaton for the propegsd *; close .

closureof the set of sequences of operations defined.blyor example, when we writeead *; close
we also consider (the empty sequence) angiad to be valid sequences.

Example 3.2.3 Consider the propertyead *; close stating that a file may be read an arbitrary num-

ber of times before it is closed (and should never be read after it was closed and never be closed twice).
The alphabet for this problem consists of two operatidhs= {read ,close }. The FSA for this
property is shown in Fig3.3.

When verifying a safety property represented by an autom@omit, err, 32, 6) for a shallow pro-
gram P, we will assume that each method name use@®iis mapped to an element &f. Given
this convention, we will use names of operationgiimnd methods i interchangeably, i.e., we will
say that a statement of the forxrop() invokes an operationp € Y. We can then relate method
invocations to sequences of operationiias follows:

Definition 3.2.4 (Operation Sequences for Objectsiziven aP-pathp, U(p) denotes the set of object
instances created during this execution, and for any objeet U/(p), plo] denotes the sequence of
operations performed omduring execution op.

Given the definitions above, we can now formally describe the class of verification problems we
wish to solve:

Definition 3.2.5 (SVr) Given a safety property, the shallow verification problenfor F, SV£, de-
termines for any shallow progra whether there exists a paf-path p such thatp[o] € Invalidz for
someo € U(p).

3.3 Omission-Closed Properties in Polynomial Time
In this section, we show thaimission-closegroperties can be verified in polynomial time.

Omission-Closed Properties

Informally, a property is omission-closed if the set of all valid sequences of operations is closed with

respect to omissions: any sequence obtained by omitting one or more operations from a valid sequence

3.3. OVISSION-CLOSED PROPERTIES INPOLYNOMIAL TIME 59

of operations is also valid.

Definition 3.3.1 A property represented by an automatbris said to beomission-closedvhen for all

sequences, 3,v € ¥*, Validz(afv) = Validz(ay).

The following theorem presents alternative characterizations of omission-closed properties.

Theorem 3.3.2 Given an automatotF, the following are all equivalent, where all sequences are ele-

ments ob*:
(a) For all sequences, j3,~, Validz(afy) = Validz(ay).
(b) If wy is a subsequence af, then Valid-(w2) = Validz(wy).

(c) There exists a finite set dbrbidden subsequencés, &, ..., &, such that a sequence is in

Invalidz iff o contains some; as a subsequence.

Proof: The equivalence ofg] and @) is straightforward. As for,d), consider the forbidden subse-
guenceg; corresponding to thacyclicpaths in the automataf from the initial state to the error state.

Any sequence containing sonjgis invalid (from (0)), and it is clear that any invalid sequence must
contain an acyclic path from the initial state to the error state as a subsequence. (For example, the for-
bidden subsequences for the automaton in Figare&; = close ;read and& = close ;close .)

The result follows.

Example 3.3.3 Consider the automatafs 3 of Fig. 3.3. For this automaton, the sequenead ;read ;close
is in Validz, ,, and so is the sequencead ;close obtained by dropping the intermediatead op-
eration. Moreover, for any valid sequenoead *; close , dropping any subsequence refad s, or
dropping theclose yields a valid sequence.

For F3.3, it is sufficient to consider the forbidden subsequerges close ;read and¢&; =
close ;close . Each sequence containingé; or & as a subsequence is in Invafigd,, and each
sequence in Invalid, , contains{; or &, as a subsequence.

Background: Distributive Predicate Abstractions

The analysis we present will utilize@edicateabstraction that tracks the values of a set of predicates
P defined on the concrete program-state. (We will use the peogram-statdo denote the state of the
whole program in the concrete semantics, to distinguish it fratae in an FSA specifying a propeity
For efficiency reasons, we will utilize andependent attribute analysj80], an analysis that does not

60 CHAPTER 3. PROPERTYGUIDED ABSTRACTION

maintain the correlation between different predicate values. Specifically, the set of concrete program-
states arising at a program point will be abstracted by a value i { false, maybe}. We now
summarize the conditions under which iadependent attribute analystan be used for a predicate
abstraction without losing precision. Given a predicatnd a statemer8t , we denote by WESt ,)

the weakest precondition qf with respect tcst [33].

Definition 3.3.4 Given a finite set of predicates Base, we say that a finite set of predifates
{Pi,..., P} is adistributive WP-closureof Base when Base P and for each predicatd; € P,
and for each stateme®t , WP(St, P;) = P;, V...V P; ,whereP; ,..., P;, € P. We also say that

Jm?

the set of predicateP is distributively WP-closed

Theorem 3.3.5 Given a distributively WP-closed set of predicaie®or a programPgm precise analy-
sis (i.e., determining for every program point and every predicafe whether there exists a path to the
program point causing the predicate to tvae) is possible in time) (|P||Pgm).

Proof: Straightforward. E.g., the problem can be reduced to a reachability problem over a graph of size
O(|P||Pgm), as in the IFDS framework oBp]. We note that the analysis can also identify paths that
will cause a given predicate to become true at a given point when such a path exists.

A Polynomial Algorithm

We use a designated predic&iegor that istrue in a program-state if and only if the program-state
contains an object in the error stager. We will now show that for omission-closed properties, a
distributive WP closure of polynomial size can be constructed Eoror}. In general, a distributive

WP closure fof Error } needs to include predicates that refer to aliasing relationships among variables
as well asthe state of the objects pointed to by the variables. This motivates the following definition of
a family of predicates.

Definition 3.3.6 We write In,(X) to denote the fact that the object pointed to by the variable in
stateo € Q. Given anyS C @, we use the shorthand diix) = \/ ¢ In,(x) to denote that the object
pointed to by the variablg is in one of the states if.

Definition 3.3.7 Let A be a non-empty set of variables (in a given prograrf)C @ a set of states in
F. We use the predicated, S) to mean that all variables il have the same value (are aliases), and
the object referred to by variables i is in one of the states if. Formally,

(4,8) £ Axeayealy =X) A Axea INs(x)

3.3. OVISSION-CLOSED PROPERTIES INPOLYNOMIAL TIME 61

Ve =0; Es=0; workSet={{err }};
while workSet#£ () {
select and remove S from workSet
for each operation op e¥ {
P="5(5,0p);
it P¢gVe { Vz=VzU{P}; workSet=workSetU {P}; }
Ee =Ez U{P — S},

Figure 3.4: Backwards exploration of the property automaton.

—_—

Figure 3.5: The graph constructed by backward exploration of the automaton 8t¥ig.

The number of predicates of the forfr, S) is exponential in the number of program variables.
However, not all predicates of this form amdevant i.e. need to be in a distributive WP closure for
{Error} . The key to obtaining a polynomial size distributive WP closure{térror } is to bound the
size of the set4, for any relevant predicated, S), by a constant. We will do this in two steps. First, we
will show that a predicatéA, S) is relevant only for certaity C @). Then, we will show that for each
such setS, the predicaté A, S) is only relevant forA of cardinality less than a specific constant.

We first present an algorithm for determining whiShC @ are relevant for verification. The
algorithm shown in Fig3.4is based on a backward traversal of the finite state automaton. The algorithm
constructs a grapﬁ = (V?, E?), where each vertex is a subset@f and an edgé® — S denotes
that P is a pre-image ob for the transition functiod (see below).

Definition 3.3.8 Let § denote theeverse transition relatiorof F,i.e., given a state € (), an opera-
tiona € ¥, and a set of state$ C @, <g(q,a) 2 1{qd €Qlé(d,a) = q}, and?(s, a) = Uges ?(q,a).
For S1, S5 C @Q, S is said to be gre-imageof S if da € E.?(Sl, a) = Ss.

Fig. 3.5illustrates the graph constructed by backward exploration ofdhd *; close automaton
shown in Fig.3.3. We now establish a result about the gréﬁh

62 CHAPTER 3. PROPERTYGUIDED ABSTRACTION

Stmt WP(Stmt , (A, S))

X =y (Alx —y],5)

X = new () (A, S) ifx € A
false ifx e ANA#{x}
true if A={x}Ainite S
false if A={x}AinitgsS

x.0p() (A, S) if 5(S,0p) =S5
(AU{z},3 (S,0p)) V (A,S) if §(S,0p)> S

At program true if [A|=1AInite S

entry false if |[A|#1Vvinitg S

Figure 3.6: WP equations for predicates of the fduh S). We denote byA[z — y| the set obtained
by replacing any occurrence ofin A by y.

Theorem 3.3.9If F represents an omission-closed property, then for &y V<=, and any operation
a €, <K(S, a) 2 S. Further, the graph? is acyclic except for self-loops.

Proof. For anyS € Ve there exists a sequence of operatigrauch thatS is the set of all states in
which ¢ is invalid (by construction). NOW(E(S, a) is the set of all states in whiaf¢ is invalid. Since
Fis omission-closed?(s, a) 2 S. Since any predecessfrof S must be a superset 6f, it follows
immediately that any cycle in the grap?l must be a self-loop.

Fig. 3.6 and Fig.3.7 present weakest-precondition equations for predicates of the (fdrifi) and
the special predicatérror. From these equations, we can determine which predicates are relevant for
verification. The equations reveal two things. First, they show that it is sufficient to restrict our attention
to predicates of the formA, S) whereS € V. Second, they show that a predicatk P) is relevant
only if there is a relevant predicat®, S) whereS is a proper successor &fin the graph? andB has
cardinality at leastA| — 1. In other words, we need only consider predicates of the fotrP) where
the cardinality ofA is less than or equal to the length of the longest acyclic path ffam{err} in F.

Definition 3.3.10 For any S € V-, definedist(S) to be the number of edges in the longest acyclic
path fromsS to {err} in F. Givena program with a set of variabl&&rs we define a set of predicates
P ={(A,S)|S € Ve, A C Vars, |A| < dist(S)} U {Error}.

Theorem 3.3.11The setP U {true false} is a distributively WP-closed set of predicates {&rror }.
Proof: Follows from the above discussion.

Theorem 3.3.12If F is omission-closed, the®V £ is in P.

3.3. OVISSION-CLOSED PROPERTIES INPOLYNOMIAL TIME 63

Stmt WP(Stmt , Error)

X =y Error

X = new () Error

x.op() Error if ?({err}, op) = {err}

({a}, 5 ({err},op)) v Error if & ({err},op) > {err}

At program entry | false

Figure 3.7: WP equations for the predic&eor.

Proof: Inmediate from Theorer.3.11and Theoren3.3.5 Note that the cardinality P is O(|Vars "),
whereVarsis the set of all variables in the program ani the length of the longest acyclic path}_’ﬁ.
(Note, from Theoren3.3.9 thatk is also bounded by the number of statesFin

Example 3.3.13 Consider the propertyead*close represented by the automaton of F3g3. The graph
F for this automaton is shown in Fig.5. The derivation for this property is as follots

WP(x.read() ,Error) = ({z},{err,q2}) Vv Error

WP(x.close() ,Error) = ({z},{err,q2}) Vv Error

WP(y.close() ,{{z},{em g})) = ({z,y}, {€m ¢, a1}) vV {{x}, {em g})
WPR(w.read() ,({z,y} {erm a2, a1})) = ({z,y}.{em a, a})

Thus,read *; close verification can be done in tim@(|Vars?|Pgm).

Discussion

A logical formula can usually be simplified into a number of equivalent forms. Hence, a weakest-
precondition can often be expressed in many ways. The form we chose to use in expressing weakest-
preconditions above is critical to deriving a polynomial-time verification algorithm. As an example,
consider theead *;close example. The following is an alternative, correct, weakest-precondition
equation, which says that an object in #re state is possible aftet.close() iff either x points to

an object in stateg, or an object exists in therr state before the statement:

WP(x.close() ,Error) = ({z},{q2}) V Error. (3.2)
The actual formulation we used

WP(x.close() ,Error) = ({z},{err,q2}) vV Error (3.2)

2Note that the variables, y, andwused in the derivation process are free variables and not variables of a specific program.

64 CHAPTER 3. PROPERTYGUIDED ABSTRACTION

open {open,read}
init open read {open,read}
— R ——
read

Figure 3.8: An automaton for the propedpen *;read .

actually contains some redundancy. In particuldgx }, {err,¢2}) is equivalent to{({x},{err}) V
({x},{q2}). But the disjunct({x}, {err}) is redundant because it impli&ror, another disjunct in
our formula.

However, equatior3.2is preferable to equatioB.1l In particular, we have seen that we can deter-
mine in polynomial time if({x}, {err, ¢2}) is possible at any program point. However, one can show
that determining if{{x }, {q2}) is possible at a program point is PSPACE-hard, adapting the proof we
present in SectioB.4. Thus, unless PSPACE = P, a distributively WP-closed set contaffiig {¢2})
of polynomial sizedoes not existNote that the sefq2} has a pre-image (name@({qg}, close)=
{¢1}) that is not a superset §fj2 }, thus not satisfying the requirements of Theor@®.9 This is why
the proof used for omission-closed properties cannot be used for this predicate.

3.4 Repeatable Enabling Sequence Properties

In this section we show that verification of Repeatable Enabling Sequence properties (see Defini-
tion 3.4.7) is NP-complete for acyclic programs and PSPACE-complete in general.

Definition 3.4.1 (Repeatable Enabling Sequence Propertied)e say that a property represented by
an automatori* is a repeatable enabling sequence property if there exist sequences of opesatibns
and~ such that the set of sequence8™ are all valid but the sequencey is invalid. (The sequence
£ may be thought of as a repeatable sequence that enabjles

For example, the propertypen ™;read (see Figure3.8) which requires that eead be preceded
by one or moreopen operations is a repeatable enabling sequence property. (The more natural prop-
erty open ;read * is also a repeatable enabling sequence property, but wepgse'; read as the
running example to contrast it with the omission-closed propedd *; close .) We show that verifi-
cation of repeatable enabling sequence properties is PSPACE-complete by reduction fsomuttee
neously fals@roblem (see4], [40Q)).

Definition 3.4.2 (Simultaneously False Problem)Given a programP with an initial assignment of
values () or 1) to a setrq, xo, . . ., x,, Of boolean variables, where the prografhcontains only assign-

ments (of constants or variables), conditionals or unconditional jumgsnaltaneously falsproblem

3.4. REPEATABLE ENABLING SEQUENCEPROPERTIES 65

for P is a problem of the form: is there an execution path from the entry poifttofa program point
psuch thatey = 0,29 =0, ... 2z, = 0 when control reacheg ?

Lemma 3.4.3 (1) The simultaneously false problem for acyclic programs is NP-complete. (2) The si-
multaneously false problem for arbitrary programs is PSPACE-complete.

Proof: The binary simultaneous value problem can be easily reduced to the simultaneously false prob-
lem by following the construction used in the proof of Theorem 3.6 in Muth and DelBrgyThe idea

is to transform a progran® into a programP’ such that every variable; in P corresponds to two
variablesX; andX;, every assignment; = 0 is converted toX; = 0; X; = 1, every assignment; = 1

is converted taX; = 1; X; = 0, and every assignment = z; is converted intaX; = X;; X; = Xj.
Consider the simultaneous value problem= ¢, 22 = ca, ...,z = ¢ for P. It can be easily shown

that the simultaneously false problem Bf obtained by replacing every conjungt= 0 with X; = 0

andz; = 1 with X; = 0 is equivalent. Thus, the simultaneously false problem is also NP-complete and
PSPACE-complete for acyclic and arbitrary programs respectively.

Let F be an automaton representing a repeatable enabling sequence property. We show ikat SV
PSPACE-hard by reduction from the simultaneously false problem, # ~ are such that sequences
a3t~ are valid and sequencey is invalid, thens andy must be non-empty (althoughmay be empty).
Given an instance of the simultaneously false probiem= 0,25 = 0,..., 2, = 0 at program point
p in a programP, we construct a prograr®’ as follows. First, we create two obje@sro andOne
which support methods corresponding to the sequenceés and~. Next, we copy progran® into
P’ replacing every assignment of the forn= 0 by x; = Zero andx; = 1 by x; = One respectively.
Then, at program point, we insert the statemenf (?) goto p;. Let the sequence bea;, as,. .., q;,
let 5 beby, ba,...by, and lety becy, co, . . . ¢,,. We insert the following sequence of statements at the

end.
goto exit;
p1: Zero.ai(); Zero.as();. . .; Zero.ai();
One.a;();One.as();. .. ;0ne.a;();

x1.b1();x1.02(); . .« 5 %1.bu();
x9.01(); x2.02(); . . . s x2.by();

k. 01(); % b2(); - - 5 X ()5
One.ci(); One.co();...;0ne.cy();
exit:
Note that control can reach program paginbnly through the conditional branch statemef{?) goto p4
(because of the statemegiito exit; just beforep;).

66 CHAPTER 3. PROPERTYGUIDED ABSTRACTION

Lemma 3.4.4 Assuming that the sequences of operatigrend ~ are non-empty, the simultaneously
false problemz; = 0,29 = 0,...z; = 0 at program pointp in P returns true if and only if program
P’ violates the property represented By

Proof: ProgramP’ creates only two object&ero andOne. Note that the only sequence of operations
performed orZero is a3° wherei is the number of variables iny, 2o, . . .,), that are aliased tdero at
program poinp. Thus, noillegal operation is ever performedZevo. The only sequence of operations
performed orOne is a3~ wherej is the number of variables iny, zo, . . .,), that are aliased tOne
at program poinp. This sequence is invalid iff can be0. In other words,P’ violates the property
represented by iff the simultaneously false problem = 0,25 = 0,...z; = 0 at program poinp in
P returns true.

The above lemma shows the hardness of typestate verification for repeatable enabling sequence
properties. We now establish a straightforward completeness result.

Lemma 3.4.5 For any automatorf, SV is in NP for acyclic programs and in PSPACE for arbitrary
programs.

Proof. SV is in NP for acyclic programs since we can non-deterministically choose a path through
the program and check to see if any object reaches the error state during execution along that path. To
show that S\ for an arbitrary progran® is in PSPACE, we construct a non-deterministic multi-tape
polynomial-space-bounded Turing Machiné to solve the problemM simulates input progran®,
non-deterministically choosing the branch to take at branch points. Let us refer to objects pointed to
by the variables inP aslive objects. M keeps track of which variables point to which (live) objects,
and tracks the finite-state of each live object. The space needed to maintain this information is trivially
bounded by a polynomial in the size of progrdm If any of the relevant objects goes into the error
state during simulation}/ halts and signals the possibility of an error. Conversely, if there is a path that
causes one of the objects to go into the error state, Mezan guess this path and will halt signalling

the error.

Theorem 3.4.6 Consider a repeatable enabling sequence property represented by an autafmaton
SV is NP-complete for acyclic programs and PSPACE-complete for arbitrary (cyclic) programs.

Proof: The proofs of NP-hardness and PSPACE-hardness of acyclic and arbitrary programs resepec-
tively follows from Lemmas3.4.3 and 3.4.4 respectively. Lemma.4.5shows that the problem of
shallow verification for all safety properties represented by an automaton is in NP for acyclic programs
and in PSPACE for arbitrary programs.

Theorem3.4.6 shows that verification of repeatable enabling sequence properties is difficult even
for shallow programs. In fact, the situation is worse. We now show that even the shortest error paths

may be of exponential size in the worst case.

3.4. REPEATABLE ENABLING SEQUENCEPROPERTIES 67

Definition 3.4.7 (Error Path) Let F be an automaton representing a property to be verified. We say
that a (possibly cyclic) path in the control flow graph®ffrom the entry vertex to some vertexs an

error pathif symbolic execution of the program along this path (ignoring the conditionals) exhibits a
violation of the property associated with. The programP is said to beerroneousf there exists an
error path in P. An integer-valued functioffi is said to be a bound on the shortest error path length if
every erroneous program for sizeis guaranteed to have an error path of lengttr) or less.

Definition 3.4.8 (Loop Unrolling) Consider the control-flow-graptyp = (Vp, Ep) of program P.
LetG, = (Vp, E)») denote the acyclic graph obtained fraip by removing all back-edges. We define
Unroll(G p, n) to be the acyclic graph obtained by making-1 copies ofZ’, (calledG'» (1), G'»(2), . ..
G'»(n + 1) respectively), and for every back-edge v) in G p, adding an edge from vertexin G5 (7)

to vertexv in G'5(i + 1) for all ¢ from 1 tov. More formally UnrollG p, n) = (V*, E*) where

Vi= {(v,i)] veVp,1<i<n+1}
E* = {[(u,i), (v,9)] | [U,U]EE}_—,,lgiﬁn—{—l}U
{l(u,?), (v,i+1)] | [u,v] € Ep— Ep,1<i<n}

It is easy to verify thatnroll (G p, v) is acyclic and contains every path of lengtbr less inG p.

Theorem 3.4.91f NP == PSPACE, then there does not exist a polynomial bound on the shortest error
path length for repeatable enabling sequence properties.

Proof: Let F be the finite state automaton associated with the repeatable enabling sequence property.
From TheorenB.4.6it follows that verification of 7 for acyclic programs is in NP and for arbitrary
(cyclic) programs is PSPACE-hard. We prove Theofm9by showing that if there is a polynomial
bound on the shortest error path, then the verification problem for cyclic programs can be polynomial-
time reduced to the verification problem for acyclic programs, which would imply that NP = PSPACE.

Let p(n) denote a polynomial bound on the size of the shortest error path whigaotes the size
of the program. Given an arbitrary prografhwith control flow graphG p, we construct the acyclic
programUnroll(Gp, p(n)) which is acyclic and contains all paths of lengtfn) or less inGp. The
size ofUnroll(Gp, p(n)) and the time taken to construct it are both polynomial.iffhus, the problem
of verification of G p is polynomially reduced to the problem of verifyitunroll (G p, p(n)), which is a
contradiction.

Theorem3.4.9suggests that it may not be possible to find short counterexample paths exhibiting
the violation of properties lik@pen ™;read . This is important to know because many approaches
to verification (e.g., §]) are inherently associated with the generation of a counterexample path that
exhibits the violation of the property of interest. Theor8m.9suggests the possibility that even the

shortest error path in the program may be of size exponential in the size of the program.

68 CHAPTER 3. PROPERTYGUIDED ABSTRACTION

3.5 \Verification by counting

We have now seen that verification is intractable for repeatable enabling sequence properties and poly-
nomial for omission-closed properties. Unfortunately, there are properties that fall into neither class. A
simple example is thepen ;read property. Note thabpen ;read is similar toopen ™;read in that

it requires that an object be opened before it can be read, but it differs from it in that an object cannot be
opened multiple times. Does this make verification any easier?

3.5.1 The Intuition

The requirement that an object cannot be opened multiple times is a forbidden subsequence problem
(whereopen; open is the forbidden subsequence) (see TheoBegAc)). It follows that we can
verify if the given program may open an object multiple times in polynomial time. Tépen ; read
verification is polynomial-time equivalent wpen *;read verification of a progranguaranteed not
to open any object more than oncé/e will now show that, at least for acyclic programs, this added
restriction (that an object cannot be opened multiple times) does make polynomial-time verification
possible.

Let us begin by considering whead *; close verification is easy whilepen *;read verifica-
tion is not. Consider the following code fragment:

g P 1.0pen(); ... p x-open(); ..., g.read();

Theopen *;read property will be violated if there is an execution path such that the valgeavthe
read statementis different from the valueseazchp, at the correspondingpen statements (assuming
there are nmpen statements in the program other than those shown above). Determining if certain
relationships casimultaneouslexist among a potentially unbounded number of program variables is
difficult.

In contrast, consider the following code fragment:

g P p.Close(); ...; p r-close(); ...; g.read();

Theread *;close property will be violated here if there is an execution path such that the value of
g at theread statement is equal to the value ssmep, at the correspondinglose statement. In
other words, this requiréeadependenanswers tdk different questions, each about the value of only
two program variables. This turns out to be easy.

Let us now turn back to the earlier example above.

g poopen(); ..., p r-open(); ..., g.read();

If we now know that no object is opened twice, how can we exploit thisofpen *;read (i.e.,
open ;read) verification? For any given, we know that it is easy to determine if tigeread()

3.6. PRROGRAMS WITHWIDTH-LIMITED ALIASING 69

statement may read the same object that is opened lyy; iyeen() statement. Imagine that we can
countthe number of execution paths;, along which this can happen, for each Adding up all the
n; would tell us how many times (i.e., along how many execution pathsjjtlead() statement is
a valid operatiod. If this number does not equal the number of execution paths to.tead()
statement, thethere must be an execution path along whictead() will read an unopened objédct
Such indirect reasoning based on counting is the basis for the algorithm presert#d in [

3.6 Programs with Width-Limited Aliasing

In Section3.4we saw that, unless P = NP, verification of repeatable enabling sequence properties will
require exponential timia the worst-casels it, however, possible to design verification algorithms that

are efficientin practice e.g., by exploiting properties of programs that arise in practice? For example,
one seldom sees programs in which a very large number of variables point to the same object at a
program point. Let us say that a program has a maximaliasing widthof & if there is no execution

path in the program that will produce an object pointed to by more thdifferent variables. In this
section, we look at the complexity of typestate verification for programs where the maximum aliasing
width is bounded by a constant.

3.6.1 Polynomial-Time Verification for Shallow Programs with Width-Limited Aliasing

In this section we present a verification algorithm motivated by the observation that the aliasing width
of programs tends to be small in practice. The algorithm runs in Gri@gni**+1), where|Pgn is

the size of the program aridis the maximum aliasing width of the program: Unlike the polynomial
solutions of previous sections, the algorithm presented here works for any typestate property.

We note that naive verification algorithms do not achieve the above complexity, i.e. they may take
exponential time even for programs with a maximum aliasing width of 2. In particular, consider the
obvious abstraction where the program-state is represented by a partition of the program variables into
equivalence classes (of variables that are aliased to each other), with a finite state associated with each
equivalence class. The number of such program-states that can arise at a program point is exponential
in the number of program variables even for programs with a maximum aliasing width of 2.

Our algorithm uses predicates of the fofr S] defined below.

Definition 3.6.1 Let A C Varsbe a non-empty set of program variables, ahd- Q a set of states of
F.
[4,8]= N\ (=2) A N GE#a) AN Ins(a))

r€AyeA zeA,zeVars A T€A

3This is where we exploit the fact that no object is opened twice. Otherwise, addimgwipp end up counting some paths
multiple times.

70 CHAPTER 3. PROPERTYGUIDED ABSTRACTION

Statement flow(Statement)([A, o))

X =y {l{AU{z}, o]} ifyeA
{[4\ {z}, 01} ity ¢ A

x = new() | {[{z},init],[A\{z},0]} fzeA
{[A, 0]} ifz g A

x.0p() {[A4,d(o,0p)]} ifzeA
{[A, 0]} ifzd A

Figure 3.9:flow equations for predicates of the fofm, o].

WhenS contains a single state € Q, we write[A, o], rather than[A, {c}].

Intuitively, a predicatéA, S| means that all variables iA have the same value (are aliases), every
variable not inA has a different value from the variablesAn and the object referred to by variables in
A isin one of the state of. The difference betwedm, S] and(A, S) (Definition 3.3.7) is noteworthy.
The non-aliasing conditions are implicitly representedAnS] by assuming that every variable not in
A has a different value from the variables4n whereas inA4, S), the variables not it may or may
not be aliased to the variables.in

Fig. 3.10presents our verification algorithm that computes, for all program points, the set of predi-
cates of the fornjA, o] that may-be-true at the program point. (A predigatesaid to be may-be-true at
a program point iff there exists a path to such that execution along that path will caps® become
true.) The algorithm is based on a standard iterative collecting interpretation algorithm. The function
flow(St)(¢), defined in Fig.3.9, identifies the set of predicates that may-be-true after stateBtent
given a predicate that may-be-true before statem&it. For any program poirit Succ(l) denotes the
successors df

Theorem 3.6.2 The algorithm of Fig.3.10 preciselycomputes the set of predicatg$, S| that may
hold at any program pointin im&((>-,.,<;, (7)) *|Pgn) = O(n* x |Pgm) wherek is the maximum
number of variables aliased to each other at any point in the progPgm andn = |Varg is the

number of program variables.

Proof: It can be shown that (a),cpflow(St)(¢) computes a precise abstract transfer function for
statementSt with respect to the set of predicatéy and that (b) this is a distributive function. It
directly follows from these facts that the algorithm computes the precise solution.

We now establish the complexity of the algorithm. Assume that the maximal size of an alias-
set occurring in the program s The algorithm may generate predicates of the f¢rmsS] for all

subsets of any size up to of program variabled/ars The number of predicates that may have a

3.6. PRROGRAMS WITHWIDTH-LIMITED ALIASING

workList= {}
for each program point l
resultgl) = {}
for each program variable Z;
add (entry, [x;, {init }]) to workList
while workList# () {
remove (l,7) from workList
for each ¢’ € flow(stmt ;)(¢)) {
for ' € Succ(l) {
if o &resultgl’) {
resultg!’) = resultg!’) U {¢'}
add (I,¢’) to workList

Figure 3.10: An iterative algorithm using predicates of the f@ANS].

72 CHAPTER 3. PROPERTYGUIDED ABSTRACTION

true value in a program point is therefo@(3_, ., (1)) wheren = |Varg (we treat the number of
FSM states as a constant). The complexity of the chaotic iteration algorithm o3.EiQjis therefore
O((X1<i< (7)) * |Pgn). The expression is also bounded®yn* « |Pgm). The above assumes that
the step of computinfow(stmt ;)(v) takes constant time.

Though the worst-case complexity of the algorithm is exponential, the exponential faist@x-
pected to be a small constant for typical programs, since the number of pointers simultaneously pointing
to the same object is expected to be small (and significantly smallef\taes)).

Note that using the set of predicates defined in DefiniBidnlis not sufficient to achieve the desired
complexity. The style of “forward propagation” used by our algorithm is also essential, as it ensures that
the cost of analysis is proportional to the number of predicates that may-be-true (rather than the number

of total predicates, as is the case with alternative analysis techniques).

3.6.2 Width-Limited Aliasing in Non-Shallow Programs

We have now seen that typestate verification can be done efficiently for programs where the aliasing
is bounded in certain ways. Specifically, the results of the previous subsection show that for shallow
programs, typestate verification can be done in polynomial time if the aliasing width is assumed to
be bounded by a constant. A natural question is whether any such result holds true for non-shallow
programs.

Recall that shallow programs are programs where the alia&pthis restricted to be one: program
variables may point to objects, but the program contains no variables that point to objects that contain
pointers to objects.

Unfortunately, it turns out that typestate verification is hard for non-shallow programs even if alias-
ing width is bounded by a constant. It is knowdi] that alias analysis is intractable for programs where
the aliasing depth is two. We now show that the intractability result holds even if in addition the aliasing
width is also restricted to three.

Theorem 3.6.3 Alias analysis is NP-hard for programs with aliasing depth two and aliasing width
three.

Proof: The proof is by reduction from 3-SAT. Consider a 3-SAT formdlaA Cs - - - A C,, over logical
variablesw, throughw,,,. We create a program with a tyfieand a second typeT consisting of a field
f of type (pointer to)l. Corresponding to every clauég, the program consists of variables Y; ¢rue,
andY; ¢a1se Of type (pointer to)PT initialized as follows:

Yi,true = new PT(), Yi,true-f = new T()1
Yi,false = new PTO, Yi,false-f = new T(),

X; = Yi,false

3.6. PRROGRAMS WITHWIDTH-LIMITED ALIASING 73

BothY; true @andY; sa15e are constants in the program.

After the initialization code, the program consists of one if-then-else statement for every logical
variablew; in the 3-SAT formula. The then-branch of this statement consists of an assignment statement
Xi = Yi tryue fOr every clause”; that contains the literab; as one of its disjuncts. The else-branch of
this statement consists of a similar assignment statementY; .., for every clause”; that contains
the negated literab; as one of its disjuncts.

Thus, there exists a one-to-one correspondence between execution paths througfhthen-else
statements and possible truth assignments toithmgical variables, where we associate the then-branch
of the i-th if-statement with an assignment of true to logical variable It should be clear that after
execution through any patk; points to the same object &s... iff the corresponding truth assignment
makes clausé€’; to evaluate to true.

We now append the following code fragment:

S = new T();
Yl,true-f = S1
YQ,true-f = Xl-f; Yl,true-f = new T()!

Y3iruef = Xof; Yoirwef = new T();

Ynﬁcrue-f = Xn—l-f; Yn—l,true-f = new T()a
R = Yn,true-f;

Now, consider any execution path through the whole program that corresponds to a truth assignment
that makes the entire formula true. Then, a pointer to the object created by the stegemeeat T();
will be successively copied through evety..,..f and then finally tR, causingS andRto be aliased
at the end of the program. Conversely, it can be verified that an execution path will®and® to be
aliased to each other at the end of the program only if the path corresponds to a truth assignment that
makes the given 3-SAT formula true.

Hence,R and S may alias each other at the end of the program iff the given 3-SAT formula is
satisfiable.

Note that the program generated above has an aliasing width of three (i.e., no more than three
pointers point to the same object at any point during program execution). In particular, the assignments
Yitrue-f = Nnew T(); guarantee that no more than 3 pointers could poi &b any given time.

The following theorem is a straightforward consequence of the above result.

Theorem 3.6.4 Typestate verification is NP-hard for programs with aliasing depth two and aliasing
width three.

74 CHAPTER 3. PROPERTYGUIDED ABSTRACTION

3.7 Conclusion

In this chapter we have shown that verification of omission-closed properties is in P and that verification
of repeatable enabling sequence properties is NP-complete for acyclic programs and PSPACE-complete
in general. We have shown that verification of almost-omission-closed properties is in P for acyclic
programs. However, many questions still remain open. E.g., we do not know if verification of almost-
omission-closed properties is in P for cyclic programs. Moreover there are properties which do not
lie in any of these classes. E.g., consider the propgpgn ;read * which generalizespen ; read

by allowing any number ofead operations. We can adapt theuntingmethod of f1] to show that
verification ofopen ;read * is in P for acyclic programs. However, we have not been able to formulate
such a result for a general class of properties that incloges ; read *. Finally, there are also other
properties such adock ;unlock)* (any number of alternatintpck andunlock operations) for

which we have neither been able to show a polynomial bound, nor an NP-hardness result.

On a more pragmatic note, we have presented a typestate verification algorithm, for arbitrary type-
state properties, that we expect will perform well based on the reasonable assumption that programs
tend to have small aliasing width. However, this algorithm is restricted to shallow programs. A natural
guestion is how these ideas can be generalized to conduct verification for arbitrary programs. One of the
primary intuitions behind our verification algorithm (for shallow programs) is that maintaining just the
right correlation required between “analysis facts” can be the key to efficient and precise verification:
maintaining no correlations (independent attribute analysis) can lead to imprecision, while maintaining
all correlations (relational analysis) can lead to inefficiency. The technigues presented in Gliapter
in [117]) show one way to exploit this intuition for verification of arbitrary (i.e. non-shallow) programs
as well.

Chapter 4

Verifying Temporal Heap Properties
Specified via Evolution Logic

This chapter addresses the problem of establishing temporal properties of programs written in languages,
such as Java, that make extensive use of the heap to allocate—and deallocate—new objects and threads.
Establishing liveness properties is a particularly hard challenge. One of the crucial obstacles is that heap
locations have no static names and the number of heap locations is unbounded. The chapter presents
a framework for the verification of Java-like programs. Unlike classical model checking, which uses
propositional temporal logic, we use evolution temporal logic (ETL), a first-order temporal logic, to
specify temporal properties of heap evolutions; this logic allows domain changes to be expressed, which
permits allocation and deallocation to be modelled naturally.

In this chapter and in Chapté&; we present two verification algorithms for ETL, based on two
alternative semantics. In this chapter, we provideagying-domain semantida which the semantics
of the program is considered to be a set of (infinite) traces in which each configuration may have its
own domain. Then, in Chapté; we describe aonstant-domain semantiagswhich all configurations
along a trace share a single constant (infinite) domain. Using constant domain semantics allows us to
naturally define a state-based semantics for ETL resulting in a more efficient verification algorithm.

Space by itself, and time by itself, are doomed to fade away into mere shadows,
and only a kind union of the two will preserve an independent reality.
—Albert Einstein.

4.1 Introduction

Modern programming languages, such as Java, make extensive use of the heap. The contents of the heap
may evolve during program execution due to dynamic allocation and deallocation of objects. Moreover,
in Java, threads are first-class objects that can be dynamically allocated. Statically reasoning about

75

76 CHAPTER4. VERIFYING TEMPORAL HEAP PROPERTIESSPECIFIED VIA EVOLUTION LOGIC

temporal properties of such programs is quite challenging, because thereapioo bounds on the
number of allocated objects, or restrictions on the way the heap may evolve. In particular, proving
liveness properties of such programs, e.g., that a thread is eventually created in response to each request
made to a web server, can be quite a difficult task.

The contributions of this chapter can be summarized as follows:

e We introduce a first-order modal (temporal) logib] 42] that allows specifications of temporal
properties of programs with dynamically evolving heaps to be stated in a natural manner.

e We develop an abstract interpretati@] for verifying that a program satisfies such a specifica-
tion.

e We implemented a prototype of the analysis using the TVLA sys@&fdgnd applied it to verify
several temporal properties, including liveness properties of Java programs with evolving heaps.

We have used the framework to specify and verify the following:

Specify general heap-evolution propertigshe framework has been used to specify, in a general
manner, various properties of heap evolution, such as properties of garbage-collection algorithms.

Verify termination of sequential heap-manipulating prograermination is shown by providing
a ranking function based on the set of items reachable from a variable iterating over the linked data
structure. In particular, we have verified termination of all example programs 6jn [

Verify temporal properties of concurrent heap-manipulating prograivis have used the framework
to verify temporal properties of concurrent heap-manipulating programs — in particular, liveness prop-
erties, such as the absence of starvation in programs using mutual exclusion, and response properties
[69]. We have applied this analysis to programs with an unbounded number of threads.

The remainder of this chapter is organized as follows: Secti@rgives an overview of the veri-
fication method and contrasts it with previous work. Sectidhintroduces trace semantics based on
first-order modal logic, and discusses how to state trace properties using the language of evolution logic.
Section4.4 defines an implementation of trace semantics via first-order logic. Setfmshows how
abstract traces are used to conservatively represent sets of concrete traces. 4Sg@estiommarizes
related work. Finally, SectioA.7 concludes the chapter.

4.2 Overview

4.2.1 A Temporal Logic Supporting Evolution

The specification languagEyolution Temporal Logi€¢ETL), is a first-order linear temporal logic that
allows specifying properties of the way program execution causes dynamically allocated memory (“the

heap”) to evolve.

4.2. O/ERVIEW 77

It is natural to consider the concrete semantics of a program as the set of its execution2baces [
107], where each trace is an infinite sequencaoflds First-order logical structures provide a natural
representation of worlds with an unbounded number of objects: an individual of the structure’s domain
(universe) corresponds to an anonymous, unique store location, and predicates represent properties of
store locations. Such a representation allows properties of the heap contents to be maintained while
abstracting away any information about the actual physical locations in the store.

This gives rise to traces in which worlds along the trace may have different domains. Such traces
can be seen as models of a first-order modal logic with a varying-domain semdgticetis could be
equivalently, but less naturally, modelled using constant-domain semantics.

This framework generalizes other specification methods that address dynamic allocation and deal-
location of objects and threads. In particular, its descriptive power goes beyond Propositional LTL and
finite-state machines (e.g17).

Program properties can be verified by showing that they hold for all traces. Technically, this can be
done by evaluating their first-order modal-logic formulae against all traces. We use a variant of Lewis’
counterpart theorygg] to cast modal models (and formula evaluation) in terms of classical predicate
logic with transitive closure{O”¢) [23].

Program verification using the above concrete semantics is clearly non-computable in general. We
therefore represent potentially infinite sets of infinite concrete traces by one abstract trace. Infinite
parts of the concrete traces are folded into cycles of the abstract traces. Termination of the abstract
interpretation on an arbitrary program is guaranteed by bounding the size of the abstract trace. Two
abstractions are employed: (i) representing multiple concrete worlds by a single abstract world, and
(i) creating cycles when an abstract world reoccurs in the trace.

Because of these abstractions, we may fail to show the correctness of certain programs, even though
they are correct. Fortunately, we can use reduction arguments and progress monitors as employed in
other program-verification techniques (e.88]).

As in finite-state model checking (e.gLJ7]), we let the specification formula affect the abstraction
by making sure that abstract traces that fulfill the formula are distinguished from the ones that do not.
However, our abstraction does not fold the history of the trace into a single state. This idea of using the
specification to affect the precision of the analysis was not use@lljri[L5, which only handle safety
properties.

4.2.2 Overview of the Verification Procedure

First, the propertyp is specified in ETL. The formula is then translated in a straightforward manner
into an FO™ logical formula, (¢)f, using a translation procedure described in Apperd& An
abstract-interpretation procedure is then applied to explore finite representations of the set of traces, us-

ing Kleene’s3-valued logic to conservatively interpret formulae. The abstract-interpretation procedure

78 CHAPTER4. VERIFYING TEMPORAL HEAP PROPERTIESSPECIFIED VIA EVOLUTION LOGIC

public class Worker implements Runnable {
Request request;
Resource resource; ...

public void run() { ..
lw1 synchronized(resource) {
lwe resource.processRequest(request);
lwo }

}

}

Figure 4.1: Java fragment for worker thread in a web server with no explicit scheduling.

essentially computes a greatest fixed-point over the set of traces, starting with an abstract trace that rep-
resents all possible infinite traces from an initial state, and gradually increasing the set of abstract traces
and reducing the set of represented concrete traces. Finally, the foimiiles evaluated on all of the
abstract traces in the fixed point.(l6) is satisfied in all of them, then the original ETL formytamust

be satisfied by all (infinite) traces of the program. However, it may be the case that for some programs
that satisfy the ETL specification, our analysis only yields “maybe”.

4.2.3 Running Example

Consider a web server in which a new thread is dynamically allocated to handle each réxtgved
request. Each thread handles a single request, then terminates and is subject to garbage collection.
Assume that worker threads compete for some exclusively shared resource, such as exclusive access to
a data file. Fig4.1shows fragments of a Java program that implements such a naive web server.

A number of properties for the naive web-server implementation are shown in&lablg properties
P1-P4. For now you may ignore the formulae in the third column; these will become clear as ETL syntax
is introduced in Sectiod.3.

Due to the unbounded arrival of requests to the web server, and the fact that a thread is dynamically
created for each request, absence of starvation (P2) does not hold in the naive implementation. To
guarantee absence of starvation, we introduce a scheduler thread into the web server. The web server
now consists of a listener thread (as before) and a queue of worker threads managed by the scheduler
thread. The listener thread receiveddip request, creates a corresponding worker thread, and places
the new thread on a scheduling queue. The scheduler thread picks up a worker thread from the queue
and starts its execution (which is still a very naive implementation).

When using a web server with a scheduler, a number of additional properties of interest exist, la-
beled P5—P8 (for additional properties of interest 46¢). Fig. 4.2 shows fragments of a web-server
program in which threads use an explicit FIFO scheduler.

The ability of our framework to model explicit scheduling queues provides a mechanism for address-

4.3. TRACE-BASED EVOLUTION SEMANTICS 79

public class Scheduler public class Listener
implements Runnable { implements Runnable {
protected Queue schedQ; protected Queue schedQ; ...
protected Resource resource; ... public void run() {
public void run() { lay while(true) { ..
ls1 while(true) { .. lag reg=rgStream.readObject();
lsg synchronized(resource) { lag worker=new Thread(new Worker(req));
lss while(resource.isAcquired()) lag schedQ.enqueue(worker);
sy resource.wait(); }
/I may block until }
/I queue not empty }
lss worker=schedQ.dequeue(); public class Worker
lsg worker.start(); implements Runnable {
} Request req;
} Resource resource; ...
} public void run() {
} lwy synchronized(resource) { ...
lwe resource.processRequest(req);
resource.notifyAll();
lwo }
}
}

Figure 4.2: Java code fragment for a web server with an explicit scheduler.

ing issues of fairness in the presence of dynamic allocation of threads. (Further discussion of fairness is
beyond the scope of this chapter).

4.3 Trace-Based Evolution Semantics

In this section, we define a trace-based semantic domain for programs that manipulate unbounded
amounts of dynamically allocated storage. To allow specifying temporal properties of such programs,
we employ first-order modal logi@p]. Various such logics have been defined, and in general they can

be given aconstant-domaisemantics, in which the domain of all worlds is fixed, arasying-domain
semantics, in which the domains of worlds can vary and domains of different worlds can overlap. In the
most general setting, in both types of semantics an object can exist in more than a single world, and an
equality relation is predefined to express global equality between individuals.

To model the semantics of languages such as Java, and to hide the implementation details of dynamic
memory allocation, we use a semantics with varying domains. However, the semantics is deliberately
restricted because of our intended application to program analysis. By desigvabution semantics
has a notion of equality in the presence of dynamic allocation and deallocation, without the need to
update a predefined global-equality relation. Evolution semantics is adapted from Lewis’s counterpart

semantics§6]. In both evolution and counterpoint semantics, an individizainotexist in more than

80 CHAPTER4. VERIFYING TEMPORAL HEAP PROPERTIESSPECIFIED VIA EVOLUTION LOGIC

Pr. | Description Formula
[Vi1, to: thread.(t t
P1 | mutual exclusion over the shared resource b (t # t2)
— —(at[lwe](t1) A at[lwe](t2))
P2 | absence of starvation for worker threads | [Vt: thread.at[lus](t) — < at[lw.](t)
P3 a thread only created when O(Vt: thread.— © t)V
arequest is received (Vt: thread.— ® t)U (Jv: request. © v)
P4 | each requestis followed by thread creation [] Jv: request. © v — > It:thread. © t
p5 mutual exclusion of listener and schedulef [Vty,to: thread.(t1 # t2)
over scheduling queue — —(at[ls3](t1) A at[las](t2))
PG each created thread is eventually O Vt:thread. ©®t
inserted into the scheduling queue — & Jq: queue.rval[head.next*|(q, t)
7 each scheduled worker thread was [Vt: thread.at[lw](t)
removed from the scheduling queue — —3q: queue.rval[head.next*|(q,t)
o dq: queue. [Vt: thread.
each worker thread waiting in the queue
P8 (rvalhead.next*](q,t))
eventually leaves the queue
— & =(rvallhead.next*] (g, t))

Table 4.1: Web server ETL specification using predicates of Takle

a single world; each world has its own domain, and domains of different worlds are non-intersecting.
Under this model, equality need only be defined within a single world’s boundary; individuals of differ-
ent worlds are unequal by definition.To relate individuals of different worlds, an evolution mapping is
defined; however, unlike Lewis, we are interested in an evolution mapping that is reflexive, transitive,
and symmetric, which models the fact that, during a computation, an allocated memory cell does not
change its identity until deallocated. In Sectib®.3 we show how to track statically, in the presence
of abstraction, the equivalence relation induced by the evolution mapping.

As is often done, we add a skip action from the exit of the program to itself, so that all terminating
traces are embedded in infinite traces. The semantics of the program is its set of infinite traces.

In the rest of this chapter, we work with a fixed set of predicates (or vocab®agy)eq, p1, . .., Pk }-
We denote byP* the set of predicates frof with arity .

Definition 4.3.1 (World) Aworld (program configuration) is represented via a first-order logical struc-
ture W = (Uy, tw), WhereU,, is the domain (universe) of the structure, andis the interpretation
function mapping predicates to their truth values; that is, for eackk P*, 1,,(p): UE — {0,1},
such that for allu € Uy, ty(eq)(u,u) = 1, and for alluy, uy € U, such thatu; anduy are distinct
individualse,, (eq) (u1, u2) = 0.

4.3. TRACE-BASED EVOLUTION SEMANTICS 81

P el . e D7r1 y€mq 7A7r2 D7T2 ;€mo 7A7r3
Definition 4.3.2 (Trace) Atraceis an infinite sequence of worlds o e

where: (i) each world represents a global state of the prograimis an initial state, and for each;,
its successor world;; is derived by applying a single program actionstg (i) D, C Uy, is the set

of individuals deallocated at;, and A,,,, C Ux,,, is the set of individuals newly allocated &, 1 ;

i+1
(iii) each pair of consecutive worlds;, ;11 is related by a stepwisevolution function a bijective

renaming functiore,, : Ur, \ Dr, — Ur,y \ Aryy s -

Extracting Trace Properties

To extract trace properties, we need a language that can relate information from different worlds in a
trace. We define the language of evolution logic (ETL), which is a first-order linear temporal logic with

transitive closure, as follows:

Definition 4.3.3 (ETL Syntax) AnETL formula is defined by

@ = 0[1p(vr,...,vn)| ©vi] @ viler V @2 @1 |Furo1[(TC v, v2: 1) (v3,v4)
lp1Up2| O 1
wherev; are logical variables.
The set of free variables in a formutadenoted by*'V () is defined as usual. In a transitive closure
formula, FV ((T'C vy, v2: p1)(vs,v4)) = (FV (1) \ {v1,v2}) U{vs, vs}.

The operators> and @ allow the specification to refer to the exact moments of birth and death
(respectively) of an individual.

Shorthand FormulaeFor convenience, we also allow formulae to contain the shorthand notations
(v1 = v2) £ eq(vi,v), (v1 # v2) 2 —eq(v,v2), Y1 A pa = (701 V 2p2), 1 — w2 2 1 V o,
Yu.p1 = =(3v.-¢1), O 1 21U, and[d o1 = =(1U~p1). We also use the shorthapti(vs, vy)
for (T'C vy, v2: p(v1,v2))(vs,va) V (v3 = v4), Whenp is a binary predicate.

In our examples, the predicates that record information about a single world include the predicates
of Table4.2, plus additional predicates defined in later sections. The set of pred{caies|(t): lab €
Labels} is parameterized by the set of program labels. Similarly, the set of pred{cat@s$/id)(o1,02): fld €
Fields} is parameterized by the set of selector fields. We use the shorthand netaiipn f1d*) (v, vo) =
' rvallz)(vi,v") A real[fld)*(v', v2). The transitive closure allows specifying properties relating to
unbounded length of heap-allocated data structures (esuaifhfid]* (v, v2)).

As in Chapter2, we use unary predicates, suchiasthread(t), to represent type information.
This could have been expressed using a many-sorted logic, but we decided to avoid this for expository
purposes. Instead, for convenience we define the shorthandgpe.o = Jv.is_type(v) A ¢ and

Yu: type.p 2 Yv.is_type(v) — .

These operators could be extended to handle allocation and deallocation of a (possibly unbounded) set of individuals.

82 CHAPTER4. VERIFYING TEMPORAL HEAP PROPERTIESSPECIFIED VIA EVOLUTION LOGIC

Predicates Intended Meaning
is T(v) v is an object of typd”

{at[lab](t) : lab € Labels} threadt is at labellab

{rval[fld](o1,02) : fld € Fields} field fld of the objecto; points to the object,
heldBy(l,t) the lock! is held by the thread
blocked(t,1) the thread is blocked on the lock
waiting(t, 1) the thread is waiting on the lock

Table 4.2: Predicates used to record information about a single world.

Example 4.3.4 Property P2 of Tabld.1specifies the absence of starvation for worker threads @-ifj.

The formuladt: thread. > atllw,](t) states that some thread eventually enters the critical section. The
formula] 3t: thread. $ at[lw.](t) expresses the fact that globally some thread eventually enters the
critical section.

The propertyJ(Yv. ® v — <> @u) states that globally, each individual that is allocated during
program execution is eventually deallocated. Note that the universal quantifier quantifies over individ-
uals of the world in which it is evaluated. This property is an instance of the commonly used “Response
structure” [69, 37], in which an allocation in a world has a deallocation response in some future world.

The properties

Vt: thread. [(at[lip](t) — Jv.rvalfi.next™](t,v) A (at[lp](t) A —rvalfi.next®](t,v)))
Vt: thread. [(Yv.at[lip](t) A —rval[i.next*|(t,v) — O —at[lip](t) V —rvalli.next*|(t, v))

establish a ranking function for linked data structures based on transitive reachability. These properties
state that at the loop healj,,, the set of individuals transitively reachable from program variable
decreases on each iteration of the loop. (Typicallig a pointer that traverses a linked data structure
during the loop.) Note that these properties relate an unbounded number of individuals of one world to
another.

The property(Yv. & [VE: thread. \ —rvallz. fld*](t,v) — < @v) is a desired prop-

z€Var
fld€ Fields

erty of a garbage collector — that all non-reachable items are eventually collected.

Evolution Semantics

In the following definitionshead(w) denotes the first world in a traee tail () denotes the suffix of
without the first world, andr? denotes the suffix of starting at the-th world. We also uséust () to
denote the last world of a finite trace prefix

Definition 4.3.5 (Evolution mapping) Letr be the finite prefix of length of the tracer. We say that

an individualu € Upeqq(-) €volves intaan individualu' € Uy, ;) in the tracer in k steps, and write

4.3. TRACE-BASED EVOLUTION SEMANTICS 83

7 |k u ~ v’ when there is a sequence of individuals. . . , u; such thatu; = v andu,, = ' and for
each two successive worldsinu; 1 = e, (u;).

Definition 4.3.6 (Assignment evolution)Let + be the finite prefix of length of the tracer. Given
a formulay and an assignment mapping free variables ap to individuals of a domair/y..q(-),
we say thatr =, Z ~ Z' (Z evolves intoZ’ in 7 in k steps) if for each free variable fof ¢,
™ ke Z(1;) ~ Z'(;), Z(;) € Unegary» andZ'(f;) € Ui (r)-

(2

Definition 4.3.7 (ETL evolution semantics) We define inductively when an ETL formuylas satisfied
over a tracer with an assignment (denoted byr, Z =) as follows:

e 7,7 |=1,and notr, Z = 0.

o 7,7 = p(v1,- .., vk) WheNtheqqir) (P)(Z(01), - .. Z(vg)) =1

e 7,7 = —~pwhennotr,Z = ¢

e T, Z FeViywhenn,Z E=gporm Z ¢

o 7,7 = Fv.p(v) when there exists € Ueoq(r) S-t.7, Z[v = u] = ¢(v)

o m,7Z = (TC vi,va: p)(v3,vs) When there existsy, ..., unt1 € Upead(n), SUCh thatZ (v3) =
u1, Z(vg) = upy1,andforalll <i <mn,

T, L1 = ug, v2 — uigl] FE e
o 7,7 = ©GvwhenZ(v) € Apead(tail(x))-
o T,7 = ovwhenZ(v) € Dyeqarr)-
e 7,7 = Oy when there existg’ such thatail(7), Z' = pandrn |1 Z ~ Z'.

e 7,7 = U1 when there exists > 1, Z/, andZ” s.t.,
7k 7' = andr =y Z ~ 27
andforalll <j <k, 7, 2" pandr 5 Z ~ 2",

We writerr = ¢ whenr, Z |= ¢ for every assignmeri.

It is worth noting that the first-order quantifiers in this definition only range over the individuals of a
single world, yet the overall effect achieved by using the evolution mapping is the ability to reason about
individuals of different worlds, and how they relate to each other. In essence, the assigfimentu|
bindsv to (the evolution of) an individual from the domain of the world over which the quantifier was
evaluated (cf. the semantics @f and Uf).

84 CHAPTER4. VERIFYING TEMPORAL HEAP PROPERTIESSPECIFIED VIA EVOLUTION LOGIC

curfWarld curri¥arld

Figure 4.3: Interaction of first-order quantifiers and temporal operators.

The combination of first-order quantifiers and modal operators creates complications that do not oc-
cur in propositional temporal logics. In particular, the quantification domain of a quantifier may vary as
the domain of the underlying worlds varies. Verification of ETL properties therefore requires a mech-
anism for recording the domain related to each quantifier, and for relating members of quantification
domains to individuals of future worlds. For ETL, this mechanism is provided by evolution-mappings,
which relate individuals of a world to the individuals of its successor world. Transitively composing
evolution-mappings captures the evolution of individuals along a trace.

Example 4.3.8 The formuladv. [J z(v) states that the pointer variableremains constant throughout
program execution, and points to an object that existed in the program’s initial world. On the other
hand, the formula Jv.z(v) merely states that never has the valugull ; however,z is allowed

to point to different objects at different times in the program’s execution, and in partieutan point

to objects that did not exist in the initial world. Examples illustrating the two situations are shown in
Fig. 4.3 where in(a) x points to the same object in all worlds, and(i%) it points to different objects

in different worlds.

Definition 4.3.9 We say that a prograrsatisfiesan ETL formulay when all (infinite) traces of the
program satisfyp.

The evolution semantics allows each world to have a different domain, thus conceptually repre-
senting a varying-domain semantics, which allows dynamic allocation and deallocation of objects and
threads. In Sectiod.4, we give a possible implementation of this semantics in terms of evolving first-
order logical structures.

Separable Specifications

It is interesting to consider subclasses of ETL for which the verification problem is somewhat easier.
Two such classes are: @patially separable specificationrs- do not place requirements on the rela-
tionships between individuals of one world; this allows each individual to be considered separately, and
the verification problem can be handled as a set of propositional verification problentsm{iiprally

separable specifications- do not relate individuals across worlds. Essentially, this corresponds to the

4.4. EXPRESSINGTRACE SEMANTICS USING FIRST-ORDERLOGIC 85

Predicate Intended Meaning Predicate Intended Meaning
world(w) w is a world exists(o,w) objecto is in world w
currWorld(w) w is the current world evolution(o1,02) | Objecto; evolves tooy
initialWorld(w) | wis the initial world isNew(o) objecto is new
suce(wy, ws) wo is the successor af; isFreed(o) objecto is freed

Table 4.3: Trace predicates.

extraction of propositional information from each world, and having temporal specifications over the
extracted propositions. This class was addresse20ifL§.

4.4 Expressing Trace Semantics using First-Order Logic

In this section, we use first-order logic to express a trace semantics; we encode temporal operators
using standard first-order quantifiers. This allows us to automatically derive an abstract semantics in
Section4.5. This approach also extends to other kinds of temporal logic, such as¢hkulus. Our

initial experience is that we are able to demonstrate that some temporal properties, including liveness

properties, hold for programs with dynamically allocated storage.

4.4.1 Representing Infinite Traces via First-Order Structures

We encode a trace via an infinite first-order logical structure using the set of designated predicates
specified in Tablel.3. Successive worlds are connected usingdhe: predicate. Each world of the

trace may contain an arbitrary number of individuals. The predicate s(o, w) relates an individual

o to a worldw in which it exists. Each individual only exists in a single world. Tewlution (o1, 02)
predicate relates an individua] to its counterpard, in a successor world. The predicaie®vew and
isFreed hold for newly created or deallocated individuals and are used to model the allocation and
deallocation operators.

Definition 4.4.1 (Concrete trace) A concrete traces a trace encoded as an infinite first-order logical
structureT = (Ur,), whereUr is the domain of the trace, and- is the interpretation function
mapping predicates to their truth value in the logical structure, i.e., for gach P*, 17(p): Uj’i —

{0, 1}. To exclude structures that cannot represent valid traces, we impose certain integrity constraints
[91]. For example, we require that each world has at most one successor (predecessor), and that
equality gq) is reflexive.

Example 4.4.2 Fig. 4.4 shows four worlds of the trac’Ej4 where each world is depicted as a large

node containing other nodes, and worlds along the trace are related by successor edges. Information

86 CHAPTER4. VERIFYING TEMPORAL HEAP PROPERTIESSPECIFIED VIA EVOLUTION LOGIC

Figure 4.4: A concrete traCEf_4.

in a single world is represented by a first-order logical structure, which is shown as a directed graph.
Each node of the graph corresponds to a heap-allocated object. Hexagonal nodes correspond to thread
objects, and small round nodes to other types of heap-allocated objects. Predicates holding for an object
are shown inside the object node, and binary predicates are shown as edges. For brevity, we use the
label rval[r] to stand forrval|resource]. Gray edges, crossing world boundaries, are evolution edges,
which relate objects of different worlds. Note that these are the only edges that cross world boundaries.

4.4.2 Exact Extraction of Trace Properties

Once traces are represented via first-order logical structures, trace properties can be extracted by evalu-
ating formulae of first-order logic with transitive closure.

We translate a given ETL formula to an FO”¢ formula (¢)" by making the underlying trace
structure explicit, and translating temporal operator&'®’“ claims over worlds of the trace. The
translation procedure is straightforward, and given in AppeAdix

Example 4.4.3 The propertydt: thread. > atlw.](t) of Examplet.3.4is translated to

Jw : world.3t : thread.initial World(w) A exists(t,w) A Fw'3t’ : thread.succ* (w, w')A
exists(t',w') A evolution®(t,t') A at[lw.](t')

which evaluates ta for the trace prefix of Fig4.4.

Definition 4.4.4 Themeaningof a formulayp over a concrete trac&’, with respect to an assignmefit
denoted byjp]Z (Z), yields a truth value i{0, 1}. The meaning of is defined inductively as follows:

e [[]3(Z) =1 (wherel € {0,1})
o [p(vi,...,w)]3(2) = (p)(Z(w1),- .- Z(vp))

o [¢1V@lf (Z) = max([p1]3(Z), [¢2]] (2))

4.5. EXPLORING FINITE ABSTRACT TRACES VIA ABSTRACT INTERPRETATION 87

o [-p1]5(2) =1-[¢]3(2)
o [Bur.¢i]3 (2) = max,epr[ei]d (Z[vr — u))

o [(TC vy,vs: 801)(U377)4)]]2T(Z) =
. T
MAT e U mini— [¢1]5 (Z[v1 — wi, va — uiq1))
Z(v3) = u1, Z(v4) = Unt1

We say thafl” and Z satisfyy (denoted byl', Z =) if [¢]3 (Z) = 1. We writeT = ¢ if for every Z
we havel', Z = .

The correctness of the translation is established by the following theorem:

Theorem 4.4.5 For every closed ETL formula and a tracer, = |= ¢ if and only ifrep(n) = (¢)f,
whererep(r) is the first-order representation af i.e., the first-order structure that correspondstdn
which every world inr is mapped to a world imep(7), with thesucc predicate holding for consecutive
worlds.

4.4.3 Semantics of Actions

Informally, a program actionc consists of greconditionac,,., expressed as a logical formula, under
which the action inabled and a set of formulae for updating the values of predicates according to the
effect of the action. An enabled action specifies that a possible next world in the trace is one in which the
interpretations of every predicapeof arity & is determined by evaluating a formulg (v, ve, . . . , vg),

which may usen, vs, . . ., v and all predicates i? (see P1]).

4.5 Exploring Finite Abstract Traces via Abstract Interpretation

In this section, we give an algorithm for conservatively determining the validity of a program with
respect to an ETL property. A key difficulty in proving liveness properties is the fact that a liveness
property might be violated only by an infinite trace. Therefore, our procedure for verifying liveness
properties is a greatest fixed-point computation, which works down from an initial approximation that
represents all infinite traces. In this section, we present our abstract-interpretation algorithm; procedure
explore of Fig.4.8.

Our approach uses finite representations of infinite traces. Finite representations are obtained by
abstraction to three-valued logical structures. The third logical value, 1/2, represents “unknown” and
may result from abstraction. The abstract semantics conservatively models the effect of actions on
abstract representations.

88 CHAPTER4. VERIFYING TEMPORAL HEAP PROPERTIESSPECIFIED VIA EVOLUTION LOGIC

4.5.1 A Finite Representation of Infinite Traces

The first step in making the algorithm of Fig.8 feasible is to define a finite representation of sets of
infinite traces. Technically, we usevalued logical structures to finitely represent sets of infinite traces.
The construction in this section follows similar lines to the construction in Se2tibmvhere instead of
abstracting single configurations as in Secof in this section we abstract infinite traces.

Definition 4.5.1 (Abstract trace) An abstract traceis a 3-valued first-order logical structurd” =
(Ur,), whereUr is the domain of the abstract trace, angd is the interpretation, mapping predi-
cates to their truth values, i.e., for eaphe P*, 10 (p): UE — {0,1,1/2}. We refer to the valuesand
1 asdefinite valuesand to1/2 as anon-definite value

An individualu for which .1 (eq)(u, u) = 1/2 is called asummary individuaj? a summary indi-
vidual may represent more than one concrete individual.

Themeaningof a formulay over a3-valued abstract tracd’, with respect to an assignmef,
denoted byj¢]1 (Z), is defined exactly as in Def.4.4 but interpreted ovef0, 1, 1/2}.

We say that a tracd” with an assignmenf potentially satisfiesa formulay when[¢]2 (2) €
{1,1/2} and denote this b, Z =3 .

We now define how concrete traces are represented by abstract traces (extending the concepts of
Section2.4 to work for traces). The idea is that each individual of a concrete trace is mapped by
the abstraction into an individual of an abstract trace. The new two definitions permit an (abstract or
concrete) trace to be related to a less-precise abstract trace. Abstraction is a special case of this in which
the first trace is a concrete trace. First, the following definition imposes an order on truth values of the
3-valued logic:

Definition 4.5.2 For [;,1l2 € {0,1,1/2}, we define thénformation order on truth values as follows:
ll C l2 if ll = lg Ol'lz = 1/2.

The embedding ordering of abstract traces is then defined as follows:

Definition 4.5.3 (Trace embedding)LetT = (U,:) andT" = (U’, /) be abstract traces encoded as
first-order structures. A functiofi: T — T such thatf is surjective is said tembedI into 7" if for
each predicate € P*, and for eachu, ..., u; € U:

L(p(ulv U2, .. 7uk)) L L/(p(f(ul)’ f(uQ)a s vf(uk)))

We say thafl” representsl” when there exists such an embeddjing

Note that for allu € Ur, t7(eq)(u,u) = 1 0r vr(eq)(u,u) = 1/2.

4.5. EXPLORING FINITE ABSTRACT TRACES VIA ABSTRACT INTERPRETATION 89

nial¥ald

Figure 4.5: An abstract trackg, 4 that represents the concrete trﬁzf_el.

As in Section2.4, we usecanonical abstractiorms an embedding function, but this time for traces.
Recall that canonical abstraction maps individuals to an abstract individual based on the values of the
individuals’ unary predicates. All individuals having the same values for unary predicate symbols are
mapped by the abstraction to the same abstract individual. We denote the canonical abstraction of a
traceT by blur(T"). Canonical abstraction guarantees that each abstract trace is no larger than some

fixed size, knowra priori.

Example 4.5.4 Fig. 4.5shows an abstract trace, with four abstract worlds, that represents the concrete
trace of Fig.4.4. An individual with double-line boundaries is a summary individual representing
possibly more than a single concrete individual. Similarly, the worlds with double-line boundaries are
summary worlds that possibly represent more than a single world. Dashed edgefardges, that
represent relations that may or may not hold. For examplé/2isuccessor edge between two worlds
represents the possible succession of worlds. The summary world following the initial world represents
the two concrete worlds between the initial and the current worlfl]’fglf, which have the same values
for their unary predicates. Similarly, the summary node labelgt, | represents all thread individuals
in these worlds that reside at labkl .

Note that this abstract trace also represents other concrete traces béﬁigmr example, concrete
traces in which in the current world some threads are blocked on the lock and some are not blocked.

4.5.2 Abstract Interpretation

The abstract semantics represents abstract traces &sialgied structures. Intuitively, applying an
action to an abstract trace unravels the set of possible next successor worlds in the trace. That is, an
abstract action elaborates an abstract trace by materializing a wdrtiim the summary world at the

tail of the tracew becomes the definite successor of the current warld 1V orld, andw’s (indefinite)
successor is the summary world at the tail of the traaerW orld is then advanced t@, which often

90 CHAPTER4. VERIFYING TEMPORAL HEAP PROPERTIESSPECIFIED VIA EVOLUTION LOGIC

mhalvoid anorkd -

inibal® ald cun'Nald

Figure 4.7: The resulting abstract trace after applying an actionfavefafter advancingurrWorld).

causes the formeturrWorld to be merged with its predecessor. When a trace is extended, we evaluate
the formula’s precondition and its update formulae usinglued logic (as in De#.5.1).

Example 4.5.5 Figures4.5, 4.6, and 4.7 illustrate the application of the action that releases a lock.
Fig. 4.6 shows the materialization of the next successor world for the tigceof Fig. 4.5 In the
successor world, the thread that was at lahel no longer holds the lock and has advanced to ldbgl
ThecurrWorld predicate is then advanced, and the formerrW orld is merged with its predecessor,
resulting in the abstract trace shown in Fig).7.

The abstract-interpretation proced@asglore is shown in Fig4.8. It computes a greatest fixed-
point starting with the sef7}", 7,/ }; these two abstract traces represent all possible concrete (infinite)
traces that start at a given initial statg,” and7.,” each have two worlds: an initial world that repre-
sents the initial program configuration connected by a 1/2-valued successor edge to a summary world
that represents the unknown possible suffixes. The summary wgrlaf 7, has a summary indi-
vidual ug; related to it. The summary individual; has1/2 values for all of its predicates, including
exists(us1, ws1) = 1/2, meaning that future worlds of the trace do not necessarily contain any individ-

4.5. EXPLORING FINITE ABSTRACT TRACES VIA ABSTRACT INTERPRETATION 91

explore() {
Traces = {1}, T, }
while changes occur {

select and remove 7 from Traces
for each action ac enabled for T
Traces = Traces| J{ac(T)}

}

for each 7 & Traces

if 73 (p)! report possible error

}
Figure 4.8: Computing the set of abstract traces Figure 4.9: An initial ab-
and evaluating the properfy)?. stract tracd,' .

uals. The summary world &, has no summary individual related to it and represents suffixes in which
all future worlds are empty. Figl.9 shows an initial abstract trace (corresponding’fo representing
all traces starting with an arbitrary number of worker threads at fatyesharing a single lock.

The procedurexplore accumulates abstract traces in th€ldaices until a fixed point is reached.
Throughout this process, however, the set of concrete traces represented by the abstracfitraces in
is actually decreasing. Itis in this sense thgplore is computing a greatest fixed-point.

Once a fixed point has been reached, the property of interest is evaluated over the abstract traces in
the fixed point. Formula evaluation over an abstract trace exploits values of instrumentation predicates
when possible (this is explained in the following section). This allows the use of recorded definite
values, whereas re-evaluation might have yielti&zl

We now show the soundness of the approach. We extend mappings on individuals to operate on
assignments: If: U7 — UT" is a function andZ: Var — U7 is an assignmenif o Z denotes the
assignmenf o Z: Var — U”" suchtha(f o Z)(v) = f(Z(v)). One of the nice features 8fvalued
logic is that the soundness of the analysis is established by the following theorem (which generalizes
[9]] for the infinite case):

Theorem 4.5.6 [Embedding Theorem] Lef = (U7, .T) andT” = (UT",.T") be two traces encoded
as first-order structures, and let: U7 — UT" be a function such thaf’ =/ 7’. Then, for every
formulay and complete assignmefitfor ¢, [¢]3(Z) C [¢]3 (f o Z).

The algorithm in Fig4.8 must terminate. Furthermore, whenever it does not report an error, the
program satisfies the original ETL formuja

92 CHAPTER4. VERIFYING TEMPORAL HEAP PROPERTIESSPECIFIED VIA EVOLUTION LOGIC

Figure 4.10: Jv.P(v)UQ(v) holds in all concrete traces that the abstract tfEce represents, yet
Ju.P(v)UQ(v) evaluates td /2 on T} 1 itself.

Predicate Intended Meaning Formula
objecto; is equal to objecb, (01 = 02) V evolution* (o1, 02)
twe(o1,02))
possibly across worlds Vevolution® (o2, 01)
current(o) | objectois a member of currentworld| Jw: world(o, w) A currWorld(w)

Table 4.4: Trace instrumentation predicates.

It often happens that this approach to verifying temporal properties yiglisdue to an overly
conservative approximation. In the next section, we present machinery for refining the abstraction to

allow successful verification in interesting cases.

Example 4.5.7 For clarity and ease of presentation, we use an artificial example, which is also used in
the next section. Figl.10shows an abstract trace in which the propefty. P(v) U Q(v) holds for all

the concrete traces represented by the abstract trace, but the fofaulyv) U/ Q(v) evaluates td /2
because the successor and evolution edges have V#tue

4.5.3 Property-Guided Instrumentation

To refine the abstraction, we can maintain more precise information about the correctness of temporal
formulae as traces are being constructed. This principle is referred gi]im$ thelnstrumentation
Principle. This work goes beyond what was mentioned there, by showing how one could actually
obtain instrumentation predicates from the temporal specification.

Trace Instrumentation

The predicates in Tablé.4 are required for preserving properties of interest under abstraction. The
instrumentation predicateurrent(o) denotes thab is a member of the current world and should be
distinguished from individuals of predecessor worlds. This predicate is required due to limitations of
canonical embedding. The predicatec(o1, 02) records equality across worlds and is required due to

the loss of information about concrete locations caused by abstraction.

4.5. EXPLORING FINITE ABSTRACT TRACES VIA ABSTRACT INTERPRETATION 93

nialiionid sk

Figure 4.11: Abstract trace with transworld equality instrumentation (Omwglued transworld equality
edges are shown).

Transworld Equality In the evolution semantics, two individuals are considered to be different
incarnations of the same individual when one may transitively evolve into the other. We refer to this
notion of equality agransworld equalityand introduce an instrumentation predicaie:(v;, v2) to
capture this notion.

Because the abstraction operates on traces (and not only single worlds), individuals of different
worlds may be abstracted together. Transworld equality is crucial for distinguishing a summary node
that represents different incarnations of the same individual in different worlds from a summary node
that may represent a number of different individuals.

Transworld equality is illustrated in Fig.11, the 1-valuedtwe self-loop to the summary thread-
node at labelw, records the fact that this summary node actually represents multiple incarnations of a
single thread, and not a number of different threads.

Temporal Instrumentation

Given an ETL specification formula, we construct a corresponding set of instrumentation predicates for
refining the abstraction of the trace according to the property of interest. The set of instrumentation
predicates corresponds to the sub-formulae of the original specification.

Example 4.5.8 In Example4.5.7, the propertydv. P(v) U Q(v) evaluated td /2 although it is satisfied

by all concrete traces thak (o represents. We now add the temporal instrumentation predidgtes
and,(v) to record the values of the temporal subformuld@) andQ(v). The predicates are updated
according to their value in the previous worlds. Note the use of transworld equality instrumentation to
more precisely record transitive evolution of objects. In particular, this provides the information that the
summary node of the second world is an abstraction of different incarnations of the same single object.
This is shown in Fig4.12

94 CHAPTER4. VERIFYING TEMPORAL HEAP PROPERTIESSPECIFIED VIA EVOLUTION LOGIC

nial¥aild

Figure 4.12: In the abstract tra@g 2, Jv.P(v) UQ(v) evaluates td.

4.6 Related Work

The Bandera Specification Language (BS2{][allows writing specifications via common high-level
patterns. In BSL, it is impossible to relate individuals of different worlds, and impossible to refer to the
exact moments of allocation and deallocation of an object.

In [81], a special case of the abstraction froii$ 118, named “counter abstraction”, is used to
abstract an infinite-state parametric system into a finite-state one. They use static abstraction, i.e., they
have a preceding model-extraction phase. In contrast, in our work abstraction is applied dynamically on
every step of state-space exploration, which enables us to handle dynamic allocation and deallocation
of objects and threads.

In [118, we have used observing-propositions defined over a first-order configuration to extract a
propositional Kripke structure from a first-order one. The extracted structure was then subject to PLTL
model-checking techniques. This approach is rather limited, because individuals of different worlds
cannot be specifically related.

4.7 Conclusion

We believe this work provides a foundation for specifying and verifying properties of programs manip-
ulating the heap with dynamic allocation and deallocation of objects and threads. In the next chapter,
we develop a more scalable approach for verification of ETL properties.

4.8 Translation of ETL to FOT¢

We say that an ETL sub-formula is temporally-bound if it appears under a temporal operator. Trans-
lations for temporally-bound and non-temporally-bound formulae are different, since non-temporally-
bound formulae should be bound to the initial world of the trace.

4.8. TRANSLATION OF ETL TOo FOT¢ 95
Definition 4.8.1 [ETL translation to”7OT“] We denote by)™ the bounded translation of a formula
@ in a worldw and by(y)' the non-bounded translation.

o (©)f = Jw:world.initial World(w) A (@)

if ¢ is an atomic formula other thamz and @z then (o)™ = . If ¢ = Gz then(p)™ =
isNew(z). If ¢ = 0x then(p)™ = isFreed(z).

(A = (@™ A D)™, (o V) = ()T V ()1, (7)1 = ~(p)T

o (Fz o)™ = Av.exists(w,z) A ()™
o (TC xy1,z9: @)(x3,22))1 = (TC x1,29: (0)1 A exists(w, 1) A exists(w, z2))(x3, 24)

o ((,0(1'1, s 7xn)uw(y17 s 7yk))Tw =
Jw':world. 3y, . .., y..succ* (w,w') A (P(y1, ... ,y,’g))ml
A Ni<i<p evolution®(yi, y;) A Vi world. 3y, . . ., 27, (suec™ (w, W)
A suce* (w,w') — (p(xh, ..., 2))) P A Ni<j<n evolution®(z;,z}))
(Oplat,....zn))1 =

Jw":world. 3z, . . ., z),.succ(w, w')

Ao, ... 2T A Ni<j<n evolution(zj, x7) A exists(x), w')

Note thatz; andy; are not necessarily distinct. Simplified translations may be used fa{tlaad
[temporal operators.

96 CHAPTER4. VERIFYING TEMPORAL HEAP PROPERTIESSPECIFIED VIA EVOLUTION LOGIC

Chapter 5

Automatic Verification of Temporal Heap
Properties

In this chapter, we present a framework for verifying temporal properties of sequential and concurrent
heap-manipulating programs. The specification language we use is evolution temporal logic (ETL), a
first-order linear temporal logic, that allows us to naturally specify safety and liveness properties of
programs that dynamically allocate objects and threads without an a priori bound. Our framework is
able to verify both safety and liveness properties of such programs.

In this chapter, we define a state-based constant-domain semantics for ETL. This yields a verification
algorithm that is more efficient than the one described in Chapter

The best thing about the future is that it comes only one day at a time.
—Abraham Lincoln.

5.1 Introduction

Two of the main challenges of software verification are handling heap-allocated storage and handling
dynamic allocation of objects and threads. These features are often ignored or handled in an imprecise
manner by existing verification and static-analysis approaches, especially for concurrent pr>ams [

In this chapter, we present a framework for verifying temporal properties of sequential and concur-
rent heap-manipulating programs. Unlike many of the existing verification techniques, our framework
does not impose an a priori bound on the number of allocated objects and threads. The specification lan-
guage we use is a first-order linear temporal logic that allows us to naturally specify safety and liveness
properties of programs that dynamically allocate objects and threads. This should be contrasted with
traditional model-checking techniques that use propositional temporal tbgic [

Verifying that a propertyy holds for a program requires verifying thatiolds on all program traces.

97

98 CHAPTERS5. AUTOMATIC VERIFICATION OF TEMPORAL HEAP PROPERTIES

public Set mark(Element root) {
my Set pending = new HashSet();
mo Set marked = new HashSet();
ms if (root != null) {
my pending.add(root);
msg while (!pending.isEmpty()) {
me Element x = (Element) pending.iterator().next();
my pending.remove(x);
ms marked.add(x);
mg Element t = x.left;
mio if (t!= null && !marked.contains(t))
mi1 pending.add(t);
mio t = x.right;
mi3 if (t != null && !marked.contains(t))
miq pending.add(t);
mis }
mie }
mi7 return marked;
}

Figure 5.1: Java source for the mark-phase procedure.

In this chapter, we use abstract interpretation to conservatively check if there exisligtian trace—
a trace that satisfies tiviolation property—.

Our verification method isound that is, if we say that a violation trace does not exist, the property
is guaranteed to hold on all program traces. However, since we over-approximate the set of program
traces, our framework may yield false alarms, i.e., it may say that there exists a trace satisfying the
violation property when there is no such execution trace of the program.

Motivating Example

As a motivating example, consider the marking phase procedure db Eigrhis procedure is part of a
“stop-the-world” (non-incremental) mark-and-sweep garbage colletid) jn which garbage collec-
tion is performed as a single atomic step while the program is Haltear simplicity, we assume that
the heap has a single root, that all objects hrilet andleft fields, and that there are no arrays of
references. We would like to verify the following safety and liveness properties for this procedure:

(P1) all nodes reachable from the root are eventually marked

(P2) all marked nodes are reachable from the root

1An optimized version of this GC algorithm is implemented in Sun’s JVM1.2,

5.1. INTRODUCTION 99

Verifying these properties is a challenging task, as there is no bound on the number of objects in
the heap, and they have no static names. In the following sections, we will see how to formulate these
properties in our framework and how they are verified.

Related Work
Typestate Checking

A typestate propertys a safety property that defines the valid sequences of operations that could be
performed on each object of the specified type. One of the open challenges in typestate verification is an
adequate treatment of aliasing. Some approaches, such as the original work on tyf»8Staterpid

any aliasing. Other approaches (e.gZ][and [27]) take a two-phased approach in which typestate
analysis is preceded by an aliasing-analysis, which may result in a loss of precision.

Our work generalizes and extends previous work based on typestate checking in at least three sig-
nificant aspects: (i) we handle properties involving more than a single object; (ii) we handle liveness
properties; (iii) we handle aliasing with high precision and as part of the verification procedure rather
than as a preceding phase.

Moreover, our framework can also be used to perform typestate checking for concurrent programs
with dynamic allocation and deallocation of objects and threads.

Note that in contrast to Chapt& our goal in this chapter is to handle arbitrary programs (not
necessarily shallow) and arbitrary ETL properties (generalizing typestate), but we do not guarantee
precise results, and use technigues that are more expensive than the ones used irBChapter

Model Checking Object-Based Software

Distefano et. al.34] define a temporal logic for reasoning about object-based software. The abstraction
used there is a limited one and their representation does not handle structural relationships among heap
objects.

Previous Work

This chapter generalizes contributions presented in Chap@hnapterd, and Sectiory.1 of this thesis.

It generalizes our work on verifying strong safety properties (Cha)teferifying non-nested liveness
properties (Chaptet), and verifying local temporal safety properties (Secfiof). All the properties
discussed in these chapters can be formulated and verified in this framework. While Ghagesran
expensive abstract interpretation of the trace-semantics, the framework presented in the current chapter
works with a state-based semantics which is significantly more efficient. In terms of precision the two
methods are incomparable: (i) the trace-based semantics records history even when it is not part of the

temporal specification; (ii) the state-based semantics only tracks history relevant to the specification.

100 HAPTERS. AUTOMATIC VERIFICATION OF TEMPORAL HEAP PROPERTIES

However, we generally expect the state-based semantics to behave better under abstraction. As a trivial
example, the trace-based semantics will fail even on safety properties. Another key difference is that
Chapter4 uses varying-domain semantics while this chapter uses a constant-domain semantics (see
Section5.2.2.

Outline

The rest of this chapter is organized as follows. In Sedii@we define the syntax of ETL, and provide
concrete trace-based and state-based constant-domain semantics. 55&ttiem describes an abstract
state-based semantics for ETL. In Secto#, we show how to encode the state-based semantics using
first order logic providing a verification algorithm for ETL. Finally, we conclude with Secsidn

5.2 Evolution Temporal Logic

In this section, we define the syntax and semantics of evolution temporal logic (ETL) — a first-order
linear temporal logic§9] that allows us to naturally specify properties of heap-manipulating programs.
The semantics we define for ETL iscanstant-domain semantiagswhich the universe of all configu-
rations is fixed. In SectioB.2.2 we define a trace-based semantics for ETL. Se&iarBthen defines

a state-based semantics whose abstract interpretation provides the abstract semantics & . %&ction

5.2.1 Syntax

The following defines ETL syntax in a way similar to Definitiér8.3with the following key differences:
(i) we use a designated predicat explicitly denote the existence of an individual in a configuration;
(i) we add temporal past operators.

Definition 5.2.1 (ETL Syntax) AnETL formula over avocabularyP = {eq, ¢, p1, ..., p,} is defined
by
o= O[lp(vi,...,vn)]e1 V @a]p1 A pa|—p1|Fur.01 Vo101 |(TC vi, v 1) (v3,v4)

[p1Up2lo1 Wea| O ¢1| © p1lp1 Swaler Bez
wherev; are logical variables. TheocabularyP contains the special predicate symlag(v;, v2) that

denotes equality between individuals and the predicate syatbplthat denotes the existence of an
individual in the current state. We denote By the predicates of arity in P.

The set ofree variablesin a formulay, denoted byF'V (¢), is defined as usual. In a transitive
closure formulal’V ((T'C vy, va: ¢)(vs,va)) = (FV (@) \{v1,v2}) U{vs,va}.

We refer to formulae of one of the forsl, p(vy, . . ., v,) asatomic formulae We refer to formulae
of one of the formsp; U pa, Y1 Wea, Op1 , O 1, ¢1 Sy, and ¢ By as principally temporal

5.2. BVOLUTION TEMPORAL LOGIC 101

Predicates Intended Meaning

e(v) v exists in the configuration

eq(v1,v2) v1 equals tavy

{at[lab]() : lab € Labels} program is at labélab

{z(v):z € PVar} objectv is pointed-to by reference variabie
{fld(v1,v2) : fld € RFields} | field fid of the object points to the objects
marked(v) objectv has been marked

pending(v) objectv is pending to be marked

Table 5.1: Predicates used for the example program.

formulae, and to any formula that does not contain a principally temporal formula asratemporal
formula. We restrict the formulae in a transitive-closure operator to non-temporal formulae.

We use the shorthand notatioks » = (1Uy), [= =(1U-p). We also use the shorthand
notations®(v) £ €(v) A © —e(v), and@(v) = @ €(v) A —e(v), which refer to the exact moment in
which an object is allocated and deallocated, respectively.

To ease the use of thepredicate, which provides relativization of quantification and predicate val-
ues to individuals that actually exist in a configuration, we introduce the shorthand notatians. . . , v;) =
Ni<i<r €(Wi) Ap(vr, ... v5) and =p®(v1, ..., vg) £ Ai<i<p €(i) A =p(v1,...,vg). In this section,
we only use predicates over objects that actually exist and therefore assume all predicates (and negated
predicates) are-relativized and omit the superscript from predicate symbols. Allowing non-relativized
predicates (e.g., for handling allocation) is quite straightforward.

Finally, we use shorthand notations for quantifiers that only quantify over objects that actually exist
in a configuration:3€v.(v)2 Jv.e(v) A p(v) andVev.¢(v)= Yv.e(v) — ¢(v).

The operator) is thenextoperator, and) requires the formule to hold in the next state of the
trace. The operatap is thepreviousoperator, and® ¢ requiresy to hold in the previous state of the
trace. The operata¥ is theuntil operator, ang /v requires that:(i}) eventually holds, and (ii) until
that pointy holds. The operatoVV is theweak untiloperator, ana W1 requires thatp holds at least
until ¢ holds. Note that] ¢ = ¢ WO0. The operatosS is thesinceoperator, andg, S, requires that
9 held some time in the past and since that pginholds. The operatoB is the weak version o
andy; By, requires thatp; holds sincep, held. A temporal formula that does not uSgY/ or W is
called a past formula. To allow incremental tableau construction, we restrict the use of past formulae to
only appear within a single containing or <> operator (i.e., with no nesting of future operators).

The predicates used in this chapter are listed in TaldleExcluding the predicatesarked(v) and
pending(v), all predicates of Tabl®.1 are variations on the predicates used in Chaptedapted for

102 HAPTERS. AUTOMATIC VERIFICATION OF TEMPORAL HEAP PROPERTIES

sequential programs. We use unary predicates to represent values of reference variables and boolean
properties of individuals. A unary predicatév) holds for an individuab when it is referenced by the
reference variable. We use binary predicates to represent values of reference fields. A binary predicate
fld(v1,v2) holds when the fieldld of v; points tovs.

Example 5.2.2 The properties of interest for the marking procedure are formulated as the following
ETL formulae.

(P1) V0.0r 00t (V) — < marked(v)

(P2) O Vv.marked(v) — oot (V)
wherep, (o0 (v) = root(v) V Ivi.root(vi) A (T'C wi,we: right(wi, wa) V left(wi, w2)))(vi,v)

In the running example, the unary predicatet(v) holds for the individual that is referenced by
the variableroot . The unary predicatenarked(v) holds for objects that have been marked, and the
unary predicatepending(v) holds for objects that are pending to be marked. The binary predicates
left(vi,v2) andright(vy, v2) hold for objects related by theft andright fields, respectively.

Note how the transitive-closure operator allows us to naturally express the notion of reachability
from the root in these formulae. Also note that the existence of individuals has to be explicitly speci-
fied (via thee existence predicate). This stems from the use of the constant-domain semantics, which
explicitly expresses existence of individuals.

5.2.2 Trace Semantics

It is natural to consider the concrete semantics of a program as the set of its executior2Bated,
where each trace is an infinite sequenceaffigurations First-order logical structures provide a natural
representation of configurations with an unbounded number of objects: an individual of the structure’s
domain (universe) corresponds to an anonymous, unique store location, and predicates represent prop-
erties of store locations. Such a representation allows properties of the heap contents to be maintained
while abstracting away any information about the actual physical locations in the store.

A program configuratiorencodes a global state of the program. Technically, we use a first-order
logical structure to represent a program configuration.

Definition 5.2.3 (Constant-domain program configuration) A configurationis represented via a first-
order logical structureC% = (U,, 1), whereU, is the infinite domain (universe) of the structure, and
L. is the interpretation function that maps predicates to their truth values; that is, for paghP*®,
te(p): UF — {0,1}, such that for allu € U,, t.(eq)(u,u) = 1, and for alluy, us € U, such thatu;
anduy are distinct individuals..(eq)(u1,u2) = 0. We also require that.(e)(u) = 1 only for a finite
number of individuals. (However, there is no a priori upper bound on the number of individuala

structure for which.(¢) = 1.)

5.2. BVOLUTION TEMPORAL LOGIC 103

pending
rlroot]

right right
marked
rlroot]

right

marked

" marked
root ——————=
froot [root]

[root]

atfm_10]

Figure 5.2: A possible configuratioﬁg2 of the marking procedure.

As in previous chapters, we use directed graphs to depict configurations. Each individual of the
universe that actually exists in the configuration is shown as a node. Individuals for whicls 0
are not shown. A unary predicatév) that holds for an individuak is drawn inside the node; the
predicatec(v) is not shown because it holds for all individuals depicted. A predicate that can hold at
most for a single object (e.g:{v)) is shown as an edge from the predicate symbol to the node in which
it holds. A binary predicatg(u,, uz) that evaluates to is drawn as directed edge from to uq labeled
with the predicate symbol. Finally, a nullary predicatg is drawn inside a box.

Example 5.2.4 Fig. 5.2 shows a possible configuration of the marking procedure when execution is at
program labelm,o. In this configurationroot points to an object from which seven other objects
are reachable by transitively traversingght andleft fields. The predicate[root] records the

value of the formulap, of Example5.2.2 corresponding to transitive reachability fromoot . The
importance of recording this value as a predicate will become clear in later sections. Three objects
in this configuration have already been marked by previous loop iterations; these are the objects for
which the predicatenarked holds. Similarly, two objects in the configuration are in the pending set
(predicatepending holds for these). In this configuration, three objects are not reachable ffoamn

and shown in the upper part of the figure. The nullary predicafe:;] shown inside a box indicates

that procedure execution is currently at label.

We define an operational semantics that manipulates configurations by meatisd Informally,
an action consists of a precondition under which the action is enabled and a definition of how predicates
are updated as a result of the action. In this chapter, we prefer the use of two-vocabulary formulae for
specifying actions (over the precondition/update formulation of Cha&j)tas two-vocabulary formu-
lae naturally correspond to program transitions, and are also used to define progress measures in later
sections. More formally, an action is defined as follows:

Definition 5.2.5 (Action) An action is a two-vocabulary formulaover P, that is, a formula over the
predicates irP U {p’|p € P} containing primed and non-primed versions of predicateB.irAn action

104 HAPTERS. AUTOMATIC VERIFICATION OF TEMPORAL HEAP PROPERTIES

consists of two parts: (i) grecondition containing only non-primed predicates; (ii) an update part
which is allowed to include both non-primed and primed predicates. We say that an actioabkkd

in a configuration when its precondition has a satisfying assignment in that configuration. For brevity,
we assume that a primed predicate not appearing in the formula maintains its original (non-primed)
value.

Example 5.2.6 Given a vocabulary
P = {atim1](),...,at[mi7](), z(v), t(v),left(vi,ve), right(vi,v2)}, the action

at[mo)() A —at[mo) () A at[mio]) () AVo.(t' (v) < Jvr.z(v1) Aleft(vy,v))
represents a transition in which program location changes from lakgeto m9 andt is assigned the
value ofx.left . Its precondition,at[mg](), is enabled at configurations that represent a state of
program execution that is at labetg.

In this thesis, we assume that the program is represented as a first-order transition system. To
simplify the presentation, we do not discuss the fairly standard additional Justice and Compassion con-
ditions that are added to support the notions of weak and strong fairnes§9se]].

In the sequel, we use the term program to also refer to the first-order transition system that represents
the program.

Definition 5.2.7 (First Order Transition System (FOTS)) A first order transition system (FOTSis
a pair (P,) whereP is a vocabulary, and- is the set of actions given as a set of two-vocabulary
formulae.

A first order transition system induces a transition relation as follows.

Definition 5.2.8 (Transition Relation) Given a program, we say that a configurati6fi rewritesinto
a configurationC!’ underac (denoted by># £ C) whereac is a program action, ific is enabled at’*
and the values of predicates @ are determined by the primed predicatesiin We writeC? = oY
when there exists an actiar s.t. C* 2 C¥'.

We make the usual assumption that the transition relation is total. This allows us to only consider
infinite traces. For terminating programs we make the transition relation total by letting the final config-
uration rewrite into itself with an “idle action”.

Definition 5.2.9 (Trace) Given a program, drace is an infinite sequence of program configurations
Cg, Cﬂ ..., where each configuration represents a global state of the prog@%ris an initial configu-

Cf = Cf

ration, and for eachl.u andC” 1

+1

5.2. BVOLUTION TEMPORAL LOGIC 105

The semantics for ETL is a constant-domain semantics, in which all configurations of a program
share the same (infinite) universe. We denote this univerdg byd note thal/;,, = ... = U, =
... = U. The quantification in the constant-domain semantics is a possibilist quantification that ranges
over all individuals ofU, that is, over individuals thaiossibly exisin a configuration. Individuals that
actually existin a configuration are distinguished by having the valder the predicate (ande can be
used to write queries restricted to individuals that actually exist).

In the following, head(w) denotes the first configuration in a tracetail(w) denotes the suffix of
7 without the first configuration, and’ denotes the suffix of starting at the-th configuration.

The goal of the ETL semantics we present is to find whether a violation-formula, i.e., a formula
defining forbidden behaviors, could hold for a program. The following trace-based semantics is there-
fore an existential trace semantics in which a program is said to satisfy a given property if there exists a
program trace that satisfies the property.

Throughout the chapter, we assume that formulae gpegitive normal form, in which negations
only appear over atomic formulae. For simplicity and brevity, we only show the semantics for future
ETL (where no past operators are used). The semantics of the past operators is added in the standard
manner as ing9], or in a manner similar toZ6] (the interested reader can find the full definitions in
AppendixC.3).

Definition 5.2.10 (ETL Trace-based Semantics)MVe define when an ETL formulais satisfied over a
trace w with an assignment (denoted byr, Z =) as follows:

e 7,7 =1,andnotr, Z = 0.

o m, Z = p(vi, ..., vk) WheNuyeqa(r) (p)(Z(v1), - .., Z(vg)) =1

e 7,7 = ~pwhennotr,Z = ¢

e T, Z EeViywhenn,Z E=gporm Z ¢

o 7,7 = Jv.p(v) when there exists € U s.t.w, Z[v — u] = p(v)

o 7,7 = (TC vi,v2: ¢)(v3,vq) When there existsy, ..., uy+1 € U, S.t. Z(v3) = uy, Z(v4) =

unt1, and foralll <i < n,m, Z[v1 — i, v2 — uiy1] = .
o 7.7 = Op whentail(r), Z |= ¢.
e 7,7 = U1 when there exists > 0, stk Z E=yandforall0 <j <k, 7/, Z | .

e 7,7 = ¢ W1 when there exists > 0, stk Z =+ andforall0 < j < k,n/,Z |= ¢, or for
allj >0,7,7 = .

106 HAPTERS. AUTOMATIC VERIFICATION OF TEMPORAL HEAP PROPERTIES

We omit definitions fon, V since they are defined similarly. We writd= ¢ whenr, Z |= ¢ for every
assignment. Given a programP, we say that? = ¢ when there exists a trace of the programP,
such thatr = .

Note that the trace-based semantics guarantees that an eventuality (represented using the until oper-
ator) is fulfilled in a finite future.

5.2.3 State-Based Semantics

We now define a state-based semantics for ETL. The state-based semantics we define is an abstraction
of the trace-based semantics of Definitior2. 10— we say that a state (configuration) existentially
satisfies an ETL formula when there exists a trace emanating from the configuration (i.e., a suffix for
future properties, and a prefix for past properties) that satisfies the ETL formula.

To allow the semantics to treat different assignments separately, we restrict our attention to ETL
formulae that only allow a bounded number of simultaneous temporal requirements, i.e., we allow
conjunctions, but forbid universal quantification over temporal subformulae. We still allow universal
guantifiers to be used in a configuration-local manner, i.e., when the formula under the quantifier does
not include temporal operators. Note that since the semantics is used to evaluate the violation formula,
the subset we consider includes universally-quantified specifications.

We use the termbounded demonic formula denote the fact that the number of requirements that
should simultaneously hold for the formula is bounded (the tdemonicis intentionally borrowed
from demonic-nondeterminism).

Definition 5.2.11 (Bounded-Demonic ETL)An ETL formula in positive normal form is laounded-
demonic ETL formula(BDETL) when no temporal operator appears under a universal gquantifier.

Definition 5.2.12 (ETL Existential State-Based Semanticsisiven a set of BDETL formulag, and
a programP, we say thaf is existentially satisfiedrom a configuration (state}’® with an assignment
Z (denoted by’%, Z = F) when one of the following conditions holds:

(AO) F =10

(Al) F=F'u{1}andC" Z g F',

(A2) F = F' U {p(v1,...,vx)} andecs (p)(Z(w1), . .., Z(v))=1, andC?, Z =p F'
(A3) F = F' U {~p} and notC% Z =g {p}, andC? Z =g F’

(Ad) F=F U{pVvy}andCh Z g F'U{p}orC% Z Ep F' U {4}

(AS) F = F' U{p Ay} andCh Z =g F' U {p, ¢}

5.3. ABSTRACT SEMANTICS 107

(AB) F = F' U {Jv.¢(v)} and there exista € Ug: s.t.C%, Z[v +— u) =g F' U {p(v)}
(A7) F = F' U{Qy} and existsC?, " = C¥ s.t.,C%, Z =g {p} andC?, Z =5 F'.

(A8) F = F' U {pU} andC? Z = F' U {2} or
C*, Z =g F' U {¢} and there exist§’®’ s.t.C" = C* andC?', Z =5 {oUv}.

(A9) F=F' U{pWyltandC* Z = F' U {4} or
C!', Z =g F' U {p} and there exist§'® s.t. C% = C% andCY, Z Ep {o W1}

We omit the definition foi since it is defined similarly. This semantics has the additional require-
ment that eventualities (i.eplfv)) are fulfilled within a finite future (note that this requirement is what
differentiates (A8) from (A9) which otherwise have identical structure).

The rules of Definitiorb.2.12could be viewed as rewrite rules for the construction of a joint product
tableau combining a program and a violation property. These rules could be then viewed as a general-
ization of the rules used in PTL tableau constructi®®.[In this respect, note that formulae in the set
F of Definition 5.2.12are only formulae contained in the closure of the original propértwhere the
closure of® is defined to be all its subformulae and their negations.

The following theorem establishes a connection between the state-based semantics defined above
and the trace-based semantics of Definio2 10

Theorem 5.2.13Given a BDETL formula, and a programP, P = ¢ = P =g {¢}

Proof: in AppendixB

Theorenb.2.13allows us to check whether a progrdtrsatisfies a BDETL violation-property by
checking if its initial configuration satisfies the get} according to the semantics of Definitiér2.12

Note that it is still not obvious how to compute the state-based semantics (as was the case with the
trace semantics) since it may require reasoning about infinite traces.

Reasoning about infinite traces is required to show that there exists a violation trace for a liveness
property. In a finite-state system this can be done by compactly representing infinite traces as cycles in
the finite state-space. In an infinite-state system, this is more complicated since an infinite trace does
not necessarily repeat past configurations.

5.3 Abstract Semantics

Because the semantics of the previous section may be non-terminating, we now show how to guarantee
termination by conservatively evaluating BDETL formulae using abstract interpretatpn [

108

HAPTERS. AUTOMATIC VERIFICATION OF TEMPORAL HEAP PROPERTIES

left
“right

atfm_10]

right
root —I"* o left ’
froot] 4.

(¢ marled

iy tfroot]

T right

left

pending left
r[root]

left

marked
r[root]

Figure 5.3: An abstract configurati@r, » that represents the concrete configuraﬁfig.

5.3.1 Abstract Configurations

We conservatively represent multiple concrete program configurations using a single logical structure
with an extra truth-valué /2, which denotes values which may band may bé. We allow an abstract
configuration to includessummary nodes.e., individuals that represent one or more individuals in a
represented concrete configuration. Technically, a summarymbds.(eq)(u, u) = 1/2.

Definition 5.3.1 (Abstract configuration) An abstract configurationis a 3-valued logical structure

C = (U,) where: (i)U is the universe of the structure, each individualinmepresents possibly many
objects; (i)« is the interpretation function mapping predicates to their truth-value in the structure, i.e.,
for every predicate ¢ P of arity k, «(p): U¥ — {0,1/2,1}.

As mentioned in Sectiof.4.3 it is possible to refine the abstraction by addingtrumentation
predicateq91]. In this chapter, we use the reachability instrumentation predicat@lpfdr recording
reachability from theoot variable. The unary instrumentation predicafeot|(v) holds for individ-

uals that are reachable from theot variable.

Example 5.3.2 Fig. 5.3shows an abstract configuratiary, 5 that represents the concrete configuration
CE,_Q of Fig. 5.2 Nodes with double-line boundaries are summary nodes, which possibly represent mul-
tiple concrete nodes. Dotted edges represent binary predicates with thelyaludote that-[root](v)

holds for all nodes excluding a single summary node that represents the “garbage” objects that are not
reachable fronroot .

Canonical Abstraction

As in Chapter2, we usecanonical abstractiorio define how configurations are represented by abstract

configurations. Canonical abstraction maps concrete individuals to an abstract individual based on the

5.3. ABSTRACT SEMANTICS 109

values of the individuals’ unary predicates. All individuals having the same values for unary predicate
symbols are mapped by the abstraction to the same abstract individual. Canonical abstraction guarantees
that the resulting abstract configuration is of bounded size. We denote the canonical abstraction of a
configurationC' by blur(C'), and denote by’ Cy;,,,- C’ the fact that canonical abstractiembed” into

C'.

5.3.2 Abstract Semantics

The abstraction of the previous section induces an abstract transition relation defined as follows.

Definition 5.3.3 (Abstract Transition Relation) We say that an abstract configuratichrewritesinto
an abstract configuratiod®” underac (denoted by” :“fﬁ C") whereac is an action, if forC' and forC’
thereexistsC? and C%' such that: (i) C¥ is in the concretization of, i.e., C represent&?; (i) ac is
enabled atC® and C?' is a result of the updates applied by; (iii) canonical abstraction embeds”
into C’. We writeC = C" if for some actiorue C' = C'.

Note that this abstract transition relation only adds behaviors over the concrete transition relation.
In particular, for any two concrete configuratiofi$ = C", the abstract transition relation relates their
abstractions, i.eblur(C) = blur(C*").

To define the abstract semantics, we first define the concretization of an abstract configuration and
an assignmenty((C, Z)) = {(C¥, Z') | C¥ Cpr C,blur o 2’ = 7}

Definition 5.3.4 (Abstract State-Based Semantics) he abstract state-based semantics is derived from
Definition’5.2.12by using abstract interpretation. We define when an abstract configuratiand an
assignmen¥ potentially satisfya set of BDETL formulaé’, as follows:C, Z):ﬁE F when there exist&“’, VANRS
v((C, Z)) such thatC?', 2’ = F

The following theorem establishes the soundness of the abstract semantics. Intuitively, the abstract
transition relation only adds behaviors over the concrete transition relation. Therefore, any behavior that
was present in the concrete transition relation is also present in the abstract transition relation.

Theorem 5.3.5 For a programP and a set of BDETL formulag, P = F = P):ﬁE F

Proof: in AppendixB

Note that the above theorem does not guarantee completeness. Indeed, the abstract semantics may
potentially satisfy formulae that are not satisfied by the concrete semantics.

Generally, the concretization of an abstract configuration and an assignment may be an infinite num-

ber of concrete configurations, and is therefore non-computable. In practice, our abstract semantics is

110 HAPTERS. AUTOMATIC VERIFICATION OF TEMPORAL HEAP PROPERTIES

based on direct manipulation of abstract configurations (without the need to compute the concretization)
which is more conservativ®l].

Theoremb.3.5guarantees that if there exists a trace that satisfies a propentygler the concrete
semantics, there also exists a trace that potentially satigfigsder the abstract semantics. We use
this theorem combined with Theorefr2.13to check whether a given program potentially satisfies the
violation-propertyp.

If a program potentially satisfies the violation-property then it may have an incorrect behavior, but
this behavior may also be a spurious behavior not exhibited by the concrete semantics and resulting from
the abstraction. Otherwise, when the program does not satisfy the violation-property, it is guaranteed
that the concrete semantics also exhibits only desired behaviors (i.e., behaviors that do not satisfy the
violation property). The soundness of our approach is guaranteed by the following theorem

Theorem 5.3.6 For a programP, and a BDETL formula, P = ¢ — P):ﬁE ®

Proof: P = ¢ = P 5 {¢} [Thm5.2.13, P =5 {¢} = P =% {¢} [Thm5.3.9

The abstract semantics of Definitidn3.4 requires that eventualities are fulfilled within a finite
future. Since abstract configurations are of bounded size, the number of abstract configurations is finite,
and the abstract transition relation is guaranteed to be finite and thus contain cycles. The requirement
that eventualities are fulfilled within a finite future may be violated by some cycles.

It is important to note that we are trying to find a trace in which the violation-property holds. Thus,
we may conservatively say that the violation-property holds even when it doesn’t hold in the concrete
semantics. Therefore, saying that the violation-property holds due to a spurious cycle is sound.

5.4 First-Order Representation

In this section, we use first-order logic with transitive closure to encode the existential state-based se-
mantics of the previous section. To show how the abstract existential state-based semantics of Def-
inition 5.3.4is expressed in terms of a first-order transition system, we first show how to express the
concrete existential state-based semantics of Defirfitipri 2as a first-order transition system, and then
apply the abstraction of Sectidn3.2 which produces &-valued first-order transition system for the
semantics of Definitios.3.4

5.4.1 ETL Existential State-Based Semantics as First-Order Transition System

Given an FOTS representing the program to be verified, and a BDETL property, we construct an aug-
mented FOTS that encodes the semantics of Definftidri 2and combines it with the program’s FOTS.
The combined FOTS could be viewed as performing an interpretation of the ETL formula where the un-

derlying program states are constructed on-the-fly as formula evaluation takes place.

5.4. HRST-ORDER REPRESENTATION 111

We augment the vocabulary of the original transition system with a vocabulary for encoding the
semantics. We note that the elements of the sets used while evaluating a formula in the existential
state-based semantics can only be formulae in the closure of the formula (subformulae of the original
formula, and their negations).

We use predicates corresponding to the formulae in the closure of the ETL formula as our vocab-
ulary. We call predicates in this vocabuldormula-predicates. These predicates model members of
the setF of Definition 5.2.12 a formula-predicate has the valtievhen the formula is in the séf.
Intuitively, these predicates correspond to future obligations that should be satisfied by the program’s
execution. We denote biyp) the predicate recording the fact thashould be satisfied by the future (or
present) of program execution. Initially, we require that the future of the execution satisfies the violation
property. As the analysis progresses, future obligations may be fulfilled, possibly leading to a repeatable
state in which no further obligations exist, satisfying the violation property.

The transitions in the FOTS are directly derived from the rules in Defin&i@12 The FOTS
consists of two types of transitions: (i) semantic transitions, which correspond to the way fiésset
updated by the rules of the semantics. These transitions update the formula-predicates and could be
viewed as tableau rewrite rules; (ii) program transitions, which correspond to state updates as result of
a step taken by the program. These transitions update predicates of the original vocabulary (rather than
formula-predicates).

Note that when the semantics uses a program transition to find a successor state, it chooses from all
enabled actions. Technically, the transitioh = C% is realized ag/, ac; whereac; are the actions of
the program (as two-vocabulary formulae).

Evaluation of an ETL formula using the semantics of DefinittoR.12corresponds to a run of the
first-order transition system encoding the semantics of the formula.

Definition 5.4.1 (Run of an FOTS) A run of an FOTS is an infinite sequence of first-order configura-
tionng, CE, . Wherng is an initial state, and each configurati@‘fH is derived from its predecessor
Cf by a single action of the transition system.

Recall that the semantics of Definiti@n2.12requires that eventualities are satisfied within a finite
future. To express this requirement, we distinguish between formula-predicates that are allowed to be
repeated forever, and formulae-predicates that represent formulae that are required to be satisfied within
a finite-future. A formula-predicate is said to deceptingf its formula is of the formp W) oris1. All
non-accepting formula-predicates represent subformulae that are required to be satisfied finitigin a
future

Definition 5.4.2 (Acceptance)A run of an FOTS isacceptingwhen every non-accepting formula-
predicate gets the valu@ within a finite future. An FOTS is said to l@eceptingwhen it has an
accepting run.

112 HAPTERS. AUTOMATIC VERIFICATION OF TEMPORAL HEAP PROPERTIES

The following definition requires that the translation from the property to an FOTS preserves cor-
rectness, that is, that the FOTS constructed for a propeiis/accepting if and only if the program
satisfiesp.

Definition 5.4.3 Given a BDETL formulap, let T, be the FOTS constructed for evaluatipg We say
that the translation is correct when a prografmand an initial configuration: satisfy if and only if
T, is accepting when starting from

The following example shows how an FOTS is constructed for the example pr@party

Example 5.4.4 Consider the propertyp = V<v.r[root](v) — <> marked(v). We start by taking the
negation of the property = -® = J°v.r[root](v) A [-marked(v), and taking its closure. Using
(¥)(x1,...,zx) to denote the formula-predicate for a formulawith free variablesry, ..., z;, we
define the predicates
{(Fv.r[root](v) A (—marked(v) W0))(), (r[root](v) A (—marked(v) WO0))(v),
((~marked(v) WO)) (v), (¢(v)) (v), (marked(v)) (v), {r[root)(v))(v)}

and also their version for the next program-successor, which we denate)byrecall that these
predicates correspond to future obligations that should be satisfied by the program’s execution). We
denote byp)’ the value of the predicate in the next configuration of semantics evaluation, that is, after
a semantics transition. Note thgp)® denotes the value of the predicate after a program transition.

The semantics transitions are shown in Tablé For example, the encoding of the rulel6)
corresponds to the expansion of an existential quantifier. In this transition, the nullary formula predicate
(Fv.r[root](v) A (—marked(v)W0))() is expanded to a non-deterministic selection of an individual
for which the unary formula predicate[root](v) A (—marked(v) WO0)) holds. Fig.5.4shows a single
successor (out of the many possible successors) resulting from the application of thdGule an
initial concrete configuration of the marking procedure.

Abstract Semantics

The above definitions and Definitidn4.3show how to implement the concrete existential state-based
semantics as a first-order transition system. Because the implementation is given in terms of a first-order
transition system, we can apply the abstraction of Se&i8r2to perform an abstract interpretation of
this transition system.

The acceptance condition of Definiti&m.2is realized in terms of repeated reachability of abstract
configurations. This may lead to spurious acceptance when a repeated abstract configuration represents
an infinite sequence of different concrete configurations. However, because we are trying to verify a

violation-property, spurious acceptance is still a sound result.

5.4. HRST-ORDER REPRESENTATION 113

Rule

Instance

(46)

(Fv.r[root](v) A (mmarked(v) WO0))()
A —(Fv.r[root](v) A (—marked(v) WO0)) () A Fv.(r[root](v) A (—wmarked(v) W0))'(v)

(A5) | (r[root](v) A (—marked(v) W0))(v)
A =(rroot](v) A (mmarked(v) WO0))'(v) A (r[root](v)) (v) A (=marked(v) WO0))'(v)
(A2) | (r[root](v))(v) A r[root](v) A =(r[root](v)) (v)
(r[root](v))(v) A —r[root](v) A =(r[root](v))’(v) A (0)'(v)
(A9) | (—-marked(v) WO0)(v)
A =(=marked(v) WO0))' (v) A (mmarked(v))(v) A (-marked(v) W0)*(v)
(A2) | (=marked(v))(v) A marked(v) A ~(—marked(v)) (v) A (0)'(v)

(=marked(v))(v) A =marked(v) A ~(=marked(v))’ (v)

Table 5.2: Transitions in the FOTS for the property of Exaniple4

Figure 5.4: One successor derived by application of rule (A6) to an initial configuration.

114

HAPTERS. AUTOMATIC VERIFICATION OF TEMPORAL HEAP PROPERTIES

left
roct %@ lEft left
mqht .

71ght

r [root r root]

(Fv.r[root](v) A (—marked(v) WO0))()

: nght

(A6)

(r[root](v) A (ﬁmarked(v) wo))

(r[root](v) A (ﬂmarked() W0))

(r[root](v) A (ﬂmarked() W0))

left
H@ ‘ e | lon /) o ﬁ
'mght
- l l
lcft right eft left 5 'rzght eft lFft right
Lo //left ueﬁ
r[root} r[root] root ———> . Sleft root —> ZEft
= 'rzght . rzght
s right . " right right
b eft 1/77 left
r[root] r[root] r[root] r[root]
- right v";'right
(AS)
(ﬁmarked() WO) (r[root](v)) (—marked(v)WO0) (r[root](v)) (—marked(v)WO0)

right h

right

o

left
root %@ ‘ left r[root]
TZg 1 + - -
right e{ left right
. 'r
r[root} 'r[root]
root — lcjt
'rzght .
!’ - left " right
(r[root](v)) left <
P ;
r[root] r['root]
right -
) right
(A2)
(ﬂmarked() WO) (—marked(v) WO0) (—marked(v) WO0)
le T \L T i/
r00t>@ lEft T[TOOt] " T[TOOt] =
Tight e
. left .- left .-
right ef - left right of B z’fft right
1 ¢ Ui
r[root] r[root] & EJF & efr o
root > left root > " left
'rzght . rzght .
) left right left nght
left B N
< .
N e r[root] r[root} r[root]
right .

Figure 5.5: Partial abstract interpretation of the example FOTS. Only part of the abstract configurations
are shown. Interpretation is continued on g

5.4. HRST-ORDER REPRESENTATION

115

(A9)

(=marked(v) WO0)*®

<ﬁmarked()

(—marked(v))

(=marked(v) WO0)*®

(—=marked(v))

(=marked(v) WO0)*®

r[root] r[root]
left left .
le t / K left right . left: 5 right
””’”@ ’ o Lo 1 i
Tigh root H—@ 7 . left root H@ ’ sleft
right o =
right rzght .
right right
T[T’OOt] T[Toot] et L. left
. r[root] r[root] r[root] r[root]
left right \\”;'right
2
right
(A2)
<—|marked()Wo)* (—marked(v) WO0)* (—marked(v) WO0)*®
le N i/ T J/
root>@ left r[root] right r[root]
righ left left
Tlght ef left 'rzght of o left right
©orig t - r t
P lejt /,
r[root} r[root]
root > lefi root > left
'rzght . rzght
left : 'rzght left " right
e e
left < Lo
=) B
< r[root] r[root] r[root] r[root]
right : N
b right > right

Figure 5.6: Partial abstract interpretation of the example FOTS, continued frord.Bigonly part of

the abstract configurations are shown.

116 HAPTERS. AUTOMATIC VERIFICATION OF TEMPORAL HEAP PROPERTIES

Example 5.4.5Fig. 5.5 and Fig. 5.6 show a partial abstract interpretation of the FOTS constructed
for the violation property of the property”1) (as described in Examp&4.4), and a possible initial
abstract configuration at the entry to the marking procedure.

Initially, the predicate(3“v.r[root](v) A (—marked(v)WO0))() holds, corresponding to the fact
that the violation property has to be accepted. In the first step, the(rg is applied to the initial
abstract configuration, resulting in a set of abstract configurations (8ndhown). In each of these
resulting abstract configurations, a single individual is chosen as the individual for which the property
is expected to hold. Following the transitions of the FOTS, (dlg) is now applicable, transforming the
single predicatér|root](v) A (-marked(v) W0)) that should hold for an individual into two separate
predicates(r[root](v)) and (—marked(v)W0) that should hold for the same individual. Next, we
apply rule (A2) that evaluates the non-temporal requirementxgi-oot|(v)) in the current abstract
configuration and setgr(root](v)) to 0 for the individuals for which(r[root](v)) should hold and
which are reachable from the root (i.e., for whichroot](v) holds). In each of the resulting abstract
configurations, there is now a single individual for which the formula predicat@arked(v)WO0)
holds. This expresses a requirement on the current configuration and future configurations, applying
rule (A9) transforms the requirement into two separate requirements: one for the current configuration,
i.e., (-marked(v)); and one for future configurations, i.e(;vmarked(v) WO0)*. Rule(A2) again
resolves the formula predicates that are satisfied by the current configuration.

The resulting abstract configurations are configurations in which the only requirementigrked(v) WO0)*®
for the selected individual. The next step in the abstract interpretation of the FOTS is to evaluate a
program transition, and turi—marked(v) WW0)® to (—marked(v) WO0) in the resulting abstract con-
figurations (as(—marked(v) WW0)*® expresses the requirement after a program’s transition).

Eventually, all reachable nodes will be marked, and requirements of the fernarked(v) WW0)
are therefore violated. Hence, the property violation property is not satisfied by the example program
(and the original property holds).

5.4.2 Liveness and Progress

Verifying liveness properties requires observing progress. To observe progress under abstraction, we
need to consider the abstraction of transitions (pairs of configurations) rather than the abstraction of
single configurations.

In order to observe progress, we classify transitions using a progress measure as suggédted in [
75, 57], i.e., as being “helpful”, “neutral” or “harmful” with respect to a predefined progress measure. A
“helpful” transition is one that decreases the measure, a “neutral” transition does not change the progress
measure, and a “harmful” transition increases the progress measure. Using this transition classification
allows us to rule out abstract traces for which the progress measure is infinitely decreasing.

The progress measure we use for the running example is based on the fact that the set of individuals

5.4. HRST-ORDER REPRESENTATION 117

left
: right "

4
. Left dir
. o pending
1eft ; tight T R t[root] T 'I?ﬂ- .
P marked e marked S - .- R e j A right A
rroot] right t[root] e _l?ﬂ__

at[m_14]

left
i -1ight -
.

- marked LR
left 1[root] e e
Tt ; left Hi
. 5 % pending left
i right oot
P matkec IEﬁ marked glt
e r[roat] right t[root] T . s 1 i @

at[m_15]

Figure 5.7: Abstract helpful transition fromg to my.

which are reachable from root and which are unmarked is decreasing on each iteration of the loop. We
formulate the progress measure as the following two-vocabulary formulae:

¢ = Fv.—marked(v) A rlroot](v) A (marked (v) V —r(root]) (v))

1 = F.(marked(v) V —rroot](v)) A =marked (v) A rroot]' (v)
whereyp, corresponds to a transition in which the progress measure is decreasing, @altransition
in which the progress measure is increasing. A transition for which nejtheor ¢ holds is a neutral
transition that does not change the progress measure.

The above progress measure rules out the trace in which the loop does not terminate because the
progress measure is infinitely decreasing along this trace.

Example 5.4.6 The transition frommg to myg is a helpful transition in which a previously reachable but
unmarked node becomes marked. This is shown irbEfgNote thaty| holds for this transition. Also
note thaty; does not hold for any transition of the example program.

118 HAPTERS. AUTOMATIC VERIFICATION OF TEMPORAL HEAP PROPERTIES

5.4.3 Safety Properties

For safety properties, verification could be performed more efficiently, without splitting successor con-
figurations for different assignments. The intuition is that we only need to observe events in the past.
This allows evaluating quantifiers in a configuration-local manner. In particular, formulating the prop-
erties of P5] and [L15 using past formulae in our framework, yields the same algorithms as used there.

5.5 Conclusion

We have presented a framework for verifying temporal properties of sequential and concurrent heap-
manipulating programs. The framework can be used for verification of safety and liveness properties.
AppendixC provides additional ETL properties for the mark and sweep algorithm, and additional ex-
amples of ETL specifications.

The framework described in this chapter generalizes our previous work on verification of heap-
manipulating programs and allows systematic formulation of properties that previously required ad-hoc
solutions. In particular, it generalizes our work on verifying strong safety properties (Cl2pter-
ifying non-nested liveness properties (Chapgtgrand verifying local temporal safety properties (Sec-
tion 7.1).

Chapter 6

Verifying Safety Properties using
Separation and Heterogeneous
Abstraction

In this chapter, we show hogeparation(decomposing a verification problem into a collection of ver-
ification subproblems) can be used to improve the efficiency and precision of verification of safety
properties. We present a simple language for specifyegaration strategiefor decomposing a single
verification problem into a set of subproblems. (The strategy specification is distinct from the safety
property specification and is specified separately.) We present a general framewetkroheneous
abstractionthat allows different parts of the heap to be abstracted using different degrees of precision at
different points during the analysis. We show how the goals of separation (i.e., more efficient verifica-
tion) can be realized by first using a separation strategy to transform (instrument) a verification problem
instance (consisting of a safety property specification and an input program), and by then utilizing het-
erogeneous abstraction during the verification of the transformed verification problem.

Some tasks are best done by machine,

while others are best done by human insight;

and a properly designed system will find the right balance.
—D. Knuth

6.1 Introduction

Recently there has been significant and growing interest in static verification of safety properties (e.g.,
see P1, 29, 6, 44, 43, 4, 84, 41, 27]). Such verification is valuable since it can identify software de-

fects early on, thereby improving programmer productivity, reducing software development costs, and

119

120CHAPTERG6. VERIFYING SAFETY PROPERTIES USINGSEPARATION AND HETEROGENEOUSABSTRACTION

10 ConnectionManager cm = new ConnectionManager(); 23 Connection con2 = cm.getConnection();
11 Connection conl = cm.getConnection(); 24 Statement stmt2 = cm.createStatement(con2);
12 Statement stmtl = cm.createStatement(conl);
27 ResultSet rs2 = stmt2.executeQuery(balancesQry);

15 ResultSet maxRs = stmtl.executeQuery(maxQry); 28 ResultSet maxRs2 = stmt2.executeQuery(maxQry);
16 if (maxRs.next()) 29 if (maxRs2.next())

18 ResultSet rs1 = stmtl.executeQuery(balancesQry); 31 ResultSet minRs2 = stmt2.executeQuery(minQry);
19 if (maxBalancel < threshold) {

20 stmtl.close(); 40 while (rs2.next())

21 closedl = true;

22 }

Figure 6.1: JDBC example snippet.

increasing software quality and reliability.

Consider the Java program fragment shown in €igy. This program performs a number of database
queries using JDBC1DY. This example violates one of the usage constraints imposed by the JDBC
library. Specifically, the execution of a query in line 28, usin§tatement object, has the implicit
effect of discarding the results to the previous query executed in line 27 (using theStatement
object). Hence, the subsequent attempt to use these discarded results, in line 40, is invalid.

We are interested in verifying that a given program satisfies safety properties of the kind illustrated
above. While significant progress has been made recently in such lightweight verification, doing precise
verification that can scale to large and complex programs still remains a challenge. In this chapter, we
investigate a technique to improve the precision and efficiency of such verification.

The starting point for our work is the notion séparation the idea that separating or decomposing
a verification problem into a collection of smaller subproblems can help scale verification algorithms
(e.g., see7]). Consider again the example in Fi§.L This example program executes 5 different
gueries, producing 5 differeRResultSet s. We can verify that the program satisfies the desired safety
property byindependentlyerifying the property for each of thegesultSet s.

It may seem like we are just restating the problem, but this restatement is important from the point
of view of the underlying analysis. It can significantly increase the efficiency of the analysis by reducing
the size of the state-space that needs to be explored. In our running ex8taferent stmtl and
ResultSet rs1 can be in several possible states in line 28. While this information is relevant for
verifying subsequent use BlesultSet rs1 , itisirrelevant for verifying the usage oResultSet
rs2 , for example. The motivation for separation is to exploit this to improve efficiency, without losing
precision.

In this chapter, we explore this approach by addressing the following questions:

(1) How do we decompose a verification problem into a collection of subproblems?

(2) How can we adapt the state abstractions to each subproblem (so that we may achieve the desired

6.1. INTRODUCTION 121

efficiency improvement)? One of the key characteristics of our approach is that we break up this question
into two parts: (a) What are the objects that mlevantto a verification subproblem? (b) Given the set
of relevant objects, how can vaelaptthe state abstraction to utilize this information?

In this chapter, we introduce the notion of@paration strateggs something that can help answer
guestion (1) and partly help answer (2)(a). Rather than adopt a fixed strategy for separation, we introduce
a simple language for specifying separation strategies that can be used to manually specify strategies.
One strategy for the JDBC problem would be to apply separation at the lev€l@irection , where
verification of allResultSet s created over a singleonnection s treated as a single verification
subproblem.

Currently, we see the strategy specification language as a way for analysis designers, such as our-
selves, to specify and experiment with different strategies. Our intuition, however, is that end users may
be able to easily identify objects of interest and relevance to some verification subproblem and that the
strategy specification may be a lightweight way to allow end user input to guide verification.

Given a verification problem instance (consisting of a safety property specification and an input
program) and a separation strategy, the first step of our approachrensform(or instrument) the
verification problem instance to reflect the separation strategy. (Here, it is worth pointing out that when
we talk about “decomposing a verification problem into subproblems”, we are talking at a conceptual
level; the transformed verification problem mentioned above is equivalent to solving the subproblems in
parallel.)

The second step is to perform verification for the transformed program and safety property in a way
that exploits the separation. This leads us to question (2) above. One of the distinguishing characteristic
of our approach is that we rely on @megratedanalysis that performs, for example, heap analysis in
conjunction with the verification (as opposed to performing it as a separate preceding analysis). Thus,
we are interested in exploitirgeparationeven for the heap analysis. (Indeed, the benefits of separation
may be greatest for the heap analysis component if the verification utilizes precise, but expensive, heap
analysis.)

In this chapter, we utilizéeterogeneous abstractiottsat allow us to model different parts of the
heap with different degrees of precision at different points in time as a technique to exploit separation.

Consider the example in Fi§.1 Fig. 6.2(a) informally shows two possible states of the heap at
line 28, corresponding to different branches taken at life The Statement referenced bgtmtl
and theResultSet references bysl are in aclosedstate inC', (as illustrated by the “c” inside the
component node). Figh.2(b) illustrates the abstract representation produced by our technique (with
a simple separation): the representation above the line corresponds to one subproblem (corresponding
to Connection conl), and the representation below the line corresponds to a different subproblem
(corresponding t&€Connection con2). We present more details about these representations in later
sections.

122CHAPTERG6. VERIFYING SAFETY PROPERTIES USINGSEPARATION AND HETEROGENEOUSABSTRACTION

conl stmtl rsl Ci conl stmtl rsl Co
st mrs st mrs
—|
con2 stmt2 rs2 con2 stmt2 rs2
st mrs st mrs
conl stmtl rsl Cii conl stmtl rsl Caa
st mrs % st émrsé
© o
. Ci.2
con?2 stmt2 rs2
st mrs

Figure 6.2: Separation and heterogenous abstraction.

6.1. INTRODUCTION 123

Main Results
The main contributions of this chapter are:

e We present a simple language for specifying separation strategies for decomposing a single veri-
fication problem into a set of subproblems.

e We present a general frameworklodterogeneous abstractiottzat allows different parts of the
heap to be abstracted using different degrees of precision at different points during the analysis.

¢ We show how the goals of separation (i.e., more efficient verification) can be realized by first using
a separation strategy to transform (instrument) a verification problem instance (consisting of a
safety property specification and an input program), and then utilizing heterogeneous abstraction
during the verification of the transformed verification problem.

¢ \We have implemented a prototype of a separation verification engine using TVLA, and applied it
to verify properties of several Java programs, using several different separation strategies. Initial
results indicate that separation does improve the efficiency, and possibly precision, of verification
results.

One of the themes to emerge in recent work (e.g., 8de41, 27]) is that maintaining just the
right correlation required between “analysis facts” can be the key to efficient and precise verification:
maintaining no correlations (independent attribute analysis) can lead to imprecision, while maintaining
all correlations (relational analysis) can lead to inefficiency. However, finding this intermediate ground
can be hard for heap analyses that, for instance, use graph-based representations of the heap. Our
approach may be seen as a step towards achieving such a balance in a heap representation.

Existing approaches to verification range from more automated techniques that rely on no extra
human input (other than the safety property specification) to techniques that rely on end users to pro-
vide significant annotation, such as program invariants. We see the strategy specifications we use as a
potentially useful, lightweight, way for users to assist a verifier.

Related Work

ESP R7] is a system for typestate verificatioh(3 that utilizes a simple fixed separation technique.

Our work differs from ESP in several respects. ESP uses a two-phased approach to verification in which
pointer-analysis is performed first, followed by typestate verification. This often prevents ESP from
applying “strong” updates necessary for successful verification. Separation in ESP is exploited only in
the typestate verification phase. We utilize an integrated analysis, where heap analysis and verification
are performed simultaneously, allowing the heap analysis to benefit from separation. We also explore
separation in a more general setting than ESP: we explore its applicability to first-order safety properties,

124CHAPTERG6. VERIFYING SAFETY PROPERTIES USINGSEPARATION AND HETEROGENEOUSABSTRACTION

while (?) {
f = new File();
f.read();
f.close();

}

Figure 6.3: Program illustrating the difficulty of verifying that a file component is never read after it has
been closed.

such as the ones shown earlier for JIDBC, which involve relationships among multiple objects; we allow
user-specifiable separation strategies; finally, our technique can achieve separation between multiple
objects allocated at the same allocation site. Since our analysis is capable of separatisingle a
object (even from among multiple objects allocated at the same allocation site), it can apply “strong”
updates when ESP is forced to use “weak” updates. This can lead to more precise results, as illustrated
by the example in Figh.3. Unlike ESP, our technique can successfully verify this example.

The instrumentation technique we use to implement separation strategies may be seen as an exten-
sion of techniques previously used (e.g., by Band2tad2] and SLAM [72)]) to instrument a program
with respect to a safety property specification prior to verification. However, these approaches use such
instrumentation purely to encode the verification problem, and do not exploit it for separation and the

generation of adaptive abstractions as we do.

Separation is similar in spirit to McMillan’s functional decompositiai®]f which divides the ver-
ification task according to units-of-work rather than dividing it according to the program syntax. His
division, however, is applied at the specification level since all entities have static names.

Guyer and Lin $0] show that it is valuable to have pointer analyses that are client-driven. His
analysis is a two-pass analysis, with a client-independent first pass pointer analysis, followed by a second
pass pointer analysis that uses different levels of context-sensitivity for different analyzed procedures,
based on sources of imprecision identified using the results computed by the first pass.

[84] explores techniques to derive abstractions that are specialized to a safety property. Our work on
separation is orthogonal to these techniques9%h fa heap-safety-automaton (HSA) is used to specify
local heap properties (corresponding to typestate properties) which are later verified without using any
form of separation. We believe that the separation techniques in this chapter could be beneficial for their

analysis as well.

Our heterogeneous abstraction technique is based on the parametric analysis framework of Sagiv
et al. P1]. This analysis framework has been used to derive several powerful and precise, but very
expensive, heap analyses. We believe that successful verification systems need to use such powerful
analyses when needed (to handle difficult cases when they arise), but scalability requires that the scope

6.2. SAFETY PROPERTIES 125

of such analyses be restricted to a small enough universe. We believe that the identification of “relevant”
objects via our separation technique is a step towards achieving this.

An alternative separation technique would be to decompose a verification problem into subproblems
that verify that eacluseof an object, such asResultSet , is safe, utilizing demand-driven analysis
to solve the subproblems. This inherently involves “backward analysis”, while our approach utilizes
“forward analysis”. The motivation for our approach is that “backward analysis” is inherently hard

when complex heap analysis is involved.

6.2 Safety Properties

We are interested in verifying that client programs that use a component (library) satisfy correct usage
constraints imposed by the library API. In this chapter, we use some of the usage constraints imposed
by the JDBC library to illustrate our separation technique for verification of such safety properties.

The JDBC library allows client programs to cre&lennection s to databases. Any number of
Statement s may be created over@onnection . A Statement can be used to execute a SQL
guery over the database, via threcuteQuery() method, which returns the results of the query
as aResultSet . Thenext() method of aResultSet can be used repeatedly to iterate over the
results of the query. However, the execution of eheecuteQuery() method of aStatement
implicitly closesany ResultSet previously returned by th&tatement , and it is invalid to use
any of thoseResultSet s anymore. Similarly, after closing@onnection , it is invalid to use any
of the Statement s created from thaConnection or any of theResultSet s returned by these
Statement s.

Thus, the execution of line 28 in the example of FdLimplicitly closes theResultSet created
in line 27, and this will cause an error when this clofasultSet is used in line 40.

We specify safety properties usitigas! [84], a procedural language for specifying an abstract
semantics for a component librafyasl statements are a subset of Java statements containing assign-
ments, conditionals, looping constructs, and object allocatitas| types are restricted to booleans,
heap-references, and built-in abstract Set and Map types. Figalyy, provides arequires state-
ment to specify the correct usage constraints imposed by the library: it is the responsibility of any
program that uses the library to ensure that the condition specified bbgdb@es clause holds at
the corresponding program point. These are the safety properties we are interested in checking.

Easl supports object references and dynamic allocation. This allows us to naturally express the
structural relationships between the objects of interest, as well as dynamic allocation of these objects.

Fig. 6.4shows arEasl specification for the JDBEsafety properties described above.

Note the use of the setatements and the fieldsnyResultSet , myConnection , andownerStmt

!Field names from Sun’s SDK1.3.1 sun.jdbc.odbc implementation.

126CHAPTERG6. VERIFYING SAFETY PROPERTIES USINGSEPARATION AND HETEROGENEOUSABSTRACTION

class Connection { class Statement { class ResultSet {
boolean closed,; boolean closed,; boolean closed,;

Easl.Set statements; ResultSet myResultSet; Statement ownerStmt;

Connection() { Connection myConnection; ResultSet(Statement s) {
closed = false; Statement(Connection c) { closed = false ;
statements = {}; closed = false; ownerStmt = s;

} myConnection = c; }

Statement createStatement() { myResultSet = null; void close() {
requires Iclosed; } closed = true;
Statement st = new Statement(this); ResultSet executeQuery(String qry) { }
statements = statements U {st } requires !closed; boolean next() {
return st; if (myResultSet != null) requires !closed;

} myResultSet.closed = true; }

void close() { myResultSet = new ResultSet(this); }
closed = true; return myResultSet;
for each st in statements }

if (st myResultSet != null) { void close() {
st.closed = true; closed = true;
st.myResultSet.closed = true; if (myResultSet != null)

} myResultSet.closed = true;

} }

} }

Figure 6.4: AnEasl specification for a simplified subset of the JDBC API.

to specify the relationships between the components. Also note that appkacgteQuery closes
theResultSet component referenced logyResultSet if one exists.

In the rest of this chapter we will address the problem of verifying that a given Java program satisfies
the safety properties specified by Basl specification.

6.3 Separation Strategies

The goal of a separation strategy is to separate or decompose a verification problem into a collection
of verification subproblems. We now present an informal description of separation strategies. A more
formal meaning will be given to separation strategies in Se@&idr?

Consider a typestate property, such aslfgutStream should not beead afteritisclosed .
In this case, verification of the safety property for dnputStream object does not depend on the
state of anothemputStream object. Hence, the verification can be done independently for each
InputStream object. This amounts to a very simple separation strategy.

Some safety properties, such as #¥BC ResultSet property, involve multiple related objects
— we refer to these adirst-order safety propertiesConsequently, verification of such properties can
be separated into subproblems in several different ways, each with potentially different efficiency and

precision tradeoffs. Before we present some of the possible separation strategies, we introduce a simple

6.3. SEPARATION STRATEGIES 127

language for specifying a separation strategy.

In our approach, a separation strategy represents a methathdosinga set of objects. A set
of chosen objects identifies a subproblem where verification is restricted to the chosen objects. For
effective verification, a strategy should identify other objects that may have an impact on a chosen
object and choose them too. This motivates the definition of the following language for specifying
strategies.

An (atomic) separation strategy is a sequencehaficeoperations, where each choice operation
identifies one or more objects that are chosen, as a function of previously chosen objects.

<atomic-strategy> ::= <choice-spec> *
<choice-spec> ::=

choose (somelall) <var>:<constr> [/<condition>]
<constr> = <type-name> (<var-list>)

Each choice operation consists of a variable name, a signature of a constructor, and an optional
condition. The choice operatiamoose some performs a non-deterministic selection of objects, cre-
ated through the specified constructor, that satisfy the condition. The operhtiose all chooses
all objects created through the specified constructor that satisfy the condition. Both choice operations
evaluate the condition, and apply their choice on entry to the specified constructor. For simplicity, we
assume that each type has a single constructor.

We now present some strategies for IdBC ResultSet property.

Single Choice The motivation for our first strategy is the observation that there is no interaction be-
tween differentConnection s: it should be possible to perform verification for e&bdnnection
independently. Hence, the following strategy performs separation at the lev€larfreection

choose some c : Connection()
choose all s : Statement(x) / x == ¢
choose all r : ResultSet(y) / y ==

The separation strategy described above first non-deterministically chooses &singéetion
then proceeds by choosiralj Statement s created from thi€onnection , and then choosingll
ResultSet s created from thesgtatement s. For the running example, this amounts to separating
the verification problem into two independent subproblems, one for@anhection

Multiple Choice However, it should be clear from the JDBC specification that it is possible to perform
a more fine-grained separation than the single choice strategy described above. In particular, the correct
usage of aResultSet does not really depend on haany other ResultSet is used. Thus, it is

not necessary to perform verification of the differ®asultSet s created, for isntance, from a single

128CHAPTERG6. VERIFYING SAFETY PROPERTIES USINGSEPARATION AND HETEROGENEOUSABSTRACTION

Statement together. However, the correct usage ®esultSet does depend on tH&tatement
andConnection underlying theResultSet . These observations motivate the following separation
strategy.

choose some c¢ : Connection()
choose some s : Statement(x) / x == ¢
choose some r : ResultSet(y) / y ==

For the running example, this strategy produces a sétsafbproblems, one for each combination
of matchingConnection , Statement andResultSet

Note that using a finer-grained separation strategy may or may not lead to more efficient verification.
On one hand, finer-grained separation leads to smaller subproblems that can be verified more easily. On
the other hand, it also leads to a larger number of subproblems. The relative performance of a strategy
may depend on the amount of work that is duplicated across the different subproblems. The strategy we
present next is likely to reduce the amount of work duplicated across subproblems.

Incremental The two strategies we have seen are exampledarhicstrategies. In this chapter, we

also explore the possibility of applying a sequence of increasingly complex separation strategies to
perform verification. The motivation for this is simple: usually many verification subproblems may
be amenable to simple and efficient verification, but some verification subproblems may require more
precise analysis for successful verification.

An incremental strategy is a sequence of atomic strategies, which are tried one after another, stop-
ping when one of the atomic strategies completely verifies the program. An atomic strategy can make
use of failure information from the previous atomic strategy applied to the program. We restrict our-
selves to a very simple form of failure information, where the choice operation can restrict attention to
individuals that failed verification in the previous step. We will illustrate this with examples first, and
later explain how these strategy specifications are interpreted.

choose some r : ResultSet(y)
} on failure {
choose some s : Statement(x)

choose some failing r : ResultSet(y) / y == s
} on failure {

choose some ¢ : Connection()

choose some failing s : Statement(x) / x == ¢

choose some failing r : ResultSet(y) / y == s

6.4. SFEPARATION 129

The above strategy optimistically first attempts to verify usage of @asultSet independent
of even theStatement underlying theResultSet . If that fails, it then attempts to verify usage of
ResultSet s, while tracking usage of the underlyisgatement . If that too fails, it then attempts
verification using even more context.

Note that an incremental strategy may be thought of as a very simple (fixed) iterative refinement
scheme. For our running example, the very first atomic strategy in the sequence above successfully
verifies all correct uses &®esultSet

Semantics and Correctness Note that the language presented above is powerful enough to specify
partial verification problems, where the checking is done only for the spedafiedebf objects. This

power is useful in some contexts. However, the goal sfrategyis typically to improve the precision

and efficiency of verification but not affect its correctness. In order for a separation strategy to guarantee
correctness, it has twoverall objects of the types being verified.

We later describe how a strategy specification defines an instrumented semantics for a program:
every program-state in the standard semantics corresponds to a set of instrumented-program-states in the
instrumented semantics, where an instrumented-program-state may be roughly thought of as a program-
state plus a set of objects in the program-state (which are the “chosen” objects). A strategy is said to
completely cover a typ@’ if for every program-state in the standard semantics, and for every object
obj of typeT in o, there exists an instrumented-program-state in whighs a chosen object.

Theorem 6.3.1 A separation strategy that consists only of choice operations with no condition and
choice operations of the form:

choose all x : T (wi, wi)/ (w == zj)

wherew; (1 < i < k) is a parameter of the constructdr, andz; is a variable bound by earlier choice
operations, completely covefs

6.4 Separation

In this section, we show how a separation strategy is utilized to decompose a verification problem into
a set of verification subproblems. We first illustrate howEas| safety property specification and a

Java program together can be translated into an analysis problem instance in the parametric analysis
framework of P1]. We then show how akasl safety property specification, a Java program, and a
separation strategy specification together can be translated mtwldiedanalysis problem instance
(corresponding to a set of verification subproblems). (This translation provides the semantics of a sepa-
ration strategy.)

130CHAPTERG6. VERIFYING SAFETY PROPERTIES USINGSEPARATION AND HETEROGENEOUSABSTRACTION

Predicates | Intended Meaning

eq(v1,v2) v1 equals tavy

z(v) reference variable points to the object
fld(v1,v2) | field fld of the object; points to the object;
bu() boolean variablév has true value

bf(v) boolean fielch f holds for objecty

site|AS](v) | objectv was allocated in allocation sitéS

Table 6.1: Predicates for partial Java semantics.

6.4.1 Background

We now present an overview d@ifst-order transition system@QOTS), the formalism underlying the
parametric analysis framework &]. FOTS may be thought of as an imperative language built around
an expression sub-language based on first-order logic

In a FOTS, the state of a program is represented using a first-order logical structure in which each
individual corresponds to a heap-allocated object and predicates of the structure correspond to properties
of heap-allocated objects.

Definition 6.4.1 A 2-valued logical structure over a set of predicatss a pair C% = (U, /!) where:

e U%is the universe of the-valued structure. Each individual itr? represents a heap-allocated
object.

e /%is the interpretation function mapping predicates to their truth-value in the structure: for every
predicatep € P of arity k, *(p) : US* — { 0,1 }.

In the following we will usep(v) as shorthand faf (p)(v) when no confusion is likely.

Table6.1 shows some of the predicates we use to record properties of individuals in this chapter. A
unary predicate:(v) holds when the reference (or pointer) variaklpoints to the object. Similarly,
a binary predicatgld(v1, v2) records the value of a reference (or pointer-valued) field. A nullary
predicatebv() records the value of a local boolean variableand a unary predicatef (v) records the
value of a boolean fieltf . Finally, a unary predicateite[AS](v) records the allocation sitd.S in
which an object was allocated.

In order to enable interprocedural analysis we explicitly represent stack frames and a corresponding
set of predicates followindg®]. Since this does not interfere with the material in this chapter, to simplify

presentation we do not describe these predicates.

6.4. SFEPARATION 131

—_— ,//" : \\\\
152 T/ site27]
PR o 3
S N myResultSet _ chosenlr] |
sm2 — ——— /" site[ems] - | relevant |
— - / N N\
- statements chosen[s] L ownerStmt 7\ chosen Y
/ site[eme] PR e . Televant — S~
con2 ! chosen]c]| | myCon .\ chosen /
\ relevant [- Ny
N chosen / sl — ——
- myResultSet
stmtl ——— . T " ownerStmt e
myCon e S,
e {sitefems] 27T ownerSimt
conl ————————————=(site[cme] statements T / l/ 7:1\
e N I ———— closed
- 2)
maxRs —— s\l}ew[IS/]/
balancesQry ~— — — =
minQry — P TrisitelS]))
] T (site[3])
i 4y Tt
maxQry —————————{_site[1])
(a)
N
—— / site[28]
T A‘/ chosen[r] |
e myResultSet -~ relevant |
s ———— S sitefoms] N . chosen /
TN myCon = chosenls| (" ownerStmt "
/ siteleme] & statements A retovant L ownerStmt / N
i) ! chosen[c] \] R 7\ chosen S O / closed
| relevant | N T site[27) \\\
_ chosen /,/') — chosenr] |
S . relevant /
. chosen /
sl — - a
myResultSet rl\
stmtl — —_ o """ ownerStmt L T
myCon T
e R —"4\’5\{0&1@1):—\;;\% ownerStmt
conl ——————————Csite[eme] S statements T " lose o
Cae o, SAWTIGEES —~—/ closed
R .)
_ \ 15] /
maxRs —— \~§?},e[,,,]/’
balancesQry - — — TN
minQry - — — e (. sief3])
g T site[3])
(b) maxQry ———————(site[1] T

Figure 6.5: Concrete program configurations representing a possible program state (a2&tdme

(b) after execution of the statement at 2@

In this chapter, program configurations are depicted as directed graphs. Each individual of the
universe is drawn as a node. A unary predigdte which holds for a node is drawn inside the node
u. A binary predicate(u,, u2) which evaluates to 1 is drawn as a directed edge fugrto u, labeled

with the predicate symbol.

Example 6.4.2 Fig. 6.5shows a concrete program configuration representing a global state of the pro-
gram before executing the statement at IR&. In this configuration, thre&tring objects were
allocated in the heap and are referencedmgxQry, minQry , balancesQry . The configuration
also contains twd&Connection objects referenced byonl andcon2 , two Statement objects ref-
erenced bytmtl andstmt2 , and threeResultSet objects referenced byaxRs, rsl , andrs2 .

Note that theResultSet referenced bynaxRsis closed. The meaning of the predicate&vant(u),
chosen|c|(u), chosen[s|(u), andchosen[r](u) will become clear in the next section.

132CHAPTERG6. VERIFYING SAFETY PROPERTIES USINGSEPARATION AND HETEROGENEOUSABSTRACTION

Predicates Intended Meaning

chosen[z](v) objectv was chosen by choice operation
for strategy variable:

wasChosen[z]|() | some object was chosen for strategy variabl

4]

chosen(v) objectv was chosen by some choice operatipn

relevant(v) abstraction-directing predicate
recording relevant objects

Table 6.2: Additional predicates of the instrumented semantics.

6.4.2 Instrumentation For Separation

In this section we explain how we translate a Java progrargash specification, and a strategy speci-
fication into a FOTS. Specifically, the strategy specification is used to instrument the standard translation
of a Java program anflasl specification into a FOTS. (This translation also directly provides a for-
mal semantics for a separation strategy as a method for non-deterministically choosing a set of objects
during program execution.) We use the predicates in Tal@éo instrument the semantics. Predicates

of the formchosen[z](v), wasChosen[z](), andchosen(v) are used to express the separation strategy.
The predicateclevant(v) is an abstraction-directing predicate that controls the way in which an object

is abstracted.
Consider a choice operation

choose all x : T (Wigeew W) [€0 Wiy, Wi, Z14eee Zg)

Here, we say that the choice operation binds variabl¥ariablesw; throughw; are free variables
corresponding to parameters of a call to a constructor for typehile z; throughz; are variables
bound by earlier choice operations. In order to model the specified choice operation, we introduce an
instrumentation predicatehosen[x](u). The idea is for the predicatgiosen|x|(u) to hold true for
exactly the objects that are chosen by the above choice operation. We achieve this by translating the
conditione(...) specified for the choice operation into a first-order logic formula which is evaluated
on entry to the specified constructortoto compute the value afhosen[x](u) for the newly created
objectu. (Technically, this translation works by converting the free occurrences of a varialbg
occurrences of an existentially quantified logical variablethat is constrained to satisfy predicate
chosen|z;](0;).)

The translation of @hoose some x operation is similar, except that the translation ensures that
at most one of the objects that is eligible for selection by the operation is chosen. This is done by
introducing a second instrumentation predicatesChosen[x]() that indicates if an object has already
been selected during program execution for the corresponding choice operation (thus, it is defined by the
instrumentation formul&@O.chosen[x](0)). When a new objectO is constructed¢hosen[x](O) is

6.4. SFEPARATION 133

set to false ifwasChosenx]() evaluates to true or if the selection formula corresponding to the choice
operation evaluates to false. Otherwiskosen|[x|(O) is non-deterministically assigned either true or
false, andvasChosen[x]() is correspondingly updated.

Given a simple strategy specification consistingnofhoice operations over variables through
z,, We also introduce a unary predicatiosen(O) that indicates if an object was chosen by any of
the n choice operations: thus, it is defined by the instrumentation formtaen|z](O) V --- V
chosen|zy](O).

Finally, the actual checks on objects that verify they satisfy the necessary preconditions when meth-
ods are invoked on them, are instrumented to perform the checks only for chosen objects.

For now, the predicateelevant(u) may be thought of as being equivalentdfmsen(u). We will
later see that the set of relevant objects includes all the chosen objects and potentially some other objects
as well.

Example 6.4.3 The single-choice strategy for JDBC is modelled using predicgitesn[c|(u), chosen[s](u),
and chosen[r](u). Upon entry to the constructdBtatement(Connection c) , the condition of

the corresponding choice operation is evaluated andSfagement is chosen if the passé&bnnection

is the one for whichchosen[c](u) holds. Similarly, the condition for choosing ResultSet s
evaluated on entry to construct®esultSet(Statement s) . As a result, for each subproblem
chosen|c|(u) holds for (at most) a singl€onnection component, andhosen|s|(u), chosen|r](u)

hold for Statement s andResultSet s that are related to the chos&onnection . Part of the
instrumented program for this strategy is shown in g (For clarity, we useEasl syntax to present

the instrumented program).

We now briefly indicate how incremental strategies are handled. The notion of a failed individual is
fairly straightforward. A single strategy specification produces multiple verification subproblems, each
over a set of chosen individuals. An individual is said to be a failed individual if it is a chosen individual
of a verification subproblem that fails verification. However, we want to utilize simple strategy speci-
fications that restrict their attention to individuals that failed the previous simple strategy specification.
In general, this requires instrumentation that can identify at object-allocation time whether the allocated
object corresponds to a failed individual in the previous verification step. This is hard to do in a very
general way, and we restrict ourselves to allocation-site based identification of failed individuals: thus,
if any one individual allocated at an allocation site fails verification, then all individuals allocated at that
site are treated as failed individuals in the next verification step.

Operational Semantics

In a FOTS, program statements are modeleattjonsthat specify how the statement transforms an
incoming logical structure into an outgoing logical structure. This is done primarily by defining the

134CHAPTERG. VERIFYING SAFETY PROPERTIES USINGSEPARATION AND HETEROGENEOUSABSTRACTION

class Connection {

Connection() {
if (lwasChosen) {
it () {
chosen = true;
wasChosen = true;
} else
chosen = false;
}
closed = false;
statements = {};
}
Statement createStatement()
if (chosen)
requires Iclosed;

Statement st = new Statement(this);
statements = statements U

return st;

}

}

class Statement {

Statement(Connection c) {
chosen = c.chosen
closed = false;
myConnection = c;
myResultSet = null;
}
ResultSet executeQuery(String qry)
if (chosen)
requires !closed;
if (myResultSet != null)
myResultSet.closed = true;

myResultSet = new ResultSet(this);

return myResultSet;

}

class ResultSet {

ResultSet(Statement s) {
chosen = s.chosen;

closed = false ;

ownerStmt = s;

}

boolean next() {
if (chosen)
requires !closed;

}

}

Figure 6.6: An instrumenteBasl specification for a simplified subset of the JIDBC API with single-

choice separation strategy.

values of the predicates in the outgoing structure using first-order logic formulae with transitive closure

over the incoming structur@l].

Example 6.4.4 Fig. 6.5(b) shows the effect of the statemematxRs2 = stmt2.executeQuery(maxQry)

at line 28, where the statement is applied to the configuration in Bi§. The effect of the statement

is reflected by its updates to predicate values. Here, we assume that the choice predicates and the in-

strumentation predicates are updated according to the single-choice strategy of Se8ti@ince the

constructor of the neResultSet
is satisfied and the newly creatBsultSet

6.4.3 Additional Instrumentation

is invoked with a choseBtatement

is chosen and made relevant.

object, the choice condition

The predicateelevantis intended to identify objects that must be modeled precisely for a verification

subproblem. The separation strategy specification allows users to identify relevant objects (via choice

clauses). An analysis designer, or a component library designer, can create separation strategies that

reflect the dependencies that exist among component library objects, while an end user can create sepa-

ration strategies that provide more dependency information (specific to their own program).

Currently, however, we do not assume that such extra dependency information will be available from

6.5. HETEROGENEOUSABSTRACTION 135

an end user. Instead, we rely on a more automatic approach that considers objects which reach a relevant
object as relevant themselves, thus creating a notitransitive relevanceTransitive relevance causes
all objects that are on a path to a relevant object to become relevant as well, thus separating heap paths
that may reach a relevant object from heap paths that cannot.

We achieve this by defining the instrumentation predicatevant(u) to be true if and only if there
is a path fromu to some chosen object(i.e., some object for which chosen(v) is true). We update
this predicate using the techniques 88]

6.5 Heterogeneous Abstraction

The essence of our separation-based verification is the following: first, a separation strategy is used to
choose a set of objects (for a given program trace); second, we utilize specialized abstractions to per-
form verification for the chosen objects efficiently. These specialized abstractions represent the chosen
objects much more precisely than the remaining objects. We refer to these abstractietsrage-
neousabstractions as they represent different parts of the heap with different degrees of precision. In
this section we describe the abstractions we use for separation-based verification.

Abstract Program Configurations

The goal of an abstraction is to create a finite representation of a potentially unbounded set of 2-valued
structures (representing heaps) of potentially unbounded size. The abstractions we use are based on
3-valued logic 1], which extends boolean logic by introducing a third valy@ denoting values that

may be 0 or 1.

Definition 6.5.1 A 3-valued logical structure over a set of predicatss a pair C = (U,) where:

e U is the universe of th8-valued structure. An individual i/ may represent multiple heap-
allocated objects.

e ¢ is the interpretation function mapping predicates to their truth-value in the structure: for every
predicatep € P of arity k, «(p) : U¥ — {0,1,1/2 }.

An abstract configuration may includgimmary nodesi.e., an individual which corresponds to one
or more individuals in a concrete configuration represented by that abstract configuration. A summary
nodeu haseq(u,w) = 1/2, indicating that it may represent more than a single individual.

As in [9]], the abstract interpretations we use work by abstracting the set of 2-valued structures that
can arise at a program point by a set of 3-valued structures. However, this can be done in a number of

ways as shown below.

136CHAPTERG. VERIFYING SAFETY PROPERTIES USINGSEPARATION AND HETEROGENEOUSABSTRACTION

Individual Merging The basic abstraction primitive used 1] is that of individual merging a
larger structure can be safely approximated by a smaller 3-valued structure by merging multiple indi-
viduals into one, and by approximating the predicate values appropriately. Given an equivalence relation
= on individuals, lets/= denote the structure obtained by merging individualstbfait are=-equivalent
together.

The above primitive induces a functi@is [=] that abstracts a set of 2-valued structures by a set
of 3-valued structures, defined laps [=|(S) = {s/= | s € S}. (Strictly speakingabs [=](5)
retains only a single representative of isomorphic structures, but we ignore the fine distinction between
isomorphism and equality for the sake of simplicity.)

[9]] utilizes the equivalence relatiaa 4 induced by a set of unary predicatdgreferred to as the
abstractionpredicates) defined as follows;= 402 iff p(01) = p(o2) for everyp € A.

Structure Merging Subsequently, TVLA 5] introduced more aggressive abstraction mechanisms
based on the idea ofierging multiple structuremto one. Define th@nions; U so of two structures to

be the structure whose universe is the disjoint union of the universgsanids,, with the predicate in-
terpretations 0f; andss extended appropriately. The union of a set of struct§ressdefined similarly.
Structures are merged by first taking their union, and then merging individuals of the union along the
lines indicated previously: defild_(S) to be(|J 5)/=.

Now, consider an equivalence relationdefined orstructures indicating which structures must be
merged together, and an equivalence relatiodefined onindividuals We can now define a parame-
terized abstraction functioabs,[~, =|(S) that first appliesndividual mergingto every structure in
S, and then merges together the resulting structures that-@&guivalent. Formallyabs|[~, =](S) is
defined to be:

{ |_|:(C) | C'is an~-equivalence class @fbs [=](5) }

TVLA utilizes the following ~ definitions: (a)s; ~ s, iff s; ands, are isomorphic, (b} ~ s, iff
s1 andsy have the same values for a specifiedBedf nullary abstractiorpredicates, (c}; ~ s, iff 51
andss have the same universes (modei

TVLA utilizes an extra unary predicatctive which indicates if an individual definitely exists in
the universe or not, so that the structyie (S) can be used as an abstraction of every structure in
Thus, if S is a set of 2-valued structures, then the predieatereis true for an individuab in | |_(.5)
iff the equivalence class representedoincludes at least one individual from every structuréin

Heterogeneous Abstraction

Separation creates the possibility for achieving better efficiency by adapting the abstractions to model
chosen individuals more precisely and the other individuals less precisely. In particular, this can be done

by:

6.5. HETEROGENEOUSABSTRACTION

myConnnection
ownerStmt
myResultSet
sl statements
maxRs : .;’77' \
; oo
conl minQry '\}\ /
maxQry N 7
stmtl balancesQry /f"_h
TN /o osite[28]
,/’/sile[cmc]\\\ 7 7. myResultSet \ chosen]r] \‘
| chosen[c] |\ statements / sitefems] N " \ relevant
con2 —| relevant | myCon 7 chosen[s] J ovmerS/trft/ -~ chosen /
ST — = relevant [T giner -
slmt2\\ \\\t‘:h’O/Siifl ~ P “\ chosen /‘ Bin;cisjflt 1 (i\\
T N s close
mesRe? ——— = — [site[27] \\\
1s2 '[chosen[r] |
Y relevant /
_ chosen /
N /

137

Figure 6.7: An abstract program configuration representing the concrete configuration@bEy.

e Adapting individual mergingWe can make finer distinctions between chosen individuals than
between unchosen individuals, when we decide which individuals should be merged together.
For instance, we can choose to use the less expensive allocation-site based merging for unchosen

individuals, and more expensive variable-name based merging for chosen individuals.

e Adapting structure mergingSimilarly, when deciding which structures should be merged into
one, we could choose to treat chosen and unchosen individuals differently.

e Adapting predicate values retaine@®ne could choose to not record the values of certain predi-
cates for unchosen individuals. While this can reduce the space required to represent a structure,
this does not, unlike the preceding techniques, reduce the number of structures in the abstraction.

We will not discuss this issue in this chapter.

We now define a new family of equivalence relations for identifying individuals to be merged. Con-

sider a quadruplec, A1, Ag, A /o) wherec is a unary predicate, and, Ay, and4,, are all sets of

unary predicates. The equivalence relaﬁg@?AhAo,Al/ﬁ on individuals is defined by:

(c(o1) = c(02) = 1) AVp € Ar.p(o1) = p(02)) V
((c(o1) = c(02) = 0) AVp € Ag.p(o1) = p(o2)) V
((c(o1) = c(o2) = 1/2) AVp € Aj3.p(01) = p(02))
Given a sel of such tuples, we definer to be[], . =,

We similarly define a new criteria for structure merging. Given a unary predicdefines; ~. s

iff the substructures of; andss consist only of individualg for which ¢(i) = 1 are isomorphic.
For our separation-based verification, we utilize the abstraction induced by the equivalence relations
= (relevant,A,0,4) @A~ eevant, WhereA is the set of abstraction predicates utilized by the underlying

138CHAPTERG6. VERIFYING SAFETY PROPERTIES USINGSEPARATION AND HETEROGENEOUSABSTRACTION
separation-less verification. (In our implementation, this consists of the set of unary predicates).

Implementation Notes Our current implementation uses a very close approximation of the individual
merging induced by the equivalence relati®. .ic,ant, 4,9,4) as follows: for every predicatein A, we
introduce a new instrumentation predicai¢o) = p(o) A relevant(o), and use the set of predicates

{ pr | p € A} as the set of abstraction predicates.

Example 6.5.2 Fig. 6.7 shows an abstract configuration representing the concrete configuration of
Fig. 6.5(b), obtained by heterogeneous relevance-based abstraction. Abstract program configurations
are depicted similarly to concrete configurations with an additional representation of summary nodes
as nodes with double-line boundaries, andl/2-valued binary predicate as a dashed edge. All individ-
uals for whichrelevant holds are abstracted by the values of the predicated;inOther individuals,

for which relevant does not hold, are merged into a single summary node siyce- (). In partic-

ular, this abstract configuration abstracts away the current state of objects relat€drioection

conl, including the state oBtatement stmtl . In the figure, we use.. = 1/2 instead of listing

all predicates that have/2 value for the summary node.

If we had used a “homogeneous” abstraction, the non-relevant objects would have been abstracted
using the same set of predicates as the relevant objets (hus keeping the objects related to the
Connection referenced bgonl with the same precision and cost, as the ones relat€btmection
referenced bgon2 . The ability to treat these structurally-similar objects very differently during analy-
sis is a key to obtaining good results with our method.

Abstract Semantics

We will now briefly describe the abstract semantics (“transfer functions”) we utilize for program state-
ments.

A key idea underlying91] is that the actions defining a standard operational semantics for a pro-
gram statement (as a transformer of 2-valued structures) also define a corresponding abstract semantics
for the statement (as a transformer of 3-valued structures). This abstract semantics is simply obtained
by reinterpreting logical formulae using a 3-valued logic semantics and serves as the basis for an ab-
stract interpretation. HoweveQ]] also presents techniques, such as materialization, that improve the
precision of such an abstract semantics. We directly utilize the implementation of these ideas available
in TVLA.

We described earlier (see Sectiod.2 how we utilize instrumentation predicates to identify rele-
vant objects. We currently also utilize instrumentation predicates to achieve a heterogeneous abstrac-
tion. We use the techniques i@ for automatically generating, from the instrumentation formula, an
instrumented abstract semantics for statements to update the values of these instrumentation predicates.

6.6. PRROTOTYPEIMPLEMENTATION 139

6.6 Prototype Implementation

We have implemented a prototype of the separation verification engine using TeHLATo translate
Java programs and their specifications to TVP (TVLA input language) we have extended an existing
Soot-based]05 front-end for Java developed by R. Manevich.

The implementation emulates heterogeneous abstraction using instrumentation predicates in TVLA,
which adds some overhead. We believe that a native implementation of heterogeneous abstraction will
yield better performance.

We applied our framework to verify various specifications for a number of example programs. Our
specifications include correct usage of JDBC, IO streams, Java collections and iterators, and additional
small but interesting specifications. The experiments were performed on a machinelvihzaPen-
tium 4 processor, antl GB RAM?. Results are shown in Tab&3. The column titled “mode” shows
the analysis mode for each line in the table. Verification with TVLA with no separation is referred to
asvanilla mode. “Rep. Err.” shows the number of reported errors, while “Act. Err.” shows the number
of actual errors. When counting errors, we count all errors reported at the same program location as a
single error.

Our implementation allows control over which subproblems are verified simultaneously. This allows
verification of subproblems related to one (or more) allocation-sites separately (as a separate execution
of the analysis) from other subproblems, reducing the maximal memory footprint of the verification.

Our implementation supports the following execution modes:

¢ vanilla—uverification with TVLA with no separation.

¢ single—single choiceseparation strategy, where each subproblem is verified separately (as a sep-

arate execution of the analysis).

e sim—single choiceseparation strategy, where all subproblem are verified simultaneously (in a

single execution of the analysis).

e multi—multiple choiceseparation strategy, where each subproblem is verified separately.

e inc—incrementalkeparation strategy, where each subproblem is verified separately.

The space measurement shown in Tab&for separation modesifigle multi, incrementa) is the
maximal space required for analyzing a single set of subproblems. The time is the accumulated time
for analyzing all subproblems. The table also shows measurements for simultaneous verification of all
subproblems using single-modsiri mode). For the JDBC example, the simultaneous single-choice
mode is identical to the non-simultaneous mode.

ISPath is a simple correct program manipulating input streams. InputStream5 is a heapful example
program that manipulates input-streams in holder objects at an arbitrary depth of the heap. For this
program, the vanilla version produces a false-alarm that is avoided by the separation-based analysis.

2SQLExecutor analyzed on a machine with a 2.79Ghz processor.

140CHAPTERG6. VERIFYING SAFETY PROPERTIES USINGSEPARATION AND HETEROGENEOUSABSTRACTION

Program | Description | Mode | Line | Space| Time | Rep. | Act.

No. | (MB) | (Sec) | Erm. | Err.

ISPath inp. streams| vanilla | 71 9.17 | 1455 0 0
/10Streams| single 2.51 17.4 0
sim 3.94 12.3 0

Input inp. streams| vanilla | 64 | 16.35 | 439 1 0
Stream5 | holders single 17.65 240 0
/10Streams| sim 21.35 202 0

Input inp. streams| vanilla | 64 | 13.72 343 1 1
Stream5b| holders err | single 19.71 279 1
/IOStreams | sim 22.74 | 243 1

Input inp. streams| vanilla | 66 | 37.17 | 1344 1 0
Stream6 | holders single 13.91 | 694 1
/10Streams| sim 12.14 | 51.3 1

JDBC extended vanilla | 149 | 33.43 | 2500 1 1
Example | example single 28.71 | 1090 1
/ JDBC multi 16 7340 1
inc 12.5 3579 1

JDBC extended vanilla | 153 | 32.8 | 2500 0 0
Example | example single 28.8 1090 0
fixed /JDBC multi 29.5 | 7500 0
inc 25.7 | 3339 0

db SpecJVM98| vanilla | 644 | 89.25 | 10454 0 0
db single 90 2500 0
/10Streams| sim 91.17 | 1496 0

Kernel Collections | vanilla | 82 | 42.23 | 8321 1 1
Bench.1 | benchmark | single 13.15 657 1
/ CMP sim 13.84 255 1
multi 14.45 | 4552 1
inc 14.45 960 1

Kernel Collections | vanilla | 146 — — — 1
Bench.3 | benchmark | single 107.8 | 12098 1
/ CMP sim 128.7 | 7588 1
multi 119 | 69631 1
inc 106 12881 1

SQL JDBC vanilla | 1297 — — — 0
Executor | framework | single 80.59 | 5028 0
/JDBC multi 72.64 | 4919 0
inc 42.68 412 0

Table 6.3: Analysis results and cost for the benchmark programs.

6.7. EXTENSIONS AND FUTURE WORK 141

This stems from the use tfansitive relevancewhich makes the separation-based analysis more precise
(for the relevant objects). Generally, since the separation-based analysis is more focused, it may allow
use of a more precise abstraction than the one that could be used when applied uniformly. InputStream5b
is an erroneous version of InputStream5 containing a single error. InputStreame6 is another variation of
InputStreams.

JDBCExample is an extended version of the running example thatuSesnection s. The high
running-time result for incremental mode in this case is affected by the fact that there is a small number
of Statement s (1) andResultSet s (up to 3) associated with eaClonnection . db is a program
from SpecJVM98 performing multiple database functions on a memory resident database.

KernelBenchmarkl and KernelBenchmark3 are part of a benchmark suite for testing Collections and
Iterators used ing4]. SQLExecutor is an open source JDBC framework. For this benchmark, vanilla
verification failed to terminate after more tharnours, but incremental-mode successfully verified the
program in412 seconds. This is a result of the correct and relatively simple usage of JDBC objects in
this benchmark.

In some benchmarks separation gained an overall performance increase, while in others the total
verification time in some modes was larger than the time for vanilla-mode verification. In all cases,
however, the average time for verifying a single subproblem was significantly lower than the time re-
quired for vanilla verification. Thus, separation may be useful for answering on-demand queries when
one is only interested in checking whether an object (or a set of correlated objects) can produce an
error. For example, while the total time for multi-mode and incremental-mode in the JDBC example
was larger than the time required for vanilla-mode, the average time for verifying each subproblem was
approximately670 seconds.

One interesting future direction is to exploit separation for increasing performance by parallelizing
verification of subproblems.

6.7 Extensions and Future Work

We have experimented with two classes of iterative refinement schemes for approximating the set of
relevant objects for a subproblem: the first iteratively identifies more “relevant program variables” and
turns objects pointed-to by these variables relevant; the second iteratively identifies “relevant allocation
sites” and turns objects allocated at these sites relevant. Both classes of our refinement schemes are
guaranteed to terminate (with all objects being relevant in the worst case), but are not guaranteed to
yield a successful verification. Our initial experience indicates that these techniques work well for

relatively small examples.

142CHAPTERG. VERIFYING SAFETY PROPERTIES USINGSEPARATION AND HETEROGENEOUSABSTRACTION

Chapter 7

Applications

In this chapter, we show several applications of our techniques for verifying non-trivial Java programs.
Section7.1 shows how to use our techniques for establishing local temporal heap properties, and use
these for compile-time memory management. In Secti@we apply our techniques to verify concur-

rent queue algorithms, which are in part implemented inakea.util.concurrent package of
JDK1.5. We conclude this chapter with Secti@f, describing our solution to the apprentice challenge,

a Java verification challenge posed by J. Moore.

The theories which | have expressed there, and which appear to you to be so chimerical,
are really extremely practical — so practical that | depend upon them for my bread and cheese.
—Sir Arthur Conan DoyleA Study in Scarlet

7.1 Compile-Time Memory Management

In this section, we present a framework for statically reasoning about temporal heap safety properties.
We focus orlocal temporal heap safety propertigas which the verification process may be performed
for a program object independently of other program objects (this kind of properties was referred to as
spatially separablén Section4.3). We apply our framework to produce new conservative static algo-
rithms for compile-time memory management, which prove for certain program points that a memory
object or a heap reference will not be needed further. These algorithms can be used for reducing space
consumption of Java programs. We have implemented a prototype of our framework, and used it to ver-
ify compile-time memory management properties for several small, but interesting example programs,
including JavaCard programs.

Research in this section was conducted in collaboration with R. Shaham, as part of his PhD thesis.
A preliminary version of this research also appeare®Bbj.[In this section, we only describe parts of
the research that are relevant to this thesis. In particular, we omit discussion of empirical results that
could be found atg95].

143

144 CHAPTER 7. APPLICATIONS

7.1.1 Introduction

This work is motivated by the need to reduce space consumption, for example, for memory-constrained
applications in a JavaCard environment. Static analysis can be used to reduce space consumption by
identifying source locations at which a heap-allocated object is no longer needed by the program. Once
such source locations are identified, the program may be transformed to directly free unneeded objects,
or aid a runtime garbage collector collect unneeded objects earlier during the run.

The problem of statically identifying source locations at which a heap-allocated object is no longer
needed can be formulated as a local temporal heap safety property — a temporal safety property spec-
ified for each heap-allocated object independently of other objects (this kind of properties was referred
to asspatially separablén Sectior4.3).

The contributions described in this section can be summarized as follows:
e We present a framework for verifying local temporal heap safety properties of Java programs.

e Using this framework, we formulate two important compile-time memory management properties
that identify when a heap-allocated object or heap reference is no longer needed, allowing space
savings in Java programs.

e We have implemented a prototype of our framework, and used it as a proof of concept to verify
compile-time memory management properties for several small but interesting example programs,
including JavaCard programs.

e We show that our heap abstraction is precise enough to verify interesting compile-time memory
management properties, while other points-to based heap abstractions fail to verify our properties
of interest.

Local Temporal Heap Safety Properties

This section describes a framework for automatically verifyiogal temporal heap safety properties
i.e., temporal safety properties that could be specified for a program object independently of other
program objects. In this section, we refer to properties as Heta temporal heap safefyroperties
instead oftypestateproperties (as used in Chapt@rto emphasize that the verification algorithms in
this section handle typestate verification for programs with arbitrary aliasing relationships. The class
of properties handled in this section is contained in the claspafially separablgroperties (used in
Sectiord.3) since in this section we only address spatially separable safety properties.

We assume that a safety property is specified usihgap safety automatofiHSA), which is a
deterministic finite state automaton. The HSA defines the valid sequences of events that could occur for
a single program object.

7.1. COMPILE-TIME MEMORY MANAGEMENT 145

During the analysis, events are triggered for state machines associated with objects. It is important
to note that our framework implicitly allows infinite state machines, since the number of objects is
unbounded, and a state machine is associated with every object. Thus, precise information on heap paths
to disambiguate program objects is crucial for the precise association of an event and its corresponding
program object’s state machine.

Local temporal heap properties are properties that consider the temporal behavior of each object
separately. This allows the verification algorithm to consider each object independently. In this section,
this allows us to simplify the general rewrite rules of the ETL existential semantics (Defifizal?) to
a preconstructed automaton associated with each object. Furthermore, in this section we only consider
safety properties, which allows us to simplify the acceptance criterion of the automaton using finite-
automaton acceptance instead ofiecBi acceptance.

In this section, we develop static analysis algorithms that verify that on all execution paths, all
objects are in an HSA accepting state. In particular, we show how the framework is used to verify prop-
erties that identify when a heap-allocated object or heap reference is no longer needed by the program.
This information could be used by an optimizing compiler or communicated to the runtime garbage
collector to reduce the space consumption of an application. Our techniques could also be used for
languages like C to find a misplaced califtee that prematurely deallocates an object.

Compile-Time Memory Management Properties

Runtime garbage collection (GC) algorithms are implemented in Jav@@rehvironments. However,

GC does not (and in generahnno) collect all the garbage that a program produces. Typically, a

GC collects objects that are no longer reachable from a satatfreferences. However, there are

some objects that the program never accesses again and therefore not needed further, even though they

are reachable. In9B, 94] Shaham et. al. show a potential of savis@)t of the space by freeing

reachable unneeded objects. Moreover, in some applications, such as those for JavaCard, GC is avoided

by employing static object pooling, which leads to non-modular, limited, and error-prone programs.
Existing compile-time techniques produce limited savings. For examplgrpduces a limited

savings of a few percent due to the fact that its static algorithm ignores references from the heap. Indeed,

our dynamic experiments indicate that the vast majority of savings require analyzing the heap.

In this section, we develop two new static algorithms for detecting and deallocating garbage objects:

free analysis Statically identify source locations at which it is safe to insert a free statement in order to
deallocate a garbage element.

assign-null analysis Statically identify source locations at which it is safe to assign null to heap refer-
ences that are not used further in the run.

146 CHAPTER 7. APPLICATIONS

The assign-null analysis leads to space savings by allowing the GC to collect more spaz8. In [
Shaham et. al. show that assigning null to heap references immediately after their last use has an average
space-saving potential a6% beyond existing GCs. Free analysis could be used with runtime GC in
standard Java environments and without GC for JavaCard.

Both of these algorithms handle heap references and destructive updates. They employ both forward
(history) and backward (future) information on the behavior of the program. This allows us to free more
objects than reachability-based compile-time garbage collection mechanisms5@)g.which only
consider the history.

A Motivating Example

Fig. 7.1 shows a program that creates a singly-linked list and then traverses it. We would like to verify
that for this program dree y statement can be added immediately after lifie This is possible
because once a list element is traversed, it cannot be accessed along any execution path starting after line
10. Itis interesting to note that even in this simple example, standard compile-time garbage collection
techniques (e.g.5f]) will notissue such a free statement, since the element referengeidibgachable
via a heap path starting from. Furthermore, integrating limited information on the future of the
computation such as liveness of local reference variables (&8s [nsufficient for issuing such a free
statement. Nevertheless, our analysis is able to verify that the list element referencedraylonger
needed, by investigating all execution paths starting atlline

In order to prove that a free statement can be added aftetlinge have to verify that all program
objects referenced by at line 10 are no longer needed on execution paths starting at this line. More
specifically, for every execution path and for every objgatve have to verify that from liné0 there
is no use of a reference o In the sequel, we show how to formulate this property as a heap safety
property and how our framework is used to successfully verify it.

A Framework for Verifying Heap Safety Properties

Our framework is conservative, i.e., if a heap safety property is verified, it is never violated on any
execution path of the program. As usual for a conservative framework, we might fail to verify a safety
property which holds on all execution paths of the program.

Assuming the safety property is described by an HSA, we instrument the program semantics to
record the automaton state for every program object. First-order logical structures are used to represent
a global state of the program. We augment this representation to incorporate information about the
automaton state of every heap-allocated object.

Our abstract domain uses first-order 3-valued logical structures to represent an abstract global state
of the program, which represents several (possibly an infinite number of) concrete logical stri@dfures [

7.1. COMPILE-TIME MEMORY MANAGEMENT 147

class L { // L is a singly linked list
public L n; // next field
public int val; // data field

}
class Main { // Creation and traversal of a singly-linked list
public static void main(String args[]) {
L x vyt
1 x = null;
2 while (...) { Il list creation
3 y = new L();
4 yval = ..;
5 y.n = x;
6 X =y,
}
7 y =X
8 while (y != null) { /I list traversal
9 System.out.print(y.val);
10 t = y.n;
11 y =t
}
}
}

Figure 7.1: A program for creating and traversing a singly linked list.

We usecanonical abstractiomhat maps concrete program objects (i.e., individuals in a logical structure)
to abstract program objects based on the properties associated with each program object. In particular,
the abstraction is refined by the automaton state associated with every program object.

For the purpose of our analyses one needs to: (i) consider information on the history of the com-
putation, to approximate the heap paths, and (ii) consider information on the future of the computation,
to approximate the future use of references. Our approach here uses a forward analysis, where the
automaton maintains the temporal information needed to reason about the future of the computation.

Outline

The rest of this section is organized as follows. In Secfidn2 we describe heap safety properties

in general, and a compile-time memory management property of interest — the free property. Then,
in Section7.1.3 we give our instrumented concrete semantics which maintains an automaton state for
every program object. Sectiahl.4describes our property-guided abstraction and provides an abstract
semantics. In Section.1.5 we describe an additional property of interest — the assign-null property,

and discuss efficient verification of multiple properties.

148 CHAPTER 7. APPLICATIONS

7.1.2 Specifying Compile-Time Memory Management Properties via Heap Safety Prop-
erties

In this section, we introduce heap safety properties in general, and a specific heap safety property that
allows us to identify source locations at which heap-allocated objects may be safely freed.

Informally, a heap safety property may be specified via a heap safety automaton (HSA), which is a
deterministic finite state automaton that defines the valid sequences of events for a single object in the
program. An HSA defines a prefix-closed language, i.e., every prefix of a valid sequence of events is
also valid. This is formally defined by the following definition.

Definition 7.1.1 (Heap Safety Automaton (HSA))A heap safety automaton

A = (3,Q,4,init, F) is a deterministic finite state automaton, whétds the automaton alphabet
which consists of observable everijss the set of automaton statés, Q x ¥ — @ is the deterministic
transition function mapping a state and an event to a single successoristate () is theinitial state
err € (Q is a distinguishediolation statethe sink state), for which for all € %, 6(err,a) = err, and
F = @\ {err} is the set of accepting states.

In our framework, an observable event is derived from the program state and the current statement.
We assume the observable events are part of the specification. We associate an HSA state with every
object in the program, and verify that on all program execution paths, all objects are in an accepting
state. The HSA is used to define an instrumented semantics, which maintains the state of the automaton
for each object. The automaton staténdependentlynaintained for every program object. However,
the same automaton is used for all program objects.

When an objecb is allocated, it is assigned the initial automaton state. The state of an ebgect
then updated by automaton transitions corresponding to events associatedtrigtpered by program
statements. For example, an objedh automaton state is updated by automaton transitiorto have
a new automaton statdq, o), if o is associated with the observable evanbccurring in the current
program statement.

The states in the automaton capture history information on memory locations. Transitions in the
automaton capture the changes in the history information when a statement corresponding to the event
is executed. This can be formalized using trace semantics. To make the material more accessible, we
use automata directly and define self-explanatory events.

Free Property

We now formulate the free property, which allows us to issue a free statement to reclaim objects un-
needed further in the run. In the sequel, we make a simplifying assumption and focus on verification of

7.1. COMPILE-TIME MEMORY MANAGEMENT 149

{use —refy, ,} {-useref,y ,} b
initial @6} {userefyg , } @ {usgrefyg , }
\——/ \v’/
{-usgrefyy ,} {use —refyq , }

Figure 7.2: A heap safety automatﬂljfgf; for freey at line10.

the property for a single program point. In Sectibf.5we discuss a technique for efficient verification
for a set of program points.

In order to formulate the free property we first consider the notions of a program state and a program
trace. Aprogram stater; = (store, pt;) represents the global state of the program, which consists of
the store (storg and the current program point {pt A trace = = o1, 02,... iS a (possibly infinite)
sequence of program states A trace reflects a program execution.

In order to define thé&ree property, we also define the notion@ynamic location liveness

Definition 7.1.2 (Dynamic Location Liveness)A memory location 1 is dynamically live in a pro-
gram state o; along a tracer if (i) [is used ino;, for somej > 4, and (ii) [is not assigned in all

Ojy---y05-1-

Intuitively, an object can be collected as soon as its references are no longer used. This observation
leads to the following intuitive definition of the free property.

Definition 7.1.3 (Free Property(pt, x)) The property free (pt, x) holdsif there exists no trace with
a program stater; = (store, pt) such that there exists a reference to the object referencedioy; 1,
which is dynamically live i@r; 1 in .

The free property allows us to free an object that is not needed further in the run. In particular,
when a free propertypt, x) holds for a program poinit and a reference variable it guarantees that
it is safeto issue dree(x) statement immediately afteg. That is, it guarantees that adding such
free(x) statement preserves the semantics of the original program (for a more formal treatment of
semantic preserving transformations se@). Interestingly, such an object can still be reachable from
a program variable through a heap path. For simplicity, we assume fhe¢(@) statement does
nothing (and in particular does not abort) whereferences the specialill value.

Finally, for expository purposes, we only present the free property for an object referenced by a
program variable. However, this free property can easily handle the free for an object referenced through
an arbitrary reference expressiexp , by introducing a new program varialdeassigned witlexp just
afterpt, and verifying thafree(z) = may be issued just after the statement exp .

150 CHAPTER 7. APPLICATIONS

Free Property for the Running Example

Consider the example program of Figl We would like to verify that dree y statement can be
added immediately after linkD, i.e., a list element can be freed as soon as it has been traversed in the
loop.

The HSAA{gf; shown in Fig.7.2represents the free propefty0, y). All states bukrr are accept-
ing, and we therefore do not mark accepting states in the figure. The state latvatethe automaton’s
violation state.

An arbitrary free property is formulated as a heap safety property using an HSA similar to the one
shown in Fig.7.2where the program point and program variable are set accordingly. In particular, for a

free
pt,x

replacingl0 with pt, and by replacing with z.

free property(pt, x), the corresponding HSA may be obtained from the automaton in FigR by

The HSA could be automatically derived from an ETL specification such as PropértyFor-
mulating this property as a quantifier free formula (where free variables are interpreted as implicitly
universally quantified), and using its negation with the rewrite rules of Definfii@riL2yields an au-
tomaton that is equivalent to the automaton of Fig.

The alphabet of the automaton consists of sets of observable object attributes. For the purpose of
verifying the free property, we maintain the following object attributes in the instrumented semantics
(see Sectiofm.1.3 for an object: (i) useattribute, which holds foo if the r-value of reference expres-
sione (of the formx or of the formx.f) is used in the current statement execution, and the r-valae of
is o, and (i) refy, ,, attribute, which holds foo if the program execution is immediately after execution
of the statement at lin€0 andy reference® after the execution of the statement at lirte

Based on the above object attributes we define the alphabet of the&f@ﬂto be

¥ = {{use refl(),y}7 {use _‘reflo,y}v {-use refw,y}}

For readability purposes, we show for a set of attributes (an alphabet symbol) the attributes that hold
for an object as well as the attributes that do not hold for an obj&ar example, the alphabet symbol
{use —ref,, , } denotes that the attributeseholds for an object (i.e., a reference to that object is used
in the current statement), while the attribugg,, , does not hold for that object (i.e., either the current
statement is not git, or this object is not referenced lyy after the current statement is executed).
Finally, we useX in the self-loop emanating from ther state (see Figl.2) as a shorthand expressing
the fact that for all alphabet symbols thg state may only be transitioned to itself (i.e., when reaching
the violation state, the automaton state cannot be changed, since the property is violated).

The HSA is in an accepting state along an execution path if and onlgeif be freed in the program
after line10. Thus, when on all execution paths, for all program objectsnly accepting states are

*An equivalent way of writing the alphabet would Be= {{use ref,, ., }, {use, {ref,, , }}, where only attributes that
hold for an object are shown.

7.1. COMPILE-TIME MEMORY MANAGEMENT 151

associated witls, we conclude thatee(y) can be added immediately after lih@.

First, when an object is allocated, it is assigned the initial staté{é‘f; (state0). Then, a use of a
reference to an objeet (the useattribute holds fow) when the program execution is not immediately
after line 10 (the ref,, , attribute does not hold fas) does not change the state A{gﬁ; for o (the
self-loop on stat® labeled with{use —ref,, , } is taken). When the program is immediately after line
10 andy references an objeet (the refy,, , attribute holds fomw), o's automaton state is set tio(if
the useattribute holds fow the labeled edgéuse ref,, , } is taken, otherwise if theseattribute does
not hold foro then the labeled edge-userefy, ,} is taken). If a reference tois used further, (i.e.,
in the subsequent program configurations along the execution path a referenieused), and’s
automaton state is the automaton state farreaches the violation state of the automaton (either via
the {userefy, , } edge or via thquse —refy, , } edge). In that case the property is violated, and it is not
possible to add fee y statement immediately after lind since it will free an object that is needed
later in the program. However, in the program of FidL, references to objects referencedybgt line
10 are not used further, hence the property is not violated, and it is safe tofaslel § statement at
this program point. Indeed, in Secti@rl.4we show how thédree (10, y) property is verified.

The above definition of the free property directly and naturally corresponds to the ETL property
O Vv.atpt] A z(v) — O O ~use(v) (7.1)
In the formulation of this property, we use the combination of the predigépe| (that holds when
program execution is at the program poir}y and the next temporal operator to achieve the same ef-

fect of using thea fter[pt] predicate, as this exposes the temporal relationships in a manner closer to
Definition7.1.3

7.1.3 Instrumented Concrete Semantics

We define an instrumented concrete semantics that maintains an automaton state for each heap-allocated
object. As in previous chapters, we use first-order logical structures to represent a global state of the pro-
gram. In this section, we augment this representation to incorporate information about the automaton
state of every heap-allocated object. We then describe an operational semantics manipulating instru-
mented configurations.

We use the predicates of Tablel to record information used by the properties discussed in this
section. The nullary predicatdter{pt]() records the program location in a configuration and holds in
configurations in which the program is immediately after ljne The unary predicate(o) records
the value of a reference variabteand holds for the individual referenced Ry The binary predicate
f(o1,02) records the value of a field reference, and holds when theffielth; points to the objects.

The predicatesis€o) andref

pt,T

HSA AI{; °“. We describe these object attributes more completely in SettioBand Sectiory.1.3

maintain the object attributes needed for triggering events in the

152 CHAPTER 7. APPLICATIONS

Predicates | Intended Meaning

after[pt]() | program execution is immediately after program pgint

x(0) program variable: references the objeot
f(o1,02) field f of the object; points to the object,

us€o) a reference to is used in the current program statement

ref,; .(0) o is referenced by: and the execution is immediately afigr

slq](o) the current state of's automaton ig

Table 7.1: Predicates for partial Java semantics.

@é@@é@?@

s[1] s[1] s[0], use s[0]
(@)
@\é after[lo}
s[1] s[1] s[1] s[1], usgref;q ,, s[0], use s[0] s[0]

(b)

Figure 7.3: Concrete program configurations (a) before — and (b) immediately after exectitien of
y.n atline10.

Predicates of the form|g|(o) (referred to asautomaton state predicatesnaintain temporal in-
formation by maintaining the automaton state for each object. Such predicates (corresponding to the
formula-predicateof Section5.4.1) record history information that is used to refine the abstraction.
The abstraction is refined further by predicates that record spatial information, sathabilityand
sharing(referred to agnstrumentation predicates [91]).

As in previous chapters, we depict program configurations as directed graphs. Each individual of
the universe is displayed as a node. A unary predicate of the #¢sinis shown as an edge from the
predicate symbol to a node in which it holds. The name of a node is written inside the node using
anitalic face. Node names are only used for ease of presentation and do not affect the analysis. A
binary predicate(u1, u2) which evaluates to 1 is drawn as directed edge frarto u, labeled with the
predicate symbol. Finally, a nullary predicat@ is drawn inside a box.

Example 7.1.4 The configuration shown in Fig..3(@) corresponds to a global state of the program
in which execution is immediately after lile In this configuration, a singly-linked list af elements

7.1. COMPILE-TIME MEMORY MANAGEMENT 153

has been traversed up to theth element (labeled,) by the reference variablg, and the reference
variablet still points to the same element asThis is shown in the configuration by the fact that both
predicatesy(o) andt(o) hold for the individuak:4. Directed edges labeled bycorrespond to values
of then field. The nullary predicate afté¥]() shown in a box in the upper-right corner of the figure
records the fact that the program is immediately after indhe predicate uge) holds for an objecb

if a reference tw is used in the current statement. For example, a referenag toused (due the use of
y in the statement at lin@) thus we see an edge connecting use andThe predicate rgf, , does not
hold for any objects in this configuration, since the execution is not immediately aftailiriénally,
the predicates[0](o) and s[1](o) record which objects are in stateof the automaton and which are
in statel. For example, the individuals is in automaton staté and the individual., is in automaton
state.

Operational Semantics

Program statements are modeled by generating the logical structure representing the program state after
execution of the statement. First order logical formulae can be used to formally define the effect of
every statement (se@1]). In particular, first-order logical formulae are used to model the change of the
automaton state of every affected individual.

In general, the operational semantics associates a program statement with a set of HSA events that
update the automaton state of program objects. The translation from the set of HSA events to first-order
logical formulae reflecting the change of the automaton state of every affected individual is automatic.
We now show how program statements are associatedA/ﬂ@f events. For expository purposes, and
without loss of generality, we assume the program is normalized to a 3-address form. In particular, a
program statement may manipulate reference expressions of the formf .

Object Allocation

For a program statememt = new C() , a new objecb,.,, is allocated, which is assigned the
initial state of the HSA, i.e., we set the predicat&it](opew) 10 1.

Example 7.1.5 Consider the HSAA{SZf of the example in Sectioh1.2 For this HSA we define a set
of predicates{s[0](o), s[1](0), s[err](0)} to record the state of the HSA individually for every heap-
allocated object. Initially, when an objeatis allocated at line3 of the example program, we sg6](o)

to 1, and other state predicates @fo 0.

Maintaining the useattribute

Theuseattribute reflects information for an object depending on the current state of the program. Thus,
conceptually, this means that before executing a statemeuns#adtribute is set tdalsefor all program

154 CHAPTER 7. APPLICATIONS

statement | use-attribute is set totrue for
an object referenced by

X=Yy Y

x=y.f Y, y.f

x.f=null x

xf=y Y

X binopy z,y

Table 7.2: Use-attributes set by program statements.

objects, and then theseproperty is set tdrue for some of the objects depending on the executed
program statement, as shown in Tablg

In general, a use of in a program statement updates tis®o) attribute tol for the object refer-
enced by. In addition, a use of the fielid of the object referenced byin a program statement updates
us€o) attribute tol for object referenced by.f . For example, as shown in Table2, the statement
= y.f setsusgo) to 1 for the objects referenced hyandy. f.

Maintaining the ref,, , attribute

As in the case of theseattribute, theref , . attribute reflects information for an object depending on

pt,x
the current state of the program. Thus, conceptually, this means that before executing a statement the

ref

., attribute is set tdalsefor all program objects, and then this property is setrte for some of

the objects depending on the executed program statement. In particular, we &}, thattribute to
true for the object referenced hywhen the execution is immediately after(i.e., when the currently
executed statement is at program pgit)t For example, for theef,, , attribute,ref,, , (o) is set tol
for the object referenced hy, when the execution is immediately after lih@

Maintaining s[q] predicates

We can now determine the transition taken in the automaton for an abgtanging its associated
automaton state frony; to ¢;. The idea is that an edge emanating frgnis taken if the label on that

edge matches the valuesdad useref , .. attributes. For example, in our running example, if an ohject

pt,x
is associated with state and bothuse ref;, ,, attributes hold foo, then the edge labelefdise ref; , }
connecting staté to statel (see Fig.7.2) is taken, updating[0](o) to 0, ands[1](o) to 1. In general, a
transition from state; to statey; for an objecb is reflected by setting[g;](0) to 0, and settings[¢;](0)

to1l.

Example 7.1.6 Fig. 7.3 shows the effect of the= y.n statement at lind 0, where the statement is

7.1. COMPILE-TIME MEMORY MANAGEMENT 155

x N y,t N after(9) ‘
B¢
s[1] s[1] s[0], use s[0]

Figure 7.4: An abstract program configuration representing the concrete configuration@B{y.

applied to the configuration labeled by (a). First, this statement updates the pretiioate reflect the
assignment by setting it tbfor us, and setting it td) for u4. In addition, it updates the program point
by setting aftell0]() to 1 and aftef9]() to 0. Then, use) is set tol for bothuy, us. This is due to the
use ofy andy. f in this statement. Also, rgf, (o) is set tol for u4, since the execution is after liné
anduy is referenced by at that time.

We can now update the automaton states associated with program objects., Hoe current
associated automaton state(s The attributes useef,, , hold for u4; thus, the{useref,, ,} edge
connecting automaton stafio automaton state is taken, updating[0](u4) to 0, ands[1](u4) to 1. In
addition, forus, the attribute use holds, and the attribute,fgf does not hold, thus thfuse —ref,, , }
edge connecting stateto itself is taken, leaving[0](u5) unchanged with the value

7.1.4 An Abstract Semantics

In this section, we present a conservative abstract sema§icaljstracting the concrete semantics of
Section7.1.3
As in earlier sections, we conservatively represent multiple concrete program configurations using

a single logical structure with an extra truth-valye that denotes values that could ber could beD.

Example 7.1.7 The abstract configuration shown in Fig.4 represents the concrete configuration of
Fig. 7.3(a). The summary node labelled by; represents the linked-list items andug, both having
the same values for their unary predicates. Similarly, the summary agdeepresents the nodes;,
ug, anduy.
Note that this abstract configuration represents many configurations. For example, it represents any
configuration in which program execution is immediately after lifeand a linked-list with at least
items has been traversed up to some item after the third item.

Note that since automaton states are represented using unary predicates, the abstraction is refined
by the automaton state of each object. This provides a simple property-guided abstraction since in-
dividuals at different automaton states are not summarized together. Indeed, adding unary predicates

to the abstraction increases the worst-case cost of the analysis. However, as n8fgdnimpfactice

156 CHAPTER 7. APPLICATIONS

abstract configuration

T y,t after[9] T y,t L T y,t
s[1] s[1] s[0],use s[0] s[1] s[1] s[1] s[0],use s[0] s[1] s[1] s[0],use s[0] s[0]

after update

after[10] z Y t

s[1] s[1]

usg refyq o use usg refyg o use usg refq o use

after abstraction

after{10] T n Y t n
N N
" on n ””777,>©

s(1] s(1] s[1], usg refyg o, s[0], use s[0]

Figure 7.5: Concretization, predicate-update including automaton transition updates, and abstraction for
the statemertt = y.n atlinel0.

this abstraction refinement often decreases significantly the cost of the analysis. Finally, our analysis is
relational, allowing multiple3-valued logical structures at a single program point, reflecting different
behaviors.

Implementing an abstract semantics directly manipulating abstract configurations is non-trivial since
one has to consider all possible relations on the (possibly infinite) set of represented concrete configu-
rations. The following example conceptually shows how an action is applied directly to abstract config-
urations.

Example 7.1.8 Fig. 7.5 shows the stages of an abstract action: first, concretization is applied to the
abstract configuration resulting in an infinite set of concrete configuration represented by it. The pro-
gram statement update is then applied to each of these concrete configurations. The program statement
update also includes the update of the use ang refttributes, and the application of automaton tran-

sition updates described in Secti@rl.3 That is, theuseattribute is set tal for the objects referenced

7.1. COMPILE-TIME MEMORY MANAGEMENT 157

byy andy.n , and the ref, , attribute set tol for the object referenced by. Then,s[1] is set tol for

the object referenced by, and s[0] is set to0 for the object referenced by. Finally, after all transi-

tion updates have been applied, the resulting concrete configurations are abstracted resulting in a finite
representation.

Our prototype implementation described 85] operates directly on abstract configurations using
abstract transformersThe implemented actions are more conservative than the ones obtained by the
best transformers. Interestingly, since temporal information is encoded as part of the concrete config-
uration via automaton state predicates, the soundness of the abstract transformers is still guaranteed
by the Embedding Theoreraf [91]. Our experience shows that the abstract transformers used in the
implementation are still precise enough to allow verification of our heap safety properties.

When the analysis terminates, we verify that in all abstract configurations, all individuals are asso-
ciated with an accepting automaton state, i.e., in all abstract configurations, for every indivitheal
predicates[err](o) evaluates td). The soundness of our abstraction guarantees that this implies that
in all concrete configurations, all individuals are associated with an accepting automaton state, and we
conclude that the property holds.

7.1.5 Extensions

In this section, we extend the applicability of our framework by: (i) formulating an additional compile-
time memory management property — the assign-null property; and (ii) extending the framework to
simultaneously verify multiple properties.

Assign-Null Analysis

The assign-null problem determines source locations at which statements assigning null to heap ref-
erences can be safely added. Such null assignments lead to objects being unreachable earlier in the
program, and thus may help a runtime garbage collector collect objects earlier, thus saving space. As
in Section7.1.2 we show how to verify the assign-null property for a single program point and discuss
efficient verification for a set of program points in the next section.

Definition 7.1.9 (Assign-Null Property (pt, x, £)) The property assign-null (pt, x, £) holds if there
exists no tracer that includes a program state = (store, pt) such that the location denoted byf in

o;+1 IS dynamically live inr; 1 in m.

The assign-null property allows us to assign null to a dead heap reference. In particular, when
an assign-null propertypt, x,) holds for a program pointt, a reference variable and a reference
field f , it guarantees that it isafeto issue a.f = null statement immediately aftet. That is, it

guarantees that adding sucti = null statement preserves the semantics of the original program

158 CHAPTER 7. APPLICATIONS

{us&,, —def,, -ref,q , } {-use,, —def,, refy , }

{-use,, def,, —refy , } —usg,, def, , ref; , } =
i {ﬁusel,detn,reﬂ‘wyy} Y

initial @ {use,,~def, ref;q , } @ {use,,—def, refyq , }

g e deh oyt - {use, def, refyp,) 7

{ﬂuse“detﬂ,ﬂrefm,y}

Figure 7.6: A heap safety automatdfy , ,, for assign null toy.n at 10.

[1] Node root = CreateTree();

[2] processTree(root.right);
... Il no further uses of root

Figure 7.7: A code snippet demonstrating the importance of assign-null analysis

(for a more formal treatment of semantic preserving transformation®8pe As in the free property
case, our assign-null property can also handle arbitrary reference expressions (e.g., of ehgfbriy
by introducing a new program varial#e assigned witlexp , and verifying thez.f may be issued just
after the statemerzt = exp .
The above definition of the assign-null property directly and naturally corresponds to the ETL prop-
erty
O Yv.atpt] A z(v) — O-usepn(v) Wde fr(v) (7.2)

In the formulation of this property, we use the combination of the prediggt¢] and the next tem-
poral operator to achieve the same effect of usingatfwer|pt| predicate, as this exposes the temporal
relationships in a manner closer to Definitiéri..Q

The potential for space savings beyond GC is demonstrated using the code snippéet.in Rigree
of objects is allocated, but only the right side of the tree is processed. We assume that tHedgpe
contains two instance fielddeft andright . After line 1 all tree objects are reachable, thus GC
cannot reclaim the entire left subtree of the root. However, it is easy to see that the assign-null property
(1,root,left) holds, thus it is safe to insertraot.left = null statement after liné allowing
GC to collect the left side of the tree before the processing aeline

Simultaneous Verification of Multiple Properties

So far we showed how to verify the free and assign-null properties for a single program point. Clearly,
in practice one wishes to verify these properties for a set of program points without repeating the ver-
ification procedure for each program point. Our framework supports simultaneous verification of mul-
tiple properties, and in particular verification of properties for multiple program points. Assuming
HSA,, ..., HSA; describek verification properties, theh automaton states, . . ., s, are maintained

7.1. COMPILE-TIME MEMORY MANAGEMENT 159

public class SimultaneousVerification {
public static void main(String args[]) {
Object z1, ..., z;
Object y1, ..., Yg;
Random r = new Random();
int count = r.nextint();
x1 new Object();

pt1 Y1 = x1;
x2 = new Object();
pt2 Y2 = x2;

xr = new Object();
Pl Yk = Tk,
if (count > 1) {

Y1 = T,

}

if (count > 10) {
Y1 = T2,

}

if (count > 73) {
Y1 = Tk,
}
}
}

Figure 7.8: A program demonstrating exponential blowup due to simultaneous verification of the free
properties{ (pt;, v;)|1 < i < k}.

for every program object, wherg maintains an automaton state for HSATechnically, as described
in Section7.1.3 a states; is represented by automaton state predicates, whereq ranges over the
states of HSA The events associated with the automata IHSA , HSA;, at a program point are trig-
gered simultaneously, updating the corresponding automaton state predicates of individuals.

The worst-case cost of simultaneous verification of properties is higher than the worst-case cost of
verifying the same properties one by one (see Cha&teFor example, an attempt to simultaneously
verify the free propertie$(pt;,z;)|1 < i < k} for the program of Fig7.8 exhibits an exponential
blowup due to recording of the correlations between the various property (typestate) automata. For this
example program, simultaneous verification foe= 10 takes125 seconds and consumg&s.81MB of
memory, whereas verification of a single property requires drii\seconds and.72MB.

Nevertheless, verifying properties one by one ignores the potential of computing overlapping heap
information just once, whereas in simultaneous verification of properties this overlap is taken into con-

sideration. Thus, we believe that in practice simultaneous verification of a small number of properties

160 CHAPTER 7. APPLICATIONS

may sometimes achieve a lower cost than verifying the properties one by one. In fact, our initial find-
ings in [95] show that verifying two properties one by one, takes close to double the time it takes to
verify these properties simultaneously. This is because for a small number of properties, and a pro-
gram performing intricate heap manipulations, verification cost is dominated by computation of heap
information.

7.2. AUTOMATICALLY VERIFYING CONCURRENTQUEUE ALGORITHMS 161

7.2 Automatically Verifying Concurrent Queue Algorithms

In this section, we show how the TVLA/3VMC framework can be applied to automatically verify partial
correctness of non-trivial concurrent queue algorithms.

7.2.1 Concurrent Queue Algorithms

Concurrent FIFO queues are widely used in concurrent systems. Queues are used in scheduling mech-
anisms, and as the basis of many concurrent algorithms. Concurrent manipulation of a shared queue
requires synchronization to guarantee consistent results. An ill-synchronized concurrent queue may be
subject to read-write conflicts, write-write conflicts, or both.

A naive concurrent queue implementation uses a single shared lock to prevent concurrent manip-
ulations of queue contents. Naturally, this limits the level of system concurrency. Many algorithms
were suggested to increase concurrency while maintaining the correctness of queue manipulations
[71, 100, 82, 111, 99). The algorithms in T1, 100, 82, 99] are given without a formal proof of cor-
rectness, andlfL]] provides a manual formal proof.

We focus on the non-blocking queue and two-lock queue algorithms preseni&ld. i [Java-like
code for the queue implementations is given in Fi@.

To emulate the intention of7fl], our programming model diverges from Java by assuming a free
operation, and supporting several operations defined below.

In this section, we present the concurrent queue algorithms and the correctness properties we will
verify for these algorithms.

Non-Blocking Queue

Java-like pseudo-code for the non-blocking queue algorithm is shown ii7 9{g). The queue uses an
underlying singly-linked list which is pointed-to by two reference variables — Head and Tail, pointing
to the head and tail of the queue correspondingly. The list always contains a dummy item at its head to
avoid degenerate cases.

The algorithm is based on iterated attempts of a thread to perform a queue operation without being
interrupted by other threads. A thread operates on shared-variables only using the compare-and-swap
(CAS) primitive which allows it to atomically observe possible updates by other threads and apply its
own update when the value of the shared variable has not been updated by other threads.

The CAS primitive takes 3 arguments — an address, an expected value, and a new value, it then
atomically compares the address value to the expected value, and if the values are equal, it updates the
address to contain the new value. If the address value is not equal to the expected value, no update is

performed.

162

CHAPTER 7. APPLICATIONS

class NonBlockingQueue {
private Queueltem Head,;
private Queueltem Talil;

public NonBlockingQueue() {
node = new Queueltem();
node.next.ref = NULL;
this.Head = this.Tail = node;
}
public void enqueue(Object value) {
e1 node = new Queueltem(value);
ez node.value = value;
e3 hode.next.ref = NULL;

eq While(true) { //Keep trying until done
es tail = this.Tail;
€6 next = tail.ref.next;
ey if (tail == this.Tail) {
es if (nextref == NULL) {
€9 if CAStail.ref.next, next,
<node, next.count+1>) {
€10 break // enqueue done
el }
e12 } else {
e13 CASthis.Tail, tail,
<next.ref, tail.count+1>);
e14 }
eis }
e}
e17 CASthis.Tail, tail, <node, tail.count+1>);
e }
public Object dequeue() {

Object result = null;
d1 while(true) {
da head = this.Head,;
ds tail = this.Tail;

da next = head.next;
ds if (head == this.Head) {
de if (head.ref == tail.ref) {
dr7 if (nextref == NULL) {llis empty?
dg return result;
dy }
dig CASthis.Tail, tail,
<next.ref, tail.count+1>);
d11 } else { //No need to deal with Tail
di2 result = next.ref.value;
dig if CASthis.Head, head,
<next.ref, head.count+1>) {
dia break; // dequeue done
dis }
die }
di7 }
dig }

dig free (head.ref);
dog return result;
d21 }

/I TwoLockQueue.java

class TwoLockQueue {
private Queueltem head;
private Queueltem tail;
private Object headLock;
private Object tailLock;

public TwoLockQueue() {
node = new Queueltem();
node.next = null;
this.head = this.hail = node;

}
public void enqueue(Object value) {
Ip1 Queueltem x _i =
new Queueltem(value);
Ipa synchronize(tailLock) {
Ip3 tail.Lnext = x _
Ips tail = x _j;
Ips }
lpe }
public Object dequeue() {
Object x _d;
Ity synchronized(headLock) {
lto Queueltem node = this.head;
lts Queueltem new _head =
this.head.next;
ltg if (new _head != null) {
lts x_d = new_head.value;
Iltg new_head = first;
Ity new_head.value = null;
ltg free (node);
}
ltg }
ltio return x _d;
lti1 }
}

(b)

/I Queueltem.java

class Queueltem {
public Queueltem next;
public Object value;

7.2. AUTOMATICALLY VERIFYING CONCURRENTQUEUE ALGORITHMS 163

CAS-based algorithms may suffer from the “ABA’" probleml] in which a sequence of read-
modify-CAS results with a swap when it should not. This happens when a threaalds a value A of a
shared variable, computes a new value and preforms a CAS. Meanwhile, anothet {luleaidges the
value of the shared variable from A to B and back to A. In order to avoid this problem, each reference
variable is augmented with a modification counter and shared references are only updated through the
CAS primitive which increments the value of the modification counter. This could have been modeled
in Java by adding a wrapper class which contains a reference and an unsigned integer counter. To sim-
plify the exposition of our figures, we have added a primitive type that consists of a reference-value
ref and an integer valueount for the modification counter. All reference operations that use only
the reference name apply to both components, for example, the assignment &t &dsigns the values
of this.Tail.ref andthis.Tail.count to tail.ref andtail.count correspondingly.
When we specifically update a single component of the reference variable, we state that explicitly as at
labeldg which performs a comparison of thef component of two reference variables.

Two-Lock Queue

Fig. 7.9(b) shows a Java-like code for the two-lock queue algorithm. This algorithm also uses an under-
lying linked-list, and uses a dummy item at the list head to simplify special cases. The algorithm uses a
separate head lock and tail lock to separate synchronization of enqueueing and dequeueing threads.

Correctness of Algorithms

The correctness of the queue algorithms 7d][is established by an informal proof. Safety of the
algorithm is shown by induction, proving that the following properties are satisfied by the algorithm:

P1 The linked list is always connected.

P2 Nodes are only inserted after the last node of the linked list.
P3 Nodes are only deleted from the beginning of the linked list.
P4 Headalways points to the first node in the linked list.

P5 Tail always points to a node in the linked list.

In the following sections, we formally state these claims, and automatically verify them using
TVLA/3VMC.
7.2.2 Vanilla Verification Attempt

In this section, we describe the basic steps required to verify the concurrent queue algorithms using
TVLA/3VMC.

164 CHAPTER 7. APPLICATIONS

FTGG o, PTG PTG
Ly L e

Figure 7.10: A concrete configurati«ﬁ’!i}10 with two enqueueing and one dequeueing threads.

Representing Program Configurations using First-Order Logical Structures

We now show how to apply our technique for verifying the concurrent queue algorithms.

The non-blocking queue algorithm uses unsigned integer values as reference time-stamps. As de-
scribed in Sectior2.3, we represent integer values using individuals of type unsigned integer, the unary
predicatezero(v), the binary predicateucc(vi, v2), and the binary predicate|fld](vi,v2). This al-
lows us to naturally and quite precisely model an integer being incremented and decremented. It is also
possible to support arbitrary arithmetic operations on integers, however, the abstraction presented in
Section7.2.3is not precise enough to provide useful results when the verified property depends on the
result of such operations.

To ease presentation, we depict nodes that represent unsigned integers as circles with straight mar-
gins.

Example 7.2.1 The configuratiorCﬁ_10 shown in Fig.7.10 corresponds to a global state of the non-
blocking queue program with threads: two enqueueing threads and a single dequeueing thread. The
two enqueueing threads are at labgl and have just allocated new nodes to be enqueued. Each en-
gueueing thread refers to its node byritsde field.

All threads in the example use a single shared queue containing 4 items (including the dummy item).
The integer values of the fieltead and Tail in this configuration are both.

Safety

The first step in verifying the properties of Sectiog.1in TVLA/3VMC is to formulate them inFOT¢
using the predicates defined in Tal2ld. In Table7.3 these formulae are given for the non-blocking
queue algorithm. The formulation of these properties for the two-lock queue only differs in label names.
For each property defined informally in Secti®2.1, we provide a corresponding formulai#O7¢ .

In the table, we use the shorthanbl; to abbreviatdtNonBlockingQueue

Formula P1 uses transitive reachability frdmil andHead to require that each object that is
reachable from the queue tail (including the tail node itself) is also reachable from the queue head —

thus the queue is always connected. Note that requirement P5 guarantees that a tail element always

7.2. AUTOMATICALLY VERIFYING CONCURRENTQUEUE ALGORITHMS 165

Property Property Formula

P1 | tail reachablel Vq : nbq, vi.rv[Taill(q, vi)
from head = Jup.rv[Head](q,vp) A rv[next]*(vp, ve)

P2 | insertafter | Vq: nbgq,t; : thread, v;, vi.at[eis](t;) A rvinode](ti, v;) A rultail](t;, vt)
last Arvlthis)(ti, q) — rvinext](ve, v;) A rv[Taill(q, vi)
P3| delete first | Vg : nbq,tq : thread, vg, vy.at[dio](ta) A rv[head](tq, vq)

Arv[this)(td,q) A rv[Head](q,vy,) = rv[next](vq,vp)

P4 | head first —3q : nbq, v, u.rv[Head](q,v) A rv[next](u,v)

P5 | tail exists Vq : nbq.Fv.rv[Taill(q,v)

Table 7.3: Safety properties for non-blocking queue algorithm.

el Tadl]
eofiode]” e Head

. 7 e
_ vethis} ¥ ?_ pr[TaJl] a e .y
- 1-vr[t11-j5] LA i'r[next;| B "D

Figure 7.11: An abstract configuratidry ;o representing the concrete configurat'((iii]10 of Fig. 7.10

exists. Formula P2 uses the (program) location prediegtgs](¢) in order to check the requirement
only at the end of an insertion operation, when it is meaningful. In this formula, we treat the local
variablenode as a field of the thread object. Formula P3 similarly uses the location predifaie] (t)

to bind the requirement with the end of a deletion operation. Formula P4 simply requires that there is
no queue element such that it precedes the head of the queue. Finally, formula P5 requires that a tail
element exists.

Abstraction

Example 7.2.2 The abstract configuratiot'; 1o shown in Fig.7.11is obtained by applying canonical
abstraction to the concrete configuratici ,, of Fig. 7.1Q

The summary thread-node represents the two enqueueing threads of the concrete configuration
05.10, the summary unsigned-integer node (double-line circle with straight margins) summarizes all
unsigned integers but zero, the third summary node summarizes all queue items, and the queue object
itself.

Note that this abstract configuration represents an infinite number of configurations. For example,
it represents any configuration in which an arbitrary number of enqueuing threads have just allocated

new nodes to be enqueued, and are sharing the same queue with an arbitrary number of dequeueing

166 CHAPTER 7. APPLICATIONS

Figure 7.12: A concrete configuratico?‘@.mv1 that is embedded i'7 ;¢ and violates queue connected-
ness (property P1).

threads that are at their initial labels.

Unfortunately, this abstract configuration also represents the concrete configumﬁ(.iigg’]1 which
violates the connectedness property (P1), meaning that we fail to verify that P1 holds. Indeed, since
each subformula of P1's body evaluatesit® over the abstract configuratiof'; 19, using Kleene
evaluation of boolean operators yields the valye for P1. In the next section, we will see a way to
remedy that.

7.2.3 Refining the Vanilla Solution

In order to verify the desired properties, in this section we refine the abstraction to record essential
information. A natural way to do that would be to record which property-formulae hold using nullary
predicates. This is a useful technique, also known as predicate abstra&jormVLA/3VMC also
allows to use unary predicates in order to observe whether subformulae hold for a given individual.
This allows TVLA/3VMC to provide useful results without changing the set of predicates for each
program. We believe that the same distinctions can be used for many programs. Furthermore, these
distinctions correspond to fundamental properties of data-structures (e.g., sharing, reachability). This
section confirms this by showing that the standard set of distinctions suffices for verifying all the desired
properties for the concurrent queue algorithms.

Technically, refining the abstraction is achieved by introducing the unary predicates of7Table
The additional information recorded refines the abstraction and reduces the set of concrete configura-
tions that are represented by an abstract configuration.

In principle, some instrumentation predicates could be derived automatically @]y, However,
for this case study we just use the standard TVLA/3VMC instrumentation predicates.

Predicatest[fld, n|(t,0) (we usen as a shorthand forezt in the predicate name) allow us to
track reachability information of items inside the queue. For example, the instrumentation predicate
rt[Head,n|(v) may be used to track reachability of items from the head of the queue using a path of

7.2. AUTOMATICALLY VERIFYING CONCURRENTQUEUE ALGORITHMS 167

Cr.13

Figure 7.13: Concrete configurati(ﬁ‘ﬁ13 using instrumentation predicates, and its canonical abstrac-

tion C713.
Predicate Intended Meaning Defining Formula
r_by[fld](l) | lis referenced by the fieldlld Jo.rv[fld](o,1)

of some object

i-by[fld](n) | nisthe integer value ofld of some object Jo.iv[fld](o,!)

is[fld](o) o is shared byfld of two vy, va.meq(vy, v2) A ro[fld](v1, o)
different objects Arv[fld](ve, 0)
exists[fld](o) | there exists an object referenced Juy.rv[fld](o,v1)
by fid of o
is_acquired(l) | lis acquired by some thread t.held by(l,t)

rt[fld,n](o) | ois reachable from object referenced 3t, op.rv[fld](t, o)

by field fid using path of next fields A rv[next]* (o, o)

Table 7.4: Instrumentation predicates used in our example program.

168 CHAPTER 7. APPLICATIONS

nextreferences. These predicates are an adaptation for multithreaded programs of the reachability in-
strumentation predicates presenteddfi[Similarly, predicatess|fid](o) are an adaptation of sharing
predicates of91]. The predicatess_acquired(l) andr_by|[fld](l) were discussed in Secti@¥4.3 and
the predicategzists|fid](o) used there but not explicity mentioned. Since these predicates record
widely-usedundamental propertiesf data-structures and thread/lock relationships, they are part of the
standard predicates used in TVLA/3VMC.

Subformulae of the safety properties are replaced with the corresponding instrumentation predicate
to improve precision.

Example 7.2.3 Fig. 7.13shows the concrete configura‘ri«ﬂ‘ﬁ13 which is an instrumented version of
CEJO, and its canonical abstractio@'; ;3. The additional information recorded by the instrumentation
predicatest[Head, n|(v) andrt[Tail, n|(v) allows us to observe that queue connectedness (property
P1) is maintained in the abstract configuratiary ;3 since P1 evaluates tb. Moreover, this implies
that concrete configurations of the form@im1 are no longer represented.

7.2.4 Experimental Results

Our prototype implementation operates directly on abstract configurationsalsstrgct transformers

thereby obtaining actions which are more conservative than the ones obtained by the best transformers.
Our experience shows that the abstract transformers used in the implementation are still precise enough
to allow verification of our safety properties.

Update formulae for the instrumentation predicates used in this case study were supplied manually
due to technical limitations of automatic derivation using finite differenca [

Table7.5 presents the analysis results for various variations of the concurrent queue algorithms.

For the non-blocking queue, we have also tested a version in which the conditional irddbel
flipped, i.e., it checks for the next field being non-equal to null. As another erroneous version, we have
used an uninitialized queue in which no dummy node was present. Both cases reported errors.

For the two-lock queue, we have also tested a version in which no synchronization is imposed
on producer threads inserting items into the queue. In this version, we show that it is possible for
requirement 1 to be violated, and the underlying linked-list to be broken.

Limitations Since our tool does not apply any partial-order reductions and does not attempt to
decrease the level of interleaving, it is currently limited to small concurrent programs or to ones that
are well-synchronized. This is due to the worst-case complexity of our algorithm which is doubly
exponential in the number of labels.

A fundamental question in program analysis is how to predict the precision of a given analysis on
a given program. In principle, this is a hard question, we note that the abstraction in TVLA/3VMC

significantly loses information when arbitrary arithmetic operations on integer variables (which affect

7.2. AUTOMATICALLY VERIFYING CONCURRENTQUEUE ALGORITHMS 169

Program Configs | Space| Time | Comments
(MB) | (sec)
nbgenqueue 1833 14.2 | 727 | unbounded number of enqueue-ing threads

nbgdequeue 1098 5.3 309 | unbounded number of dequeue-ing threads

nonblockgerrl 36 0.1 11 | err - negated condition at e8
nonblockquni 17 0.1 3 err - start with uninitialized queue
tlg_enqueue 982 10 6162 | unbounded number of enqueueing thrads
tlg_dequeue 225 4.1 304 | unbounded number of dequeuing threads
twolockgn 975 7.5 577 | single producer and single consumer
twolockgerrl 24 0.1 30 | err - broken producer synchronization

Table 7.5: Analysis results for variations of the queue algorithms — number of configurations explored,
space requirements, and analysis time.

the safety of the algorithm) are performed.

170 CHAPTER 7. APPLICATIONS

7.3 Solving the Apprentice Challenge

In this section, we describe how our framework is applied for solving a Java verification challenge
known as the Apprentice Challenge.

7.3.1 Problem Statement

The apprentice challenge was presented by Moo8eds a challenge in verification of Java programs.
The challenge is to show that the value of toainter variable of theContainer class in Fig.7.14
increases monotonically (under all possible schedules).

7.3.2 Solution

Our solution of the apprentice challenge does not assume gmiori bound on the number qfob
threads or on the value of tleeunter field. This should be contrasted with previous attempts to solve
the apprentice challenge using model-checking (i.e., the “finite Apprentice”).
In our solution, we use the predicates described earlier in Seztiand Sectiory.2.3 The model
used here could be easily extended to handle the overflow of integer variables (by introducing a special
terminating node in the representation of the integers). For simplicity, we do not introduce any treatment
of such overflow and assume that integers may increase infinitely.
The initial configuration for the apprentice challenge is shown in Figs In this configuration
there is a single thread node, corresponding to the main program thread. This thread resides at the initial
labelgl |, and is ready to be scheduled. The other nodes in this configuration represent integer values:
one node represents the value zero, and the summary node summarizes the rest of the integer values.
Our system requires two technical modifications of ther() method (shown in Fig7.16):
(i) splitting the increment statement into two assignments, one assigoingier + 1 to a tem-
porary variable, and another copying the value of the temporary variableontater (In principle,
this could be performed by a trivial front-end); (ii) instrumenting the method to record the previous
value of the counter, this again is a technical issue that could be avoided in principle. A conceptual
view of the instrumented method is shown in Figl6 It is important to note thaprevcounter
is introduced as an additional predicate in the model and not as an additional program variable, i.e., it

cannot be modified by the program.

7.3.3 Results

We applied®3VMC to verify that the original Apprentice program satisfies the goal property. Verification
producedl 757 configurations and took approximatdl0 seconds and.46 MB of memory.

7.3. SOLVING THE APPRENTICECHALLENGE 171

class Container {
public int counter;

class Job extends Thread {
Container objref;
public Job incr () {
synchronized(objref) {
objref.counter = objref.counter + 1;

}

return this;

}

public void setref(Container o) {
objref = o;

}

public void run() {
for (;;) {

incr();

class Apprentice {
public static void main(String[] args) {
Container container = new Container();
for (;;) {
Job job = new Job();
job.setref(container);
job.start();

Figure 7.14: Source of the Apprentice Challenge.

at[gl_1]
isthread
ready

[z ,successor]
zero

» SUCCEess0or

- Successor

Figure 7.15: Initial configuration for the apprentice challenge.

172 CHAPTER 7. APPLICATIONS

public Job incr () {
synchronized(objref) {
/lobjref.prevcounter = objref.counter;
temp = objref.counter + 1;
objref.counter = temp;

}

return this;

Figure 7.16: Conceptual rewrite wfcr() method.

We have also appliedVMC to find errors in an erroneous version of the Apprentice program in
which no synchronization was used dgb threads while performing thimcr() operation. In this
analysis, an error was detected after approximat@lyseconds, processiri§66 configurations taking
13.8 MB of memory. Note that since no synchronization was applied betdelerthreads, the number
of possible interleaving considered in this exploration is huge.

Unlike the ACL2 solution for the apprentice challenge, our approach is based on a conservative
abstraction of the concrete Java semantics. Generally, this means that we might produce alarms even
when a property does hold for the verified program. However, for the Apprentice challenge, we are able
to verify the goal property without any false alarms.

Chapter 8

Conclusions and Further Work

8.1 Conclusion

We have presented a parametric framework for specifying and verifying properties of concurrent and se-
guential heap-manipulating programs. Our framework generalizes existing model-checking techniques.
The framework allows verification of multithreaded programs manipulating heap-allocated objects, and
does not put a bound on the number of allocated objects (and threads).

The framework uses an integrated verification and pointer analysis, leading to results that are al-
ways more precise than those of the two-phased approach applied by other systems. In addition, our
framework also handles properties of correlated objects.

Our framework combines thread scheduling information and information about the shape of the
heap. This leads to error-detection algorithms that are more precise than existing techniques. Using this
approach, we were able to automatically verify non-trivial properties of heap-manipulating programs
that have not been automatically verified in the past.

We have also presented a technique for scaling verification to large(r) programs with a small number
of false alarms. This allows us automatic verification of programs and properties not automatically
verified earlier.

We have applied our framework to verify several interesting properties and programs, and in partic-
ular for applying compile-time GC and proving the correctness of concurrent queue algorithms.

8.2 Contrast with Closely Related Work

It is important to view our contributions in the context of closely related work. &iyshows a classi-
fication of our contributions (shown in bold typeface) and closely related work. Classification is shown
using a3-dimensional cube, as done in Chapteand using the same dimensions:

Heap Abstraction Describes the strength of the applied heap-abstraction. Zero on this axis means that

173

174 HAPTER 8. CONCLUSIONS ANDFURTHER WORK

Heap abstractions

t

Canonical Abstraction
SAS'03b, PLDI'04

POPL'01
q P

ESOP03, |
ETL -+

Predicate
abStra(ﬂ:[gn_ | Eep

4 - : -
Frageam Colncurrenc " Fropery "
Complexity ¥ Bandera, Complexity

FLAVERS,
d5PIN

-~

Figure 8.1: Overview of closely related work.

no heap abstraction is used, thus forcing an assumed a priori bound on the number of allocated
objects and threads.

Program Complexity Describes the complexity of the programs that could be handled. Along this
dimension we only distinguish between sequential and concurrent programs.

Property Complexity Describes the complexity of the properties that could be handled. Property com-
plexity ranges from non-temporal safety properties to full temporal specification.

Banderal9], FLAVERS [77], and dSPIN 82] do not apply any heap abstraction. These approaches
are therefore forced to assume an a priori bound on the number of allocated objects and threads, making
them generally unsound.

SLAM [72], and BLAST [p3] take the two-phased approach, and use a predicate abstraction to
verify a safety property against a finite-state model of a program. The finite-state model is produced
using a preceding pointer-analysis phase. ESF, [ises a two-phased approach for verifying typestate
properties. As mentioned earlier, the two-phased approach may result in an extensive number of false
alarms, but is more scalable since the pointer-analysis phase may be flow-insensitive.

8.3 Further Work

8.3.1 Property Guided Abstraction

Ideally, we would like the cost of verification to depend only on the verified program and the complexity
of the verified property.

8.3. FURTHERWORK 175

| plan to further investigate methods for directing the abstraction by the property specification pro-
vided by the user. More generally, users often have some insight of what actually makes their program
work correctly. Rather than forcing the user to write program annotations and loop-invariants which
are often complicated and non-intuitive, it would be interesting to let the user direct the abstraction
used by the static-analysis algorithms. A first attempt to let user specification direct the abstraction was
described in Chaptdd. In the approach presented there, the user provides a strategy for choosing “rel-
evant” heap-allocated objects that should be abstracted using a more precise abstraction than the rest of
the heap.

8.3.2 \Vrification of Heap-Manipulating Programs

The verification algorithms we have investigated so far are very precise and appealing but are not likely
to scale to verification of industrial software. Verifying real-world applications requires cheaper verifi-
cation algorithms. There are several directions | would like to pursue here:

use property-guided abstraction and apply precise (and costly) abstraction only to some parts of
the heap.

develop efficient verification algorithms for useful subsets of ETL specifications.

apply partial-order reductions to explore only representatives of equivalent interleavings.

use information from dynamic (runtime) analyses to direct static verification.

176 HAPTER 8. CONCLUSIONS ANDFURTHER WORK

Bibliography

[1] P. A. Abdulla, A. Annichini, S. Bensalem, and A. Bouajjani. Verification of infinite-state systems
by combining abstraction and reachability analydigcture Notes in Computer Sciend&33,
1999.

[2] O. Agesen, D. Detlefs, and E. Moss. Garbage Collection and Local Variable Type-Precision and
Liveness in Java Virtual Machines. BIGPLAN Conf. on Prog. Lang. Design and Implages
269-279. ACM Press, June 1998.

[3] J. Aldrich, C. Chambers, E.G. Sirer, and S. Eggers. Static analyses for eliminating unneces-
sary synchronization from Java programs. In Agostino Cortesi and Gilbe&pdtitors Static
Analysis volume 1694 of_ecture Notes in Computer Scienpages 19-38. Springer, 1999.

[4] K. Ashcraft and D. Engler. Using programmer-written compiler extensions to catch security
holes. InProc. IEEE Symp. on Security and Priva€akland, CA, May 2002.

[5] T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Automatic predicate abstraction of C pro-
grams. InProc. Conf. on Prog. Lang. Design and Imgages 203-213, June 2001.

[6] T.Ball and S.K. Rajamani. Automatically validating temporal safety properties of interfaces. In
SPIN 2001 LNCS 2057, pages 103-122, 2001.

[7] T. Ball and S.K. Rajamani. SLIC: A Specification Language for Interface Checking (of C).
Technical Report MSR-TR-2001-21, MSR, 2001.

[8] S.Bensalem, V. Ganesh, Y. Lakhnech, C.iidm, S. Owre, H. Ruel3, J. Rushby, V. Rusu, Hdga
N. Shankar, E. Singerman, and A. Tiwari. An overview of SAL. URM 2000: Fifth NASA
Langley Formal Methods Workshgpages 187-196, June 2000.

[9] S. Bensalem, Y. Lakhnech, and S. Owre. InVeSt: A tool for the verification of invariBNt8S
1427, 1998.

[10] R. Bodik, R. Gupta, and M.L. Soffa. Refining data flow information using infeasible paths. In
Proceedings of the 6th European conference held jointly with the 5th ACM SIGSOFT interna-

177

178 BIBLIOGRAPHY

tional symposium on Foundations of software engineempages 361-377. Springer-Verlag New
York, Inc., 1997.

[11] P.A. Buhr, M. Fortier, and M.H. Coffin. Monitor classificationACM Computing Surveys
27(1):63-107, March 1995.

[12] L. Cardelli and A.D.Gordon. Mobile ambients. Rroc. FoSSaCS’98, vol. 1378 of LNGfges
140-155. Springer, 1998.

[13] D.R. Chase, M. Wegman, and F. Zadeck. Analysis of pointers and structuresodnConf. on
Prog. Lang. Design and Implpages 296-310, New York, NY, 1990. ACM Press.

[14] E. M. Clarke, O. Grumberg, and S. Jha. Verifying parameterized netwbr&ss. on Prog. Lang.
and Syst.19(5):726—750, September 1997.

[15] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement. INCAV’00, July 2000.

[16] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstracficans. on Prog.
Lang. and Syst16(5):1512-1542, September 1994.

[17] E.M. Clarke, O. Grumberg, and D. Pelddodel CheckingMIT Press, 1999.

[18] J. Corbett. Using shape analysis to reduce finite-state models of concurrent java programs. Oc-
tober 1998.

[19] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, R. Shawn, and L. Hongjun. Bandera: Extracting
finite-state models from Java source codePtac. 22nd ICSEJune 2000.

[20] J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby. A language framework for expressing check-
able properties of dynamic software. $PIN 2000.

[21] James Corbett, Matthew Dwyer, John Hatcliff, Corina Pasareanu, Robby, Shawn Laubach, and
Hongjun Zheng. Bandera: Extracting finite-state models from Java source coBeoclnntl.
Conf. on Software Engpages 439-448, June 2000.

[22] J.C. Corbett, M.B. Dwyer, J. Hatcliff, and Robby. Expressing checkable properties of dynamic
systems: the bandera specification langu&Jer T 4(1):34-56, October 2002.

[23] B. Courcelle. On the expression of graph properties in some fragments of monadic second-order
logic. In N. Immerman and P.G. Kolaitis, editol@escriptive Complexity and Finite Models:
Proceedings of a DIAMCS Workshaghapter 2, pages 33-57. American Mathematical Society,
1996.

BIBLIOGRAPHY 179

[24] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of
programs by construction of approximation of fixed points.Symp. on Princ. of Prog. Lang.
pages 238-252, New York, NY, 1977. ACM Press.

[25] P. Cousot and R. Cousot. Systematic design of program analysis framewoB®sclrBymp. on
Principles of Prog. Languagepages 269—-282, New York, NY, 1979. ACM Press.

[26] P. Cousot and R. Cousot. Temporal abstract interpretatioRrda. of 27th POPLpages 12-25,
January 2000.

[27] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program verification in polynomial time.
In Proc. Conf. on Prog. Lang. Design and Images 57—68, June 2002.

[28] S. Das, D.L. Dill, and S. Park. Experience with predicate abstractionl1th Int. Conf. on
Computer-Aided VerificatiorSpringer-Verlag, July 1999. Trento, Italy.

[29] R. DeLine and M. Bhndrich. Enforcing high-level protocols in low-level software. Aroc.
Conf. on Prog. Lang. Design and Imphages 59-69, June 2001.

[30] R. DeLine and M. Bhndrich. Adoption and focus: Practical linear types for imperative program-
ming. InProc. Conf. on Prog. Lang. Design and Imgages 13—-24, June 2002.

[31] C. Demartini, R. losif, and R. Sisto. A deadlock detection tool for concurrent Java programs.
Software: Practice and Experiencg9(7):577-603, June 1999.

[32] C. Demartini, R. losif, and R. Sisto. dSPIN : A dynamic extension of SPIN, September 1999.
[33] E. W. Dijkstra. A Discipline of programingPrentice-Hall, 1976.

[34] D. Distefano.On Model Checking the Dynamics of Object-Based Softwahd® thesis, Twente
University, 2003.

[35] N. Dor, M. Rodeh, and M. Sagiv. Checking cleanness in linked listSAB’00, Static Analysis
SymposiumSpringer, 2000. Available at “http://www.math.tau.ae-iliurr”.

[36] N. Dor, M. Rodeh, and M. Sagiv. CSSV: towards a realistic tool for statically detecting all buffer
overflows in C.ACM SIGPLAN Notices38(5):155-167, May 2003.

[37] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications for finite-state
verification. InProc. of Int. Conf. on Software Engineerimgages 411-421, May 1999.

[38] E. Emersonand A. P. Sistla. Symmetry and model checkingrdn. 5th Workshop on Computer-
Aided VerificatonJune/July 1993.

180

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

BIBLIOGRAPHY

M. Emami, R. Ghiya, and L. Hendren. Context-sensitive interprocedural points-to analysis in the
presence of function pointers. BIGPLAN Conf. on Prog. Lang. Design and Imdew York,
NY, 1994. ACM Press.

J. Field, D. Goyal, G. Ramalingam, and E. Yahav. Shallow finite state verification. Technical
Report RC22673, IBM T.J. Watson Research Center, December 2002.

J. Field, D. Goyal, G. Ramalingam, and E. Yahav. Typestate verification: Abstraction techniques
and complexity results. IRProc. of SAS’'03volume 2694 ofLNCS pages 439-462. Springer,
June 2003.

M. Fitting and R.L. MendelsohnFirst-Order Modal Logi¢ volume 277 ofSynthese Library
Kluwer Academic Publishers, Dordrecht, 1998.

C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe, and R. Stata. Extended static
checking for java. IrProc. Conf. on Prog. Lang. Design and Implages 234-245, Berlin, June
2002.

J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifier®rde. Conf. on Prog.
Lang. Design and Implpages 1-12, Berlin, June 2002.

G.E. Hughes and M.J. Creswdin Introduction to Modal LogicMethuen, London, 1982.

R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations cordqletel of
the ACM 47(2):361-416, 2000.

J. Gosling, B. Joy, and G. Steel&he Java Language Specificatiofhe Java Series. Addison-
Wesley, 1997.

S. Graf and H. Saidi. Construction of abstract state graphs with BMES 1254:72-83, 1997.

Suzanne Graf and Hassen Saidi. Construction of abstract state graphs with RN ®rdoeed-
ings of the 9th Conference on Computer-Aided Verification (CAY[#&Qes 72—83, Haifa, Israel,
June 1997.

S.Z. Guyer and C. Lin. Client-driven pointer analysisPihoc. of SAS’03volume 2694 of NCS
pages 214-236, June 2003.

P.B. Hansen. Java’s insecure paralleligh®M SIGPLAN Notices34(4):38-45, April 1999.

K. Havelund and T. Pressburger. Model checking Java programs using Java pathifindeon
Soft. Tools for Technology Transf&(4), April 2000.

BIBLIOGRAPHY 181

[53] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstractionrSymmposium on
Principles of Programming Languaggsages 58—70, 2002.

[54] L. H. Holley and B. K. Rosen. Qualified data flow problems. Gonference Record of the
Seventh Annual ACM Symposium on Principles of Programming Langyzagss 68—-82. ACM
SIGACT and SIGPLAN, ACM Press, 1980.

[55] G. J. Holzmann. Proving properties of concurrent systems with SPINPrda. of the 6th Int.
Conf. on Concurrency Theory (CONCUR’'9%plume 962 ofLNCS pages 453-455, Berlin,
GER, August 1995. Springer.

[56] Katsuro Inoue, Hiroyuki Seki, and Hikaru Yagi. Analysis of functional programs to detect run-
time garbage cellsTrans. on Prog. Lang. and Syst0(4):555-578, October 1988.

[57] V. Kesten and A. Pnueli. Verification by augmented finitary abstractidkCTRL: Information
and Computation (formerly Information and Contrdl}s3, 2000.

[58] Y. Kesten, A. Pnueli, and M. Vardi. Verification by augmented abstraction: The automata-
theoretic view.JCSS: J. of Comp. Sys. S&2, 2001.

[59] A. Knapp, P. Cenciarelli, B. Reus, and M. Wirsing. An event-based structural operational seman-
tics of multi-threaded java, 1998.

[60] V. Kuncak, P. Lam, and M. Rinard. Role analysis.Rroc. Symp. on Principles of Prog. Lan-
guagesJanuary 2002.

[61] W. Landi and B. G. Ryder. Pointer-induced aliasing: A problem classificatioRrdo. Symp. on
Principles of Prog. Languagepages 93—-103, New York, NY, 1991. ACM Press.

[62] William Landi. Undecidability of static analysif®ACM Letters on Programming Languages and
Systemsl(4):323-337, December 1992.

[63] D. Lea.Concurrent Programming in Javaddison-Wesley, Reading, Massachusetts, 1997.

[64] T. Lev-Ami and M. Sagiv. TVLA: A framework for Kleene based static analysis.SAS’00,
Static Analysis Symposiu@pringer, 2000. Available at http://www.math.tau.asilA.

[65] T. Lev-Ami and M. Sagiv. TVLA: A framework for Kleene based static analysisPioc. Static
Analysis Sympvolume 1824 o NCS pages 280-301. Springer-Verlag, 2000.

[66] D. Lewis. Counterpart theory and quantified modal logiournal of PhilosophyLXV(5):113—
126, 1968.

182 BIBLIOGRAPHY

[67] T. Lindholm and F. Yellin. The Java Virtual Machine Specificatiohe Java Series. Addison-
Wesley, Reading, MA, USA, January 1997.

[68] Z. Manna and A. Pnueli. Completing the temporal pictufBheoretical Computer Science
83(1):97-130, June 1991.

[69] Z. Manna and A. PnueliTemporal Verification of Reactive Systems: SafSfyringer, 1995.

[70] K. L. McMillan. Verification of infinite state systems by compositional model checkindgréc.
of CHARME '99 volume 1703 o£.NCS pages 219-237, 1999.

[71] M.M. Michael and M.L. Scott. Simple, fast, and practical non-blocking and blocking concur-
rent queue algorithms. IRroceedings of the 15th Annual ACM Symposium on Principles of
Distributed Computing (PODC '96pages 267-275, New York, USA, May 1996. ACM.

[72] Microsoft Research. The SLAM project. http://research.microsoft.com/slam/, 2001.

[73] J. S. Moore and G. Porter. The apprentice challedg@M Transactions on Programming Lan-
guages and Systems (TOPLAZ)(3):193-216, 2002.

[74] R. Muth and S. Debray. On the complexity of flow-sensitive dataflow analysd3roln Symp.
on Principles of Prog. Languagepages 67—-80, New York, NY, 2000. ACM Press.

[75] N. FrancezFairness Springer-Verlag, New York, 1987.

[76] G. Naumovich, G.S. Avrunin, and L.A. Clarke. Data flow analysis for checking properties of
concurrent Java programs. Rroc. of the 1999 Int. Conf. on Soft. Engages 399-410. IEEE
Computer Society Press / ACM Press, 1999.

[77] G. Naumovich, L.A. Clarke, L.J. Osterweil, and M.B. Dwyer. Verification of concurrent sofware
with FLAVERS. InProc. Intl. Conf. on Software Engpages 594-597, May 1997.

[78] R.H.B. Netzer and B.P. Miller. What are race conditions? some issues and formaliz&@ms.
Letters on Programming Languages and Systertly):74-88, March 1992.

[79] F. Nielson, H. Riis Nielson, and M. Sagiv. A Kleene analysis of mobile ambien®rdceedings
of ESOP’20002000.

[80] F. Nielson, H.R. Nielson, and C. HankiRrinciples of Program AnalysisSpringer-Verlag, 2001.

[81] A. Pnueli, J. Xu, and L.D. Zuck. Liveness with (0, 1, infty)-counter abstractiorRraceedings
of the 14th International Conference on Computer Aided Verificapages 107-122. Springer-
Verlag, 2002.

BIBLIOGRAPHY 183

[82] S. Prakash, Y. Lee, and T. Johnson. A non-blocking algorithm for shared queues using Compare-
and-Swap. IrProceedings of the 1991 International Conference on Parallel Procespames
68-75, 1991.

[83] G. Ramalingam. The undecidability of aliasi®§CM Transactions on Programming Languages
and Systemd4.6(5):1467-1471, 1994.

[84] G. Ramalingam, A. Warshavsky, J. Field, D. Goyal, and M. Sagiv. Deriving specialized program
analyses for certifying component-client conformancePdoc. Conf. on Prog. Lang. Design and
Impl., volume 37, 5, pages 83—-94, June 2002.

[85] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via graph reacha-
bility. In Proc. Symp. on Principles of Prog. Languagpages 49-61, 1995.

[86] T. Reps, M. Sagiv, and A. Loginov. Finite differencing of logical formulas for static analysis. In
In Proc. European Symp. on Programmjra03.

[87] M. Rinard. Analysis of multithreaded prograni®cture Notes in Computer Scien2a26, 2001.

[88] N. Rinetskey and M. Sagiv. Interprocedural shape analysis for recursive programs. In R. Wil-
helm, editorProc. Intl. Conf. on Compiler Constructipmolume 2027 o£.NCS pages 133-149.
Springer-Verlag, 2001.

[89] N. Rinetzky and M. Sagiv. Interprocedural shape analysis for recursive progriiNES
2027:133-149, 2001.

[90] Robby, E. Rodriguez, M.B. Dwyer, and J. Hatcliff. Checking strong specifications using an
extensible software model checking frameworkPhoc. of the int. conf. on Tools and Algorithms
for the Construction and Analysis of Systermume 2988 0LLNCS pages 404—-420. Springer,
2004.

[91] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued Aigid. Transac-
tions on Programming Languages and Systems (TOPL2¥$3):217-298, 2002.

[92] H. Saidi. Model checking guided abstraction and analysiBraceedings of the 7th International
Static Analysis Symposium (SAS '@000.

[93] R. Shaham, E.K. Kolodner, and M. Sagiv. Automatic removal of array memory leaks in Java. In
Int. Conf. on Comp. Constructzolume 1781 of.ec. Notes in Comp. Sgcpages 50-66. Springer-
Verlag, April 2000.

184 BIBLIOGRAPHY

[94] R. Shaham, E.K. Kolodner, and M. Sagiv. Estimating the impact of heap liveness information on
space consumption in Java. lmt. Symp. on Memory Managemgpéges 171-182. ACM, June
2002.

[95] R. Shaham, E. Yahav, E. K. Kolodner, and M. Sagiv. Establishing local temporal heap safety
properties with applications to compile-time memory managemerRrda. of the 10th Interna-
tional Static Analysis Symposium, SAS 20@3ume 2694 of.NCS June 2003.

[96] Ran Shaham.Heap-Liveness-based Memory Management: Potential, Tools, and Algarithms
PhD thesis, Tel Aviv University, 2004.

[97] A. Silberschatz and P. B. GalvinOperating Systems Conceptaddison-Wesley, Reading, 4
edition, 1994.

[98] S.D. Stoller. Model-checking multi-threaded distributed Java programBrda 7th Int. SPIN
Workshop on Model Checking of Softwarmlume 1885 ofLNCS pages 224-244. Springer-
Verlag, August 2000.

[99] J. M. Stone. A simple and correct shared-queue algorithm using Compare-and-Svweyqe- In
ceedings of Supercomputing ‘Qfages 495-504, 1990.

[100] J. M. Stone. A non-blocking Compare-and-Swap algorithm for a shared circular queue. In
S. Tzafestas et al., editorBarallel and Distributed Computing in Engineering Systepegges
147-152. Elsevier Science Publishers, 1992.

[101] R. E. Strom. Mechanisms for compile-time enforcement of securitiPréwc. of the 10th Annual
ACM Symposium on Principles of Programming Lanuageges 276—284, Austin, TX, January
1983.

[102] R.E. Strom and D.M. Yellin. Extending typestate checking using conditional liveness analysis.
IEEE Trans. Software Engl9(5):478-485, May 1993.

[103] R.E. Strom and S. Yemini. Typestate: A programming language concept for enhancing software
reliability. IEEE Trans. Software Engl2(1):157-171, 1986.

[104] C. Ungureanu and S. Jagannathan. Concurrency analysis for javarodaedings of the 7th
International Static Analysis Symposium (SAS,@000.

[105] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot - a java optimiza-
tion framework. InProc. of CASCON 199%ages 125-135, 1999.

[106] M. Vardi. An automata-theoretic approach to linear temporal logi®rbreedings of Banff'94
1994.

BIBLIOGRAPHY 185

[107] M.Y. Vardi and Pierre Wolper. Reasoning about infinite computatiémfermation and Compu-
tation, 115(1):1-37, 15 November 1994.

[108] A. Vermeulen. Java deadlock: The woes of multithreaded deBigmobb’s Journal of Software
Tools 22(9):52, 54-56, 88, 89, September 1997.

[109] S. White, M. Fisher, R. Cattell, G. Hamilton, and M. Hapn#2BC API tutorial and reference
Addison-Wesley, 1999.

[110] P. R. Wilson. Uniprocessor garbage collection techniquesMémory Management, Interna-
tional Workshop IWMMvolume 637 ofLec. Notes in Comp. Scpages 1-42. Springer-Verlag,
September 1992.

[111] J. M. Wing and C. Gong. A library of concurrent objects and their proofs of correctness. Technical
Report CMU-CS-90-151, CMU, 1990.

[112] E. Yahav.http://www.cs.tau.ac.il/ ~yahave .
[113] E. Yahav. 3VMC user’'s manual, 2000. Available at http://www.math.tau.agahave.

[114] E. Yahav. Solving the apprentice challenge using 3VMC, 2000. Available at
http://www.cs.tau.ac.iityahave.

[115] E. Yahav. Verifying safety properties of concurrent Java programs using 3-valued logimdn
Symp. on Principles of Prog. Languagesges 27-40, 2001.

[116] E. Yahav, A. Pnueli, T. Reps, and M. Sagiv. Efficient verification of temporal heap properties.
Technical Report 339/04, Tel Aviv University, December 2088bmitted for publication

[117] E. Yahav and G. Ramalingam. Verifying safety properties using separation and heterogeneous
abstractions. IfProceedings of the ACM SIGPLAN 2004 conference on Programming language
design and implementatippages 25-34. ACM Press, 2004.

[118] E. Yahav, T. Reps, and M. Sagiv. LTL model checking for systems with unbounded number of
dynamically created threads and objects. Technical Report TR-1424, Computer Sciences Depart-
ment, University of Wisconsin, Madison, WI, March 2001.

[119] E. Yahav, T. Reps, M. Sagiv, and R. Wilhelm. Verifying temporal heap properties specified via
evolution logic. InProc. of the 12th European Symposium on Programming, ESOP, 20d8ne
2618 ofLNCS April 2003.

[120] E. Yahav and M. Sagiv. Automatically verifying concurrent queue algorithms. In Byron Cook,
Scott Stoller, and Willem Visser, editorglectronic Notes in Theoretical Computer Science
volume 89. Elsevier, 2003.

http://www.cs.tau.ac.il/~yahave

186 BIBLIOGRAPHY

Appendix A

2 and 3-valued FOTC

In this appendix, we give a brief summary dfnd3 valued FOTC. The material presented here is
fairly standard and included only for completeness of presentation.

A.l Syntax

Formally, the syntax of first-order formulae with transitive closure is defined as follows:

Definition A.1.1 A formula over thevocabulary P = {eq,p1,...,p,} is defined inductively, as fol-
lows:

Atomic Formulae Thelogical literals 0 and1 are atomic formulae with no free variables.

For every predicate symbel € P of arity k, p(vy,. .., v,) is an atomic formula with free vari-
ables{vy, ..., vt }.

Logical Connectives If o1 andy, are formulae whose sets of free variables BEreand 15, respectively,
then(p1 A ¢2), (1 V p2), and(—p;) are formulae with free variablek; U V,, V1 U V5, and V7,
respectively.

Quantifiers If ¢, is a formula with free variable$v;, v, . .., vx }, then(Jvy : 1) and (Yo; : 1) are
both formulae with free variablegs, vs, . . ., vi }.

Transitive Closure If ¢, is aformula with free variable® such thats, vy ¢ V', then(T'C vy : va)(p1)v3vy
is a formula with free variable§V — {v1,v2}) U {vs, v4}.

A formula isclosedwhen it has no free variables.

187

188 APPENDIXA. 2 AND 3-VALUED FOTC

A.2 2-valued Interpretation

In this section, we define th&{alued) semantics for first-order logic with transitive closure in the
standard way.

Definition A.2.1 A 2-valued interpretation of the language of formulae ovét is a 2-valued logical
structure S = (U®,5), whereU* is a set oindividuals and:* maps each predicate symhobf arity
k to a truth-valued function:

Sp): (U%)F —{0,1}.

An assignmentZ is a function that maps free variables to individuals (i.e., an assignment has the
functionality Z: {vy,vs, ...} — U). An assignment that is defined on all free variables of a formula
© is calledcompletefor . In the sequel, we assume that every assignifighat arises in connection
with the discussion of some formutas complete forp.

The (2-valued) meaningof a formulay, denoted byjy]5 (Z), yields a truth value i{0,1}. The
meaning ofp is defined inductively as follows:

Atomic Formulae For an atomic formula consisting of a logical literak {0, 1}, [1]5(Z) = I (where
[€ {0,1}).
For an atomic formula of the form(vy, ..., vg),
[p(vis- - v)]5(2) = & (P)(Z (), - ., Z(vr))
Logical Connectives Wheny is a formula built from subformulag, and -,
[o1 A 2l3(2) = min([i]3(2), [¢:2]5(2))
[e1Vead5(2) = max([p1]3(2), [#2]5(2))
[F1]3(2) = 1-[p]5(2)
Quantifiers Wheny is a formula that has a quantifier as the outermost operator,
[Voi : @]5(2) = E}JHS[[%]]?(Z[M — ul)
[Boi:¢]3(2) = ﬁ%g[[@l]]ig(z[vl — u))
Transitive Closure Wheny is a formula of the form{7'C' vy : v2)(p1)vsva4,
[(TC v1: va)(p1)vgva]5 (Z) =
max Ip:i{l[[@l]]g(z[vl U, V2 Uig])

n > 1,’U,17..v,un+1 S U7
Z(v3) = u1, Z(va) = Un+1

We say thatS and Z satisfy ¢ (denoted bys, Z = o) if [¢]5(Z) = 1. We writeS = ¢ if for everyZ
we haveS, Z = ¢.

A.3. 3-VALUED INTERPRETATION 189

A.3 3-valued Interpretation
We now generalize DefrA.2.1to define the meaning of a formula with respect t&ealued structure.

Definition A.3.1 A 3-valued interpretation of the language of formulae ovér is a 3-valued logical
structure S = (U®,.5), whereU* is a set of individuals and® maps each predicate symiobf arity
k to a truth-valued function:

Sp): (U5 — {0,1,1/2}.

For an assignmeng, the (3-valued) meaningof a formulay, denoted by¢]5 (Z), now yields a
truth value in{0, 1,1/2}. The meaning op is defined inductively as in DefA.2.1

We say thals and Z potentially satisfy o, denoted by, Z |=3 o, if [¢]5(Z) = 1/2 or [¢]5(Z) =
1. We writeS =3 ¢ if for everyZ we haveS, Z =3 .

190 APPENDIXA. 2 AND 3-VALUED FOTC

Appendix B

Additional Proofs

B.1

Proofs for Chapter 4

For proving Theorerd.4.5we need a few additional definitions.

We first have to formally defineep(w), and also introduce an intermediate assignni#enthich

will be used to record values of intermediate assignments through evaluation.

Definition B.1.1 (Trace representation) Given a tracer, we definerep(r) = (Urep(r)s trep(r)) 10 bE

the representation af as a first-order logical structure, where:

for every worldr; in , there exists a world individual; € U,.cp(x) S-t. trep(r) (world)(w;) = 1.

for every individuak: in the universd/,, of a world~; in the trace, there exists a corresponding
non-world individuali € U,.cp(r), S-. tyep(r) (world)(i) = 0.

for every two successive worldsand; 1 in m, having corresponding world individuals;, w; 1 €
Urep(ﬂ’)' Lrep(w)(succ)(wivwi—i-l) = 1.
for the first world of the tracer, in 7, having a corresponding world individuaty € U,.cp(r),

Lrep(m) (initialWorld) (wo) = 1.

for every worldr; with a corresponding world individuab;, and for every individual, € Uy,
with a corresponding individuali € U, .ep(r)s Lrep(r) (€xists)(i, w;) = 1, and for every other
world 7;, j # i with a corresponding world individuab;, ¢, (r) (ezists)(a, w;) = 0.

for every two consecutive worlds, 7;; in 7, and for every two individuals; € U,, andu;; €
Ux;, With corresponding individualg;, i;+1 € Upep(r) s Lrep(r) (€volution)(t;, Gi1) = 1 iff
er, (Ui) = Uit1.

for every worldr; and an individualu € m; with a corresponding individuali € U, (),
Lrep(m) (isNew) () = 1iff u € Ar,.

191

192 APPENDIXB. ADDITIONAL PROOFS

e for every worldr; and an individualu € m; with a corresponding individuali € U, (r),
Lrep(m) (isFreed) (@) = 1iff u € Dy,.

We augment the notion of assignment as follows: an assignfiiexdsigns individuals from the
universe to logical variables, and assigns a world of the trace to the designated logical variable

Definition B.1.2 Given a tracer, an ETL formulap, an assignment, and a world of the tracer; for
somei, we say thatr, Z |=; [¢],, when:

o Z(w)=m;

o T, ZF

That is, when the suffix af starting from the world assigned 0 satisfies the property.

Lemma B.1.3 (Prefix Redundancy)Given a tracer and an assignmert assigning a worldr; to w,
™ Z i [Plo <= 7,7 (ol
Proof:
™, Z =t [plw < (by DefinitionB.1.2)
T Z g = (by DefinitionB.1.2)
™, Z =t [¢lw

Definition B.1.4 We define an additional operation on traces, () that takes a trace and a logical
variable assigned by to a world in the trace. The operation returns the suffix of the trace starting at
the given world.

The initial assignmenk assignsw to the first world of the trace.

Proof[Theorem4.4.5
We need to prove that for every closed ETL formgland a tracer, = |= ¢ if and only if rep(m) =
(¢)T, whererep() is the first-order representationof We will now show that:

7, Z =1 el if and only if rep(>u,()), Z = ()™

0,1 trivially holds.

p(Vi,...,Vk)
rep(B>w(m)), Z b= (p(v1, ..., 0p)) [V = (Definition 4.8.1)
rep(w(m)), Z = p(vi, ... v5) <= (Definition A.2.1)
Lhead(w(r) (P)(Z(V1), ..., Z(vg)) =1 <= (Definition5.2.1Q
7, Z = p(vi,...,v) whereZ(w) = m; <= (DefinitionB.1.2)
™, Z ¢ [p(vi, ..o 00)|w

B.1. PROOFS FORCHAPTER4 193

AP

eV

Iv.p(v)

(TC Vi

O@(Xl, e

rep(>(m), Z = (p AY)TY «—= (Definition 4.8.1)
rep(B>w (7)), Z |= ()™ andrep(>4,(7)), Z |= ()1 <= inductive assumption
T, 7 =t [0l @andm, Z =y (] <= (Definition 5.2.10
™, Z =t [p A lw
rep(> (1), Z = (p Vi) [v «— (Definition 4.8.7)
rep(w (7)), Z = ()T orrep(t>4 (7)), Z = ()™ <= inductive assumption
T, Z [t [plw OF T, Z = [<= (Definition5.2.10
T, Z = [Vl
rep(B>w (7)), Z = (Fu.p)) ™ — (Definition 4.8.7)
rep(D>w (7)), Z b= Jv.exists(w,v) A (o(v))™ —
(assume only v is free without loss of generality)
eXistsu € Upeqd(s (n)) St rep(Bw(m)), Z[v 1 u] = (p(v))T
existsu € Upeqd(is,, (x)) ST, Z[v = u] =t [o(v)]w <= (Definition5.2.10
7.7 b= Bop (o)l
,v2:)(Vs, va)
rep(> (7)), Z = ((TC vi,va: ©)(v3,v4))™" <= (Definition4.8.1)
rep(Bw (7)), Z |= (TC vi,ve: ()T A exists(w,v1) A exists(w,v2))(v3, v4) <=
existsuy, ...,uy € Up. S.t. Z(v3) = u1 A Z(vq) = uy
and foralll < < k.
rep(B>y (7)), Zvy — ui, va — uip1] = (©)T™ A exists(w,v1) A exists(w,vy) <=
existsuy, . .., ug € Upeqd(>, (r))- ST Z(v3) = w1 A Z(vs) = up
and for alll < i < k.rep(By (7)), Z[vy +— ui, va — ui1] | ()0 <=
m, 7 = [(TC vi,v2:) (v, 04)]w
; Xn)
rep(>w(1), Z = (Op(x1,. .., x,)) " — (LemmaB.1.5

rep(w (1)), Z' = (p(21, ... 2n) T

wheresuce(w,w’), Z' is an evolution o <
A e I chop worlds beforev’, LemmaB.1.3
tail(m), Z' =i [Pl <= (Definition5.2.10Q

T, Z):t [O@]w

194 APPENDIXB. ADDITIONAL PROOFS

QO(XI) v 7Xn)uw(y17 o ,Yn)
rep(>w(m), Z b= (p(z1, ..) U (Y1, - . yn)) T = (Definition 4.8.1)
(7)), Z = Fw"world 3y, . .., y,..succ*(w, w') A (Y(yy, . .. ,y;))Tw/

A Ni<icp evolution®(yi, y;) A Vi world.3xh, . . ., a7, (suec* (w, W)

rep(t>qy

A succ* (b, w') — (p(x], ..., 20))T% A Ni<j<n evolution®(z;, a)) <=
existsw’, rep(t>4, (7)), Z | succ*(w,w’) and
existsZ’, rep(>w (7)), Z' = (W(y1, - .., ye)) " and
for all w, rep(> (7)), Z = (succ*(w,) A succ*(w,w') implies
Z = (p(z1,..., 0,10 = (LemmaB.1.6)
existsw’, k > 0, s.t.Z(w'") = 7 and
= (bgn.....)" and

(succ*(w, w) A succ*(w,w') implies

(
existsZ, rep(t>y(m)),

(
existsZ’, rep(t>q, ()

), 7'
for all w, rep(>w(7)), Z =
existsZ, rep(> (1)), Z = (o(z1, . .., 20))10 =
existsw’, k > 0,s.t.Z(w') =
existsZ', rep(>w (7)), Z' = (W(y1, - .., yk)) 1 and
forall w, Z(w) = m;,1 <i <k,
there existsZ, rep(> (7)), Z = (o(z1, . .., 20)1? =
existsw', k > 0,s.t.Z(w') = m and
existsZ’, rep(>u (1)), Z' = (W(y1, ..., yx)) ™ and
forall w, Z(w) = m;, 1 <i <k,
there existsZ, rep(>4 (7)), Z = (o(z1, . . ., 2,))T? = (ind.)
existsw', k > 0,s.t.Z(w') = m, and
existsZ',w, Z' =1 [V (v1, - - -, yk)]w @and
forall w, Z(w) = m;,1 <i <k,
there existsZ, w, Z b= [p(z1,. .., 2,)]s < (LemmaB.1.3
existsw’, k > 0, s.t.Z(w'") = 7 and
existsZ', 7%, Z' = [Y(y1, ..., yk)]wr @and
forall w, Z(w) = m;,1 <i <k,
there existsZ, ', Z = [p(x1, ..., 2n)]e < (Def. B.1.2+ Definition5.2.10
™ Z e, an) UL (Y, - yn) e

)

7, and

LemmaB.1.5

rep(u(m)), Z = (Op(@r, ..., 20)™ <= rep(Bu(m), 2" (p(ar,... 20)™
wheresucc(w, w') and Z’ is the evolution ofZ.

B.1. PROOFS FORCHAPTER4 195

Proof:
rep(Bw(1)), Z E (Op(e1, - ., 20) 1" <=
rep(Bw (7)), Z = Jw':world. 3z, . ..,z .succ(w,w') A (p(z), ...) A
Ni<j<n evolution(zj, x) A exists(x, w') <=
(whensuce(w, w'))
rep(B>y (7)), Z = 3, .. 2l (o), ... 2l)T A Ni<j<n evolution(zj, z}) A exists(z), w') <=
(whenZ’ is the evolution of7)
rep(Bu (), Z' = (9l 2

Lemma B.1.6 Given a tracer, an assignmen assigning a world individual to the logical variable
w, for anyw/,

rep(>4(m)), Z | succ*(w,w') <= there exists > 0, Z(w') =

Proof: Trivial from definition of T'C' operator. This lemma is provided to emphasize that* (w, w’)
corresponds to the existence of a successor witfimta future

B.1.1 Embedding Theorem

Proof:[Embedding Theorem for Infinite Configurations, Theorér.q This theorem generalizes the
embedding theorem o8[] for the infinite case. The proof is identical to the proof given for the origi-
nal embedding theorem since the same arguments hold for the infinite case. The proof is by structural
induction ony:
Basis For atomic formula(vy, va, ..., vx), ur, us, . .., ux € U, andZ = [v1 = uy,ve — U, . .., v
uy] we have
[p(vi,v2, .., vp)]3(2)

= 15(p)(u1,uz, . .., u) (Definition A.3.1)

C S (p)(f(ur), flug), ..., f(ur)) (Definition4.5.3

= [p(v1,v2, ..., 0)]5 (f o Z) (Definition A.3.1)
Also, forl € {0,1,1/2}, we have:

[13(2)

l (Definition A.3.1)
l (Definition4.5.2)
15" (f o Z) (DefinitionA.3.1)

1M

Induction stepSuppose is a formula with free variables , vo, . . . v;.. Let Z be a complete assignment
for ¢. If [¢]3'(Z) = 1/2, then the theorem holds trivially. Therefore assume fdf (f o Z) €
{0, 1}. We distinguish between the following cases:

196 APPENDIXB. ADDITIONAL PROOFS

Logical-and ¢ = 1 A 2. The proof splits into the following subcases:

Case 1[p1 A a5 (f o Z) =0.

In this case, eitheﬁ<p1]]§’(f o Z) =0or [[902]]§’(f o Z) = 0. Without loss of generality
assume tha@pl]]g'(f o Z) = 0. Then, by the induction hypothesis fgr, we conclude that
[¢1]5(Z) = 0. Therefore, by Definitiom.3.1, [i1 A w2]5(Z) = 0.

Case 2 [p1 Aol (f o Z) =1,

In this case, botfip1]5 (f o Z) = 1and[g2]3 (f o Z) = 1. Then, by the induction hypothesis
for ¢, andys, we conclude thafp]5(Z) = 1 and

[¢2]5(Z) = 1. Therefore, by Definitiom.3.1, [i1 A w2]5(Z) = 1.

Logical-negation ¢ = —1. The proof splits into the following subcases:
Case 1 [~¢1]5 (f o Z)=0.
In this case[¢1]5 (f o Z) = 1.
Then, by the induction hypothesis fpi, we conclude thafp:]5(2) = 1.
Therefore, by Definitior.3.1, [-¢1]5(Z) = 0.
Case 2 [~¢1]5 (f o Z) = 1.
In this case[¢1]5 (f o Z) =0.
Then, by the induction hypothesis foi, we conclude thafp1]5 (Z) = 0.
Therefore, by DefinitioiA.3.1, [-¢1]5(Z) = 1.

Existential-Quantification ¢ = Jvg : 1. The proof splits into the following subcases:
Case 1[3v; : ¢1]§ (f o Z)=0.
In this case, forall: € US, [¢1]5 ((f o Z)[v1 — f(u)]) = 0. Then, by the induction hypothesis
for 1, we conclude that for alk € U [¢1]5(Z[v1 — u]) = 0. Therefore, by Definitior.3.1,
[Fui : p1]5(Z) = 0.
Case 2[Fv; : p1]5 (f o Z) = 1.
In this case, there existsw#d € U such that]e1]5 ((f o Z)[v1 — u/]) = 1. Becausef is
surjective, there exists@ € U such thatf(u) = " and[¢1]5 ((f o Z)[vr — f(u)]) = 1.
Then, by the induction hypothesis fgr, we conclude thafp:]5 (Z[v1 +— u]) = 1. Therefore,
by DefinitionA.3.1, [Fu; : ¢1]5(2) = 1.

Transitive Closure ¢ = (T'C v1,v2: ¢1)(vs,v4). The proof splits into the following subcases:
Case 1 [(TC vy, va: 1) (v3,va)]5 (f © Z) = 1.
By Definition A.3.1, there existu’l,ug,...,u;1+1 e UY such that for alll < i < n,

[eul3 ((F o Z)v1 = ufyva = ufyy]) =1, (f o Z)(v3) = uh, and(f o Z)(vs) = uj,,;. Be-
causef is surjective, there existy, us, ..., u,1 € U% such thatforall <i <n+ 1, f(u;) =

B.2. PROOFS FORCHAPTERDS 197

w,. Therefore,Z(vs) = w1, Z(va) = un41, and by the induction hypothesis, for all< i < n,
[¢1]5 (Z[v1 — wi,va — uir1]) = 1. Hence, by Definitiol\.3.1, [(T'C vy, va: ¢1)(vs,v4)]5(Z)
1.

Case 2 [(TC vy, va: 1) (v3,va)]5 (f © Z) = 0.
We need to show thdtT'C vy, v2: 1) (vs,v4)]5(Z) = 0. Assume on the contrary that

[(TC v1,v9: 1)(v3,04)]5 (f © Z) =0
, but [(TC v1,v2: ¢1)(v3,v4)]5(Z) # 0. Becausd(TC v1,v2: ¢1)(v3,v4)]5(Z) # 0, by De-
finition A.3.1there existui, us, ..., uny1 € U® such thatZ(vs) = uy, Z(v4) = uny1, and for
all1 <i < n, [¢1]5(Z[v1 — wi,va — uit1]) # 0. Hence, by the induction hypothesis there
existul,ub, ..., ul, ., € U such that(f o Z)(vs) = u}, and(f o Z)(vs) = ul,,, and
forall1 < i <n, [pi]5 ((f o Z)[v1 — u}, v u; 1) # 0. Therefore, by DefinitiorA.3.1,
[(TC vi,v2: ©1)(vs,v4)]5 (f o Z) # 0, which is a contradiction.

B.2 Proofs for Chapter5

Proof:[Theorem5.2.13 We will show that given a BDETL formule, and a progran®, P = ¢ —
P =g {¢}, by proving that for every program traee =, Z = ¢ — ¢, Z g {¢} wherec =
head(m)

m,ZE1 = head(r),Z =g {1}

7,72 =0 = head(w),Z =g {0}

¢ =p(vi,...,vk)
mZ E=p(vr,...,vp) <=
thead(r)(P)(Z(01), .-, Z(Vi)) =1
head(r), Z =g {p(vi,...,v)}

© = —p, Where ¢, is an atomic formula
T, 72 E g, <
notm, Z = v, <
head(), Z =g {—va}

198

©=p1V 2
© =1 NP2
¢ =Jv.pr
¢ =1

APPENDIXB. ADDITIONAL PROOFS

T, Z =1V <=

mZEep1ormZE s =

head(r), Z =g {¢1} or head(n), Z =g {p2} —
head(m), Z =g {1V p2}

™2 Ep1Apy =

T, Z = ¢andn, Z E po =

head(m), Z =g {p1} andhead(n), Z =g {p2} <=
head(r), Z =g {¢1 A @2}

T, Z = .pi(v) <=

existsu € Upeqa(r) S-U.7, Z[v = u] = ¢1(v) =

existsu € Upeqa(r) St head(n), Z[v — u] Fg {p1(v)} <=
head(m), Z[v — u] Ep {Jv.1(v)}

T, 7 = Qp1 <

tail(m), Z = 1 =

d,7Z Eg ¢1 whered = head(tail(7)) =

there exists a successonf head(r), st.c, Z Egp p1 = head(n), Z Eg {Op1}

v =p1UUps

T, 7 F pilps =

there exists: > 0, 7%, Z |= po and forall0 < j < k, 7/, Z |= ¢
we will show that this impliesiead(r), Z =g {p1Up2}

by induction on k

basek =0

70,7 |= o2 = head(n),Z =g {p2} =

head(n), Z =g {p1U 2}

step:k > 0

there exists: > 0, 7%, Z |= po and forall0 < j < k, 7/, Z |= ¢1
= m,Z F p1 = head(n),Z FE {p1}

now considerr’ = tail(m)

there exists’ =k —1 > 0, Tr’kl, Z = poandforalld < j <k, 7.z E e

B.2. PROOFS FORCHAPTERDS 199

Y =1 W2

T, 7 = o1 Wey <=

there exists: > 0, 7%, Z |= po and forall0 < j < k, 7/, Z |= ¢
orforallj > 0,7/, Z = ¢

we will show that this impliegicad(n), Z Eg {p1 Wea}

case 1: there exists > 0, 7%, Z |= ¢

by induction on k

baseik =0

70,7 = oo = head(r),Z =g {2} =

head(n), Z =g {p1 W2}

step:k > 0

there exists: > 0, 7%, Z |= o and forall0 < j < k, 7/, Z |= ¢1
= m,ZFE @1 = head(n),Z Eg {p1}

now considerr’ = tail(m)

there existd’ = k — 1 > 0, 7%, Z = go andforallo < j < k', 77, Z |= ¢y
case 2: nd > 0 exists s.t*, Z = oy

forallj > 0,7/, Z = ¢ =

forallj > 1,7/, Z = ¢y andn®, Z = ¢; =
L, Z = i Wes andn?, Z = ¢ =
head(tail(m)), Z Eg {1 W2} andhead(n), Z Eg {1} =
head(m), Z =i {p1 Wz}

Proof:[Theorem5.3.9 We show that the abstract state-based semantics is an abstract interpretation of
the concrete state-based semantics of DefinBi@il2 We will show that
¢ g F = blur(c), EY, F
In order to show that, we establish a Galois connection between concrete and abstract configurations.
B(c) = blur(c)
o/(C) = U, ¢ blur(c)
v(A) = {c| blur(c) € A}

200 APPENDIXB. ADDITIONAL PROOFS

Appendix C

ETL Supplements

C.1 Additional Properties for Mark And Sweep

Fig. C.1shows the code for the sweep phase of the mark and sweep collector. The properties of interest
for the sweep phase are formulated as the following ETL formulae.
(S1) Vv.—marked(v) — o(v)
(S2) OV @ (v) — —marked(v)
The progress measure required to verify these properties is:
¢ = Fv.pending(v) A —pending'(v))
1 = Iv.pending(v) A pending’ (v))

C.2 Additional ETL Properties

TableC.1 presents a list of simple programs and program properties specified via ETL. The program
Mutex is a program that dynamically allocates an unbounded number of threads and lets them com-
pete for a critical section protected by a single loékq. The programTwo lock queue is an
implementation of a concurrent shared queue protected by two latkks [The progranDelAll is a
simple sequential program that deletes all the elements of a given linked list. The propestiesd
assign — null could be used for performing compile-time garbage collection, as do®&JinlThe Web

Server program is a simple implementation of a web-server as usedli.[

C.3 ETL with Past Operators

This appendix completes the partial (but less cumbersome) definitions of ETL trace-based and state-
based semantics given in Chapser

201

202

APPENDIXC. ETL SUPPLEMENTS

Program | Property S/L | UB | Comments
Mutex Vt. > atllerie] (t) L | T absence of starvation
& Ft.at[lerig) (t) L | T progress
3t. & at(lerit] (t) L |T specific progress
O Vi, tg.ﬁ(at[lcrit](h) N at[lmt](t)) S T mutex
Two lock | (] Fv.tail(v) — rflhead, next)(v) S | O/T| queue connected
queue O 3t;, v, w.at[lpe(t;) A ro[z;](t;, v) S | O/T | insert after last
At flhead, next](v) A tail(u) — rval[nezt](u,v)
[3t g, v.at[lte](tq) A rv[xg|(ta,v) S | O/T | delete first
A1 flhead, next](v) — head(v)
O Av,u.head(v) A rv[next](u,v) S | O/T| headis first
O Vt.—at[lig](t) — Fv: tail(v) S 1 O/T| talil exists
O Vt.at[lpa](t) — O atlps](t) L | O/T| producer liveness
O Vt.at[lt1](t) — < at[lts](t) L | O/T| consumer liveness
all items eventually
DelAll Vo. O x(v) L |0
traversed by x
& at(leait] () L |0 termination
various | (J(Yv.at[pt]() Ay(v) — O O —use(v)) S |0 free(pt,y)
various | (J(Vv.at[pt]() A y(v) — O-use,(v) Wde fr,(v)) S 10 asgn — null(pt,y)
O Vi, to: thread.(t t
Web b (t#t) S | O/T | mutex over the shared resource
— =(atlw](t1) A at[lwe](t2))
absence of starvation
server [Vt: thread.at[lw](t) — < at[lw](t) L |0/T
for worker threads
O(Vt: thread.— © t)V s o/ a thread only created when
(Vt: thread.— © t) U (Jv: request. © v) request received
each request followed by
[Jv: request. © v — > Ftithread. O t L |0/T _
thread creation
[Vt1, to: thread.(t1 # to) mutex of listener and scheduler
S |0/T
— =(at[lsa](t1) A at[las](t2)) over sched. queue
(1 Vt:thread. ©®t L o/ each created thread is eventuall
— < 3q: queue.rval[head.next*|(q, t) inserted into the sched. queue
[Vt: thread.at[lw;](t) L o each scheduled worker thread
— —3q: queue.rval[head.next*|(q, t) removed from sched. queue
Jq: queue. (] Vt: thread. e
each worker thread waiting in
(rvallhead.next*](q,t)) L |0/T
queue eventually leaves queue
— & ~(rval[head.next*|(q,t))

Table C.1: Example programs and ETL specifications

C.3. ETLWITH PAST OPERATORS 203

public Set sweep(Set marked, Element root) {
s1 Set pending = Heap.universe;
s2 Set collected = new HashSet();
s3 if (root != null) {
S4 while (!pending.isEmpty()) {
S5 Element x = (Element) pending.iterator().next();
S6 pending.remove(x);
s7 if (Imarked.contains(x))
S8 collected.add(x);
S9 else
510 marked.remove(x);
s11 }
512 }
S13 return collected;
}

Figure C.1: Java source for the sweep-phase procedure.

Definition C.3.1 (ETL Trace-based Semantics)We define when an ETL formulais satisfied over a
tracer starting at index of the trace with an assignmeft(denoted byr, i, Z = ¢) as follows:

e 7,4,Z = 1,and notr,i = 0Z.

o T, i, 7Z = p(vi,...,vk) Whenu, (p)(Z(v1),...,Z(vg)) =1

e T, i,Z = —pwhennotr,i, Z = ¢

o i, Z =EpViywhenn,i,Z EpormikE=yZ

e 7,0, Z = Jv.p(v) when there exists € U s.t. 7, i, Z[v — u] = ¢(v)

o 7,0, Z = (TC vi,v2:)(vs,vq) When there existsy, ..., u,+1 € U, S.t. Z(v3) = uy, Z(v4) =

unt1, and foralll < j < n,m i, Z[vi — uj,va — ujp1] = ¢.
o 1,0, 7 = Qewhenrt, i+ 1,7 | ¢.
e ., Z = Uy when there exist8 > i, s.t.,m, k, Z E ¢ andforalli < j < k, m,j,Z = .

e 7,1, Z = W1 when there exists > ¢, s.t.,m, k, Z = andforalli < j < k, m,j,Z = ¢, or
forall j >i,m, 7,72 E ¢.

o T,i,Z = O¢ewhenm,i—1,7 = .

e 7,0, Z = oSywhenthereexis® < k <i,s.t.,m k,Z E¢andforallk < j <i,mj,Z E .

204 APPENDIXC. ETL SUPPLEMENTS

o m,i,7Z = pBipwhenthere exis8 < k <i,s.t.,m k, Z | andforallk <j <i,mj,Z = ¢,
orforall 0 < j <i,m,74,Z = .

We omit definitions fon, V, since they are defined similarly. We write= ¢ when,0, Z |= ¢ for
every assignmer#f. Given a programP, we say tha® = ¢ when there exists a traceof the program
P, such thatr | .

Definition C.3.2 (ETL Existential State-Based Semantics)Given a set of BDETL formulag, and a
program P, we say thaff” is existentially satisfiedrom a configuration (state} with an assignment
Z (denoted by’%, Z = F) when one of the following conditions holds:

(AO) F =10

(Al) F=F' u{1}andC" Z =g F',

(A2) F = F' U {p(v1, ..., o0)} andigs (0)(Z(v1), ..., Z(vp))=1, andCh, Z =p F"
(A3) F = F' U {~p} and notC?% Z =g {p}, andC?, Z =g F’

(Ad) F=F uU{pVvy}yandCh Z Ep F'U{p}orC* Z =g F' U {y}

(A5) F = F'U{pAy}andCh Z =g F' U {p, ¢}

(A6) F = F' U {Jv.(v)} and there exista € Ug; s.t.C% Z[v +— u] Ep F' U {p(v)}
(A7) F = F' U{Qy} and existsC?, " = C¥ s.t.,C%, Z =g {p} andC?, Z = F'.

(A8) F = F' U {pU} andC? Z = F' U {2} or
C*, Z =g F' U {¢} and there exist§’®’ s.t.C" = C* andC?', Z =5 {oUv}.

(A9) F = F'U{pWy}andC?, Z =g F' U {4} or
C*, Z =g F' U {p} and there exist§’" s.t.C" = C* andC¥, Z =5 {o Wi}

(A10) F = F' U{Q© ¢} and exist’?', C% <= C¥ s.t.,,C", Z = {p} andC?, Z =5 F'.

(A1l) F = F'U{pSy}andCt Z = F' U {4} or
C!, Z =g F' U {p} and there exist§’? s.t. C% < C" andCY, Z = {0 S},

(A12) F = F'U{pBy}andC* Z =5 F' U {4} or
C*, Z k=g F' U {p} and there exist§? s.t. C* < C¥ andC?, Z = {¢ Bi).

where< is the reverse transition relation ef.

Index

A
abstract configuratio0, 108
action,35, 103
aliasing width,69
atomic formulae100
automaton state predicatdf2

B
best conservative effectl
bounded-demonic ETL formuld06

C
canonical abstractio®, 41, 89, 108 147
configuration,102
constant-domain semantic&, 79, 100

D
definite values38, 88
distributive WP-closureg0

E
enabled104
ETL formula,100
Evolution Temporal Logic3
existentially satisfied 06, 204

F
false alarms2, 25, 41, 98, 172 173
first order transition system (FOT)04
first-order safetyy, 126
forbidden subsequencéds)
formula-predicatesl 1], 152

free variables100

H
heap safety automatoh44

heterogeneous abstractioa$, 121, 123 136

|
indefinite value 338

independent attribute analysié, 14, 56, 59, 60,

74,123
induced effect41
information order88
instrumentation predicate$08 152
integrated approaci

L
local temporal heap safety44

local temporal heap safety propertiéd3 144

N
non-definite value38
non-temporal formulal 01

(@)
omission-closed;9

P
positive normal form105
potentially satisfy109
precondition35, 87, 103 104
prefix-closed safety propertyy/
principally temporal formulael01
program configuratior31

205

206

R
recursive 52, 206
relational analysis4, 56, 74, 123 156
relativization,33
reverse transition relatios.1
rewrites,104, 109
rewrites into a configuratiorg7
rewrites into an abstract configuratiat,
run,111

S

separationb, 120

incremental choicel 28

multiple choice 127

single choicel27
separation strateg$21, 126, 129
shallow,52
shallow programb, 14, 57
shallow verification probleng8
spatially separable[43 144
state-space exploratioB5
strong updatel3
summary nodesd,1, 24, 38, 108 135
symmetry reductior46

T
temporally separabld,7
trace, 104

transitively rewrites into a configuratio87
two-phased approach(, 53, 99, 123 173 174

two-vocabulary formulal03
typestatebl, 144
typestate verificatiorg

\Y
varying-domain semanticg5s, 79
violation property,17, 98

violation trace 98
vocabulary100

W
weak update] 2

INDEX

	Introduction
	Thesis Contributions
	How to Read this Thesis
	Overview
	Specification
	Integrated Verification and Property-Guided Abstraction
	Property Guided Abstraction---Specialized Abstractions
	Verifying Temporal Properties

	Verifying Safety Properties of Concurrent Java Programs Using 3-Valued Logic
	Introduction
	Main Results and Related Work

	Java Concurrency Model
	A Program Model
	Representing Program Configurations via Logical Structures
	Extracting Properties of Configurations using Logical Formulae
	A Structural Operational Semantics of Configurations
	Safety Properties of Java Programs

	An Abstract Program Model
	Representing Abstract Program Configurations via 3-Valued Logical Structures
	An Abstract Semantics
	Instrumentation

	Verifying Safety Properties
	Deadlock
	Shared Abstract Data Types
	Thread State Errors
	Unbounded Number of Threads

	Prototype Implementation

	Property-Guided Abstraction
	Introduction
	Terminology and Notation
	Omission-Closed Properties in Polynomial Time
	Repeatable Enabling Sequence Properties
	Verification by counting
	The Intuition

	Programs with Width-Limited Aliasing
	Polynomial-Time Verification for Shallow Programs with Width-Limited Aliasing
	Width-Limited Aliasing in Non-Shallow Programs

	Conclusion

	Verifying Temporal Heap Properties Specified via Evolution Logic
	Introduction
	Overview
	A Temporal Logic Supporting Evolution
	Overview of the Verification Procedure
	Running Example

	Trace-Based Evolution Semantics
	Expressing Trace Semantics using First-Order Logic
	Representing Infinite Traces via First-Order Structures
	Exact Extraction of Trace Properties
	Semantics of Actions

	Exploring Finite Abstract Traces via Abstract Interpretation
	A Finite Representation of Infinite Traces
	Abstract Interpretation
	Property-Guided Instrumentation

	Related Work
	Conclusion
	Translation of ETL to FOTC

	Automatic Verification of Temporal Heap Properties
	Introduction
	Evolution Temporal Logic
	Syntax
	Trace Semantics
	State-Based Semantics

	Abstract Semantics
	Abstract Configurations
	Abstract Semantics

	First-Order Representation
	ETL Existential State-Based Semantics as First-Order Transition System
	Liveness and Progress
	Safety Properties

	Conclusion

	Verifying Safety Properties using Separation and Heterogeneous Abstraction
	Introduction
	Safety Properties
	Separation Strategies
	Separation
	Background
	Instrumentation For Separation
	Additional Instrumentation

	Heterogeneous Abstraction
	Prototype Implementation
	Extensions and Future Work

	Applications
	Compile-Time Memory Management
	Introduction
	Specifying Compile-Time Memory Management Properties via Heap Safety Properties
	Instrumented Concrete Semantics
	An Abstract Semantics
	Extensions

	Automatically Verifying Concurrent Queue Algorithms
	Concurrent Queue Algorithms
	Vanilla Verification Attempt
	Refining the Vanilla Solution
	Experimental Results

	Solving the Apprentice Challenge
	Problem Statement
	Solution
	Results

	Conclusions and Further Work
	Conclusion
	Contrast with Closely Related Work
	Further Work
	Property Guided Abstraction
	Verification of Heap-Manipulating Programs

	Bibliography
	2 and 3-valued FOTC
	Syntax
	2-valued Interpretation
	3-valued Interpretation

	Additional Proofs
	Proofs for Chapter 4
	Embedding Theorem

	Proofs for Chapter 5

	ETL Supplements
	Additional Properties for Mark And Sweep
	Additional ETL Properties
	ETL with Past Operators

