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Abstract

Property-Guided Verification of Concurrent Heap-Manipulating Programs

Eran Yahav

Doctor of Philosophy

School of Computer Science

Tel-Aviv University

We address the problem of verifying properties of concurrent and sequential programs written in

languages, such as Java, that make extensive use of the heap to allocate—and deallocate—new objects

and threads. We present a framework for the verification of sequential and concurrent Java programs.

The framework combines thread scheduling information and information about the shape of the heap.

This leads to error-detection algorithms that are more precise than existing techniques. In contrast to

many existing verification techniques, our algorithms do not put a bound on the number of allocated

objects (and threads). We also present novel approaches that allow us to tie the cost of verification to the

nature of the property being verified. The combination of these techniques allows us to automatically

verify non-trivial properties of heap-manipulating programs that have not been automatically verified in

the past.
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Chapter 1

Introduction

Concurrent programming is becoming a common practice in modern software development. A concur-

rent program allows a number of activities to be performed together. This enables the programmer to

increase the availability and reactivity of his program, for example by allowing the user to perform other

activities while a long computation takes place concurrently.

The Java language brought concurrent programming to a wide-range of products and programmers

due to its natural support of multi-threading (a multithreaded program is a program which concurrently

executes a number of threads where eachthreadmay be viewed as a single sequential program). Java

concurrency is quite common, it can be found in commercial applications such as web-servers, Java

applets, multimedia applications and others. However, despite its being widespread, writing a correct

concurrent program is as hard and error-prone as ever.

While concurrent programming introduces additional strength in the design and implementation of

software systems, it also introduces problems that do not emerge in sequential programs (e.g., data-races

and deadlocks).

Debugging and testing of a concurrent program is a complicated task since the results of an execu-

tion may depend on the specific order in which threads are scheduled. Furthermore, the concurrency

model used by modern programming languages, such as Java, provides low-level concurrency-control

constructs that enable the programmer to create complicated and powerful synchronization schemes.

Although it is well known that programs using these concurrency models are hard to debug, existing

programming environments provide no compile-time support for checking the correctness of concurrent

behavior. For example, the Java language provides no means for compile-time checking and almost no

means for runtime checking of the correctness of concurrent behavior. This makes concurrent program-

ming in Java quite error-prone (e.g., [108, 51]).

Generally, one would like to prove that a given concurrent program is correct with respect to some

specification with the same certainty one proves a mathematical theorem. This is the essence of program

verification.

1
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Ideally, the process of verification would be a fully automatic process taking a program and a spec-

ification as input and supplying a “yes/no” answer as to whether the program satisfies the specification.

Unfortunately, this problem is known to be undecidable, that is, it is possible to show that an automatic

solution cannot exist for arbitrary programs and specifications. Moreover, it is very difficult to specify

the full behavior of real software.

This research focuses on the use of sound program analysis techniques for the verification of con-

current Java programs. Once convinced that automatic verification is a subtle problem, one may wonder

why we believe that we can provide a reasonable solution. The main reason is that we do not attempt to

tackle the general problem of automatic verification, but rather focus on the following:

(a) using sound approximation of program behavior — use a static (compile-time) approximation of all

possible behaviors of a program. The approximation contains all possible behaviors of the program,

but may also contain some superfluous behaviors. Verifying the property against the approximated

behavior can only err on the safe side, that is, it detects all possible errors (since all “real” behaviors

are included), but may producefalse alarmsdue to the superfluous behaviors included. That is, our

algorithms never miss an error but there are cases in which the property is reported to be violated,

where it is not violated in any real execution of the program. It is challenging to develop algorithms

that yield a tolerable number of false alarms.

(b) Concentrating on specific properties and not addressing full program correctness. This goes both

for the specification and the verification algorithm.

(c) Possibly safely omitting some aspects of program semantics (e.g., arithmetics).

(d) Considering a specific model of concurrency — the Java concurrency model which uses threads

communicating through shared-memory.

Two of the main challenges of software verification are handling heap-allocated storage and handling

dynamic allocation of objects and threads. These features are often ignored or handled in an imprecise

manner by existing verification and static-analysis approaches, especially for concurrent programs [87].

One of the main problems addressed by our research is therefore:

Problem 1[Feasibility] Given a non-trivial concurrent Java program with dynamic allocation of objects

and threads, and a non-trivial property, is it possible to automatically verify that the program satisfies

the property of interest, while producing a tolerable number of false alarms?

Finite-state verification techniques have been successfully applied in the verification of hardware

systems and protocols (e.g., [17]). However, they cannot be immediately applied for verification of Java

programs, which support dynamic allocation of objects and threads with no a priori bound. The prob-

lem is that Java supports both unbounded data structures and unbounded control structures (dynamic

allocation of objects and threads).
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One of the promising approaches for automatic verification of software is to perform model-checking

(exhaustive state-space exploration) of an abstract finite-state model of the system at hand. A conser-

vative abstraction of the original system is used to simulate its behavior assuring that any property es-

tablished to hold for the abstract model is guaranteed to hold for the original system. The problem now

becomes a problem of finding the “right” abstraction mapping, an abstraction that maintains the neces-

sary observations for verifying the property of interest, and abstracts away non-essential information to

make verification feasible.

Abstract interpretation [25] traditionally uses an abstraction mapping that is defined for some analy-

sis, and is independent of the specific property of interest. This allows abstract interpretation to be

applied automatically and uniformly to any arbitrary program. It allows the designer of the analysis to

develop a clever and complicated representation when the analysis is designed. However, an analysis

targeted at a wide range of properties has the major disadvantage of tying the cost of verification to the

finest property that should beobservable. That is, verification of a simple property may be as expensive

as verification of a complex property. Moreover, it could lead to a non-tolerable number of false alarms

when the domain is inappropriate for the property of interest. One of the challenges in that respect is

therefore deriving a specialized program analysis algorithm that is only as precise (and as expensive)

as needed. That is, how to use a given property specification to derive a program analysis algorithm in

a way that the property of interest remainsobservablewhile as many other details of the original pro-

gram (irrelevant for verification of the property of interest) are abstracted away. This raises the second

problem addressed by this research:

Problem 2[Property-Guidedness]

(a) ConstructionGiven a non-trivial property, automatically construct a program analysis such that

the given property isobservablefor a set of programs. We refer to such construction as being

property-guided.

(b) RefinementGiven a non-trivial property, and a program analysis algorithmPA, how can the prop-

erty be used to refine the abstraction applied byPA.

1.1 Thesis Contributions

In this section, we give a brief description of the main contributions of this thesis.

Specification

We have defined a specification language calledEvolution Temporal Logic(ETL) for defining require-

ments on program behavior addressing both time and space. Unlike classical model checking, which

uses propositional temporal logic, we use a first-order temporal logic to specify temporal properties of
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heap evolutions; this logic allows domain changes to be expressed, which permits allocation and deal-

location to be modelled naturally [119]. ETL and its verification algorithms are described in Chapters4

and5.

Automatic Verification

We have defined several algorithms for verifying ETL specification for concurrent Java-like programs

[115, 119, 95, 117, 116]. Our algorithms are able to handle both safety and liveness properties specified

as ETL formulae. Our algorithms combine thread-scheduling information and information about the

shape of the heap. This leads to error-detection algorithms that are more precise than existing tech-

niques. In contrast with existing verification techniques, our algorithms do not put a bound on the

number of allocated objects (and threads). A basic algorithm for verifying non-temporal safety proper-

ties for concurrent programs is described in Chapter2. Chapter4 and Chapter5 describe algorithms for

verification of general ETL properties.

Property-Guided Abstraction

We have also investigated several techniques for guiding the abstraction by the property being verified,

resulting in more efficient and possibly more precise verification algorithms. In particular, we defined

techniques for automatic predicate derivation described in Chapter3, and for property-based separation

and heterogenous abstraction described in Chapter6.

One of the primary intuitions behind the algorithms presented in this part of the thesis is that main-

taining just the right correlation required between “analysis facts” can be the key to efficient and precise

verification: maintaining no correlations (independent attribute analysis) can lead to imprecision, while

maintaining all correlations (relational analysis) can lead to inefficiency.

Applications

The combination of the above techniques allows us to successfully verify non-trivial properties of con-

current and sequential heap-manipulating programs such as implementations of concurrent queue algo-

rithms [120]. In particular, we verified partial correctness of the two-lock queue algorithm that is part of

the java.util.concurrent package of JDK1.5. We have also used these techniques to establish

temporal properties for compile-time memory management [95], and solve verification challenges such

as the apprentice challenge presented by J. Moore [73]. Applications of our techniques are described in

Chapter7.
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Figure 1.1: Overview of thesis chapters.

1.2 How to Read this Thesis

The contributions of this thesis are both theoretical and practical. This section gives an outline of thesis

chapters and describes two possible paths of going through the presented material.

In Chapter2, we describe a parametric framework for verifying safety properties of concurrent Java

programs; this partly answers Problem1. A preliminary version of this work appeared in [115].

In Chapter3, we consider the problem oftypestate verificationfor shallow programs; i.e., programs

where pointers from program variables to heap-allocated objects are allowed, but where heap-allocated

objects may not themselves contain pointer fields. In this chapter we show how to construct a property-

guided abstraction for shallow programs and certain classes of properties. This chapter partly addresses

Problem2(a). A preliminary version of this work was published in [41].

Chapter4 and Chapter5 show two verification approaches for verifying general temporal properties

of heap-manipulating programs. The abstraction used in this chapter is refined by the verified property,

thus partly addressing Problem2(b). Preliminary versions of part of this work appeared in [119] and in

[116].

In Chapter6, we show howseparation(decomposing a verification problem into a collection of

verification subproblems) can be used to improve the efficiency and precision of verification of safety

properties. A preliminary version of this work was published in [117].

Chapter7 describes applications of our framework for verifying various properties of concurrent

and sequential heap-manipulating programs. Preliminary versions of results summarized in this chapter

appeared in [95], [120], and [114].



6 CHAPTER 1. INTRODUCTION

Fig. 1.1shows a classification of thesis chapters over a3-dimensional cube. The dimensions of this

cube are:

Heap Abstraction Describes the strength of the applied heap-abstraction. Zero on this axis means that

no heap abstraction is used, thus forcing an assumed a priori bound on the number of allocated

objects and threads. The heap abstraction used in most chapters of this thesis is the canonical

abstraction, described in Chapter2.

Program Complexity Describes the complexity of the programs that could be handled. Along this

dimension we only distinguish between sequential and concurrent programs. Our treatment of

concurrent programs is described in Chapter2. To simplify presentation, the material in the rest

of the chapters is mostly presented in terms of sequential programs.

Property Complexity Describes the complexity of the properties that could be handled. Property com-

plexity ranges from non-temporal safety properties (e.g., as used in Chapter2) to full temporal

specification that support specification of liveness properties (e.g., Chapter4).

The thesis could be read following a theoretical or a more practical track. Readers more interested

in the theoretical contributions of this thesis should read Chapter2, Chapter3, Chapter4, and Chapter5.

Readers more interested in practical contributions should read Chapter2, Chapter6, and Chapter7.

1.3 Overview

This section provides an informal overview of the content of this thesis. The section contains forward

references to chapters that formally discuss the presented material. The section is organized as follows.

Section1.3.1describes the various specification languages used in this thesis. Section1.3.2contrasts our

integrated verification approach (integrating verification and pointer-analysis) with the common two-

phased approach, providing some intuition to its preferable precision, and showing how the abstraction

is refined by the property being verified (in the spirit of Problem2(b)). In Section1.3.3we show how

specialized abstractions are constructed from user specifications (in the spirit of Problem2(a)). Finally,

in Section1.3.4we discuss verification of temporal properties.

1.3.1 Specification

In this thesis, we use various specification languages for describing correctness properties of concurrent

and sequential heap-manipulating programs. Our choice of specification language in each chapter is

aimed to simplify presentation and describe the key concepts of the chapter with minimal specification

clutter.
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Safety Liveness

Typestate

Single object finite automata Evolution Temporal Logic

(regular expressions) (ETL)

ETL

First-Order Safety

Correlated objects Easl

FOTC (non temporal)

ETL

Figure 1.2: Specification languages used in this thesis classified by the kind of properties they describe.

The specification languages we use range from first-order logic with transitive closure (FOTC),

through regular-expressions, and up to Evolution Temporal Logic (ETL) which is essentially a first-

order linear temporal logic. Fig.1.2shows the specification languages used in this thesis, classified by

the kind of properties they describe. The dimensions of the table are:

Safety / LivenessA property may be classified as a safety property that requires that nothing “bad”

ever happens, or as a liveness property that requires that something “good” eventually happens.

In this thesis, we address both safety and liveness properties.

Single object / Correlated objectsA property may require a correct behavior of each object indepen-

dently, or involve multiple correlated objects. When the correctness of a property may be verified

for a program object independently of other program objects, we classify the property as asingle

objectproperty. When the property involves multiple correlated objects, we classify it as acorre-

lated objectsproperty. Single object safety properties are often referred to astypestateproperties

[103]. Multiple object safety properties are referred to asfirst-order safetyproperties [84].

As an example, consider a File object that has two possible states:open andclosed; supports two

operations:read() , andclose() ; and assumed to be in itsopen state when created.

For this File component, we would like to specify the safety property:

a file is not read after it has been closed. (1.1)

Since this property considers each file separately (and independently of other files), and requires

that nothing “bad” (read after close) ever happens, it is classified as a single-object safety property (also

referred to as a typestate property).
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initial// open_^]\XYZ[ close //
BCED

read

GF��
closed_^]\XYZ[ {read,close} // err_^]\XYZ[ BCED

{read,close}

GF��

Figure 1.3: A finite state automaton for the propertyread ∗; close .

Specification as a Non-Temporal Safety Property

A non-temporal safety property is a property that is evaluated in every global state of the program

(configuration) independently of other global states.

Property1.1could be specified as the following non-temporal safety property:

∀v.¬(closed(v) ∧ read(v))

assuming that a unary predicateclosed(v) is set to hold for a filev when the file is closed, and a predicate

read(v) is set to hold for a filev when the file is being read from.

In Chapter2, we useFOTC formulae to describe non-temporal safety properties.

Specification via Regular Expressions

A safety property that specifies the behavior of each object independently of other objects (typestate

property) could be specified using a regular-expression, or equivalently by using a finite-automaton.

Technically, the regular-expression is taken to be a universally quantified specification that should hold

for all objects of the specified type.

Property1.1could be also specified as a simple regular expression observing the events of invoking

read() , andclose() :

read ∗; close

When specifying a safety property using a regular expression, we adopt the convention that a regular

expressionα denotes theprefix closureof the set of sequences of operations defined byα. For example,

when we writeread ∗; close we also considerε (the empty sequence) andread to be valid sequences.

This property could be equivalently specified using the finite automaton in Fig.1.31.

Chapter3 uses finite-automata and regular expressions for describing typestate properties that put

more emphasis on the sequence of events that may occur for an object in an execution of the program.

Finite-automata are also used to specify memory-management properties in Section7.1.

1since all states buterr are accepting we do not mark accepting states in the figure.



1.3. OVERVIEW 9

Specification via ETL

Property1.1 involves two events, closing a file, and reading from the file. While specification of this

property as a non-temporal safety property makes implicit assumption on how the predicatesread(v)

andclosed(v) are updated, or on when an error is reported (e.g., should an error be reported on close

after read?), specification via ETL exposes the legal sequences of events. The property

0(∀v.close(v)→ 0 ¬read(v))

explicitly states that when an object has just been closed, it should not be read from in the future.

Intuitively, the meaning of theglobally temporal operator applied to an ETL formulaϕ (denoted by

0 ϕ) is thatϕ should hold forever from the current point of computation.

Chapter4 uses Evolution Temporal Logic (ETL), a general specification language, to describe gen-

eral temporal properties of heap-manipulating programs.

In order to specify liveness properties, this thesis only uses ETL specifications (although in principle

we could have used B̈uchi-automata for subclasses of ETL, e.g. as in [106]). For example, we could

write a property that requires that a referencef refers to an open file object infinitely often:

01∃v.f(v) ∧ ¬closed(v) (1.2)

Where the temporal operatoreventuallyapplied to an ETL formulaϕ (denoted by1ϕ) intuitively

means that there exists a point in the future of the computation in whichϕ holds, andf(v) is a unary

predicate representing the fact that the objectv is pointed to by the reference variablef .

While ETL is a general specification language, it is often more convenient to use alternative spec-

ification methods such as finite-automata or theEasl specification language (see below) when only

interested in specifying safety properties.

Specification viaEasl

Easl [84] is a procedural specification language that can be used for specifying an abstract seman-

tics for a component (or a set of components).Easl statements are a subset of Java statements

containing assignments, conditionals, looping constructs, and object allocation.Easl types are re-

stricted to booleans, heap-references, and built-in abstract Set and Map types. Finally,Easl provides

a requires statement to specify the correct usage constraints imposed by the component: it is the

responsibility of any program that uses the component to ensure that the condition specified by the

requires clause will hold at the corresponding program point.Easl supports object references and

dynamic allocation. This allows us to naturally express the structural relationships between the objects

of interest, as well as dynamic allocation of these objects.

Property1.1 could be alternatively specified using theEasl specification language, as shown in

Fig. 1.4. In this specification, the state of a file object is modeled using a boolean fieldclosed which



10 CHAPTER 1. INTRODUCTION

class File {
boolean closed;

File() {
closed = false;

}
void read() {

requires !closed;

}
void close() {

closed = true;

}
}

Figure 1.4: AnEasl specification for the propertyread ∗; close .

is initially set to false. Invokingclose() on a file object sets theclosed field to true, and invoking

read() requires that the file has not been closed (i.e., that the value ofclosed is false).

Chapter6 uses theEasl specification language, that can express first-order safety properties (cor-

responding to the subclass of universally quantified safety properties in ETL).

1.3.2 Integrated Verification and Property-Guided Abstraction

A common approach to verification of heap-manipulating programs is to break the verification problem

into two phases: (i) a preprocessing phase in which a conservative finite approximation of the heap is

computed; (ii) a verification phase using the finite representation produced by the preprocessing phase.

This approach (referred to as thetwo-phased approach) is used in most existing verification frame-

works (e.g., [27, 7, 19, 36]). One of its advantages is the fact that it allows the first phase to be performed

in a flow-insensitive manner, which is more scalable. However, while this approach is appealing due to

its simplicity and sometimes scalability, it may result in a significant loss of precision, and produce a

large number of false alarms. Moreover, in some cases, the loss of precision results with inefficiency

due to the exploration of a large number of superfluous states.

The verification algorithms described in this thesis have a common theme of performing an inte-

grated verification and pointer analysis. We refer to this approach as theintegrated approach.

Generally, the analysis of combined abstract domains (e.g., our integrated approach) is more precise

than the combination of separate analyses of abstract domains (e.g., the two-phased approach) [25]. In

particular, in this section we demonstrate that even when using a rather limited (and scalable) points-to

analysis (in contrast to the shape analysis used in later sections) it may be profitable to use an integrated

analysis.
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[1] while (...) {
[2] f = new File();
[3] f.read();
[4] f.close();
[5] // do something

}

Figure 1.5: A simple example program in which loss of precision in the two-phased approach leads to a

false alarm.

Consider the code snippet in Fig.1.5. A new File component is allocated and used in every loop

iteration. For this program, we would like to show that a file is never read after it has been closed.

Two-phased Approach

Fig. 1.6 shows the result of applying the two-phased approach for the purpose of verifying that a File

component is never read after it has been closed.

We omit the information for lines1 and2, since the interesting program points are the ones im-

mediately after allocation, and immediately after closing the file. We assume that the preprocessing

phase applies a points-to algorithm based on an allocation-site abstract domain (e.g., [39]). The col-

umn Pointer Analysis Phaseshows the results of the pointer analysis. This could be computed in a

flow-insensitive manner.

In this thesis, we depict heap configurations as directed graphs. A node in the graph represents a

heap-allocated object. Nodes that potentially represent more than a single heap allocated objects are

calledsummary nodesand are depicted as nodes with double line boundaries. Properties of objects are

represented using edges from property symbol to the object node. Dashed edges in the graph represent

may information. For example, the result of pointer analysis at3 is a single summary node (abstract

object). All heap allocated objects summarized by this summary node are allocated at2, as represented

by the solid edge fromsite[2]. The dashed edge fromf to this summary node represents the fact that it

may be pointed to byf at this program point.

These notions will be formalized in future chapters.

In the finite-verification flow-sensitive phase, we start with the pointer information at line2 and

initialize the state of the File component to be open (non-closed). Then, at line3, the file referenced by

f is read, and its state remains unchanged. When interpreting the statement at line4, the file referenced

by f should change its state and become closed. However, not all the objects represented byu1 are

necessarily referenced byf (in fact, it is clear that at most one object could be referenced byf at any

given program point). Updating the state ofu1 to be closed can therefore be unsound, as it fails to

represent some of the possible program states. To guarantee soundness, the state ofu1 has to be updated

to “unknown”, meaning that it may be either open or closed. This is depicted by using a dashed edge



12 CHAPTER 1. INTRODUCTION

Program Point Pointer Analysis Phase Verification Phase

1st Iteration 2nd Iteration

[3] f // ONMLHIJKGFED@ABCu1

site[2]

OO
f // ONMLHIJKGFED@ABCu1

site[2]

OO
f // ONMLHIJKGFED@ABCu1

site[2]

OO

closed

dd

[4] f // ONMLHIJKGFED@ABCu1

site[2]

OO
f // ONMLHIJKGFED@ABCu1

site[2]

OO
f // ONMLHIJKGFED@ABCu1

site[2]

OO

closed

ii

read may be erroneous

[5] f // ONMLHIJKGFED@ABCu1

site[2]

OO
f // ONMLHIJKGFED@ABCu1

site[2]

OO

closed

dd

Figure 1.6: Two-phased analysis example.

from closed to u1 in the figure.

This kind of update to the state of the object is known as aweak update([13]), where the result of the

update is a set of possible states, including the old state. Weak updates often produce overconservative

results, producing a large number of false alarms.

Next, in the second verification iteration, the allocation at line2 does not change the possible state

for u1. Therefore, when reaching the invocation ofread() at 3, the referencef may be pointing to a

closed file, which causes the verification to produce an error. This reported error is a false alarm since

in the program of Fig.1.5, a file cannot be read after it has been closed.

Integrated Approach

We now show how an integrated approach successfully verifies that a file is not read after it has been

closed for the program of Fig.1.5.

Fig. 1.7shows the stages of the integrated flow-sensitive verification algorithm. Again, we omit the

information for lines1 and2. The integrated analysis also uses allocation-site based pointer abstraction,

as used in the two-phased approach, but integrating the pointer-analysis with the verification phase

allows us to refine the heap-abstraction using the state of the file (closed or open). Thus, objects allocated

at the same allocation site but in different states are abstracted to different elements in the abstract

domain.

First, at line3, f references an object allocated at line2 that is in the open (non-closed) state

(represented by the absence of an edge fromclosed to u1). Then, at line3, the state of the object

remains unchanged. The statementf.close() at line 4 has the effect of changing the state of the
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Program Point 1st Iteration 2nd Iteration

[3] f // ONMLHIJKu1

site[2]

OO
f // ONMLHIJKu1

ONMLHIJKGFED@ABCu2

site[2]

OO

site[2]

OO

closed

ddJJJJJJ

[4] f // ONMLHIJKu1

site[2]

OO
f // ONMLHIJKu1

ONMLHIJKGFED@ABCu2

site[2]

OO

site[2]

OO

closed

ddJJJJJJ

[5] f // ONMLHIJKu1

site[2]

OO

closed

ddJJJJJJ

f //_^]\XYZ[WVUTPQRSu1,2

site[2]

OO

closed

ddIIIIII

Figure 1.7: Integrated analysis example.

object referenced byf to be closed. This kind of update to the state of the object is known asstrong

update([13]), in which the update results with a new state without the need to record the old state of the

object as an alternative.

Next, in the second iteration at line3, f references an object allocated at2 which is in the open

(non-closed) state. This is due to the allocation in2. The statement at line3 doesn’t change the state,

and the the second iteration off.close() at line 4 results with the same abstract state we had in

the previous iteration on entry to line5. At this point of the algorithm, we reach a fixed-point, and no

new configurations arise. Since the property is never violated by these abstract configurations, we can

conclude that the property holds, and in our example program a file is never read after it has been closed.

Refining the heap abstraction by the state of the component (the File component in the above ex-

ample) is made possible by integrating the pointer-analysis with the verification phase which maintains

the state of the component. This is a special case of property-guided abstraction in which the property

being verified is used to refine the heap abstraction. This refinement provides a partial solution to Prob-

lem 2(b). In Chapter4, we will see how temporal properties are used to refine the heap abstraction in a

similar manner.

1.3.3 Property Guided Abstraction—Specialized Abstractions

Maintaining just the right correlation required between “analysis facts” can be the key to efficient and

precise verification. In this part of the thesis, we derive specialized abstractions by using the specified

property and possibly additional guidance provided by the user.
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Program Point 1st Iteration 2nd Iteration

[3] 〈{f}, {open, closed, err}〉 〈{f}, {open, closed, err}〉
[4] 〈{f}, {open, closed, err}〉 〈{f}, {open, closed, err}〉
[5] 〈{f}, {closed, err}〉 〈{f}, {closed, err}〉

Figure 1.8: Analysis of the example program using specialized abstraction derived from the property of

interest.

Using Specialized Abstraction

Chapter3 shows how to construct a specialized abstraction for certain kinds of properties and for a

restricted kind of programs calledshallow programs. In shallow programs, pointers from program

variables to heap-allocated objects are allowed, but heap-allocated objects may not themselves contain

pointers. We use the class of shallow programs to investigate the relation of the complexity of verifica-

tion to the nature of the property being verified. The idea there is, again, to construct an abstraction that

integrates pointer information with information about the state of the verified component. Constructing

such specialized abstractions allows us to provide polynomial verification algorithms for certain kinds

of properties.

One of the algorithms presented in Chapter3 can be immediately applied to verify the property of

interest in our example program. This algorithm (presented in Section3.3) can be used to derive a poly-

nomial number of predicates of the form〈A,S〉 for certain kinds of properties (under the assumption

that the analyzed programs are shallow). The intuitive meaning of a predicate of the form〈A,S〉 is that

all reference variables in the setA point to the same object (are aliased), and the object pointed to by

these references is in one of the states in the setS. We also use a designated predicateError that holds

in a program-state if and only if the program-state contains an object in the error stateerr.

For the automaton of Fig.1.3, the construction algorithm produces the predicates:

〈{f}, {open, closed, err}〉, 〈{f}, {closed, err}〉, 〈{f}, {err}〉,Error

whereopen is the initial state of a File component.

Using these predicates in an independent attribute analysis on the (shallow) example program of

Fig. 1.5 results in the states shown in Fig.1.8, thus proving that the property holds for the example

program in polynomial time.

It is important to note that results in this chapter apply to programs that are shallowwith respect to

the type being verified, i.e., only objects of the verified type are required to be shallow and the rest of

the heap may have an arbitrary depth.
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[1] while (...) {
[2] f = new File();
[3] if (chosen == null) {
[4] if (?) {
[5] chosen = f;
[6] }
[7] }
[8] f.read();
[9] f.close();
[10] // do something

}

Figure 1.9: An instrumented version of the example program instrumented to non-deterministically

choose a single File component to be verified.

Using Separation

In Chapter6, we further investigate the idea of guiding the abstraction by user-specification, and allow

the user to provide a specification of how to decompose a verification problem into a number of inde-

pendent subproblems that could be verified independently in an efficient manner. In this chapter, we

also present a general framework ofheterogeneous abstractionsthat allow different parts of the heap

to be abstracted using different degrees of precision, at different points during the analysis. We show

how to achieve more efficient verification by using the separation strategy (provided by the user) to

transform (instrument) a verification problem instance (consisting of a safety property specification and

an input program), and then utilize heterogeneous abstraction during the verification of the transformed

verification problem.

For our example program (Fig.1.5) and Property1.1, separation amounts to the simple idea of

verifying the property separately for each allocated file component. This could be viewed as verifying

the property for a singlerepresentativefile (thechosenone) in the instrumented code of Fig.1.9. In this

instrumented version of the program, each time a file is allocated, non-deterministic selection is applied

to choose a singlechosenfile, if one has not been already selected (in this thesis we use ‘?’ to denote

a nondeterministic branch, as in line4). As a result, in any execution of the instrumented program,

at most one File component will be (nondeterministically) selected as thechosenone. Our verification

procedure will only verify the correct usage of thischosenfile component (referenced bychosen ) in an

execution. By exploring all possibilities of nondeterministic choice for thechosenfile component, our

verification method is guaranteed to represent all possible file components, and is therefore guaranteed

to be sound. Using this form of separation allows us to successfully verify the desired property. The

results of applying verification with separation to this example are shown in Fig.1.10.

The example program and property used here are extremely simple. In Chapter6, we handle a more

general setting involving first-order safety properties.
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Pt 1st Iteration 2nd Iteration 3rd Iteration

[8] f // ONMLHIJKu1

chosen

<<zzzzz
site[2]

OO
f // ONMLHIJKu1
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site[2]
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site[2]
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closed

bbDDDDD

f // ONMLHIJKGFED@ABCu1
ONMLHIJKu2 chosenoo

site[2]

OO

closed

aa

site[2]

OO

closed

bbDDDDD

f // ONMLHIJKu1

site[2]

OO
f // ONMLHIJKGFED@ABCu1

site[2]

OO

closed

aa
f // ONMLHIJKu1

ONMLHIJKGFED@ABCu2

chosen

<<zzzzz
site[2]

OO

site[2]

OO

closed
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[9] f // ONMLHIJKu1

chosen

<<zzzzz
site[2]

OO
f // ONMLHIJKu1

ONMLHIJKu2 chosenoo

site[2]

OO

site[2]

OO

closed

bbDDDDD

f // ONMLHIJKGFED@ABCu1
ONMLHIJKu2 chosenoo

site[2]

OO

closed

aa

site[2]

OO

closed

bbDDDDD

f // ONMLHIJKu1

site[2]

OO
f // ONMLHIJKGFED@ABCu1

site[2]

OO

closed

aa
f // ONMLHIJKu1

ONMLHIJKGFED@ABCu2

chosen

<<zzzzz
site[2]

OO

site[2]

OO

closed

aa

[10] f // ONMLHIJKu1

chosen

<<zzzzz
site[2]

OO

closed

aaCCCCC

f // ONMLHIJKu1
ONMLHIJKu2 chosenoo

site[2]

OO

closed

aaCCCCC
site[2]

OO

closed

bbDDDDD

f // ONMLHIJKGFED@ABCu1
ONMLHIJKu2 chosenoo

site[2]

OO

closed

aa

site[2]

OO

closed

bbDDDDD

f // ONMLHIJKu1

site[2]

OO

closed

aaCCCCC

f // ONMLHIJKGFED@ABCu1

site[2]

OO

closed
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f // ONMLHIJKu1

ONMLHIJKGFED@ABCu2

chosen

<<zzzzz
site[2]

OO

closed

aaCCCCC
site[2]

OO

closed

aa

Figure 1.10: Analysis of the example program using simple separation.
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1.3.4 Verifying Temporal Properties

In Chapter4 and Chapter5 we investigate two techniques for verifying general ETL specifications for

heap-manipulating programs. For example, we can verify Property1.2for the program of Fig.1.11. The

technique of Chapter5 performs verification by showing that the program does not satisfy the negation

of the original specification (also referred to as theviolation property). For Property1.2, the violation

property is:

ϕ =10 ∀v.¬f(v) ∨ closed(v)

In Chapter5, we show how to derive the following set of predicates from the violation property, by

taking the closure (all subformulae) of the ETLformula:

{〈10 ∀v.¬f(v) ∨ closed(v)〉, 〈0 ∀v.¬f(v) ∨ closed(v)〉, 〈∀v.¬f(v) ∨ closed(v)〉}

These predicates correspond to future obligations that should be satisfied by the program’s exe-

cution. We denote by〈ϕ〉 the predicate recording the fact thatϕ should be satisfied by the future (or

present) of program execution. Initially, we require that the future of the execution satisfies the violation

property. As the analysis progresses, future obligations may be fulfilled, possibly leading to a repeatable

state in which no further obligations exist, thus satisfying the violation property.

Fig. 1.12shows part of the results produced in an attempt to verify Property1.2 for the program of

Fig. 1.11. Initially, the predicate〈10 ∀v.¬f(v) ∨ closed(v)〉 holds, recording the fact that the future

of the computation should satisfy the property10 ∀v.¬f(v) ∨ closed(v). When the analysis reaches

line5, the single file component becomes closed, satisfying the local property∀v.¬f(v)∨closed(v), and

thus possibly starting a continuous sequence for which0 ∀v.¬f(v)∨ closed(v) holds. As a result, our

analysis takes two possibilities into account (producing two possible configurations at this point): (i) the

future of the computation from this point on satisfies0 ∀v.¬f(v)∨ closed(v); (ii) the property has not

stabilized yet, and the future of the computation should satisfy the initial property10 ∀v.¬f(v) ∨
closed(v). However, when the configuration recording possibility (i) above reaches line3, the property

0 ∀v.¬f(v) ∨ closed(v) no longer holds, and this configuration is not propagated any further. When

the analysis terminates, it does so without finding a configuration that satisfies the violation property,

thus showing that Property1.2holds for the example program.

The example program and property used here are very simple. In particular, Property1.2 does

not relate individuals (objects) across configurations and is essentially a propositional property over

propositions extracted from a first-order configuration. In Chapter4 we refer to such specifications as

temporally separablespecifications, and handle more general properties that may relate individuals of

different configurations.

The technique presented in Chapter4 operates directly on abstract representation of traces and pro-

vides a conceptual model for the verification of heap-manipulating programs. In this technique, a possi-

bly infinite set of infinite traces is finitely represented by an abstract trace. ETL properties are translated
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[1] while (true) {
[2] f = new File();
[3] f.read();
[4] f.close();
[5] // do something

}

Figure 1.11: A simple example program reading from a component referenced byf infinitely often.

into FOTC formulae that are evaluated directly over a first-order representation of abstract traces. For

brevity, we do not demonstrate the application of this technique in this overview section.
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Pt 1st Iteration 2nd Iteration 3rd Iteration
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Figure 1.12: Verifying property1.2for the program of Fig.1.11
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Chapter 2

Verifying Safety Properties of Concurrent

Java Programs Using 3-Valued Logic

We provide a parametric framework for verifying safety properties of concurrent Java programs. The

framework combines thread-scheduling information with information about the shape of the heap. This

leads to error-detection algorithms that are more precise than existing techniques. The framework also

provides the most precise shape-analysis algorithm for concurrent programs. In contrast to existing

verification techniques, we do not put a bound on the number of allocated objects. The framework even

produces interesting results when analyzing Java programs with an unbounded number of threads. The

framework is successfully applied to verify the following properties of a concurrent program:

• Concurrent manipulation of linked-list based ADT preserves the ADT datatype invariant. When

applied to concurrent queue implementations, this allows proving the correctness of the queue

algorithms (e.g., two-lock queue).

• The program does not perform inconsistent updates due to interference.

• The program does not reach a deadlock.

• The program does not produce runtime errors due to illegal thread interactions.

We also find bugs in erroneous versions of such implementations.

A prototype of our framework has been implemented and applied to interesting example programs.

“I have now in my hands,” my companion said, confidently,

“all the threads which have formed such a tangle...”

–Sir Arthur Conan Doyle,A Study in Scarlet.

21
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2.1 Introduction

Java provides low-level concurrency-control constructs that enable the programmer to create compli-

cated and powerful synchronization schemes. The Java language provides no means for compile-time

checking and almost no means for runtime checking of the correctness of concurrent behavior. This

makes concurrent programming in Java quite error-prone (e.g., [108]).

The theme of this chapter is to develop compile-time techniques for verifying safety properties

by detecting program configurations that may violate desired properties. This is a different task than

dynamic anomaly-detection techniques, which operate on a given input (and thus can only show the

presence of errors, not their absence).

2.1.1 Main Results and Related Work

In this chapter, we present a framework for verifying safety properties of concurrent Java programs. This

framework handles dynamic allocation of objects and references to objects. This allows us to analyze

programs that dynamically allocate thread objects, and even programs that create an unbounded number

of threads. Dynamic allocation of threads is common when implementing services in threads (e.g., [63],

ch. 6). For these programs, we can verify properties such as the absence of interference. Handling

dynamically allocated objects also allows us to model concurrent programs that manipulate linked-lists

in the most precise known way.

A Parametric Framework for Verifying Safety Properties

We provide a parametric framework for verifying safety properties of concurrent Java programs. We use

different instances of this framework (see Section2.1.1) to obtain static-analysis algorithms that have

the ability to verify different safety properties.

The semantics of Java can be described using a structural operational semantics (e.g., [59]) in terms

of configurations(or states). In our framework, the operational semantics of Java statements (and con-

ditions) is specified using a meta-language based on first-order logic with transitive-closure. The same

meta-language is also used to check that a safety property holds in a given configuration. Our frame-

work then computes a safe approximation of the (usually infinite) set ofreachable configurations, i.e.,

configurations that can arise during program execution. This can be formulated within the theory of

abstract interpretation [24]. The main idea is to conservatively represent many configurations using a

singleabstract configuration. The effect of every statement (and condition) on an abstract configuration

is then conservatively computed, yielding another abstract configuration. Also, the framework conserv-

atively verifies that all the “reachable abstract configurations” satisfy the desired safety property. Thus,

we may falsely report that a safety property may be violated (false alarm) but can never miss a violation.



2.1. INTRODUCTION 23

Our framework can be viewed as on-the-fly model checking [17] for verifying safety properties of

programs. On-the-fly model checking does not require the construction of a global state graph as a

prerequisite for property verification. In order to handle dynamic creation and references to objects, we

use first-order logical structures to represent configurations of the program. Astate-space exploration

algorithm (see Fig.2.4) is used to generate the configurationsreachablefrom an initial set of configu-

rations. The effect of every program statement is modeled byactionsspecified usingfirst-order logical

formulae. Our abstract configurations are bounded representations of logical structures. A (concrete)

configuration is automatically abstracted into an abstract configuration.

Many approaches were proposed to handle verification of unbounded data structures. Traditional

approaches consist of manually abstracting the data-structure into a simple finite state machine repre-

senting the states of the data-structure that are relevant to the verification problem (e.g., [101, 103]).

Other, more recent approaches, use a combination of theorem-proving and model checking techniques

to automatically construct such abstractions [1, 8, 9].

Our framework should be contrasted with traditional model checking algorithms in which a bounded

representation is guaranteed by usingpropositional formulaefor actions. Moreover, most model check-

ing techniques perform an abstraction when the model is extracted, and apply actions with a fixed

number of propositional variables ([16]). This could be trivially encoded in our framework by using

only nullary predicates (and thus the number of individuals in a logical structure is immaterial). In

fact, our framework allows more general (and natural) modeling of programs by using unary and binary

predicates. This is crucial in order to handle dynamically allocated objects and references to objects

where the “name” of the object is unknown at compile-time. Even the technique of [38] (formulated

for processes rather than threads) relies on explicit process names, and thus cannot handle dynamic

allocation of processes.

ESP [27] and SLAM [72] use a preceding pointer-analysis phase and use the results of this phase

to perform finite-state verification of sequential programs. Separating verification from pointer-analysis

may generally lead to imprecise results (see Section1.3.2). In contrast, our framework handles concur-

rent programs, and applies integrated verification and pointer analysis which is more precise.

Bandera [19] is a framework for translating Java programs to a program model acceptable by ex-

isting model checking tools. During translation, the model is reduced using slicing and other program

analyses.

[90] presents a new modular and customizable model checking framework. Similarly to ESP and

SLAM, this framework assumes that pointer-analysis is applied as a preprocessing phase, prior to veri-

fication.

JavaPathFinder [52] and Java2Spin [31] translate Java source code to PROMELA representation.

The SPIN model-checker [55] is then used to verify properties of the PROMELA program. Both these

tools put a bound on the number of allocated objects since it is imposed by SPIN. A variant of SPIN
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named dSPIN [32] supports dynamic allocation of objects. However, since it uses no abstraction, it

can only handle bounded data-structures and a bounded number of threads. [14] presents a method for

the verification of parametric families of systems. A network grammar is used to construct a process

invariant that simulates all systems in the family. However, it cannot handle dynamic allocation of

objects.

Das, Dill, and Park [28] have used predicate abstraction to verify the properties of a cache coherence

algorithm and a concurrent garbage-collection algorithm. The garbage collection algorithm was verified

in the presence of a single mutator thread executing concurrently with the collector.

Saidi [92] presents new abstraction predicates but does not have the notion of summary nodes. Thus,

it cannot handle programs with an unbounded number of allocated objects. Moreover, our framework

presents a model checking algorithm that recognizes abstraction as suggested there.

In our framework, rather than having separate model-extraction and model checking phases, we

follow the abstract-interpretation approach [24] and cast our analysis in a syntax-directed manner.

Technically speaking, our framework is a generalization of [91] in the following aspects: (i) Pro-

gram configurations are used to model the global state of the program instead of modeling only the

relationships between heap-allocated objects. This allows us to combine thread scheduling information

with information about the shape of the heap. (ii) Program control-flow is not separately represented,

but instead the program location of each thread is maintained in the configuration which allows us to

handle an unbounded number of threads in a natural way. This is naturally coded in first-order logic as a

property of a thread (in contrast to model checking in which it is externally coded). Furthermore, it does

not require control-flow information to be computed in a separate earlier phase. This is an advantage

because the imprecision in control-flow computation could lead to imprecise results. (iii) We use the

standard interleaving model of concurrency. A slightly different generalization is used in [79], which

even allows the program to modify itself to support the semantics of Mobile Ambients [12].

The FLAVERS system [76] uses trace flow graphs with feasibility constraints, represented as finite-

state automata, to model the semantics of concurrent Java programs. An important difference between

our framework and FLAVERS is that our framework has the ability to model the dynamic creation

of objects and threads. Moreover, since every finite automaton can be coded in our framework, it

generalizes FLAVERS. However, the cost of doing that in our current implementation may be higher.

In [98], a framework for model checking distributed Java programs is presented. This framework

uses partial-order methods to reduce the size of the explored state-space. However, it uses no abstraction

and thus can only handle bounded data structures and a bounded number of threads. We intend to use

similar partial-order methods in future versions of our framework.

In [18], shape analysis of concurrent programs is used to reduce finite-state models of concurrent

Java programs. In this analysis, the number of threads is bounded. The algorithm presented is based on

[13], which uses a singleshape graphfor each program location, and uses an abstraction which leads to
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overly imprecise results (e.g., in programs that traverse data structures based on allocation sites).

In [104], shape analysis of concurrent programs is used for eliminating synchronization. As in [18],

the algorithm presented is an extension of [13] and suffers from the same imprecision. It should be

noted that despite the different goals of our work, it is significantly more precise. In particular, it always

performs strong updates.

In [3], static analysis is used to identify opportunities to eliminate unnecessary synchronization.

That work assumes a static control-flow-graph, and ignores thread-scheduling mechanisms.

Applications

We have used our framework to verify the properties listed below.

Interference: Two threads are said tointerferewhen they may both access a shared object simulta-

neously, and at least one of them is performing an update of the shared object. We use our framework

to locate read-write and write-write interference between threads (see [78]). Here, we benefit from the

fact that the analysis keeps track of both scheduling information and information about the shape of the

heap. For example, in a two-lock-queue (see [71], also shown in the appendix) we are able to show that

write-write interference is not possible since writing is never performed on the same object.

Deadlock: Our framework has been used to verify the absence of a few types of deadlocks: (i) total

deadlocks in which all threads are blocked. (ii) nested monitors deadlocks, which are very common in

Java ([108]) (iii) partial deadlocks created by threads cyclically waiting for one another.

We are also able to verify that a program complies with a resource-ordering policy, and thus cannot

produce a deadlock (see [63], ch. 8).

Shared ADT: Our framework has been used to verify that a shared ADT, based on a linked-list,

preserves ADT properties under concurrent manipulation. Here, the strength of our technique is ob-

vious, since precise information about the structure of a scheduling queue can be used to precisely

reason about thread scheduling. In particular, our framework has been applied to verify the concur-

rent queue algorithms presented by Michael and Scott in [71] which are in part implemented in the

java.util.concurrent package of JDK1.5. (a preliminary version of this case study appeared in

[120]).

Our framework has also been applied to prove the correctness of the apprentice challenge, originally

presented by J. Moore as a challenge for Java verification [73].

For example, Fig.2.1(a) shows a concurrent program using a queue. The implementation of the

queue is given in Fig.2.1(b) and Fig.2.2. This program is used as a running example throughout this

chapter. Our technique is able to show that the properties of the queue are correctly maintained by

this program without anyfalse alarms. Moreover, since the analysis is conservative, it is guaranteed to

report errors when analyzing an ill-synchronized version of the same queue (not shown here).
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Illegal Thread Interactions: The Java semantics allows the programmer to introduce thread inter-

actions that are illegal and result in an exception during program execution (this is the only runtime

checking applied by Java for correctness of concurrent behavior). For example — starting a thread more

than once will result with anIllegalThreadStateException being thrown. Our framework has

been used to detect such illegal interactions.

Prototype Implementation

We have implemented a prototype of our framework called3VMC [113]. In Section2.6, we report

experimental results of applying this prototype to several small but interesting programs. We then

show a detailed case study of applying our framework to verify the correctness of concurrent queue

algorithms.

Currently, we do not perform interprocedural analysis and assume that procedures are inlined. Sup-

port for (recursive) procedures can be added by extending the approach described by [88].

The main disadvantage of our current implementation is that no optimizations are used, and thus

only small programs can be handled. However, we are encouraged by the precision of our results and

the simplicity of the implementation.

Outline of this Chapter

In Section2.2, we give a brief overview of Java’s concurrency model. Section2.3 defines our formal

model which uses logical structures to represent program configurations. Section2.4 shows how mul-

tiple program configurations can be conservatively represented using a 3-valued logical structure. In

Section2.5, we show how our method can be used to detect several common concurrency errors. In

Section2.6, we describe the prototype implementation and results we have obtained using it to ana-

lyze a few small but interesting programs. Application of the framework to more realistic examples is

described in Chapter7.

2.2 Java Concurrency Model

We now give a short description of the Java concurrency-primitives used in this thesis. The reader is

referred to [47, 63, 67] for more details.

Java contains a few basic constructs and classes specifically designed to support concurrent pro-

gramming:

• The classjava.lang.Thread , used to initiate and control new activities.

• Thesynchronized keyword, used to implement mutual exclusion.
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class Producer implements Runnable {
protected Queue q;

...

public void run() {
...

q.put(val1);

}
}
class Consumer implements Runnable {

protected Queue q;

...

public void run() {
...

val2 = q.take();

}
}
class Approver implements Runnable {

protected Queue q;

...

public void run() {
q.approveHead();

}
}

class Main {
public static void main(String[] args) {

lm1 Queue q = new Queue();

lm2 Thread prd = new Thread(new Producer(q));

lm3 Thread cns = new Thread(new Consumer(q));

lm4 for(int i = 0; i < 3; i++) {
lm5 new Thread(new Approver(q)).start();

}
lm6 prd.start();

lm7 cns.start();

}
}

(a)

// Queue.java

class Queue {
private QueueItem head;

private QueueItem tail;

...

public void put(int value) {
lp1 QueueItem x i = new QueueItem(value);

lp2 synchronized(this) {
lp3 if (tail == null) {
lp4 tail = x i;

lp5 head = x i;

} else {
lp6 tail.next = x i;

lp7 tail = x i;

}
lp8 }
lp9 }

public QueueItem take() {
lt1 synchronized(this) {

QueueItem x d = null;

lt2 if (head != null) {
lt3 newHead = head.next;

lt4 x d = head;

lt5 x d.next = null;

lt6 head = newHead;

lt7 if (newHead == null) {
lt8 tail = null;

}
}

lt9 }
lt10 return x d;

}
public void approveHead() {

la1 synchronized(this) {
la2 if (head != null)

la3 head.approve();

la4 }
}

}

(b)

Figure 2.1: (a) a simple program that uses a queue, (b) simplified Java source code for a queue imple-

mentation.
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// QueueItem.java

class QueueItem {
private QueueItem next;

private int value;

private boolean isApproved;

...

public void approve() {
...

}
}

Figure 2.2: Simplified Java source code for a QueueItem implementation.

• The methodswait , notify , andnotifyAll defined injava.lang.Object , used to co-

ordinate activities across threads.

The constructor for theThread class takes an object implementing theRunnable interface as a

parameter. TheRunnable interface requires that the object implement therun() method. Threads

may be also created directly without aRunnable object, by inheriting from theThread class, and

overriding therun() method. However, in this thesis we prefer to always use Thread construction with

aRunnable object.

A thread iscreatedby executing anew Thread() allocation statement. A thread isstartedby

invoking thestart() method and starts executing therun() method of the object implementing the

Runnable interface.

Initially, a program starts with executing themain() method by the main thread. Java assumes that

threads are scheduled arbitrarily.

The program shown in Fig.2.1(a) contains3 classes implementing theRunnable interface: a

Producer class, which puts items into a shared queue; a balkingConsumer class, which takes items

from a shared queue and does not wait for an item if the queue is empty; and anApprover class, which

performs some computation on a queue element to approve it. The program starts by executing the

main() method, which creates a shared queue, a Producer thread, a Consumer thread, and3 Approver

threads. Threads in the example are started at labelslm5, lm6, andlm7.

Each Java object has a unique implicit lock associated with it. In addition, each object has an

associated block-set and wait-set for managing threads that are blocked on the object’s lock or waiting

on the object’s lock. When asynchronized(expr) statement is executed by a threadt, the object

expressionexpr is evaluated, and the resulting object’s lock is checked for availability. If the lock has

not beenacquiredby any other thread,t successfully acquiresit. If the lock has already been acquired

by another threadt′, the threadt becomesblockedand is inserted into the lock’s block-set. A thread
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may acquire more than one lock, and may acquire a lock more than once. When a thread leaves the

synchronized block, it unlocksthe lock associated with it. When a lock has been acquired more than

once (by the same thread), it is released only when a matching number ofunlockoperations is performed.

In the example shown in Fig.2.1, we guarantee that the queue operations are atomic by putting

critical code into asynchronized(this) block.

A threadt may becomewaitingon a lockl by invoking a call too.wait() on l’s object (o); a call

to o.wait() putst in l’s wait-set.

Whent becomes waiting onl, it releases the lockl, but does not release any other locks it acquired.

A waiting threadt can be only released by another thread invokingo.notify() , o.notifyAll()

for the lockl or interrupt() on the threadt.

Invokingnotify() on an object removes an arbitrary thread from the object’s wait-set, and makes

it available for scheduling. InvokingnotifyAll() on an object, removes all threads from the wait-

set, and makes them available for scheduling.

A threadt should only invokewait() , notify() andnotifyAll() when it is holding the

object’s lock, otherwise an exception is thrown.

A threadt1 may wait for another threadt2 to complete execution andjoin it, by invoking a call to

t2.join(). If t2 is not yet started ort2 is already dead, the call fort2.join() is ignored.

Java uses a variant of no-priority non-blocking monitors [11]. In no-priority monitors a notified

thread has no priority over blocked threads, or over a thread just reaching the monitor entrance. Notified

threads, blocked threads, and entering threads have the same priority when competing to acquire a lock.

Therefore, a notified thread does not resume execution immediately, but is moved to the block-set, and

competes to re-acquire the lock.

For the sake of simplicity and readability we make the following simplifying assumptions:

• We assume the identity of the lock forsynchronized(exp) , and the target object of scheduling-

related methods, is given as a single reference variable rather than a general reference expression

as supported by the Java language. If the program uses a general expression, we normalize the

program by adding a temporary variable.

• Similarly, we assume the target object of scheduling-related methods (notify() ,

notifyAll() , wait() etc.) is given as a single reference variable.

• We assume that the memory-model provides sequential consistency. This assumption abstracts

away the actual details of the memory model and is common to all Java verification frameworks.

While our framework is expressive enough for expressing the lower-level semantics involving the

actual memory-model, the behavior of that model under abstraction remains an issue for further

research.
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• For the sake of clarity, we do not present here the semantics for multiple acquisitions of a lock by

the same thread.

• We may handle additional Java features such as exceptions and dynamic binding in a conservative

manner.

2.3 A Program Model

In this section we lay the ground for our analysis of Java programs. In Section2.3.1we use logical

structures to represent the global state of a multithreaded program. Section2.3.2uses logical formulae

as meta-language to extract interesting properties of a configuration such as mutual exclusion. Then, in

Section2.3.3, we define a structural small step operational-semantics which manipulates configurations

using logical formulae. Finally, in Section2.3.4, we describe the safety properties that are verified in

this chapter.

2.3.1 Representing Program Configurations via Logical Structures

First-order logical structures provide a natural formalism for representing the global state of a heap-

manipulating program — individuals of the first-order structure correspond to heap-allocated objects,

properties of objects are represented using unary predicates, and relationships between objects are rep-

resented using binary predicates. It is also possible to use first-order logical structures to model non

heap-allocated objects (such as integer values), as well as enforce a typing mechanism on objects by

using a unary predicateis T (v) to denote objects of typeT .

A program configurationencodes a global state of a program which consists of (i) a global store,

(ii) the program-location of every thread, and (iii) the status of locks and threads, e.g., if a thread

is waiting for a lock. Technically, first-order logic with transitive-closure is used in this chapter to

express configurations and their properties in a parametric way. Formally, we assume that there is a

set of predicate symbolsP for every analyzed program each with a fixed arity. Table2.1 contains the

predicates used to analyze our example programs.

• The unary predicateε(v) holds for objects that exist in the current configuration.

• The binary predicateeq(v1, v2) holds for objects that are equal.

• A unary predicateis T (v) is used to denote the objects of typeT . In particular, the unary pred-

icateis thread(t) denotes objects that are threads, i.e., instances of thejava.lang.Thread

or its subclasses.
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Predicates Intended Meaning

ε(v) v exists in the configuration

eq(v1, v2) v1 equals tov2

is T (v) v is an object of typeT

zero(v) the individualv represents integer value zero

succ(v1, v2) v2 is the successor value ofv1

{at[lab](t) : lab ∈ Labels} threadt is at labellab

{rv[fld](v1, v2) : fld ∈ RFields} field fld of the objectv1 points to the objectv2

{iv[fld](v1, v2) : fld ∈ IF ields} field fld of the objectv1 has the valuev2

held by(l, t) the lockl is held by the threadt

blocked(t, l) the threadt is blocked on the lockl

waiting(t, l) the threadt is waiting on the lockl

Table 2.1: Predicates for partial Java semantics.

• To model integer values, we introduce objects of type unsigned-integer, where the unary predicate

zero(v) is used to record the integer with the value zero, and the binary predicatesucc(v1, v2) to

record the successor relationship between integers.

• For every potential program-location (program label)lab of a threadt, there is a unary predicate

at[lab](t) which is true whent is atlab.

• For every class field and function parameterfld , a binary predicaterv[fld](v1, v2) records the

fact that thefld field of the objectv1 points to the objectv2.

• For every integer valued fieldifld , a binary predicateiv[fld](v1, v2) that represents the integer

value of a field by relating an objectv1 to an individual representing an integer valuev2.

• The predicatesheld by(l, t), blocked(t, l) andwaiting(t, l) model possible relationships be-

tween locks and threads.held by(l, t) is true when the lockl has been acquired by the thread

t, via a successfulsynchronized statement.blocked(t, l) is true when the threadt is blocked

on the lockl, as a result of an unsuccessfulsynchronized statement.waiting(t, l) is true

when the threadt is waiting for the lockl as a result of invoking await() call.

Note that predicates in Table2.1are actually written in a generic way and can be applied to analyze

different Java programs by modifying the set of labels and fields.

A program configurationis a2-valued logical structureC\ = 〈U \, ι\〉 where:

• U \ is the infinite universe of the2-valued structure. Each individual inU \ represents an allocated
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Figure 2.3: A concrete configurationC\
2.3.

heap object (some of which may represent the threads of the program, and the configuration also

contains an infinite number of individuals representing the unsigned integers).

• ι\ is the interpretation function mapping predicates to their truth-value in the structure, i.e., for

every predicatep ∈ P of arity k, ι\(p) : U \k → {0, 1}.

Usually, not all logical structures represent valid program configurations, therefore TVLA/3VMC

allows the programmer to introduce integrity constraints specified asFOTC (first order-logic with tran-

sitive closure) formulae [91]. The integrity constraints for integers are simply the Peano axioms encoded

usingFO formulae.

In this thesis, program configurations are depicted as directed graphs. Each existing individual of

the universe (one for whichε holds) is displayed as a node — objects of type thread are presented

as hexagonal nodes, other objects as round nodes. A unary predicatep which holds for an individual

(node)u is drawn inside the nodeu. Since only objects for whichε holds are shown, we do not draw

this predicate. In some of the figures, we use node names written inside angle brackets. Node names

are only used for ease of presentation and do not affect the analysis. A true binary predicatep(u1, u2)

is drawn as directed edge fromu1 to u2 labeled with the predicate symbol. For brevity, the predicate

eq(v1, v2) is not shown, and the integer nodes are omitted when possible. We use anatural sign (\) to

denote entities of the concrete domain (e.g.,C\ denotes a concrete configuration C).

Example 2.3.1 The configurationC\
2.3 shown in Fig.2.3 corresponds to a global state of the example

program with 5 threads: a singleproducerthread (labeledprd) which acquired the queue’s lock, a

singleconsumerthread (labeledcns) which is blocked on the queue’s lock, and 3approvingthreads

(a1, a2, a3) which haven’t performed any action yet. The role of the predicater by[fld](o) will be

explained in future sections. For clarity of presentation, we omit theRunnable objects and present

only thread objects.
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All threads in the example use a single shared queue containing 5 items{u0, . . . , u4}. The binary

predicaterv[next](o1, o2) records for each objecto1 the target object referenced by itsnext field.

Note that the number of elements that actually exist in a universe is not bounded since the analyzed

program may allocate new non-thread individuals, new thread individuals, or both. We do not place a

bound on the number of allocated objects.

2.3.2 Extracting Properties of Configurations using Logical Formulae

Properties of a configuration can be extracted by evaluating a first-order logical formulae with transi-

tive closure (FOTC) over configurations. The (standard) syntax and semantics ofFOTC are given in

AppendixA.

In this thesis, we are mostly interested in properties that hold for objects that actually exist in a

configuration. We therefore define the following notion of relativization for a formula in negation normal

form (where negations only appear over predicates).

Definition 2.3.2 Given anFOTC formulaϕ in negation normal form (NNF), we define therelativiza-

tion (ϕ)ε ofϕ as follows:

(1)ε = 1

(0)ε = 0

(p(v1, . . . , vk))ε =
∧

1≤i≤k ε(vi) ∧ p(v1, . . . , vk)

(¬p(v1, . . . , vk))ε =
∧

1≤i≤k ε(vi) ∧ ¬p(v1, . . . , vk)

(ϕ ∧ ψ)ε = (ϕ)ε ∧ (ψ)ε

(ϕ ∨ ψ)ε = (ϕ)ε ∨ (ψ)ε

(∃v.ϕ(v))ε = ∃v.ε(v) ∧ (ϕ(v))ε

(∀v.ϕ(v))ε = ∀v.ε(v) =⇒ (ϕ(v))ε

((TC v1, v2: ϕ)(v3, v4))ε = (TC v1, v2: (ϕ)ε ∧ ε(v1) ∧ ε(v2))(v3, v4)

((NTC v1, v2: ϕ)(v3, v4))ε = (NTC v1, v2: (ϕ)ε ∨ ¬(ε(v1) ∧ ε(v2)))(v3, v4)

For example, the following formula describes the fact that a lock pointed-to by thethis field of a

thread, has been acquired by the thread, and is now being held by the thread.

∃t, l.is thread(t) ∧ rv[this](t, l) ∧ held by(l, t)

the relativization of this formula is

∃t, l.ε(t) ∧ ε(l) ∧ is thread(t) ∧ rv[this](t, l) ∧ held by(l, t)
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which means that this formula will only evaluate to true in a configuration where both the threadt and

the lockl actually exist.

In the rest of this chapter, unless stated otherwise, we assume that formulae are implicitly normalized

to NNF and relativized before evaluation

For ease of notation, we use the shorthand∀v : type.ϕ , ∀v.is type(v) → ϕ. Which allows us to

write the above formula in a more readable form as:

∃t : thread∃l.rv[this](t, l) ∧ held by(l, t)

Our experience indicates that it is quite natural to express configuration properties using first-order

logics.

Transitive closure is useful in the running example for expressing reachability. For example, the fact

that an elementu1 in the queueq is reachable fromhead , we write the formula:

∃u.rv[head](q, u) ∧ rv[next]∗(u, u1)

Note that the program-location of each thread can be used in a formula by using the appropriate

label. For example, consider a labellcrit which corresponds to a critical section. We formalize the

mutual exclusion requirement using the following formula:

∀t1, t2 : thread.(t1 6= t2)→ ¬(at[lcrit](t1) ∧ at[lcrit](t2))

2.3.3 A Structural Operational Semantics of Configurations

Fig. 2.4shows a state-space exploration. For each configurationC such thatC is not already amember

of thestate-space, we explore every configurationC ′ that can be produced by applying some action to

the current configurationC.

Every resulting configurationC ′, is added to thestate-spaceusing set union. The membership

operator used is set-membership, we will later use a generalized membership operator. In the case of

set membership, this algorithm is essentially the classic state-space exploration used in model checking

[17]. However, in contrast to model checking, there is no bound on the number of objects, and therefore

the state-space explored by this algorithm is not guaranteed to be finite. A possible solution for this

problem is given in Section2.4.

Informally, anaction is characterized by the following kinds of information:

• Thepreconditionunder which the action is enabled, expressed as logical formula. This formula

may also include a designated free variablets to denote the “scheduled” thread on which the action

is performed. Our operational semantics is non-deterministic in the sense that many actions can

be enabled simultaneously and one of them is chosen for execution. In particular, it selects the

scheduled thread by an assignment tots. This implements the interleaving model of concurrency.
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initialize( C0) {
WorkSet = C0

}

explore() {
while WorkSet is not empty {

select and remove C from WorkSet

if not member(C, stateSpace) {
verify(C)

stateSpace′ = stateSpace ∪ {C}
for each action ac

for each C′ such that C ⇒ac C′

WorkSet = WorkSet ∪ {C′}
}

}
}

Figure 2.4: State space exploration.

• Enabled actions create a new configuration where the interpretations of every predicatep of arity

k is determined by evaluating a formulaϕp(v1, v2, . . . , vk) which may usev1, v2, . . . , vk andts

as well as all other predicates inP .

Table2.2 defines the semantics of concurrency statements used in the running example. The table

lists a precondition and update formulae for each action. The value of a predicatep(v1, v2, . . . , vk) after

the update is given by a formulaϕp(v1,v2,...,vk). Predicates not given an update formulae are assumed

to remain unchanged by the action. The set of actions is partitioned to blocking and non-blocking

actions. Blocking actions do not affect the program-location. Non blocking actions advance to the next

program-location by updating theat[lab](ts) predicates for the thread.

A Java statement may be modeled by several alternative actions corresponding to the different be-

haviors of the statement.

When a precondition is enabled, it determines a thread (denoted byts) that executes the action, and

an action to be taken. A Java statement may be modeled by several alternative actions corresponding to

the different behaviors of the statement.

The actionslock(v) and blockLock(v) correspond to the two possible behaviors on entry to a

synchronized(v) block: lock(v) is enabled when there exists no thread (other than the current

thread) that is holding the lock referenced byv, blockLock(v) is enabled when such a thread exists.

The actionunlock(v) corresponds to the release of the lock upon exit of thesynchronized(v)

block. The actionwait(v) corresponds to invocation ofv.wait() . The actionsnotify(v) and
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Action Precondition Predicate-update

lock(v) ¬∃t 6= ts.rv[v](ts, l) ϕheld by(l1,t1) = held by(l1, t1) ∨ (t1 = ts ∧ l1 = l)

∧ held by(l, t) ϕblocked(t1,l1) = blocked(t1, l1) ∧ ((t1 6= ts) ∨ (l1 6= l))

unlock(v) rv[v](ts, l) ϕheld by(l1,t1) = held by(l1, t1) ∧ (t1 6= ts ∨ l1 6= l)

wait(v) rv[v](ts, l) ϕheld by(l1,t1) = held by(l1, t1) ∧ (t1 6= ts ∨ l1 6= l)

ϕwaiting(t1,l1) = waiting(t1, l1) ∨ (t1 = ts ∧ l1 = l)

notify(v) rv[v](ts, l) ϕwaiting(t1,l1) = waiting(t1, l1) ∧ (t1 6= tw ∨ l1 6= l)

∧ waiting(tw, l) ϕblocked(t1,l1) = blocked(t1, l1) ∨ (t1 = tw ∧ l1 = l)

ignored rv[v](ts, l)

Notify(v) ∧ ¬∃tw.waiting(tw, l)
notifyAll(v) rv[v](ts, l) ϕwaiting(t1,l1) = waiting(t1, l1) ∧ (l1 6= l)

∧ ∃tw.waiting(tw, l) ϕblocked(t1,l1) = blocked(t1, l1) ∨ (waiting(t1, l1) ∧ (l1 = l))

ignored rv[v](ts, l)

NotifyAll(v) ∧ ¬∃tw.waiting(tw, l)

blockLock(v) ∃t 6= ts.rv[v](ts, l) ϕblocked(t1,l1) = blocked(t1, l1) ∨ (t1 = ts ∧ l1 = l)

∧ held by(l, t)

Table 2.2: Operational semantics for concurrency statements. Actions above the two horizontal lines

are non-blocking, theblockLock(v) action is blocking.
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ignoredNotify(v) correspond to the possible behaviors when callingv.notify() : notify(v) is

enabled when there exists a thread waiting on the lock referenced byv, and the free variabletw in its

precondition corresponds to non-deterministic selection of the thread to be notified;ignoredNotify(v)

is enabled when no such thread exists. Similarly,notifyAll(v) andignoredNotifyAll(v) model the

behavior ofv.notifyAll() . Technically, the translation of a Java statement (and condition) to sev-

eral alternative actions can be performed by a front-end.

Formally, the meaning of actions is defined as follows:

Definition 2.3.3 We say thatC\ = 〈U, ι〉 rewrites into a configurationC\′ = 〈U, ι′〉 (denoted by

C\ ⇒ac C
\′) whereac is an action, if there exists an assignmentZ that satisfies the precondition ofac

onC\, and for everyp ∈ P of arity k andu1, . . . , uk ∈ U ,

ι′(p)(u1, . . . , uk) =

[[ϕp(v1, v2, . . . , vk)]]C
\

2 (Z[v1 7→ u1, v2 7→ u2, . . . , vk 7→ uk])

whereϕp(v1, · · · , vk) is the formula forp given in Table2.2.

We say that a configurationC\ transitively rewrites into a configurationC\′ (denoted byC\ ⇒∗

C\′) if there exists a (potentially empty) sequence of configurationsC\ = C\
0, C

\
1, . . . , C

\
n = C\′ such

that for each0 ≤ i < n , C\
i ⇒ C\

i+1.

2.3.4 Safety Properties of Java Programs

Given a set of initial configurationsC0, the set ofreachableconfigurationsCR is the set of configurations

that can be created by transitively rewriting a configuration fromC0. More formally, a configuration

Cr ∈ CR iff there existsC ∈ C0.C ⇒∗ Cr.

A safety property is formalized using logical formulae. We say that a safety property of a program

holdsif all reachable configurations satisfy the formula specifying the property.

Our analysis described in Section2.4.1aims at automatically verifying safety properties by guaran-

teeing to detect configurations where the properties are violated, if such configurations exist. Moreover,

we sometimes also show that a liveness property at some reachable configuration holds by showing that

a stronger safety property holds.

Table 2.3 lists some of the formulae used to detect configurations that violate a safety property.

Formulae for other safety properties may be defined similarly.

In the Read-Write (RW) Interference formula, the first line states that both individualstr andtw are

different thread individuals, the second line states that threadtr is at labellr and the threadtw is at label

lw, and the third line states that the variablexw of threadtw and variablexr of threadtr reference the

same objecto. The labellw is assumed to be a label of a statement with a writing access, andlr a label

of a statement with a reading access.
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Example 2.3.4 In Fig. 2.3, the RW-Interference formula evaluates to0 for the labelslt3 (newHead =

head.next ) andlp6 (tail.next = x i ) of the example program shown in Fig.2.1(b). This is due

to the fact that synchronization prevents the consumer thread〈cns〉 from being at labellt3 when the

producer thread〈prd〉 is at labellp6.

Even if synchronization was dropped, and the consumer and producer threads were allowed to be at

lt3 and lp6 correspondingly, RW-Interference would still evaluate to 0 sincehead and tail refer to

different objects.

The Write-Write (WW) Interference formula is similar to the RW Interference formula.

The Total Deadlock formula requires that for each threadt, there exists a lockl such thatt is blocked

on l. This is a strict formulation of the problem that can be generalized (e.g., allowing some thread to

be in terminated state).

The Resource Ordering Criterion formula states that there exists a threadt holding a lockl2, and

blocked on a lockl1 such that the ID ofl2 is greater than the ID ofl1.

The Nested Monitors formula states thatoout is a separation node in the configuration graph with

respect to paths over the fieldin . Thus, everyin -path from a node in the configuration graph reaching

oin passes through the nodeoout. Therefore, a nested-monitors deadlock may be created when a thread

becomes waiting onoin while holding the lock of the objectoout.

The Missing Ownership formula states that there exists a threadt at labells which invokesv.wait()

or v.notify() and does not hold the lock of the objectl referenced by variablev.

2.4 An Abstract Program Model

The state-space exploration algorithm of Fig.2.4 may be infeasible in programs with an unbounded

number of objects. In this section we describe how to create a conservative representation of the concrete

model presented in Section2.3 in a way that provides both feasibility and high precision.

In Section2.4.1we use3-valued logical structures to conservatively represent multiple configura-

tions of a multithreaded program. Section2.4.1presents the concept of embedding, which is crucial

for proving the correctness of our algorithm. Section2.4.2presents the abstract semantics derived from

the concrete semantics presented in Section2.3.3. Finally, Section2.4.3shows how to improve the

precision of our analysis by adding instrumentation predicates.

2.4.1 Representing Abstract Program Configurations via3-Valued Logical Structures

To make the analysis feasible, we conservatively represent multiple configurations using a single logical

structure but with an extra truth-value1/2 denoting values which may be1 and may be0. The values

0 and1 are calleddefinite valueswhereas the value1/2 is calledindefinite value. We allow an abstract
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Formula Intended Meaning

∃tr, tw : thread, o.(tr 6= tw) RW Interference between a thread (tr) at labellr

∧ at[lr](tr) ∧ at[lw](tw) readingxr.f ld and a thread (tw) at labellw

∧ rv[xw](tw, o) ∧ rv[xr](tr, o) updatingxw.f ld, wherexr andxw

are pointing to the same objecto.

∃tw1, tw2 : thread, o.(tw1 6= tw2) WW Interference between a thread (tw1) at labellw1

∧ at[lw1](t1) ∧ at[lw2](t2) writing xw1.f ld and a thread (tw2) at labellw2

∧ rv[xw1](tw1, o) ∧ rv[xw2](tw2, o) updatingxw2.f ld, wherexw1 andxw2

are pointing to the same objecto.

∀t : thread.∃l.blocked(t, l) Total Deadlock

∃t : thread, l1, l2.blocked(t, l1) Resource Ordering. A threadt is blocked on a lock

∧ held by(l2, t) ∧ ¬idlt(l2, l1) “smaller” than a lock it is holding.

∃tw : thread, oout, oin.waiting(tw, oin) Nested Monitors. A threadtw is waiting

∧ held by(oout, tw) ∧ rv[in]∗(oout, oin) on an objectoin while holding the lock

∧ ∀op.((op 6= oout) ∧ rv[in]∗(oout, op) of an objectoout which structurally contains it,

∧ rv[in]∗(op, oin) thus preventing any other thread from notifyingtw.

→ ¬(∃t1, t2.rv[in](t1, op) ∧ rv[in](t2, op))

∃t.at[ls](t) ∧ rv[v](t, l) ∧ ¬held by(l, t) Missing Ownership. Thread invokingv.wait() or

v.notify() at labells when not holding the lock

referenced byv.

See Section2.5.2 Shared ADT

See Section2.5.3 Thread Interactions

Table 2.3: Violations of safety properties detected in this chapter.
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Figure 2.5: An abstract configurationC2.5 representingthe configurationC\
2.3 shown in Fig.2.3.

configuration to includesummary nodes, i.e., individuals that represent one or more individuals in a

represented concrete configuration. Technically, a summary nodeu hasι(eq(u, u)) = 1/2.

Formally, anabstract configurationis a3-valued logical structureC = 〈U, ι〉 where:

• U is the universe of the3-valued structure. Each individual inU represents possibly many allo-

cated heap objects.

• ι is the interpretation function mapping predicates to their truth-value in the structure, i.e., for

every predicatep ∈ P of arity k, ι(p) : Uk → {0, 1/2, 1}. For example,ι(p)(u) = 1/2 indicates

that the truth value ofp may be1 for some of the objects represented byu and may also be0 for

some of the objects represented byu.

Embedding

We now formally define how configurations are represented using abstract configurations. The idea

is that each individual from the (concrete) configuration is mapped into an individual in the abstract

configuration. More generally, it is possible to map individuals from an abstract configuration into an

individual in another less precise abstract configuration. The latter fact is important for our abstract

transformer.

Formally, letC = 〈U, ι〉 andC ′ = 〈U ′, ι′〉 be abstract configurations. A functionf : U → U ′

such thatf is surjective is said toembedC into C ′ if for each predicatep of arity k, and for each

u1, . . . , uk ∈ U one of the following holds:

ι(p(u1, u2, . . . , uk)) = ι′(p(f(u1), f(u2), . . . , f(uk)))

or

ι′(p(f(u1), f(u2), . . . , f(uk))) = 1/2



2.4. AN ABSTRACT PROGRAM MODEL 41

We say thatC ′ representsC when there exists such an embeddingf .

One way of creating an embedding functionf is by usingcanonical abstraction. Canonical abstrac-

tion maps concrete individuals to an abstract individual based on the values of the individuals’ unary

predicates. All individuals having the same values for unary predicate symbols are mapped byf to the

same abstract individual.

Example 2.4.1 The abstract configurationC2.5 representsconcrete configurationC\
2.3.

We use dashed-edges to draw1/2-valued binary predicates, and nodes with double-line boundaries

to represent summary nodes.

The summary node labeleda1 represents the threadsa1, a2, a3 which all have the same values for

the unary predicates. The summary node labeled byu represents all queue items that are not directly

referenced by the queue’s head or tail. Note that the abstract configurationC2.5 represents many config-

urations. For example, it represents any configuration with 3 or more queue items. In a similar fashion,

the abstract configuration represents configurations with one or more threads that reside at labella1.

Note that the RW-Interference condition evaluates to0 over the abstract configurationC2.5.

2.4.2 An Abstract Semantics

We use the same simple algorithm from Fig.2.4 for exploration of the abstract state space. The oper-

ations used by the algorithm are modified to work for abstract configurations. Therewritesrelation is

modified to conservatively model the effect of an action on the given abstract configuration (possibly

representing multiple configurations). In addition, the state-space exploration now starts withC0 being

the abstraction of initial configurations.

Implementing an algorithm for computing therewrite relation on abstract configurations is non-

trivial because one has to consider all possible relations on the set of represented (concrete) configura-

tions.

The best conservative effectof an action (also known as theinduced effectof an action) [25] is

defined by the following 3-stage semantics: (i) A concretization of the abstract configuration is per-

formed, resulting in all possible configurationsrepresentedby the abstract configuration; (ii) The action

is applied to each resulting configuration; (iii) Abstraction of the resulting configurations is performed,

resulting in a set of abstract configurationsrepresentingthe results of the action.

Our prototype implementation described in Section2.6operates directly on abstract configurations,

and obtains actions which are more conservative than the ones obtained by the best transformers. Our

experience shows that these actions are still precise enough to detect violations of the safety properties

as listed in Table2.3, without producingfalse alarmson our example programs.

Definition 2.4.2 We say that an abstract configurationC rewrites into an abstract configurationC ′

(denoted byC ⇒ac C
′) whereac is an action, if forC and forC ′ there existsC\ andC\′ = 〈U \, ι\

′〉
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such that: (i) C\ is in the concretization ofC, i.e.,C representsC\, (ii) C ′ is thecanonical abstraction

ofC\′, (iii) there exists an assignmentZ that satisfies the precondition ofac onC\, and for everyp ∈ P
of arity k andu1, . . . , uk ∈ U \,

ι\
′
(p)(u1, . . . , uk) =

[[ϕp(v1, v2, . . . , vk)]]C3 (Z[v1 7→ u1, v2 7→ u2, . . . , vk 7→ uk])

whereϕp(v1, · · · , vk) is the formula forp given in Table2.2. We writeC ⇒ C ′ if for some actionac

C ⇒ac C
′.

Example 2.4.3 The abstract configurationC2.6,0 shown in Fig.2.6represents an unbounded number of

threads all at labella1. The actions for labella1 are lock(this) andblockLock(this).

The infinite set of configurations{C2.6,0,1, C2.6,0,2,. . . } is the set of (concrete) configurations after

concretization. After concretization the preconditions of the actions are evaluated. The precondition for

lock(v) evaluates to1 and the precondition forblockLock(v) evaluates to0. Thuslock(v) is applied.

The infinite set of configurations{C2.6,1,1, C2.6,1,2,. . . } is the set after the application oflock(v). The

set of abstract configurations{C2.6,2,1, C2.6,2,2 } is the finite set of configurations after abstraction.

The membership operatormember(C, stateSpace) of Fig. 2.4can be modified to check if the con-

figurationC is already represented by one of the configurations instateSpace. This is an optimization

for preventing exploration of redundant configurations.

2.4.3 Instrumentation

Instrumentation predicates record derived properties of individuals. Instrumentation predicates are de-

fined using a logical formula over core predicates. Updating an instrumentation predicate is part of the

predicate-update formulae of an action.

The information recorded by an instrumentation predicate in a configuration may be more precise

than evaluating the defining formula of the instrumentation predicate over the configuration. This is

known as theInstrumentation Principleintroduced in [91].

The mapping of individuals in a configuration into an abstract individual of an abstract configuration

is directed by the values of the unary predicates. By adding unary instrumentation predicates, one may

allow finer distinction between individuals, and thus may improve the precision of the analysis.

Example 2.4.4 Consider an unbounded number of threads competing to acquire a single shared lock.

Assume that a threadt1 has already acquired the lock. The configurationC2.7,0,1 shown in Fig.2.7cor-

responds to a state in which some thread tried to acquire the lock and consequently became blocked on

the lock. In this configuration, the formula∃t, l.rv[this](t, l) ∧ blocked(t, l) evaluates to1/2. Config-

urationC2.7,0,2 shows the same global state when the instrumentation predicateis blocked(t) is used.
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initial

C2.6,0

conc.

· · ·
C2.6,0,1 C2.6,0,2 C2.6,0,3

after

update · · ·
C2.6,1,1 C2.6,1,2 C2.6,1,3

after

abs.

C2.6,2,1 C2.6,2,2

Figure 2.6: Concretization and predicate-update for an unbounded number of threads all performing the

approveHead() method of the running example.
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C2.7,0,1 C2.7,0,2

Figure 2.7: Instrumentation predicateis blocked(t).

Now, one can check the existence of a blocked thread using the stored value of the instrumentation pred-

icateis blocked(t), which evaluates to1. Note that in this case evaluation of the original formula over

the configuration with instrumentation also evaluates to1 rather than to1/2, but this is not always the

case.

2.5 Verifying Safety Properties

We use the instrumentation predicates listed in Table2.4 to improve the precision of our analyses. The

following sections list a more precise formulation of the formulae of Table2.3by using instrumentation

predicates whenever possible.

2.5.1 Deadlock

We use thewait for(t1, t2) instrumentation predicate to detect a cyclicwait for dependency. We

useslock(t) to track the resource-ordering local property for each thread. Thus, the resource ordering

violation can be formulated as∃t.slock(t). The definition ofslock(t) uses the predicatelt[id](v1, v2)

which records the order between locks according to the value of theirid fields. Each lock object is

assumed to have a unique id recorded in itsid field (e.g., such an id could be provided using the

java.lang.Object ’s hashCode() method). The predicatelt[id](l1, l2) is true when the id ofl1 is

less than the id ofl2. The order between objects can be used for deadlock prevention by breaking cyclic

allocation requests [97].

The formula for nested-monitors deadlock is given below:

∃tw : thread, oout, oin.waiting(tw, oin) ∧ held by(oout, tw) ∧ rf [in](oout, oin)

∧ ∀op.((op 6= oout) ∧ rf [in](op, oin) ∧ rf [in](oout, op)→ ¬is[in](op))
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Predicate Intended Meaning Defining Formula

is[fld](l1) l1 is referenced by the field fld ∃t1, t2.(t1 6= t2)→
of more than one object rv[fld](t1, l1) ∧ rv[fld](t2, l2)

r by[fld](l) l is referenced by the field fld ∃o.rv[fld](o, l)
of some object

lt[ifld](v1, v2) the value ofifld of v1 is less than that ofv2 ∃i1, i2.ival[ifld](v1, i1)∧
ival[ifld](v2, i2) ∧ succ∗(i1, i2)

is acquired(l) l is acquired by a thread ∃t.held by(l, t)
is blocked(t) t is blocked on a lock ∃l.blocked(t, l)
is waiting(t) t is waiting on a lock ∃l.waiting(t, l)
slock(t) t violates the resource ordering criterion ∃l1, l2.is thread(t) ∧ blocked(t, l1)∧

held by(l2, t) ∧ ¬lt[id](l2, l1)
wait for(t1, t2) t1 is waiting for a resource held byt2 ∃lb.blocked(t1, lb) ∧ held by(t2, lb)
rf [fld](o1, o2) objecto2 is reachable from objecto1 using rv[fld]∗(o1, o2)

a path offld edges

rt[ref, fld](t, o) objecto is reachable from threadt ∃ot.rv[v](t, ot) ∧ rv[next]∗(ot, o)

by a path starting with a singleref

edge followed by any number

of fld edges

Table 2.4: Instrumentation predicates for partial Java semantics.
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Figure 2.8: An abstract configurationC2.8 in which interference between the consumer and the producer

is detected.

2.5.2 Shared Abstract Data Types

We define a set of reachability predicates similar to the ones defined in [91]. We use the reachability

information to define invariants for ADT operations. For example:

• At the end of aput operation — the new item is reachable from the head of the queue.

• At the end of atake operation — the taken item is reachable from the taking thread and is no

longer reachable from the head of the queue.

2.5.3 Thread State Errors

We use instrumentation predicates to record thread-state information:ts created(t), ts running(t),

ts blocked(t), ts waiting(t) andts dead(t). In order to identify thread-state errors, we add precondi-

tions identifying when an action is illegal or suspicious. These preconditions are listed in Table2.5.

Example 2.5.1 Assume an erroneous version of the running example (Fig.2.1) in which an unsyn-

chronized version ofput() is used. ConfigurationC2.8 shown in Fig.2.8 demonstrates a possible

interference in the program identified by our analysis. In the configurationC2.8 a consumer is trying to

take() the last item, and a producer is simultaneously trying toput() an item.
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Problem Action Precondition Warning

Multiple v.start() rv[v](tr, dt) ∧ ts running(dt) IllegalThreadStateException

starts rv[v](tr, dt) ∧ ts dead(dt) Dead thread cannot be re-started

Premature v.stop() rv[v](tr, dt) ∧ ts created(dt) Thread stopped before started

stop

Missing v.wait() rv[v](tr, l) ∧ ¬held by(l, t) IllegalMonitorStateException

ownership v.notify() rv[v](tr, l) ∧ ¬held by(l, t) IllegalMonitorStateException

rv[v](tr, l) ∧ ¬∃tw.waiting(tw, l) A notify was ignored

Premature v.join() rv[v](tr, dt) ∧ ts created(dt) Thread join before started

join

Late v.setDaemon() rv[v](tr, dt) ∧ ts running(dt) IllegalMonitorStateException

setDaemon

Table 2.5: Preconditions for checking illegal and suspicious thread interactions.

The consumer thread reached labellt3 and is about to execute the action fornewHead = head.next .

The producer thread, having found that the queue is not empty, reached labellp6, and is about to exe-

cute thetail.next=x i action. The RW-Interference formula from Table2.3evaluates to1 for this

configuration since both threads reference the same object< u0 >. Thus RW-Interference is detected.

It is important to note that if the queue has more than one item, RW-Interference is not introduced,

and our analysis will report that RW-Interference does not occur (sincehead andtail refer to differ-

ent objects).

2.5.4 Unbounded Number of Threads

When a system consists of many identical threads, the state-space can be reduced by exploiting symme-

try.

In model checking, the global state of a system is usually described as a tuple containing thread

program-counters, and value assignments for shared variables [38]. In [38], symmetry is found between

process indices. In our framework, thread names are only determined by thread properties. Thus, there

is no need to explicitly define permutation-equivalence for symmetry reduction.The mapping to the

canonic names eliminates symmetry in the abstract state space.

We demonstrate the power of our abstraction by taking the example of a critical section from [38],

and verifying that themutual exclusionproperty holds for anunbounded number of threads.

Example 2.5.2 Consider theapproveHead() method of class Queue. We would like to verify mutual

exclusion over the critical section protected bysynchronized(this) . For readability of this ex-
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C2.9,0 - initial C2.9,1 - thread inside critical section C2.9,2 - other threads blocked

Figure 2.9: Configurations arising in mutual exclusion with an unbounded number of threads.

ample we define all labels inside the critical section as a single labellcrit. The property we detect is

∃t1, t2.(t1 6= t2) ∧ at[lcrit](t1) ∧ at[lcrit](t2)). The initial state for the analysis contains anunbounded

number of threadsrepresented by a summary node. Fig.2.9shows three important abstract configura-

tions arising in the analysis of the example.

In addition, using thread names that are only determined by thread properties reduces the number of

equivalent interleavings that have to be considered. For example, consider a program with five threads,

each performing a single assignment to a local boolean variableb initialized to false, setting its value to

true. That is, each thread executes the single statementl1 b = true; l2. When the program termi-

nates, the local boolean variableb of each thread is set to true. Analyzing this program with explicitly

named threads will result with125 possible interleavings that have to be considered (see Fig.2.10).

Analyzing the program in our approach will only consider a single (representative) interleaving (see

Fig. 2.11).

2.6 Prototype Implementation

In this section, we briefly describe our prototype implementation and present experimental results of

applying the framework on a few small but interesting example programs. More elaborate experimental

results for the verification of concurrent queue algorithms are provided in Chapter7.

We have implemented a prototype of our framework called3VMC [113]. Our implementation

is based on the3-valued logic engine of TVLA [64]. We applied the analyses to several small but

interesting programs. Table2.6summarizes the programs we tested, with the number of configurations

created, and running times. Running times were measured using Sun’s JVM1.2.2 for Windows NT,

running on a 600MHZ Pentium III.

It is important to note that the cost of verification for an unbounded number of threads in our ap-

proach is doubly exponential in the number of predicates, while the cost of verification with explicit
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initial

step 1
...

final

Figure 2.10: Configurations arising with explicit thread names.

initial step 1 step 2 final

Figure 2.11: Configurations arising with canonical thread names.
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Program Description Properties Config. Time

swap swap list elements absence of data races 16 10

and deadlock

swapord swap list elements absence of data races 1 12

with resource ordering and deadlock

stack non-synchronized stack absence of data races 184 304

sStack synchronized stack absence of data races 104 330

mutex mutual exclusion mutex 33 2

with unbound threads

nestedMon nested monitors absence of deadlock 42 7

prodCons producer consumer absence of data races 416 68

sProdCons synchronized producer consumerabsence of data races 195 48

DP dining philosophers absence of deadlock 514 23

unbound threads

Table 2.6: Number of configurations, and running times in seconds for the programs analyzed.

thread names is exponential in the number of threads. As a result, verifying a property for an unbounded

number of threads is not only stronger, but sometimes more efficient than verifying the property for an

a priori bounded number of threads. For example, verifying mutual exclusion for the mutex program

with 5 explicitly named threads takes over70 seconds, whereas verification for an unbounded number

of threads takes only2 seconds.

In our prototype, the conservative effect of an action is implemented in terms of thefocus and

coerce operations (see [91] for more details). The soundness of our implementation is guaranteed by

a generalization of the embedding theorem of [91] for infinite concrete configurations (see proof in

AppendixB.1.1).

The swap andswap ord programs use two threads swapping items in a linked list.swap does

not use resource ordering, and thus may deadlock,swap ord uses resource ordering, and thus cannot

deadlock. stack andsStack are non-synchronized and synchronized versions of a Stack ADT ma-

nipulated by multiple threads.mutex is a simple program using mutual exclusion to protect a critical

section.prodcons andsProdCons are implementations of Queue ADT manipulated by producer and

consumer threads. TheDP program is an implementation of thedining philosophersproblem with an

unbounded number of philosopher threads.

While these example programs are small, the scenarios they explore are rather complicated (e.g.,

nested monitors). We are encouraged by the fact that for these examples, our analysis concluded with

no false alarms. In Chapter7, we explore more realistic example programs.



Chapter 3

Property-Guided Abstraction

In this chapter, we consider the problem oftypestate verificationfor shallowprograms; i.e., programs

where pointers from program variables to heap-allocated objects are allowed, but where heap-allocated

objects may not themselves contain pointers. We prove a number of results relating the complexity of

verification to the nature of the finite state machine used to specify the property. Some properties are

shown to be intractable, but others which appear to be quite similar admit polynomial-time verification

algorithms. Our results serve to provide insight into the inherent complexity of important classes of

verification problems. In addition, the program abstractions used for the polynomial-time verification

algorithms may be of independent interest.

In solving a problem of this sort, the grand thing is to be able

to reason backward. ... In the everyday affairs of life

it is more useful to reason forward.

–Sir Arthur Conan Doyle,A Study in Scarlet.

3.1 Introduction

The desire for more reliable software has led to increasing interest in extended static checking: stati-

cally verifying whether a program satisfies certain desirable properties. A technique that has received

particular attention is that of finite state ortypestateverification (e.g., see [103, 102, 77, 21, 29, 6, 30,

44, 43, 60, 4]). In this model, objects of a given type exist in one of finitely manystates; the operations

permitted on an object depend on the state of the object, and the operations may potentially alter the

state of the object. The goal of typestate verification is to statically determine if the execution of a given

program may cause an operation to be performed on an object in a state where the operation is not

permitted.

Typestate verification can be used to check that objects satisfy certain kinds of temporal properties;

e.g., that an object is not used before it is initialized, or that a file is not used after it is closed. In this

51
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chapter, we will specify such properties using regular expressions or finite state automata that define the

set ofvalid sequences of operations that can be performed on an object.

Our goal in this chapter is to develop an initial understanding of how the difficulty of performing

typestate verification relates to thenature of the property being verified. Among other things, we will

show that not all finite state properties are equally hard to verify. For example, given ashallowprogram

(where pointers from program variables to heap-allocated objects are allowed, but where heap-allocated

objects may not themselves contain pointers), we show that verifying that a file is not read after it is

closed can be done inpolynomial time, while verifying that a file is not read before it is opened is

PSPACE-Complete.

While there has been much progress in many aspects of automated program verification, we are not

aware of any previous work relating the difficulty of typestate verification to properties of the finite state

automaton. This work is part of a broader effort to develop efficient program verification techniques

that are tailored to the property being verified [84].

Typestate Verification and Shallow Programs

In order to meaningfully compare the complexity of verification algorithms, we need to make some

baseline assumptions about the precision of the analysis. In this chapter, we will use the termverification

to mean verification that isprecisemodulo the widely-used assumption that all paths in the program are

feasible. Specifically, given a finite state property, a path in a program is said to be anerror path, if

execution along that path would cause an invalid sequence of operations to be performed on at least one

objectand the goal of typestate verification is to determine if a given program has any error path.

Typestate verification can be done in polynomial time if the program to be verified allows no inter-

variable aliasing. Conversely, it is a straightforward consequence of previous results [61, 74] that if a

program hastwo or morelevels of pointers, typestate verification is PSPACE-hard1. In this chapter,

we therefore concentrate on understanding the class ofshallowprograms occupying a point in between

these extremes.

Assume we wish to perform typestate verification for objects of a typeT . A T -shallowprogram

is a well-typed procedure-free program where all variables are pointers toT -typed objects, and whose

statements are allocations (creation of a new object of typeT ), copy assignments (copying the value

of a variable to another), or invocations of an operation on a variable. Note that shallow programs

may contain multiple pointers to objects of typeT , but allocated objects may not themselves contain

T -pointers. In other words, pointers in shallow programs aresingle-level[74]. Our results also apply to

programs that manipulate complex or recursive types where allocated objects contain pointers,provided

that those pointers cannot refer to objects of typeT . Programs that are shallow with respect to a given

1In the presence of recursive data structures, typestate verification is undecidable [62, 83].
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type, e.g.File , are not uncommon in practice.

Example: Verifying File Operations

Consider the problem of checking that a closed file is never read or closed again, which we will refer to as

read ∗; close . In general, we will use regular expressions to designate sequences ofvalid operations

on an object of a given type, where a sequence is valid iff it is a prefix of a string in the language defined

by the regular expression.

The principal difficulty in doing precise verification arises from determining howaliasing interacts

with operations on objects. Some prior work on typestate verification (e.g. [27]) has employed a two-

step approach to the problem, in which an initial phase performs a conservative heap analysis of the

program, and a subsequent phase uses the information from the heap analysis to do typestate analysis.

However, we can see from the program fragments in Figure3.1 that such an approach can sometimes

lead to imprecise results. One can easily verify that in both Figures3.1(a) and3.1(b), all sequences

of file operations on a given object are prefixes ofread ∗; close ; i.e., that noread ever follows a

close .

However, consider a two-phased approach in which the heap analysis is separate from the typestate

analysis. In Fig.3.1(a), a precise (and correct) heap analysis will determine that program variablez

at program points2 may point to the object created ats0 or the object created ats1 . Furthermore, a

precise typestate analysis will determine that the object created ats1 could be in aclosedstate ats2 . A

two-phased analysis must therefore erroneously conclude that the read could be performed on a closed

file. Similarly, in Fig.3.1(b), any conservative heap analysis would determine that objects created at

program pointss3 ands5 could reach the read statement ats4 . In addition, a typestate analysis would

also determine that the objects created at program pointss3 ands5 could be in a closed state ats4 .

The analysis would, however, not be able to discover thatf can never point to a closed object ats4 , and

would incorrectly indicate a possible error. In this chapter we show that for a certain class of problems

(includingread ∗; close ), it is possible to formulate a precise polynomial-time verification algorithm

for shallow programs.

Main Results

The main complexity results established in this chapter are as follows (in all cases except the last one,

we assume that programs are shallow):

• Verification is in P for omission-closed properties: a property is said to be omission-closed if

every subsequence of a valid sequence is also a valid sequence. (Example:read ∗; close .)

• Verification is NP-Complete for acyclic programs (i.e., programs without loops) and PSPACE-

complete for arbitrary programs for properties with a repeatable enabling sequence: a property
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s0 : x := new ();

s1 : y := new ();

z := y;

if (?) {
y.close();

z := x;

}
s2 : z.read();

s3 : f := new ();

while (?) {
s4 : f.read();

if (?) {
f.close();

s5 : f := new ();

}
}

(a) (b)

Figure 3.1: Program fragments illustrating the effect of aliasing on typestate verification.

is said to have a repeatable enabling sequence if there is an automaton state where a particular

sequenceγ of operations is invalid, but sequences of the formβ+γ are valid for someβ. Example:

open +; read .

• An integer-valued functionf is said to be a bound on the shortest error path length for a typestate

property if every erroneous program of sizen is guaranteed to have an error path of lengthf(n)

or less. If PSPACE is not equal to NP, then no polynomial bound exists for the shortest error path

length for properties with a repeatable enabling sequence. (In other words, it may not be possible

to find short, i.e., polynomial size error paths in the worst case.)

• Verification is in P for acyclic programs for almost-omission-closed properties: a property is

said to be almost-omission-closed if there is an integerk such that every subsequence of a valid

sequence of length greater thank is also valid. Example:open ; read . Note that any property

with only finitely many valid sequences is trivially almost-omission-closed.

• Verification is in P for almost-omission-closed properties that have a polynomial bound on the

shortest error path length.

• A program is said to have a maximum aliasing width ofk if there is no path in the program

that will produce an object pointed to by more thank different variables. Arbitrary finite state

properties for programs of sizen with a maximum aliasing width ofk may be verified in time

O(nk+1) for programs of sizen.

• Alias analysis and typestate verification are NP-hard for programs with maximum aliasing width

of three and aliasing depth of two. (A program is said to have aliasing depth of two if the program

contains pointers to pointers).
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Example Definition Acyclic Cyclic Bounded Aliasing

Programs Programs Width

(Shallow) (Shallow) Shallow Non-

shallow

Ommission- read ∗; close ∀αβγ. P P P NP-hard

Closed Valid(αβγ)

⇒ Valid(αγ)

Almost- open ; read ∃k∀αβγ. P Poly. Err. Path

Ommission- (|αβγ| ≥ k ∧ General: ?

Closed Valid(αβγ))

⇒ Valid(αγ)

Repeatable open +; read ∃αβγ. NP PSPACE

Enabling Valid(αβ+γ)∧ complete complete

Sequence ¬Valid(αγ)

Other (lock ; unlock )∗ ? ?

Figure 3.2: An overview of our complexity results.

The results above are summarized in Fig.3.2 in terms of the properties of regular expressions which

define the properties to be verified (the notation used there will be defined in Section3.2).

The polynomial-time verification results summarized above use program abstractions that may be

of independent interest—in particular, they may prove useful as the starting point for developing more

general abstractions for non-shallow programs (e.g., in a manner similar to [84]). The bulk of the

abstractions we use arepredicate abstractions[49]; however we show in the sequel that the choice of

predicates used in a predicate abstraction can have a dramatic impact on the efficiency of the resulting

analysis. Our predicate vocabularies are carefully designed to yield efficient analyses without sacrificing

precision. In addition, in Section3.5, we develop a novelintegerabstraction, which is based oncounting

the number of program paths along which a simple property holds true; this in turn allows inferring

whether a more complex property holds.

Related Work

There has been significant recent interest in a variety of property verification techniques, many of them

focusing on typestate verification. While significant progress has been made in improving the precision

and efficiency of verification, developing verification techniques that are sufficiently precise and scalable

to handle industrial-size applications for a wide variety of problems is still a challenge, and motivates
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our work here.

One of the open challenges in typestate verification is an adequate treatment of aliasing. Some

approaches avoid the issue: e.g., the original work on typestate verification [103, 102] did not allow

any aliasing; more recent work on typestate verification based on linear types [29] also restricts aliasing

severely. Other approaches (e.g. [27]) perform alias analysis and typestate verification separately: an

initial phase performs a conservative alias analysis for the program, and a subsequent phase uses the

information from the alias analysis to do typestate verification. However, this can lead to imprecise

results, as illustrated by the examples in Fig.3.1.

A second challenge to practical verification is dealing with infeasible program paths (e.g., [54,

10]). Das et al. [27] address this issue using efficient path-sensitive algorithms (which eliminate certain

infeasible paths from consideration during analysis), but do not track certain additional information,

e.g., aliasing, precisely. Our algorithms do not address the question of path sensitivity, but there could

be merit in combining aspects of our approach with those that eliminate infeasible paths.

One of the primary intuitions behind the algorithms presented in this chapter (for shallow programs)

is that maintaining just the right correlation required between “analysis facts” can be the key to efficient

and precise verification: maintaining no correlations (independent attribute analysis) can lead to impre-

cision, while maintaining all correlations (relational analysis) can lead to inefficiency. Chapter6 shows

one way to exploit this intuition for verification of arbitrary (i.e. non-shallow) programs as well.

Several recent verification approaches [5, 53] combine predicate abstraction [49], counterexample-

guided refinement of the predicate vocabulary [15], and exploration of the resulting abstract state space

using model-checking. These techniques use symbolic and theorem-proving techniques to identify a set

P of predicates relevant to the problem of interest, then model-check the resulting finite state system

over a state space constructed from the powerset lattice2P→{true,false}. This process iterates with in-

creasingly larger sets of predicates until a satisfactory result is obtained. In principle, these algorithms

have the potential to avoid imprecision due to both aliasing and path infeasibility. However, the worst-

case complexity of asingle iteration is exponential in the number of predicates. By contrast, while

most of the algorithms we present are based on abstractions by a set of predicatesQ, our analysis is

based on the function-space latticeQ → {false,maybe}, and runs in time linear in the size ofQ. This

approach yields polynomial-time algorithms, while none of the techniques based on model-checking

have a polynomial-time worst-case complexity for the same problems (even though they may utilize a

smaller number of predicates than our algorithm). Our selection of predicates ensures that the use of

the smaller function space lattice results in no loss of precision, i.e., we ensure that our abstraction is

complete(e.g., see [46]). Finally, the predicate abstractions we use are dependent solely on the nature

of the typestate problem being verified, and do not require expensive predicate discovery at verification

time.

Finally, we note that our lower bound results follow the tradition set by earlier complexity results
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due to Landi and Ryder [61] and Muth and Debray [74].

3.2 Terminology and Notation

In this section, we provide some basic definitions that we will use in the rest of the chapter.

Definition 3.2.1 (Shallow Program) Ashallow programis a<Stmt> defined by the following context-

free grammar, where the? denotes a nondeterministic branch (i.e., an uninterpreted conditional). All

variables<Var> in the language are references to objects of type T. All operations<Op> in the lan-

guage are methods supported by type T.

<Stmt> ::= <Var> := <Var> | <Var> := new() | <Var>.<Op>()

| <Stmt>;<Stmt> | if (?) <Stmt> [ else <Stmt> ]

| Label: <Stmt> | goto Label

We will make the simplifying assumption that when a program begins execution all program variables

point to separate objects (i.e., initialized to non-aliased values), and all objects reside in their initial state.

In other respects, the semantics of shallow programs is completely standard, and we will not formalize

it here. We will, however, appeal to the intuitive notion of apathρ through a programP (or P -path): a

valid sequence of statements starting atP ’s entry.

In this chapter, we will study safety properties of shallow programs. Although safety properties

could be specified via temporal logics (e.g., LTL [17]), we will use finite automata or regular expressions

to simplify the presentation. Formally:

Definition 3.2.2 (Prefix-Closed Safety Automaton)A prefix-closed safety propertyF is represented

by a finite state automaton (FSA)F = 〈Σ, Q, δ, init, Q \ {err}〉 whereΣ is the automaton alphabet

consisting of observable operations,Q is the set of automaton states,δ is the transition function mapping

a state and an operation to a successor state,init ∈ Q is a distinguishedinitial state, err ∈ Q is a

distinguishederror statefor which for everyσ ∈ Σ, δ(err, σ) = err, and all states inQ \ {err} are

accepting states. We say thatq′ is the successor of a stateq on operationop whenδ(q,op) = q′.

Given a sequence of operationsα = op1; op2; . . . ; opk, we write ValidF (α) or α ∈ ValidF whenα is

accepted byF , and we write InvalidF (α) whenα is not accepted byF .

For brevity, we will refer to safety properties using a regular expression representing the language ac-

cepted by an automaton, rather than specifying the automaton itself. When specifying a safety property

using a regular expression, we will adopt the convention that a regular expressionα denotes theprefix
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init // open

q1
gfed`abc close //

BCED
read

GF��
closed

q2
gfed`abc {read,close} // errgfed`abcBCED

{read,close}

GF��

Figure 3.3: A finite-state automaton for the propertyread ∗; close .

closureof the set of sequences of operations defined byα. For example, when we writeread ∗; close

we also considerε (the empty sequence) andread to be valid sequences.

Example 3.2.3 Consider the propertyread ∗; close stating that a file may be read an arbitrary num-

ber of times before it is closed (and should never be read after it was closed and never be closed twice).

The alphabet for this problem consists of two operationsΣ = {read , close }. The FSA for this

property is shown in Fig.3.3.

When verifying a safety property represented by an automaton〈Q, init,err,Σ, δ〉 for a shallow pro-

gramP , we will assume that each method name used inP is mapped to an element ofΣ. Given

this convention, we will use names of operations inΣ and methods inP interchangeably, i.e., we will

say that a statement of the formx.op() invokes an operationop ∈ Σ. We can then relate method

invocations to sequences of operations inΣ as follows:

Definition 3.2.4 (Operation Sequences for Objects)Given aP -pathρ, U(ρ) denotes the set of object

instances created during this execution, and for any objecto ∈ U(ρ), ρ[o] denotes the sequence of

operations performed ono during execution ofρ.

Given the definitions above, we can now formally describe the class of verification problems we

wish to solve:

Definition 3.2.5 (SVF ) Given a safety propertyF , theshallow verification problemfor F , SVF , de-

termines for any shallow programP whether there exists a pathP -pathρ such thatρ[o] ∈ InvalidF for

someo ∈ U(ρ).

3.3 Omission-Closed Properties in Polynomial Time

In this section, we show thatomission-closedproperties can be verified in polynomial time.

Omission-Closed Properties

Informally, a property is omission-closed if the set of all valid sequences of operations is closed with

respect to omissions: any sequence obtained by omitting one or more operations from a valid sequence
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of operations is also valid.

Definition 3.3.1 A property represented by an automatonF is said to beomission-closedwhen for all

sequencesα, β, γ ∈ Σ∗, ValidF (αβγ)⇒ ValidF (αγ).

The following theorem presents alternative characterizations of omission-closed properties.

Theorem 3.3.2 Given an automatonF , the following are all equivalent, where all sequences are ele-

ments ofΣ∗:

(a) For all sequencesα, β, γ, ValidF (αβγ)⇒ ValidF (αγ).

(b) If ω1 is a subsequence ofω2, then ValidF (ω2)⇒ ValidF (ω1).

(c) There exists a finite set offorbidden subsequencesξ1, ξ2, . . . , ξk such that a sequenceα is in

InvalidF iff α contains someξi as a subsequence.

Proof: The equivalence of (a) and (b) is straightforward. As for, (c), consider the forbidden subse-

quencesξi corresponding to theacyclicpaths in the automatonF from the initial state to the error state.

Any sequence containing someξi is invalid (from (b)), and it is clear that any invalid sequence must

contain an acyclic path from the initial state to the error state as a subsequence. (For example, the for-

bidden subsequences for the automaton in Fig.3.3areξ1 = close ; read andξ2 = close ; close .)

The result follows.

Example 3.3.3 Consider the automatonF3.3 of Fig.3.3. For this automaton, the sequenceread ; read ; close

is in ValidF3.3 , and so is the sequenceread ; close obtained by dropping the intermediateread op-

eration. Moreover, for any valid sequenceread ∗; close , dropping any subsequence ofread s, or

dropping theclose yields a valid sequence.

For F3.3, it is sufficient to consider the forbidden subsequencesξ1 = close ; read and ξ2 =

close ; close . Each sequenceα containingξ1 or ξ2 as a subsequence is in InvalidF3.3 , and each

sequence in InvalidF3.3 containsξ1 or ξ2 as a subsequence.

Background: Distributive Predicate Abstractions

The analysis we present will utilize apredicateabstraction that tracks the values of a set of predicates

P defined on the concrete program-state. (We will use the termprogram-stateto denote the state of the

whole program in the concrete semantics, to distinguish it from astate in an FSA specifying a property.)

For efficiency reasons, we will utilize anindependent attribute analysis[80], an analysis that does not
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maintain the correlation between different predicate values. Specifically, the set of concrete program-

states arising at a program point will be abstracted by a value inP → {false,maybe}. We now

summarize the conditions under which anindependent attribute analysiscan be used for a predicate

abstraction without losing precision. Given a predicateϕ and a statementSt , we denote by WP(St , ϕ)

the weakest precondition ofϕ with respect toSt [33].

Definition 3.3.4 Given a finite set of predicates Base, we say that a finite set of predicatesP =

{P1, . . . , Pk} is a distributive WP-closureof Base when Base⊆ P and for each predicatePi ∈ P,

and for each statementSt , WP(St , Pi) = Pj1 ∨ . . . ∨ Pjm , wherePj1 , . . . , Pjm ∈ P. We also say that

the set of predicatesP is distributively WP-closed.

Theorem 3.3.5 Given a distributively WP-closed set of predicatesP for a programPgm, precise analy-

sis (i.e., determining for every program point and every predicate inP whether there exists a path to the

program point causing the predicate to betrue) is possible in timeO(|P||Pgm|).

Proof: Straightforward. E.g., the problem can be reduced to a reachability problem over a graph of size

O(|P||Pgm|), as in the IFDS framework of [85]. We note that the analysis can also identify paths that

will cause a given predicate to become true at a given point when such a path exists.

A Polynomial Algorithm

We use a designated predicateError that is true in a program-state if and only if the program-state

contains an object in the error stateerr. We will now show that for omission-closed properties, a

distributive WP closure of polynomial size can be constructed for{Error}. In general, a distributive

WP closure for{Error} needs to include predicates that refer to aliasing relationships among variables

as well asthe state of the objects pointed to by the variables. This motivates the following definition of

a family of predicates.

Definition 3.3.6 We write Inσ(x) to denote the fact that the object pointed to by the variablex is in

stateσ ∈ Q. Given anyS ⊆ Q, we use the shorthand InS(x) ,
∨

σ∈S Inσ(x) to denote that the object

pointed to by the variablex is in one of the states inS.

Definition 3.3.7 LetA be a non-empty set of variables (in a given program) ,S ⊆ Q a set of states in

F . We use the predicate〈A,S〉 to mean that all variables inA have the same value (are aliases), and

the object referred to by variables inA is in one of the states inS. Formally,

〈A,S〉 ,
∧

x∈A,y∈A(y = x) ∧
∧

x∈A InS(x)
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V←−F = ∅; E←−F = ∅; workSet= {{err }};
while workSet6= ∅ {

select and remove S from workSet;

for each operation op ∈ Σ {
P =

←−
δ (S, op);

if P 6∈ V←−F { V←−F = V←−F ∪ {P}; workSet= workSet∪ {P}; }
E←−F = E←−F ∪ {P → S};

}
}

Figure 3.4: Backwards exploration of the property automaton.

init // {err, q2
q1}

gfed`abc //
BCEDGF��

{err,
q2}

gfed`abc // {err}gfed`abcBCEDGF��

Figure 3.5: The graph constructed by backward exploration of the automaton of Fig.3.3.

The number of predicates of the form〈A,S〉 is exponential in the number of program variables.

However, not all predicates of this form arerelevant, i.e. need to be in a distributive WP closure for

{Error} . The key to obtaining a polynomial size distributive WP closure for{Error} is to bound the

size of the setA, for any relevant predicate〈A,S〉, by a constant. We will do this in two steps. First, we

will show that a predicate〈A,S〉 is relevant only for certainS ⊆ Q. Then, we will show that for each

such setS, the predicate〈A,S〉 is only relevant forA of cardinality less than a specific constant.

We first present an algorithm for determining whichS ⊆ Q are relevant for verification. The

algorithm shown in Fig.3.4is based on a backward traversal of the finite state automaton. The algorithm

constructs a graph
←−
F = (V←−F , E←−F ), where each vertex is a subset ofQ, and an edgeP → S denotes

thatP is a pre-image ofS for the transition functionδ (see below).

Definition 3.3.8 Let
←−
δ denote thereverse transition relationofF , i.e., given a stateq ∈ Q, an opera-

tiona ∈ Σ, and a set of statesS ⊆ Q,
←−
δ (q, a) , {q′ ∈ Q|δ(q′, a) = q}, and

←−
δ (S, a) ,

⋃
q∈S

←−
δ (q, a).

For S1, S2 ⊆ Q, S2 is said to be apre-imageof S1 if ∃a ∈ Σ.
←−
δ (S1, a) = S2.

Fig. 3.5illustrates the graph constructed by backward exploration of theread ∗; close automaton

shown in Fig.3.3. We now establish a result about the graph
←−
F .
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Stmt WP(Stmt , 〈A,S〉)
x := y 〈A[x 7→ y ], S〉
x := new () 〈A,S〉 if x 6∈ A

false if x ∈ A ∧A 6= {x}
true if A = {x} ∧ init ∈ S
false if A = {x} ∧ init 6∈ S

x.op() 〈A,S〉 if
←−
δ (S,op) = S

〈A ∪ {x},
←−
δ (S, op)〉 ∨ 〈A,S〉 if

←−
δ (S, op) ⊃ S

At program true if |A| = 1 ∧ init ∈ S
entry false if |A| 6= 1 ∨ init 6∈ S

Figure 3.6: WP equations for predicates of the form〈A,S〉. We denote byA[x 7→ y] the set obtained

by replacing any occurrence ofx in A by y.

Theorem 3.3.9 If F represents an omission-closed property, then for anyS ∈ V←−F , and any operation

a ∈ Σ,
←−
δ (S, a) ⊇ S. Further, the graph

←−
F is acyclic except for self-loops.

Proof: For anyS ∈ V←−F there exists a sequence of operationsξ such thatS is the set of all states in

which ξ is invalid (by construction). Now,
←−
δ (S, a) is the set of all states in whichaξ is invalid. Since

F is omission-closed,
←−
δ (S, a) ⊇ S. Since any predecessorP of S must be a superset ofS, it follows

immediately that any cycle in the graph
←−
F must be a self-loop.

Fig. 3.6 and Fig.3.7 present weakest-precondition equations for predicates of the form〈A,S〉 and

the special predicateError. From these equations, we can determine which predicates are relevant for

verification. The equations reveal two things. First, they show that it is sufficient to restrict our attention

to predicates of the form〈A,S〉 whereS ∈ V←−F . Second, they show that a predicate〈A,P 〉 is relevant

only if there is a relevant predicate〈B,S〉 whereS is a proper successor ofP in the graph
←−
F andB has

cardinality at least|A| − 1. In other words, we need only consider predicates of the form〈A,P 〉 where

the cardinality ofA is less than or equal to the length of the longest acyclic path fromP to {err} in
←−
F .

Definition 3.3.10 For anyS ∈ V←−F , definedist(S) to be the number of edges in the longest acyclic

path fromS to {err} in
←−
F . Given a program with a set of variablesVars, we define a set of predicates

P = {〈A,S〉|S ∈ V←−F , A ⊆ Vars, |A| ≤ dist(S)} ∪ {Error}.

Theorem 3.3.11The setP ∪ {true, false} is a distributively WP-closed set of predicates for{Error}.

Proof: Follows from the above discussion.

Theorem 3.3.12 If F is omission-closed, thenSVF is in P.
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Stmt WP(Stmt ,Error)

x := y Error

x := new () Error

x.op() Error if
←−
δ ({err}, op) = {err}

〈{x},
←−
δ ({err}, op)〉 ∨ Error if

←−
δ ({err}, op) ⊃ {err}

At program entry false

Figure 3.7: WP equations for the predicateError.

Proof: Immediate from Theorem3.3.11and Theorem3.3.5. Note that the cardinality ofP isO(|Vars|k),
whereVars is the set of all variables in the program andk is the length of the longest acyclic path in

←−
F .

(Note, from Theorem3.3.9, thatk is also bounded by the number of states inF .)

Example 3.3.13Consider the propertyread∗close represented by the automaton of Fig.3.3. The graph
←−
F for this automaton is shown in Fig.3.5. The derivation for this property is as follows2:

WP(x.read() ,Error) = 〈{x}, {err, q2}〉 ∨ Error

WP(x.close() ,Error) = 〈{x}, {err, q2}〉 ∨ Error

WP(y.close() , 〈{x}, {err, q2}〉) = 〈{x, y}, {err, q2, q1}〉 ∨ 〈{x}, {err, q2}〉
WP(w.read() , 〈{x, y}, {err, q2, q1}〉) = 〈{x, y}, {err, q2, q1}〉

Thus,read ∗; close verification can be done in timeO(|Vars|2|Pgm|).

Discussion

A logical formula can usually be simplified into a number of equivalent forms. Hence, a weakest-

precondition can often be expressed in many ways. The form we chose to use in expressing weakest-

preconditions above is critical to deriving a polynomial-time verification algorithm. As an example,

consider theread ∗; close example. The following is an alternative, correct, weakest-precondition

equation, which says that an object in theerr state is possible afterx.close() iff either x points to

an object in stateq2 or an object exists in theerr state before the statement:

WP(x.close() ,Error) = 〈{x}, {q2}〉 ∨ Error. (3.1)

The actual formulation we used

WP(x.close() ,Error) = 〈{x}, {err, q2}〉 ∨ Error (3.2)

2Note that the variablesx , y , andwused in the derivation process are free variables and not variables of a specific program.
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init // q1ONMLHIJK open //

@A BC
read

//
q2ONMLHIJK BCED

open

GF��
read // q3ONMLHIJK {open,read} // errONMLHIJK BCED

{open,read}

GF��

Figure 3.8: An automaton for the propertyopen +; read .

actually contains some redundancy. In particular,〈{x}, {err, q2}〉 is equivalent to〈{x}, {err}〉 ∨
〈{x}, {q2}〉. But the disjunct〈{x}, {err}〉 is redundant because it impliesError, another disjunct in

our formula.

However, equation3.2 is preferable to equation3.1. In particular, we have seen that we can deter-

mine in polynomial time if〈{x}, {err, q2}〉 is possible at any program point. However, one can show

that determining if〈{x}, {q2}〉 is possible at a program point is PSPACE-hard, adapting the proof we

present in Section3.4. Thus, unless PSPACE = P, a distributively WP-closed set containing〈{x}, {q2}〉
of polynomial sizedoes not exist! Note that the set{q2} has a pre-image (namely

←−
δ ({q2}, close ) =

{q1}) that is not a superset of{q2}, thus not satisfying the requirements of Theorem3.3.9. This is why

the proof used for omission-closed properties cannot be used for this predicate.

3.4 Repeatable Enabling Sequence Properties

In this section we show that verification of Repeatable Enabling Sequence properties (see Defini-

tion 3.4.1) is NP-complete for acyclic programs and PSPACE-complete in general.

Definition 3.4.1 (Repeatable Enabling Sequence Properties)We say that a property represented by

an automatonF is a repeatable enabling sequence property if there exist sequences of operationsα, β

andγ such that the set of sequencesαβ+γ are all valid but the sequenceαγ is invalid. (The sequence

β may be thought of as a repeatable sequence that enablesγ.)

For example, the propertyopen +; read (see Figure3.8) which requires that aread be preceded

by one or moreopen operations is a repeatable enabling sequence property. (The more natural prop-

erty open +; read ∗ is also a repeatable enabling sequence property, but we useopen +; read as the

running example to contrast it with the omission-closed propertyread ∗; close .) We show that verifi-

cation of repeatable enabling sequence properties is PSPACE-complete by reduction from thesimulta-

neously falseproblem (see [74], [40]).

Definition 3.4.2 (Simultaneously False Problem)Given a programP with an initial assignment of

values (0 or 1) to a setx1, x2, . . . , xn of boolean variables, where the programP contains only assign-

ments (of constants or variables), conditionals or unconditional jumps, asimultaneously falseproblem
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for P is a problem of the form: is there an execution path from the entry point ofP to a program point

p such thatx1 = 0, x2 = 0, . . . xk = 0 when control reachesp ?

Lemma 3.4.3 (1) The simultaneously false problem for acyclic programs is NP-complete. (2) The si-

multaneously false problem for arbitrary programs is PSPACE-complete.

Proof: The binary simultaneous value problem can be easily reduced to the simultaneously false prob-

lem by following the construction used in the proof of Theorem 3.6 in Muth and Debray [74]. The idea

is to transform a programP into a programP ′ such that every variablexi in P corresponds to two

variablesXi andXi, every assignmentxi = 0 is converted toXi = 0;Xi = 1, every assignmentxi = 1

is converted toXi = 1;Xi = 0, and every assignmentxi = xj is converted intoXi = Xj ;Xi = Xj .

Consider the simultaneous value problemx1 = c1, x2 = c2, . . . , xk = ck for P . It can be easily shown

that the simultaneously false problem forP ′ obtained by replacing every conjunctxi = 0 with Xi = 0

andxi = 1 with Xi = 0 is equivalent. Thus, the simultaneously false problem is also NP-complete and

PSPACE-complete for acyclic and arbitrary programs respectively.

LetF be an automaton representing a repeatable enabling sequence property. We show that SVF is

PSPACE-hard by reduction from the simultaneously false problem. Ifα, β, γ are such that sequences

αβ+γ are valid and sequenceαγ is invalid, thenβ andγ must be non-empty (althoughαmay be empty).

Given an instance of the simultaneously false problemx1 = 0, x2 = 0, . . . , xk = 0 at program point

p in a programP , we construct a programP ′ as follows. First, we create two objectsZero andOne

which support methods corresponding to the sequencesα, β, andγ. Next, we copy programP into

P ′ replacing every assignment of the formxi = 0 by xi = Zero andxi = 1 by xi = One respectively.

Then, at program pointp, we insert the statementif (?) goto p1. Let the sequenceα bea1, a2, . . . , al,

let β beb1, b2, . . . bm, and letγ bec1, c2, . . . cn. We insert the following sequence of statements at the

end.
goto exit;

p1 : Zero.a1(); Zero.a2(); . . . ; Zero.al();

One.a1(); One.a2(); . . . ; One.al();

x1.b1(); x1.b2(); . . . ; x1.bm();

x2.b1(); x2.b2(); . . . ; x2.bm();

. . .

xk.b1(); xk.b2(); . . . ; xk.bm();

One.c1(); One.c2(); . . . ; One.cn();

exit :

Note that control can reach program pointp1 only through the conditional branch statementif (?) goto p1
(because of the statementgoto exit; just beforep1).
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Lemma 3.4.4 Assuming that the sequences of operationsβ andγ are non-empty, the simultaneously

false problemx1 = 0, x2 = 0, . . . xk = 0 at program pointp in P returns true if and only if program

P ′ violates the property represented byF .

Proof: ProgramP ′ creates only two objectsZero andOne. Note that the only sequence of operations

performed onZero isαβi wherei is the number of variables inx1, x2, . . . , xk that are aliased toZero at

program pointp. Thus, no illegal operation is ever performed onZero. The only sequence of operations

performed onOne isαβjγ wherej is the number of variables inx1, x2, . . . , xk that are aliased toOne

at program pointp. This sequence is invalid iffj can be0. In other words,P ′ violates the property

represented byF iff the simultaneously false problemx1 = 0, x2 = 0, . . . xk = 0 at program pointp in

P returns true.

The above lemma shows the hardness of typestate verification for repeatable enabling sequence

properties. We now establish a straightforward completeness result.

Lemma 3.4.5 For any automatonF , SVF is in NP for acyclic programs and in PSPACE for arbitrary

programs.

Proof: SVF is in NP for acyclic programs since we can non-deterministically choose a path through

the program and check to see if any object reaches the error state during execution along that path. To

show that SVF for an arbitrary programP is in PSPACE, we construct a non-deterministic multi-tape

polynomial-space-bounded Turing MachineM to solve the problem.M simulates input programP ,

non-deterministically choosing the branch to take at branch points. Let us refer to objects pointed to

by the variables inP as live objects.M keeps track of which variables point to which (live) objects,

and tracks the finite-state of each live object. The space needed to maintain this information is trivially

bounded by a polynomial in the size of programP . If any of the relevant objects goes into the error

state during simulation,M halts and signals the possibility of an error. Conversely, if there is a path that

causes one of the objects to go into the error state, thenM can guess this path and will halt signalling

the error.

Theorem 3.4.6 Consider a repeatable enabling sequence property represented by an automatonF .

SVF is NP-complete for acyclic programs and PSPACE-complete for arbitrary (cyclic) programs.

Proof: The proofs of NP-hardness and PSPACE-hardness of acyclic and arbitrary programs resepec-

tively follows from Lemmas3.4.3 and 3.4.4 respectively. Lemma3.4.5 shows that the problem of

shallow verification for all safety properties represented by an automaton is in NP for acyclic programs

and in PSPACE for arbitrary programs.

Theorem3.4.6shows that verification of repeatable enabling sequence properties is difficult even

for shallow programs. In fact, the situation is worse. We now show that even the shortest error paths

may be of exponential size in the worst case.
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Definition 3.4.7 (Error Path) LetF be an automaton representing a property to be verified. We say

that a (possibly cyclic) path in the control flow graph ofP from the entry vertex to some vertexv is an

error pathif symbolic execution of the program along this path (ignoring the conditionals) exhibits a

violation of the property associated withF . The programP is said to beerroneousif there exists an

error path inP . An integer-valued functionf is said to be a bound on the shortest error path length if

every erroneous program for sizen is guaranteed to have an error path of lengthf(n) or less.

Definition 3.4.8 (Loop Unrolling) Consider the control-flow-graphGP = (VP , EP ) of programP .

LetG′P = (VP , E
′
P ) denote the acyclic graph obtained fromGP by removing all back-edges. We define

Unroll(GP , n) to be the acyclic graph obtained by makingn+1 copies ofG′P (calledG′P (1), G′P (2), . . .

G′P (n+ 1) respectively), and for every back-edge(u, v) in GP , adding an edge from vertexu in G′P (i)

to vertexv in G′P (i+ 1) for all i from 1 tov. More formally Unroll(GP , n) = (V ∗, E∗) where

V ∗ = { (v, i) | v ∈ VP , 1 ≤ i ≤ n+ 1 }
E∗ = { [(u, i), (v, i)] | [u, v] ∈ E′P , 1 ≤ i ≤ n+ 1 } ∪

{[(u, i), (v, i+ 1)] | [u, v] ∈ EP − E′P , 1 ≤ i ≤ n }

It is easy to verify thatUnroll(GP , v) is acyclic and contains every path of lengthv or less inGP .

Theorem 3.4.9 If NP 6= PSPACE, then there does not exist a polynomial bound on the shortest error

path length for repeatable enabling sequence properties.

Proof: Let F be the finite state automaton associated with the repeatable enabling sequence property.

From Theorem3.4.6 it follows that verification ofF for acyclic programs is in NP and for arbitrary

(cyclic) programs is PSPACE-hard. We prove Theorem3.4.9by showing that if there is a polynomial

bound on the shortest error path, then the verification problem for cyclic programs can be polynomial-

time reduced to the verification problem for acyclic programs, which would imply that NP = PSPACE.

Let p(n) denote a polynomial bound on the size of the shortest error path wheren denotes the size

of the program. Given an arbitrary programP with control flow graphGP , we construct the acyclic

programUnroll(GP , p(n)) which is acyclic and contains all paths of lengthp(n) or less inGP . The

size ofUnroll(GP , p(n)) and the time taken to construct it are both polynomial inn. Thus, the problem

of verification ofGP is polynomially reduced to the problem of verifyingUnroll(GP , p(n)), which is a

contradiction.

Theorem3.4.9suggests that it may not be possible to find short counterexample paths exhibiting

the violation of properties likeopen +; read . This is important to know because many approaches

to verification (e.g., [6]) are inherently associated with the generation of a counterexample path that

exhibits the violation of the property of interest. Theorem3.4.9suggests the possibility that even the

shortest error path in the program may be of size exponential in the size of the program.
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3.5 Verification by counting

We have now seen that verification is intractable for repeatable enabling sequence properties and poly-

nomial for omission-closed properties. Unfortunately, there are properties that fall into neither class. A

simple example is theopen ; read property. Note thatopen ; read is similar toopen +; read in that

it requires that an object be opened before it can be read, but it differs from it in that an object cannot be

opened multiple times. Does this make verification any easier?

3.5.1 The Intuition

The requirement that an object cannot be opened multiple times is a forbidden subsequence problem

(whereopen ; open is the forbidden subsequence) (see Theorem3.3.2(c)). It follows that we can

verify if the given program may open an object multiple times in polynomial time. Thus,open ; read

verification is polynomial-time equivalent toopen +; read verification of a programguaranteed not

to open any object more than once. We will now show that, at least for acyclic programs, this added

restriction (that an object cannot be opened multiple times) does make polynomial-time verification

possible.

Let us begin by considering whyread ∗; close verification is easy whileopen +; read verifica-

tion is not. Consider the following code fragment:

...; p 1.open(); ...; p k.open(); ...; q.read();

Theopen +; read property will be violated if there is an execution path such that the value ofq at the

read statement is different from the values ofeachpi at the correspondingopen statements (assuming

there are noopen statements in the program other than those shown above). Determining if certain

relationships cansimultaneouslyexist among a potentially unbounded number of program variables is

difficult.

In contrast, consider the following code fragment:

...; p 1.close(); ...; p k.close(); ...; q.read();

The read ∗; close property will be violated here if there is an execution path such that the value of

q at theread statement is equal to the value ofsomepi at the correspondingclose statement. In

other words, this requiresindependentanswers tok different questions, each about the value of only

twoprogram variables. This turns out to be easy.

Let us now turn back to the earlier example above.

...; p 1.open(); ...; p k.open(); ...; q.read();

If we now know that no object is opened twice, how can we exploit this foropen +; read (i.e.,

open ; read ) verification? For any giveni , we know that it is easy to determine if theq.read()
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statement may read the same object that is opened by thepi.open() statement. Imagine that we can

count the number of execution paths,ni, along which this can happen, for eachi . Adding up all the

ni would tell us how many times (i.e., along how many execution paths) theq.read() statement is

a valid operation3. If this number does not equal the number of execution paths to theq.read()

statement, thenthere must be an execution path along whichq.read() will read an unopened object!

Such indirect reasoning based on counting is the basis for the algorithm presented in [41].

3.6 Programs with Width-Limited Aliasing

In Section3.4 we saw that, unless P = NP, verification of repeatable enabling sequence properties will

require exponential timein the worst-case. Is it, however, possible to design verification algorithms that

are efficientin practice, e.g., by exploiting properties of programs that arise in practice? For example,

one seldom sees programs in which a very large number of variables point to the same object at a

program point. Let us say that a program has a maximumaliasing widthof k if there is no execution

path in the program that will produce an object pointed to by more thank different variables. In this

section, we look at the complexity of typestate verification for programs where the maximum aliasing

width is bounded by a constant.

3.6.1 Polynomial-Time Verification for Shallow Programs with Width-Limited Aliasing

In this section we present a verification algorithm motivated by the observation that the aliasing width

of programs tends to be small in practice. The algorithm runs in timeO(|Pgm|k+1), where|Pgm| is

the size of the program andk is the maximum aliasing width of the program: Unlike the polynomial

solutions of previous sections, the algorithm presented here works for any typestate property.

We note that naive verification algorithms do not achieve the above complexity, i.e. they may take

exponential time even for programs with a maximum aliasing width of 2. In particular, consider the

obvious abstraction where the program-state is represented by a partition of the program variables into

equivalence classes (of variables that are aliased to each other), with a finite state associated with each

equivalence class. The number of such program-states that can arise at a program point is exponential

in the number of program variables even for programs with a maximum aliasing width of 2.

Our algorithm uses predicates of the form[A,S] defined below.

Definition 3.6.1 LetA ⊆ Varsbe a non-empty set of program variables, andS ⊆ Q a set of states of

F .

[A,S] =
∧

x∈A,y∈A

(y = x) ∧
∧

x∈A,z∈Vars\A
(z 6= x) ∧

∧
x∈A

InS(x) )

3This is where we exploit the fact that no object is opened twice. Otherwise, adding upni will end up counting some paths
multiple times.
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Statement flow(Statement )([A, σ])

x := y {[A ∪ {x}, σ]} if y ∈ A
{[A \ {x}, σ]} if y 6∈ A

x := new() {[{x}, init], [A \ {x}, σ]} if x ∈ A
{[A, σ]} if x 6∈ A

x.op() {[A, δ(σ, op)]} if x ∈ A
{[A, σ]} if x 6∈ A

Figure 3.9:flowequations for predicates of the form[A, σ].

WhenS contains a single stateσ ∈ Q, we write[A, σ], rather than[A, {σ}].

Intuitively, a predicate[A,S] means that all variables inA have the same value (are aliases), every

variable not inA has a different value from the variables inA, and the object referred to by variables in

A is in one of the state ofS. The difference between[A,S] and〈A,S〉 (Definition3.3.7) is noteworthy.

The non-aliasing conditions are implicitly represented in[A,S] by assuming that every variable not in

A has a different value from the variables inA, whereas in〈A,S〉, the variables not inA may or may

not be aliased to the variables inA.

Fig. 3.10presents our verification algorithm that computes, for all program points, the set of predi-

cates of the form[A, σ] that may-be-true at the program point. (A predicatep is said to be may-be-true at

a program pointu iff there exists a path tou such that execution along that path will causep to become

true.) The algorithm is based on a standard iterative collecting interpretation algorithm. The function

flow(St )(ϕ), defined in Fig.3.9, identifies the set of predicates that may-be-true after statementSt

given a predicateϕ that may-be-true before statementSt . For any program pointl, Succ(l) denotes the

successors ofl.

Theorem 3.6.2 The algorithm of Fig.3.10 preciselycomputes the set of predicates[A,S] that may

hold at any program point in timeO((
∑

1≤i≤k

(
n
i

)
) ∗ |Pgm|) = O(nk ∗ |Pgm|) wherek is the maximum

number of variables aliased to each other at any point in the programPgm, andn = |Vars| is the

number of program variables.

Proof: It can be shown that (a)∪ϕ∈P flow(St )(ϕ) computes a precise abstract transfer function for

statementSt with respect to the set of predicatesP , and that (b) this is a distributive function. It

directly follows from these facts that the algorithm computes the precise solution.

We now establish the complexity of the algorithm. Assume that the maximal size of an alias-

set occurring in the program isk. The algorithm may generate predicates of the form[A,S] for all

subsets of any size up tok of program variablesVars. The number of predicates that may have a
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workList= {}
for each program point l

results(l) = {}
for each program variable xi

add (entry, [xi, {init }]) to workList

while workList 6= ∅ {
remove (l, ψ) from workList

for each ψ′ ∈ flow(stmt l)(ψ) {
for l′ ∈ Succ(l) {

if ψ′ 6∈ results(l′) {
results(l′) = results(l′) ∪ {ψ′}
add (l′, ψ′) to workList

}
}

}
}

Figure 3.10: An iterative algorithm using predicates of the form[A,S].
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true value in a program point is thereforeO(
∑

1≤i≤k

(
n
i

)
) wheren = |Vars| (we treat the number of

FSM states as a constant). The complexity of the chaotic iteration algorithm of Fig.3.10 is therefore

O((
∑

1≤i≤k

(
n
i

)
) ∗ |Pgm|). The expression is also bounded byO(nk ∗ |Pgm|). The above assumes that

the step of computingflow(stmt l)(ψ) takes constant time.

Though the worst-case complexity of the algorithm is exponential, the exponential factork is ex-

pected to be a small constant for typical programs, since the number of pointers simultaneously pointing

to the same object is expected to be small (and significantly smaller than|Vars|).
Note that using the set of predicates defined in Definition3.6.1is not sufficient to achieve the desired

complexity. The style of “forward propagation” used by our algorithm is also essential, as it ensures that

the cost of analysis is proportional to the number of predicates that may-be-true (rather than the number

of total predicates, as is the case with alternative analysis techniques).

3.6.2 Width-Limited Aliasing in Non-Shallow Programs

We have now seen that typestate verification can be done efficiently for programs where the aliasing

is bounded in certain ways. Specifically, the results of the previous subsection show that for shallow

programs, typestate verification can be done in polynomial time if the aliasing width is assumed to

be bounded by a constant. A natural question is whether any such result holds true for non-shallow

programs.

Recall that shallow programs are programs where the aliasingdepthis restricted to be one: program

variables may point to objects, but the program contains no variables that point to objects that contain

pointers to objects.

Unfortunately, it turns out that typestate verification is hard for non-shallow programs even if alias-

ing width is bounded by a constant. It is known [61] that alias analysis is intractable for programs where

the aliasing depth is two. We now show that the intractability result holds even if in addition the aliasing

width is also restricted to three.

Theorem 3.6.3 Alias analysis is NP-hard for programs with aliasing depth two and aliasing width

three.

Proof: The proof is by reduction from 3-SAT. Consider a 3-SAT formulaC1 ∧C2 · · · ∧Cn over logical

variablesw1 throughwm. We create a program with a typeT and a second typePT consisting of a field

f of type (pointer to)T. Corresponding to every clauseCi, the program consists of variablesXi, Yi,true,

andYi,false of type (pointer to)PT initialized as follows:

Yi,true = new PT(); Yi,true.f = new T();

Yi,false = new PT(); Yi,false.f = new T();

Xi = Yi,false
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BothYi,true andYi,false are constants in the program.

After the initialization code, the program consists of one if-then-else statement for every logical

variablewi in the 3-SAT formula. The then-branch of this statement consists of an assignment statement

Xi = Yi,true for every clauseCi that contains the literalwi as one of its disjuncts. The else-branch of

this statement consists of a similar assignment statementXi = Yi,true for every clauseCi that contains

the negated literalwi as one of its disjuncts.

Thus, there exists a one-to-one correspondence between execution paths through them if-then-else

statements and possible truth assignments to them logical variables, where we associate the then-branch

of the i-th if-statement with an assignment of true to logical variablewi. It should be clear that after

execution through any path,Xi points to the same object asYi,true iff the corresponding truth assignment

makes clauseCi to evaluate to true.

We now append the following code fragment:

S = new T();

Y1,true.f = S;

Y2,true.f = X1.f; Y1,true.f = new T();

Y3,true.f = X2.f; Y2,true.f = new T();

· · ·
Yn,true.f = Xn−1.f; Yn−1,true.f = new T();

R = Yn,true.f;

Now, consider any execution path through the whole program that corresponds to a truth assignment

that makes the entire formula true. Then, a pointer to the object created by the statementS = new T();

will be successively copied through everyYi,true.f and then finally toR, causingS andR to be aliased

at the end of the program. Conversely, it can be verified that an execution path will causeS andR to be

aliased to each other at the end of the program only if the path corresponds to a truth assignment that

makes the given 3-SAT formula true.

Hence,R and S may alias each other at the end of the program iff the given 3-SAT formula is

satisfiable.

Note that the program generated above has an aliasing width of three (i.e., no more than three

pointers point to the same object at any point during program execution). In particular, the assignments

Yi,true.f = new T(); guarantee that no more than 3 pointers could point toS at any given time.

The following theorem is a straightforward consequence of the above result.

Theorem 3.6.4 Typestate verification is NP-hard for programs with aliasing depth two and aliasing

width three.
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3.7 Conclusion

In this chapter we have shown that verification of omission-closed properties is in P and that verification

of repeatable enabling sequence properties is NP-complete for acyclic programs and PSPACE-complete

in general. We have shown that verification of almost-omission-closed properties is in P for acyclic

programs. However, many questions still remain open. E.g., we do not know if verification of almost-

omission-closed properties is in P for cyclic programs. Moreover there are properties which do not

lie in any of these classes. E.g., consider the propertyopen ; read ∗ which generalizesopen ; read

by allowing any number ofread operations. We can adapt thecountingmethod of [41] to show that

verification ofopen ; read ∗ is in P for acyclic programs. However, we have not been able to formulate

such a result for a general class of properties that includesopen ; read ∗. Finally, there are also other

properties such as(lock ; unlock )∗ (any number of alternatinglock andunlock operations) for

which we have neither been able to show a polynomial bound, nor an NP-hardness result.

On a more pragmatic note, we have presented a typestate verification algorithm, for arbitrary type-

state properties, that we expect will perform well based on the reasonable assumption that programs

tend to have small aliasing width. However, this algorithm is restricted to shallow programs. A natural

question is how these ideas can be generalized to conduct verification for arbitrary programs. One of the

primary intuitions behind our verification algorithm (for shallow programs) is that maintaining just the

right correlation required between “analysis facts” can be the key to efficient and precise verification:

maintaining no correlations (independent attribute analysis) can lead to imprecision, while maintaining

all correlations (relational analysis) can lead to inefficiency. The techniques presented in Chapter6 (and

in [117]) show one way to exploit this intuition for verification of arbitrary (i.e. non-shallow) programs

as well.



Chapter 4

Verifying Temporal Heap Properties

Specified via Evolution Logic

This chapter addresses the problem of establishing temporal properties of programs written in languages,

such as Java, that make extensive use of the heap to allocate—and deallocate—new objects and threads.

Establishing liveness properties is a particularly hard challenge. One of the crucial obstacles is that heap

locations have no static names and the number of heap locations is unbounded. The chapter presents

a framework for the verification of Java-like programs. Unlike classical model checking, which uses

propositional temporal logic, we use evolution temporal logic (ETL), a first-order temporal logic, to

specify temporal properties of heap evolutions; this logic allows domain changes to be expressed, which

permits allocation and deallocation to be modelled naturally.

In this chapter and in Chapter5, we present two verification algorithms for ETL, based on two

alternative semantics. In this chapter, we provide avarying-domain semanticsin which the semantics

of the program is considered to be a set of (infinite) traces in which each configuration may have its

own domain. Then, in Chapter5, we describe aconstant-domain semanticsin which all configurations

along a trace share a single constant (infinite) domain. Using constant domain semantics allows us to

naturally define a state-based semantics for ETL resulting in a more efficient verification algorithm.

Space by itself, and time by itself, are doomed to fade away into mere shadows,

and only a kind union of the two will preserve an independent reality.

–Albert Einstein.

4.1 Introduction

Modern programming languages, such as Java, make extensive use of the heap. The contents of the heap

may evolve during program execution due to dynamic allocation and deallocation of objects. Moreover,

in Java, threads are first-class objects that can be dynamically allocated. Statically reasoning about

75
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temporal properties of such programs is quite challenging, because there are noa priori bounds on the

number of allocated objects, or restrictions on the way the heap may evolve. In particular, proving

liveness properties of such programs, e.g., that a thread is eventually created in response to each request

made to a web server, can be quite a difficult task.

The contributions of this chapter can be summarized as follows:

• We introduce a first-order modal (temporal) logic [45, 42] that allows specifications of temporal

properties of programs with dynamically evolving heaps to be stated in a natural manner.

• We develop an abstract interpretation [24] for verifying that a program satisfies such a specifica-

tion.

• We implemented a prototype of the analysis using the TVLA system [64] and applied it to verify

several temporal properties, including liveness properties of Java programs with evolving heaps.

We have used the framework to specify and verify the following:

Specify general heap-evolution properties: The framework has been used to specify, in a general

manner, various properties of heap evolution, such as properties of garbage-collection algorithms.

Verify termination of sequential heap-manipulating programs: Termination is shown by providing

a ranking function based on the set of items reachable from a variable iterating over the linked data

structure. In particular, we have verified termination of all example programs from [35].

Verify temporal properties of concurrent heap-manipulating programs: We have used the framework

to verify temporal properties of concurrent heap-manipulating programs — in particular, liveness prop-

erties, such as the absence of starvation in programs using mutual exclusion, and response properties

[69]. We have applied this analysis to programs with an unbounded number of threads.

The remainder of this chapter is organized as follows: Section4.2 gives an overview of the veri-

fication method and contrasts it with previous work. Section4.3 introduces trace semantics based on

first-order modal logic, and discusses how to state trace properties using the language of evolution logic.

Section4.4 defines an implementation of trace semantics via first-order logic. Section4.5 shows how

abstract traces are used to conservatively represent sets of concrete traces. Section4.6 summarizes

related work. Finally, Section4.7concludes the chapter.

4.2 Overview

4.2.1 A Temporal Logic Supporting Evolution

The specification language,Evolution Temporal Logic(ETL), is a first-order linear temporal logic that

allows specifying properties of the way program execution causes dynamically allocated memory (“the

heap”) to evolve.
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It is natural to consider the concrete semantics of a program as the set of its execution traces [26,

107], where each trace is an infinite sequence ofworlds. First-order logical structures provide a natural

representation of worlds with an unbounded number of objects: an individual of the structure’s domain

(universe) corresponds to an anonymous, unique store location, and predicates represent properties of

store locations. Such a representation allows properties of the heap contents to be maintained while

abstracting away any information about the actual physical locations in the store.

This gives rise to traces in which worlds along the trace may have different domains. Such traces

can be seen as models of a first-order modal logic with a varying-domain semantics [42]. This could be

equivalently, but less naturally, modelled using constant-domain semantics.

This framework generalizes other specification methods that address dynamic allocation and deal-

location of objects and threads. In particular, its descriptive power goes beyond Propositional LTL and

finite-state machines (e.g., [17]).

Program properties can be verified by showing that they hold for all traces. Technically, this can be

done by evaluating their first-order modal-logic formulae against all traces. We use a variant of Lewis’

counterpart theory [66] to cast modal models (and formula evaluation) in terms of classical predicate

logic with transitive closure (FOTC) [23].

Program verification using the above concrete semantics is clearly non-computable in general. We

therefore represent potentially infinite sets of infinite concrete traces by one abstract trace. Infinite

parts of the concrete traces are folded into cycles of the abstract traces. Termination of the abstract

interpretation on an arbitrary program is guaranteed by bounding the size of the abstract trace. Two

abstractions are employed: (i) representing multiple concrete worlds by a single abstract world, and

(ii) creating cycles when an abstract world reoccurs in the trace.

Because of these abstractions, we may fail to show the correctness of certain programs, even though

they are correct. Fortunately, we can use reduction arguments and progress monitors as employed in

other program-verification techniques (e.g., [58]).

As in finite-state model checking (e.g., [107]), we let the specification formula affect the abstraction

by making sure that abstract traces that fulfill the formula are distinguished from the ones that do not.

However, our abstraction does not fold the history of the trace into a single state. This idea of using the

specification to affect the precision of the analysis was not used in [91, 115], which only handle safety

properties.

4.2.2 Overview of the Verification Procedure

First, the propertyϕ is specified in ETL. The formula is then translated in a straightforward manner

into anFOTC logical formula,(ϕ)†, using a translation procedure described in Appendix4.8. An

abstract-interpretation procedure is then applied to explore finite representations of the set of traces, us-

ing Kleene’s3-valued logic to conservatively interpret formulae. The abstract-interpretation procedure
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public class Worker implements Runnable {
Request request;

Resource resource; ...

public void run() { ...

lw1 synchronized(resource) {
lwc resource.processRequest(request);

lw2 }
}

}

Figure 4.1: Java fragment for worker thread in a web server with no explicit scheduling.

essentially computes a greatest fixed-point over the set of traces, starting with an abstract trace that rep-

resents all possible infinite traces from an initial state, and gradually increasing the set of abstract traces

and reducing the set of represented concrete traces. Finally, the formula(ϕ)† is evaluated on all of the

abstract traces in the fixed point. If(ϕ)† is satisfied in all of them, then the original ETL formulaϕmust

be satisfied by all (infinite) traces of the program. However, it may be the case that for some programs

that satisfy the ETL specification, our analysis only yields “maybe”.

4.2.3 Running Example

Consider a web server in which a new thread is dynamically allocated to handle each receivedhttp

request. Each thread handles a single request, then terminates and is subject to garbage collection.

Assume that worker threads compete for some exclusively shared resource, such as exclusive access to

a data file. Fig.4.1shows fragments of a Java program that implements such a naive web server.

A number of properties for the naive web-server implementation are shown in Table4.1as properties

P1–P4. For now you may ignore the formulae in the third column; these will become clear as ETL syntax

is introduced in Section4.3.

Due to the unbounded arrival of requests to the web server, and the fact that a thread is dynamically

created for each request, absence of starvation (P2) does not hold in the naive implementation. To

guarantee absence of starvation, we introduce a scheduler thread into the web server. The web server

now consists of a listener thread (as before) and a queue of worker threads managed by the scheduler

thread. The listener thread receives anhttp request, creates a corresponding worker thread, and places

the new thread on a scheduling queue. The scheduler thread picks up a worker thread from the queue

and starts its execution (which is still a very naive implementation).

When using a web server with a scheduler, a number of additional properties of interest exist, la-

beled P5–P8 (for additional properties of interest see [112]). Fig. 4.2shows fragments of a web-server

program in which threads use an explicit FIFO scheduler.

The ability of our framework to model explicit scheduling queues provides a mechanism for address-
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public class Scheduler

implements Runnable {
protected Queue schedQ;

protected Resource resource; ...

public void run() {
ls1 while(true) { ...

ls2 synchronized(resource) {
ls3 while(resource.isAcquired())

ls4 resource.wait();

// may block until

// queue not empty

ls5 worker=schedQ.dequeue();

ls6 worker.start();

}
}

}
}

public class Listener

implements Runnable {
protected Queue schedQ; ...

public void run() {
la1 while(true) { ...

la2 req=rqStream.readObject();

la3 worker=new Thread(new Worker(req));

la4 schedQ.enqueue(worker);

... }
}

}
public class Worker

implements Runnable {
Request req;

Resource resource; ...

public void run() {
lw1 synchronized(resource) { ...

lwc resource.processRequest(req);

resource.notifyAll();

lw2 }
}

}

Figure 4.2: Java code fragment for a web server with an explicit scheduler.

ing issues of fairness in the presence of dynamic allocation of threads. (Further discussion of fairness is

beyond the scope of this chapter).

4.3 Trace-Based Evolution Semantics

In this section, we define a trace-based semantic domain for programs that manipulate unbounded

amounts of dynamically allocated storage. To allow specifying temporal properties of such programs,

we employ first-order modal logic [42]. Various such logics have been defined, and in general they can

be given aconstant-domainsemantics, in which the domain of all worlds is fixed, or avarying-domain

semantics, in which the domains of worlds can vary and domains of different worlds can overlap. In the

most general setting, in both types of semantics an object can exist in more than a single world, and an

equality relation is predefined to express global equality between individuals.

To model the semantics of languages such as Java, and to hide the implementation details of dynamic

memory allocation, we use a semantics with varying domains. However, the semantics is deliberately

restricted because of our intended application to program analysis. By design, ourevolution semantics

has a notion of equality in the presence of dynamic allocation and deallocation, without the need to

update a predefined global-equality relation. Evolution semantics is adapted from Lewis’s counterpart

semantics [66]. In both evolution and counterpoint semantics, an individualcannotexist in more than
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Pr. Description Formula

P1 mutual exclusion over the shared resource
0 ∀t1, t2: thread.(t1 6= t2)

→ ¬(at[lwc](t1) ∧ at[lwc](t2))

P2 absence of starvation for worker threads 0 ∀t: thread.at[lw1](t)→1 at[lwc](t)

P3
a thread only created when

a request is received

0(∀t: thread.¬ � t)∨
(∀t: thread.¬ � t)U (∃v: request.� v)

P4 each request is followed by thread creation 0 ∃v: request.� v →1∃t: thread.� t

P5
mutual exclusion of listener and scheduler

over scheduling queue

0 ∀t1, t2: thread.(t1 6= t2)

→ ¬(at[ls3](t1) ∧ at[la3](t2))

P6
each created thread is eventually

inserted into the scheduling queue

0 ∀t: thread.� t
→1∃q: queue.rval[head.next∗](q, t)

P7
each scheduled worker thread was

removed from the scheduling queue

0 ∀t: thread.at[lw1](t)

→ ¬∃q: queue.rval[head.next∗](q, t)

P8
each worker thread waiting in the queue

eventually leaves the queue

∃q: queue.0 ∀t: thread.
(rval[head.next∗](q, t))

→1¬(rval[head.next∗](q, t))

Table 4.1: Web server ETL specification using predicates of Table4.2.

a single world; each world has its own domain, and domains of different worlds are non-intersecting.

Under this model, equality need only be defined within a single world’s boundary; individuals of differ-

ent worlds are unequal by definition.To relate individuals of different worlds, an evolution mapping is

defined; however, unlike Lewis, we are interested in an evolution mapping that is reflexive, transitive,

and symmetric, which models the fact that, during a computation, an allocated memory cell does not

change its identity until deallocated. In Section4.5.3, we show how to track statically, in the presence

of abstraction, the equivalence relation induced by the evolution mapping.

As is often done, we add a skip action from the exit of the program to itself, so that all terminating

traces are embedded in infinite traces. The semantics of the program is its set of infinite traces.

In the rest of this chapter, we work with a fixed set of predicates (or vocabulary)P = {eq, p1, . . . , pk}.
We denote byPk the set of predicates fromP with arity k.

Definition 4.3.1 (World) A world (program configuration) is represented via a first-order logical struc-

tureW = 〈Uw, ιw〉, whereUw is the domain (universe) of the structure, andιw is the interpretation

function mapping predicates to their truth values; that is, for eachp ∈ Pk, ιw(p) : Uk
w → {0, 1},

such that for allu ∈ Uw, ιw(eq)(u, u) = 1, and for allu1, u2 ∈ Uw such thatu1 andu2 are distinct

individualsιw(eq)(u1, u2) = 0.
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Definition 4.3.2 (Trace) A trace is an infinite sequence of worldsπ1
Dπ1 ,eπ1 ,Aπ2−−−−−−−−→ π2

Dπ2 ,eπ2 ,Aπ3−−−−−−−−→ . . .,

where: (i) each world represents a global state of the program,π1 is an initial state, and for eachπi,

its successor worldπi+1 is derived by applying a single program action toπi; (ii) Dπi ⊆ Uπi is the set

of individuals deallocated atπi, andAπi+1 ⊆ Uπi+1 is the set of individuals newly allocated atπi+1;

(iii) each pair of consecutive worldsπi, πi+1 is related by a stepwiseevolution function, a bijective

renaming functioneπi : Uπi \Dπi → Uπi+1 \Aπi+1 .

Extracting Trace Properties

To extract trace properties, we need a language that can relate information from different worlds in a

trace. We define the language of evolution logic (ETL), which is a first-order linear temporal logic with

transitive closure, as follows:

Definition 4.3.3 (ETL Syntax) AnETL formula is defined by

ϕ ::= 0|1|p(v1, . . . , vn)| � v1| � v1|ϕ1 ∨ ϕ2|¬ϕ1|∃v1.ϕ1|(TC v1, v2 : ϕ1)(v3, v4)

|ϕ1Uϕ2| © ϕ1

wherevi are logical variables.

The set of free variables in a formulaϕ denoted byFV (ϕ) is defined as usual. In a transitive closure

formula,FV ((TC v1, v2 : ϕ1)(v3, v4)) = (FV (ϕ1) \ {v1, v2}) ∪ {v3, v4}.

The operators� and� allow the specification to refer to the exact moments of birth and death

(respectively) of an individual.1

Shorthand Formulae: For convenience, we also allow formulae to contain the shorthand notations

(v1 = v2) , eq(v1, v2), (v1 6= v2) , ¬eq(v1, v2), ϕ1 ∧ ϕ2 , ¬(¬ϕ1 ∨ ¬ϕ2), ϕ1 → ϕ2 , ¬ϕ1 ∨ ϕ2,

∀v.ϕ1 , ¬(∃v.¬ϕ1),1ϕ1 , 1Uϕ1, and0 ϕ1 , ¬(1U¬ϕ1). We also use the shorthandp∗(v3, v4)

for (TC v1, v2 : p(v1, v2))(v3, v4) ∨ (v3 = v4), whenp is a binary predicate.

In our examples, the predicates that record information about a single world include the predicates

of Table4.2, plus additional predicates defined in later sections. The set of predicates{at[lab](t) : lab ∈
Labels} is parameterized by the set of program labels. Similarly, the set of predicates{rval[fld](o1, o2) : fld ∈
Fields} is parameterized by the set of selector fields. We use the shorthand notationrval[x.fld∗](v1, v2) ,

∃v′.rval[x](v1, v′) ∧ rval[fld]∗(v′, v2). The transitive closure allows specifying properties relating to

unbounded length of heap-allocated data structures (e.g., inrval[fld]∗(v′, v2)).

As in Chapter2, we use unary predicates, such asis thread(t), to represent type information.

This could have been expressed using a many-sorted logic, but we decided to avoid this for expository

purposes. Instead, for convenience we define the shorthands∃v: type.ϕ , ∃v.is type(v) ∧ ϕ and

∀v: type.ϕ , ∀v.is type(v)→ ϕ.

1These operators could be extended to handle allocation and deallocation of a (possibly unbounded) set of individuals.
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Predicates Intended Meaning

is T (v) v is an object of typeT

{at[lab](t) : lab ∈ Labels} threadt is at labellab

{rval[fld](o1, o2) : fld ∈ Fields} field fld of the objecto1 points to the objecto2

heldBy(l, t) the lockl is held by the threadt

blocked(t, l) the threadt is blocked on the lockl

waiting(t, l) the threadt is waiting on the lockl

Table 4.2: Predicates used to record information about a single world.

Example 4.3.4 Property P2 of Table4.1specifies the absence of starvation for worker threads (Fig.4.1).

The formula∃t: thread.1 at[lwc](t) states that some thread eventually enters the critical section. The

formula0 ∃t: thread.1 at[lwc](t) expresses the fact that globally some thread eventually enters the

critical section.

The property0(∀v. � v → 1�v) states that globally, each individual that is allocated during

program execution is eventually deallocated. Note that the universal quantifier quantifies over individ-

uals of the world in which it is evaluated. This property is an instance of the commonly used “Response

structure” [69, 37], in which an allocation in a world has a deallocation response in some future world.

The properties

∀t: thread.0(at[llh](t)→ ∃v.rval[i.next∗](t, v) ∧1(at[llh](t) ∧ ¬rval[i.next∗](t, v)))
∀t: thread.0(∀v.at[llh](t) ∧ ¬rval[i.next∗](t, v)→ 0 ¬at[llh](t) ∨ ¬rval[i.next∗](t, v))

establish a ranking function for linked data structures based on transitive reachability. These properties

state that at the loop headllh, the set of individuals transitively reachable from program variablei

decreases on each iteration of the loop. (Typicallyi is a pointer that traverses a linked data structure

during the loop.) Note that these properties relate an unbounded number of individuals of one world to

another.

The property0(∀v.10 ∀t: thread.
∧

x∈V ar

fld∈Fields

¬rval[x.fld∗](t, v)→1�v) is a desired prop-

erty of a garbage collector — that all non-reachable items are eventually collected.

Evolution Semantics

In the following definitions,head(π) denotes the first world in a traceπ, tail(π) denotes the suffix ofπ

without the first world, andπi denotes the suffix ofπ starting at thei-th world. We also uselast(τ) to

denote the last world of a finite trace prefixτ .

Definition 4.3.5 (Evolution mapping) Let τ be the finite prefix of lengthk of the traceπ. We say that

an individualu ∈ Uhead(τ) evolves intoan individualu′ ∈ Ulast(τ) in the traceπ in k steps, and write
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π |=k u u′ when there is a sequence of individualsu1, . . . , uk such thatu1 = u anduk = u′ and for

each two successive worlds inτ , ui+1 = eτi(ui).

Definition 4.3.6 (Assignment evolution)Let τ be the finite prefix of lengthk of the traceπ. Given

a formulaϕ and an assignmentZ mapping free variables ofϕ to individuals of a domainUhead(τ),

we say thatπ |=k Z  Z ′ (Z evolves intoZ ′ in π in k steps) if for each free variable fvi of ϕ,

π |=k Z(fvi) Z ′(fvi), Z(fvi) ∈ Uhead(τ), andZ ′(fvi) ∈ Ulast(τ).

Definition 4.3.7 (ETL evolution semantics)We define inductively when an ETL formulaϕ is satisfied

over a traceπ with an assignmentZ (denoted byπ,Z |= ϕ) as follows:

• π,Z |= 1, and notπ,Z |= 0.

• π,Z |= p(v1, . . . , vk) whenιhead(π)(p)(Z(v1), . . . , Z(vk)) = 1

• π,Z |= ¬ϕ when notπ,Z |= ϕ

• π,Z |= ϕ ∨ ψ whenπ,Z |= ϕ or π,Z |= ψ

• π,Z |= ∃v.ϕ(v) when there existsu ∈ Uhead(π) s.t.π,Z[v 7→ u] |= ϕ(v)

• π,Z |= (TC v1, v2 : ϕ)(v3, v4) when there existsu1, . . . , un+1 ∈ Uhead(π), such thatZ(v3) =

u1, Z(v4) = un+1, and for all1 ≤ i ≤ n,
π, Z[v1 7→ ui, v2 7→ ui+1] |= ϕ.

• π,Z |= �v whenZ(v) ∈ Ahead(tail(π)).

• π,Z |= �v whenZ(v) ∈ Dhead(π).

• π,Z |=©ϕ when there existsZ ′ such thattail(π), Z ′ |= ϕ andπ |=1 Z  Z ′.

• π,Z |= ϕUψ when there existsk ≥ 1, Z ′, andZ ′′ s.t.,

πk, Z ′ |= ψ andπ |=k Z  Z ′

and for all1 ≤ j < k, πj , Z ′′ |= ϕ andπ |=j Z  Z ′′,

We writeπ |= ϕ whenπ,Z |= ϕ for every assignmentZ.

It is worth noting that the first-order quantifiers in this definition only range over the individuals of a

single world, yet the overall effect achieved by using the evolution mapping is the ability to reason about

individuals of different worlds, and how they relate to each other. In essence, the assignmentZ[v 7→ u]

bindsv to (the evolution of) an individual from the domain of the world over which the quantifier was

evaluated (cf. the semantics of© andU ).
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Figure 4.3: Interaction of first-order quantifiers and temporal operators.

The combination of first-order quantifiers and modal operators creates complications that do not oc-

cur in propositional temporal logics. In particular, the quantification domain of a quantifier may vary as

the domain of the underlying worlds varies. Verification of ETL properties therefore requires a mech-

anism for recording the domain related to each quantifier, and for relating members of quantification

domains to individuals of future worlds. For ETL, this mechanism is provided by evolution-mappings,

which relate individuals of a world to the individuals of its successor world. Transitively composing

evolution-mappings captures the evolution of individuals along a trace.

Example 4.3.8 The formula∃v.0 x(v) states that the pointer variablex remains constant throughout

program execution, and points to an object that existed in the program’s initial world. On the other

hand, the formula0 ∃v.x(v) merely states thatx never has the valuenull ; however,x is allowed

to point to different objects at different times in the program’s execution, and in particularx can point

to objects that did not exist in the initial world. Examples illustrating the two situations are shown in

Fig. 4.3, where in(a) x points to the same object in all worlds, and in(b) it points to different objects

in different worlds.

Definition 4.3.9 We say that a programsatisfiesan ETL formulaϕ when all (infinite) traces of the

program satisfyϕ.

The evolution semantics allows each world to have a different domain, thus conceptually repre-

senting a varying-domain semantics, which allows dynamic allocation and deallocation of objects and

threads. In Section4.4, we give a possible implementation of this semantics in terms of evolving first-

order logical structures.

Separable Specifications

It is interesting to consider subclasses of ETL for which the verification problem is somewhat easier.

Two such classes are: (i)spatially separable specifications— do not place requirements on the rela-

tionships between individuals of one world; this allows each individual to be considered separately, and

the verification problem can be handled as a set of propositional verification problems; (ii)temporally

separable specifications— do not relate individuals across worlds. Essentially, this corresponds to the
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Predicate Intended Meaning

world(w) w is a world

currWorld(w) w is the current world

initialWorld(w) w is the initial world

succ(w1, w2) w2 is the successor ofw1

Predicate Intended Meaning

exists(o, w) objecto is in worldw

evolution(o1, o2) objecto1 evolves too2

isNew(o) objecto is new

isFreed(o) objecto is freed

Table 4.3: Trace predicates.

extraction of propositional information from each world, and having temporal specifications over the

extracted propositions. This class was addressed in [20, 118].

4.4 Expressing Trace Semantics using First-Order Logic

In this section, we use first-order logic to express a trace semantics; we encode temporal operators

using standard first-order quantifiers. This allows us to automatically derive an abstract semantics in

Section4.5. This approach also extends to other kinds of temporal logic, such as theµ-calculus. Our

initial experience is that we are able to demonstrate that some temporal properties, including liveness

properties, hold for programs with dynamically allocated storage.

4.4.1 Representing Infinite Traces via First-Order Structures

We encode a trace via an infinite first-order logical structure using the set of designated predicates

specified in Table4.3. Successive worlds are connected using thesucc predicate. Each world of the

trace may contain an arbitrary number of individuals. The predicateexists(o, w) relates an individual

o to a worldw in which it exists. Each individual only exists in a single world. Theevolution(o1, o2)

predicate relates an individualo1 to its counterparto2 in a successor world. The predicatesisNew and

isFreed hold for newly created or deallocated individuals and are used to model the allocation and

deallocation operators.

Definition 4.4.1 (Concrete trace)A concrete traceis a trace encoded as an infinite first-order logical

structureT = 〈UT , ιT 〉, whereUT is the domain of the trace, andιT is the interpretation function

mapping predicates to their truth value in the logical structure, i.e., for eachp ∈ Pk, ιT (p) : Uk
T →

{0, 1}. To exclude structures that cannot represent valid traces, we impose certain integrity constraints

[91]. For example, we require that each world has at most one successor (predecessor), and that

equality (eq) is reflexive.

Example 4.4.2 Fig. 4.4 shows four worlds of the traceT \
4.4 where each world is depicted as a large

node containing other nodes, and worlds along the trace are related by successor edges. Information
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Figure 4.4: A concrete traceT \
4.4.

in a single world is represented by a first-order logical structure, which is shown as a directed graph.

Each node of the graph corresponds to a heap-allocated object. Hexagonal nodes correspond to thread

objects, and small round nodes to other types of heap-allocated objects. Predicates holding for an object

are shown inside the object node, and binary predicates are shown as edges. For brevity, we use the

labelrval[r] to stand forrval[resource]. Gray edges, crossing world boundaries, are evolution edges,

which relate objects of different worlds. Note that these are the only edges that cross world boundaries.

4.4.2 Exact Extraction of Trace Properties

Once traces are represented via first-order logical structures, trace properties can be extracted by evalu-

ating formulae of first-order logic with transitive closure.

We translate a given ETL formulaϕ to anFOTC formula (ϕ)† by making the underlying trace

structure explicit, and translating temporal operators toFOTC claims over worlds of the trace. The

translation procedure is straightforward, and given in Appendix4.8.

Example 4.4.3 The property∃t : thread.1 at[lwc](t) of Example4.3.4is translated to

∃w : world.∃t : thread.initialWorld(w) ∧ exists(t, w) ∧ ∃w′∃t′ : thread.succ∗(w,w′)∧
exists(t′, w′) ∧ evolution∗(t, t′) ∧ at[lwc](t′)

which evaluates to1 for the trace prefix of Fig.4.4.

Definition 4.4.4 Themeaningof a formulaϕ over a concrete traceT , with respect to an assignmentZ,

denoted by[[ϕ]]T2 (Z), yields a truth value in{0, 1}. The meaning ofϕ is defined inductively as follows:

• [[l]]T2 (Z) = l (wherel ∈ {0, 1})

• [[p(v1, . . . , vk)]]T2 (Z) = ιT (p)(Z(v1), . . . , Z(vk))

• [[ϕ1 ∨ ϕ2]]T2 (Z) = max([[ϕ1]]T2 (Z), [[ϕ2]]T2 (Z))
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• [[¬ϕ1]]T2 (Z) = 1− [[ϕ1]]T2 (Z)

• [[∃v1.ϕ1]]T2 (Z) = maxu∈UT [[ϕ1]]T2 (Z[v1 7→ u])

• [[(TC v1, v2 : ϕ1)(v3, v4)]]T2 (Z) =

max
n ≥ 1, u1, . . . , un+1 ∈ U,

Z(v3) = u1, Z(v4) = un+1

minn
i=1[[ϕ1]]T2 (Z[v1 7→ ui, v2 7→ ui+1])

We say thatT andZ satisfyϕ (denoted byT,Z |= ϕ) if [[ϕ]]T2 (Z) = 1. We writeT |= ϕ if for everyZ

we haveT,Z |= ϕ.

The correctness of the translation is established by the following theorem:

Theorem 4.4.5 For every closed ETL formulaϕ and a traceπ, π |= ϕ if and only ifrep(π) |= (ϕ)†,

whererep(π) is the first-order representation ofπ, i.e., the first-order structure that corresponds toπ, in

which every world inπ is mapped to a world inrep(π), with thesucc predicate holding for consecutive

worlds.

4.4.3 Semantics of Actions

Informally, a program actionac consists of apreconditionacpre, expressed as a logical formula, under

which the action isenabled, and a set of formulae for updating the values of predicates according to the

effect of the action. An enabled action specifies that a possible next world in the trace is one in which the

interpretations of every predicatep of arity k is determined by evaluating a formulaϕp(v1, v2, . . . , vk),

which may usev1, v2, . . . , vk and all predicates inP (see [91]).

4.5 Exploring Finite Abstract Traces via Abstract Interpretation

In this section, we give an algorithm for conservatively determining the validity of a program with

respect to an ETL property. A key difficulty in proving liveness properties is the fact that a liveness

property might be violated only by an infinite trace. Therefore, our procedure for verifying liveness

properties is a greatest fixed-point computation, which works down from an initial approximation that

represents all infinite traces. In this section, we present our abstract-interpretation algorithm; procedure

explore of Fig. 4.8.

Our approach uses finite representations of infinite traces. Finite representations are obtained by

abstraction to three-valued logical structures. The third logical value, 1/2, represents “unknown” and

may result from abstraction. The abstract semantics conservatively models the effect of actions on

abstract representations.
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4.5.1 A Finite Representation of Infinite Traces

The first step in making the algorithm of Fig.4.8 feasible is to define a finite representation of sets of

infinite traces. Technically, we use3-valued logical structures to finitely represent sets of infinite traces.

The construction in this section follows similar lines to the construction in Section2.4, where instead of

abstracting single configurations as in Section2.4, in this section we abstract infinite traces.

Definition 4.5.1 (Abstract trace) An abstract traceis a 3-valued first-order logical structureT =

〈UT , ιT 〉, whereUT is the domain of the abstract trace, andιT is the interpretation, mapping predi-

cates to their truth values, i.e., for eachp ∈ Pk, ιT (p) : Uk
T → {0, 1, 1/2}. We refer to the values0 and

1 asdefinite values, and to1/2 as anon-definite value.

An individualu for which ιT (eq)(u, u) = 1/2 is called asummary individual;2 a summary indi-

vidual may represent more than one concrete individual.

Themeaningof a formulaϕ over a3-valued abstract traceT , with respect to an assignmentZ,

denoted by[[ϕ]]T3 (Z), is defined exactly as in Def.4.4.4, but interpreted over{0, 1, 1/2}.

We say that a traceT with an assignmentZ potentially satisfiesa formulaϕ when[[ϕ]]T3 (Z) ∈
{1, 1/2} and denote this byT,Z |=3 ϕ.

We now define how concrete traces are represented by abstract traces (extending the concepts of

Section2.4 to work for traces). The idea is that each individual of a concrete trace is mapped by

the abstraction into an individual of an abstract trace. The new two definitions permit an (abstract or

concrete) trace to be related to a less-precise abstract trace. Abstraction is a special case of this in which

the first trace is a concrete trace. First, the following definition imposes an order on truth values of the

3-valued logic:

Definition 4.5.2 For l1, l2 ∈ {0, 1, 1/2}, we define theinformation order on truth values as follows:

l1 v l2 if l1 = l2 or l2 = 1/2.

The embedding ordering of abstract traces is then defined as follows:

Definition 4.5.3 (Trace embedding)Let T = 〈U, ι〉 andT ′ = 〈U ′, ι′〉 be abstract traces encoded as

first-order structures. A functionf : T → T ′ such thatf is surjective is said toembedT into T ′ if for

each predicatep ∈ Pk, and for eachu1, . . . , uk ∈ U :

ι(p(u1, u2, . . . , uk)) v ι′(p(f(u1), f(u2), . . . , f(uk)))

We say thatT ′ representsT when there exists such an embeddingf .

2Note that for allu ∈ UT , ιT (eq)(u, u) = 1 or ιT (eq)(u, u) = 1/2.
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Figure 4.5: An abstract traceT4.4 that represents the concrete traceT \
4.4.

As in Section2.4, we usecanonical abstractionas an embedding function, but this time for traces.

Recall that canonical abstraction maps individuals to an abstract individual based on the values of the

individuals’ unary predicates. All individuals having the same values for unary predicate symbols are

mapped by the abstraction to the same abstract individual. We denote the canonical abstraction of a

traceT by blur(T ). Canonical abstraction guarantees that each abstract trace is no larger than some

fixed size, knowna priori.

Example 4.5.4 Fig. 4.5shows an abstract trace, with four abstract worlds, that represents the concrete

trace of Fig. 4.4. An individual with double-line boundaries is a summary individual representing

possibly more than a single concrete individual. Similarly, the worlds with double-line boundaries are

summary worlds that possibly represent more than a single world. Dashed edges are1/2 edges, that

represent relations that may or may not hold. For example, a1/2 successor edge between two worlds

represents the possible succession of worlds. The summary world following the initial world represents

the two concrete worlds between the initial and the current world ofT \
4.4, which have the same values

for their unary predicates. Similarly, the summary node labeledat[lw1] represents all thread individuals

in these worlds that reside at labellw1.

Note that this abstract trace also represents other concrete traces besidesT \
4.4, for example, concrete

traces in which in the current world some threads are blocked on the lock and some are not blocked.

4.5.2 Abstract Interpretation

The abstract semantics represents abstract traces using3-valued structures. Intuitively, applying an

action to an abstract trace unravels the set of possible next successor worlds in the trace. That is, an

abstract action elaborates an abstract trace by materializing a worldw from the summary world at the

tail of the trace;w becomes the definite successor of the current worldcurrWorld, andw’s (indefinite)

successor is the summary world at the tail of the trace.currWorld is then advanced tow, which often
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Figure 4.6: An intermediate abstract trace, which represents the first stage of applying an action toT4.4.

Figure 4.7: The resulting abstract trace after applying an action overT4.4 (after advancingcurrWorld).

causes the formercurrWorld to be merged with its predecessor. When a trace is extended, we evaluate

the formula’s precondition and its update formulae using3-valued logic (as in Def.4.5.1).

Example 4.5.5 Figures4.5, 4.6, and 4.7 illustrate the application of the action that releases a lock.

Fig. 4.6 shows the materialization of the next successor world for the traceT4.4 of Fig. 4.5. In the

successor world, the thread that was at labellwc no longer holds the lock and has advanced to labellw2.

ThecurrWorld predicate is then advanced, and the formercurrWorld is merged with its predecessor,

resulting in the abstract trace shown in Fig.4.7.

The abstract-interpretation procedureexplore is shown in Fig.4.8. It computes a greatest fixed-

point starting with the set{T>1 , T>2 }; these two abstract traces represent all possible concrete (infinite)

traces that start at a given initial state.T>1 andT>2 each have two worlds: an initial world that repre-

sents the initial program configuration connected by a 1/2-valued successor edge to a summary world

that represents the unknown possible suffixes. The summary worldws1 of T>1 has a summary indi-

vidual us1 related to it. The summary individualus1 has1/2 values for all of its predicates, including

exists(us1, ws1) = 1/2, meaning that future worlds of the trace do not necessarily contain any individ-
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explore() {
Traces = {T>1 , T>2 }
while changes occur {

select and remove τ from Traces

for each action ac enabled for τ

Traces = Traces
⋃
{ac(τ)}

}
for each τ ∈ Traces

if τ 6|=3 (ϕ)† report possible error

}

Figure 4.8: Computing the set of abstract traces

and evaluating the property(ϕ)†.

Figure 4.9: An initial ab-

stract traceT>1 .

uals. The summary world ofT>2 has no summary individual related to it and represents suffixes in which

all future worlds are empty. Fig.4.9shows an initial abstract trace (corresponding toT>1 ) representing

all traces starting with an arbitrary number of worker threads at labellw1 sharing a single lock.

The procedureexplore accumulates abstract traces in the setTraces until a fixed point is reached.

Throughout this process, however, the set of concrete traces represented by the abstract traces inTraces

is actually decreasing. It is in this sense thatexplore is computing a greatest fixed-point.

Once a fixed point has been reached, the property of interest is evaluated over the abstract traces in

the fixed point. Formula evaluation over an abstract trace exploits values of instrumentation predicates

when possible (this is explained in the following section). This allows the use of recorded definite

values, whereas re-evaluation might have yielded1/2.

We now show the soundness of the approach. We extend mappings on individuals to operate on

assignments: Iff : UT → UT ′
is a function andZ : V ar → UT is an assignment,f ◦ Z denotes the

assignmentf ◦ Z : V ar → UT ′
such that(f ◦ Z)(v) = f(Z(v)). One of the nice features of3-valued

logic is that the soundness of the analysis is established by the following theorem (which generalizes

[91] for the infinite case):

Theorem 4.5.6 [Embedding Theorem] LetT = 〈UT , ιT 〉 andT ′ = 〈UT ′
, ιT

′〉 be two traces encoded

as first-order structures, and letf : UT → UT ′
be a function such thatT vf T ′. Then, for every

formulaϕ and complete assignmentZ for ϕ, [[ϕ]]T3 (Z) v [[ϕ]]T
′

3 (f ◦ Z).

The algorithm in Fig.4.8 must terminate. Furthermore, whenever it does not report an error, the

program satisfies the original ETL formulaϕ.
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Figure 4.10: ∃v.P (v)UQ(v) holds in all concrete traces that the abstract traceT4.10 represents, yet

∃v.P (v)UQ(v) evaluates to1/2 onT4.10 itself.

Predicate Intended Meaning Formula

twe(o1, o2)
objecto1 is equal to objecto2

possibly across worlds

(o1 = o2) ∨ evolution∗(o1, o2)
∨evolution∗(o2, o1)

current(o) objecto is a member of current world ∃w : world(o, w) ∧ currWorld(w)

Table 4.4: Trace instrumentation predicates.

It often happens that this approach to verifying temporal properties yields1/2, due to an overly

conservative approximation. In the next section, we present machinery for refining the abstraction to

allow successful verification in interesting cases.

Example 4.5.7 For clarity and ease of presentation, we use an artificial example, which is also used in

the next section. Fig.4.10shows an abstract trace in which the property∃v.P (v)UQ(v) holds for all

the concrete traces represented by the abstract trace, but the formula∃v.P (v)UQ(v) evaluates to1/2

because the successor and evolution edges have value1/2.

4.5.3 Property-Guided Instrumentation

To refine the abstraction, we can maintain more precise information about the correctness of temporal

formulae as traces are being constructed. This principle is referred to in [91] as theInstrumentation

Principle. This work goes beyond what was mentioned there, by showing how one could actually

obtain instrumentation predicates from the temporal specification.

Trace Instrumentation

The predicates in Table4.4 are required for preserving properties of interest under abstraction. The

instrumentation predicatecurrent(o) denotes thato is a member of the current world and should be

distinguished from individuals of predecessor worlds. This predicate is required due to limitations of

canonical embedding. The predicatetwe(o1, o2) records equality across worlds and is required due to

the loss of information about concrete locations caused by abstraction.
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Figure 4.11: Abstract trace with transworld equality instrumentation (Only1-valued transworld equality

edges are shown).

Transworld Equality: In the evolution semantics, two individuals are considered to be different

incarnations of the same individual when one may transitively evolve into the other. We refer to this

notion of equality astransworld equalityand introduce an instrumentation predicatetwe(v1, v2) to

capture this notion.

Because the abstraction operates on traces (and not only single worlds), individuals of different

worlds may be abstracted together. Transworld equality is crucial for distinguishing a summary node

that represents different incarnations of the same individual in different worlds from a summary node

that may represent a number of different individuals.

Transworld equality is illustrated in Fig.4.11; the1-valuedtwe self-loop to the summary thread-

node at labellwc records the fact that this summary node actually represents multiple incarnations of a

single thread, and not a number of different threads.

Temporal Instrumentation

Given an ETL specification formula, we construct a corresponding set of instrumentation predicates for

refining the abstraction of the trace according to the property of interest. The set of instrumentation

predicates corresponds to the sub-formulae of the original specification.

Example 4.5.8 In Example4.5.7, the property∃v.P (v)UQ(v) evaluated to1/2 although it is satisfied

by all concrete traces thatT4.10 represents. We now add the temporal instrumentation predicatesIp(v)

andIq(v) to record the values of the temporal subformulaeP (v) andQ(v). The predicates are updated

according to their value in the previous worlds. Note the use of transworld equality instrumentation to

more precisely record transitive evolution of objects. In particular, this provides the information that the

summary node of the second world is an abstraction of different incarnations of the same single object.

This is shown in Fig.4.12.
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Figure 4.12: In the abstract traceT4.12, ∃v.P (v)UQ(v) evaluates to1.

4.6 Related Work

The Bandera Specification Language (BSL) [20] allows writing specifications via common high-level

patterns. In BSL, it is impossible to relate individuals of different worlds, and impossible to refer to the

exact moments of allocation and deallocation of an object.

In [81], a special case of the abstraction from [115, 118], named “counter abstraction”, is used to

abstract an infinite-state parametric system into a finite-state one. They use static abstraction, i.e., they

have a preceding model-extraction phase. In contrast, in our work abstraction is applied dynamically on

every step of state-space exploration, which enables us to handle dynamic allocation and deallocation

of objects and threads.

In [118], we have used observing-propositions defined over a first-order configuration to extract a

propositional Kripke structure from a first-order one. The extracted structure was then subject to PLTL

model-checking techniques. This approach is rather limited, because individuals of different worlds

cannot be specifically related.

4.7 Conclusion

We believe this work provides a foundation for specifying and verifying properties of programs manip-

ulating the heap with dynamic allocation and deallocation of objects and threads. In the next chapter,

we develop a more scalable approach for verification of ETL properties.

4.8 Translation of ETL to FOTC

We say that an ETL sub-formula is temporally-bound if it appears under a temporal operator. Trans-

lations for temporally-bound and non-temporally-bound formulae are different, since non-temporally-

bound formulae should be bound to the initial world of the trace.
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Definition 4.8.1 [ETL translation toFOTC ] We denote by(ϕ)†w the bounded translation of a formula

ϕ in a worldw and by(ϕ)† the non-bounded translation.

• (ϕ)† = ∃w:world.initialWorld(w) ∧ (ϕ)†w

• if ϕ is an atomic formula other than�x and�x then(ϕ)†w = ϕ. If ϕ = �x then(ϕ)†w =

isNew(x). If ϕ = �x then(ϕ)†w = isFreed(x).

• (ϕ ∧ ψ)†w = (ϕ)†w ∧ (ψ)†w, (ϕ ∨ ψ)†w = (ϕ)†w ∨ (ψ)†w, (¬ϕ)†w = ¬(ϕ)†w

• (∃x ϕ)†w = ∃x.exists(w, x) ∧ (ϕ)†w

• ((TC x1, x2 : ϕ)(x3, x4))†w = (TC x1, x2 : (ϕ)†w ∧ exists(w, x1) ∧ exists(w, x2))(x3, x4)

• (ϕ(x1, . . . , xn)Uψ(y1, . . . , yk))†w =

∃w′:world.∃y′1, . . . , y′k.succ∗(w,w′) ∧ (ψ(y′1, . . . , y
′
k))
†w′

∧
∧

1≤i≤k evolution
∗(yi, y

′
i) ∧ ∀w̃:world.∃x′1, . . . , x′n.(succ∗(w, w̃)

∧ succ∗(w̃, w′)→ (ϕ(x′1, . . . , x
′
n))†w̃ ∧

∧
1≤j≤n evolution

∗(xj , x
′
j))

• (©ϕ(x1, . . . , xn))†w =

∃w′:world.∃x′1, . . . , x′n.succ(w,w′)
∧ (ϕ(x′1, . . . , x

′
n)†w

′ ∧
∧

1≤j≤n evolution(xj , x
′
j) ∧ exists(x′j , w′)

Note thatxi andyi are not necessarily distinct. Simplified translations may be used for the1 and

0 temporal operators.
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Chapter 5

Automatic Verification of Temporal Heap

Properties

In this chapter, we present a framework for verifying temporal properties of sequential and concurrent

heap-manipulating programs. The specification language we use is evolution temporal logic (ETL), a

first-order linear temporal logic, that allows us to naturally specify safety and liveness properties of

programs that dynamically allocate objects and threads without an a priori bound. Our framework is

able to verify both safety and liveness properties of such programs.

In this chapter, we define a state-based constant-domain semantics for ETL. This yields a verification

algorithm that is more efficient than the one described in Chapter4.

The best thing about the future is that it comes only one day at a time.

–Abraham Lincoln.

5.1 Introduction

Two of the main challenges of software verification are handling heap-allocated storage and handling

dynamic allocation of objects and threads. These features are often ignored or handled in an imprecise

manner by existing verification and static-analysis approaches, especially for concurrent programs [87].

In this chapter, we present a framework for verifying temporal properties of sequential and concur-

rent heap-manipulating programs. Unlike many of the existing verification techniques, our framework

does not impose an a priori bound on the number of allocated objects and threads. The specification lan-

guage we use is a first-order linear temporal logic that allows us to naturally specify safety and liveness

properties of programs that dynamically allocate objects and threads. This should be contrasted with

traditional model-checking techniques that use propositional temporal logic [17].

Verifying that a propertyϕ holds for a program requires verifying thatϕ holds on all program traces.

97
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public Set mark(Element root) {
m1 Set pending = new HashSet();

m2 Set marked = new HashSet();

m3 if (root != null) {
m4 pending.add(root);

m5 while (!pending.isEmpty()) {
m6 Element x = (Element) pending.iterator().next();

m7 pending.remove(x);

m8 marked.add(x);

m9 Element t = x.left;

m10 if (t != null && !marked.contains(t))

m11 pending.add(t);

m12 t = x.right;

m13 if (t != null && !marked.contains(t))

m14 pending.add(t);

m15 }
m16 }
m17 return marked;

}

Figure 5.1: Java source for the mark-phase procedure.

In this chapter, we use abstract interpretation to conservatively check if there exists aviolation trace—

a trace that satisfies theviolation property¬ϕ.

Our verification method issound, that is, if we say that a violation trace does not exist, the property

is guaranteed to hold on all program traces. However, since we over-approximate the set of program

traces, our framework may yield false alarms, i.e., it may say that there exists a trace satisfying the

violation property when there is no such execution trace of the program.

Motivating Example

As a motivating example, consider the marking phase procedure of Fig.5.1. This procedure is part of a

“stop-the-world” (non-incremental) mark-and-sweep garbage collector [110] in which garbage collec-

tion is performed as a single atomic step while the program is halted1. For simplicity, we assume that

the heap has a single root, that all objects haveright andleft fields, and that there are no arrays of

references. We would like to verify the following safety and liveness properties for this procedure:

(P1) all nodes reachable from the root are eventually marked

(P2) all marked nodes are reachable from the root

1An optimized version of this GC algorithm is implemented in Sun’s JVM1.2.
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Verifying these properties is a challenging task, as there is no bound on the number of objects in

the heap, and they have no static names. In the following sections, we will see how to formulate these

properties in our framework and how they are verified.

Related Work

Typestate Checking

A typestate propertyis a safety property that defines the valid sequences of operations that could be

performed on each object of the specified type. One of the open challenges in typestate verification is an

adequate treatment of aliasing. Some approaches, such as the original work on typestate [103], forbid

any aliasing. Other approaches (e.g., [72] and [27]) take a two-phased approach in which typestate

analysis is preceded by an aliasing-analysis, which may result in a loss of precision.

Our work generalizes and extends previous work based on typestate checking in at least three sig-

nificant aspects: (i) we handle properties involving more than a single object; (ii) we handle liveness

properties; (iii) we handle aliasing with high precision and as part of the verification procedure rather

than as a preceding phase.

Moreover, our framework can also be used to perform typestate checking for concurrent programs

with dynamic allocation and deallocation of objects and threads.

Note that in contrast to Chapter3, our goal in this chapter is to handle arbitrary programs (not

necessarily shallow) and arbitrary ETL properties (generalizing typestate), but we do not guarantee

precise results, and use techniques that are more expensive than the ones used in Chapter3.

Model Checking Object-Based Software

Distefano et. al. [34] define a temporal logic for reasoning about object-based software. The abstraction

used there is a limited one and their representation does not handle structural relationships among heap

objects.

Previous Work

This chapter generalizes contributions presented in Chapter2, Chapter4, and Section7.1of this thesis.

It generalizes our work on verifying strong safety properties (Chapter2), verifying non-nested liveness

properties (Chapter4), and verifying local temporal safety properties (Section7.1). All the properties

discussed in these chapters can be formulated and verified in this framework. While Chapter4 uses an

expensive abstract interpretation of the trace-semantics, the framework presented in the current chapter

works with a state-based semantics which is significantly more efficient. In terms of precision the two

methods are incomparable: (i) the trace-based semantics records history even when it is not part of the

temporal specification; (ii) the state-based semantics only tracks history relevant to the specification.
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However, we generally expect the state-based semantics to behave better under abstraction. As a trivial

example, the trace-based semantics will fail even on safety properties. Another key difference is that

Chapter4 uses varying-domain semantics while this chapter uses a constant-domain semantics (see

Section5.2.2).

Outline

The rest of this chapter is organized as follows. In Section5.2, we define the syntax of ETL, and provide

concrete trace-based and state-based constant-domain semantics. Section5.3then describes an abstract

state-based semantics for ETL. In Section5.4, we show how to encode the state-based semantics using

first order logic providing a verification algorithm for ETL. Finally, we conclude with Section5.5.

5.2 Evolution Temporal Logic

In this section, we define the syntax and semantics of evolution temporal logic (ETL) – a first-order

linear temporal logic [69] that allows us to naturally specify properties of heap-manipulating programs.

The semantics we define for ETL is aconstant-domain semanticsin which the universe of all configu-

rations is fixed. In Section5.2.2, we define a trace-based semantics for ETL. Section5.2.3then defines

a state-based semantics whose abstract interpretation provides the abstract semantics of Section5.3.2.

5.2.1 Syntax

The following defines ETL syntax in a way similar to Definition4.3.3with the following key differences:

(i) we use a designated predicateε to explicitly denote the existence of an individual in a configuration;

(ii) we add temporal past operators.

Definition 5.2.1 (ETL Syntax) An ETL formula over avocabularyP = {eq, ε, p1, . . . , pn} is defined

by

ϕ ::= 0|1|p(v1, . . . , vn)|ϕ1 ∨ ϕ2|ϕ1 ∧ ϕ2|¬ϕ1|∃v1.ϕ1|∀v1.ϕ1|(TC v1, v2 : ϕ1)(v3, v4)

|ϕ1Uϕ2|ϕ1Wϕ2| © ϕ1|�ϕ1|ϕ1 Sϕ2|ϕ1Bϕ2

wherevi are logical variables. ThevocabularyP contains the special predicate symboleq(v1, v2) that

denotes equality between individuals and the predicate symbolε(v) that denotes the existence of an

individual in the current state. We denote byPk the predicates of arityk in P.

The set offree variablesin a formulaϕ, denoted byFV (ϕ), is defined as usual. In a transitive

closure formulaFV ((TC v1, v2 : ϕ)(v3, v4))=(FV (ϕ)\{v1, v2}) ∪ {v3, v4}.

We refer to formulae of one of the forms0, 1, p(v1, . . . , vn) asatomic formulae. We refer to formulae

of one of the formsϕ1Uϕ2, ϕ1Wϕ2, ©ϕ1 , �ϕ1, ϕ1 Sϕ2, andϕ1Bϕ2 as principally temporal
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Predicates Intended Meaning

ε(v) v exists in the configuration

eq(v1, v2) v1 equals tov2

{at[lab]() : lab ∈ Labels} program is at labellab

{x(v) : x ∈ PV ar} objectv is pointed-to by reference variablex

{fld(v1, v2) : fld ∈ RFields} field fld of the objectv1 points to the objectv2

marked(v) objectv has been marked

pending(v) objectv is pending to be marked

Table 5.1: Predicates used for the example program.

formulae, and to any formula that does not contain a principally temporal formula as anon-temporal

formula. We restrict the formulae in a transitive-closure operator to non-temporal formulae.

We use the shorthand notations1ϕ , (1Uϕ), 0 ϕ , ¬(1U¬ϕ). We also use the shorthand

notations�(v) , ε(v) ∧�¬ε(v), and�(v) , � ε(v) ∧ ¬ε(v), which refer to the exact moment in

which an object is allocated and deallocated, respectively.

To ease the use of theε predicate, which provides relativization of quantification and predicate val-

ues to individuals that actually exist in a configuration, we introduce the shorthand notationspε(v1, . . . , vk) ,∧
1≤i≤k ε(vi) ∧ p(v1, . . . , vk) and¬pε(v1, . . . , vk) ,

∧
1≤i≤k ε(vi) ∧ ¬p(v1, . . . , vk). In this section,

we only use predicates over objects that actually exist and therefore assume all predicates (and negated

predicates) areε-relativized and omit theε superscript from predicate symbols. Allowing non-relativized

predicates (e.g., for handling allocation) is quite straightforward.

Finally, we use shorthand notations for quantifiers that only quantify over objects that actually exist

in a configuration:∃εv.ϕ(v), ∃v.ε(v) ∧ ϕ(v) and∀εv.ϕ(v), ∀v.ε(v)→ ϕ(v).

The operator© is thenextoperator, and©ϕ requires the formulaϕ to hold in the next state of the

trace. The operator� is thepreviousoperator, and�ϕ requiresϕ to hold in the previous state of the

trace. The operatorU is theuntil operator, andϕUψ requires that:(i)ψ eventually holds, and (ii) until

that pointϕ holds. The operatorW is theweak untiloperator, andϕWψ requires thatϕ holds at least

until ψ holds. Note that0 ϕ = ϕW0. The operatorS is thesinceoperator, andϕ1 Sϕ2 requires that

ϕ2 held some time in the past and since that pointϕ1 holds. The operatorB is the weak version ofS
andϕ1Bϕ2 requires thatϕ1 holds sinceϕ2 held. A temporal formula that does not use©,U or W is

called a past formula. To allow incremental tableau construction, we restrict the use of past formulae to

only appear within a single containing0 or1 operator (i.e., with no nesting of future operators).

The predicates used in this chapter are listed in Table5.1. Excluding the predicatesmarked(v) and

pending(v), all predicates of Table5.1 are variations on the predicates used in Chapter2, adapted for
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sequential programs. We use unary predicates to represent values of reference variables and boolean

properties of individuals. A unary predicatex(v) holds for an individualv when it is referenced by the

reference variablex . We use binary predicates to represent values of reference fields. A binary predicate

fld(v1, v2) holds when the fieldfld of v1 points tov2.

Example 5.2.2 The properties of interest for the marking procedure are formulated as the following

ETL formulae.

(P1) ∀εv.ϕr[root](v)→1marked(v)

(P2) 0 ∀εv.marked(v)→ ϕr[root](v)

whereϕr[root](v) = root(v) ∨ ∃εv1.root(v1) ∧ (TC w1, w2 : right(w1, w2) ∨ left(w1, w2)))(v1, v)

In the running example, the unary predicateroot(v) holds for the individual that is referenced by

the variableroot . The unary predicatemarked(v) holds for objects that have been marked, and the

unary predicatepending(v) holds for objects that are pending to be marked. The binary predicates

left(v1, v2) andright(v1, v2) hold for objects related by theleft andright fields, respectively.

Note how the transitive-closure operator allows us to naturally express the notion of reachability

from the root in these formulae. Also note that the existence of individuals has to be explicitly speci-

fied (via theε existence predicate). This stems from the use of the constant-domain semantics, which

explicitly expresses existence of individuals.

5.2.2 Trace Semantics

It is natural to consider the concrete semantics of a program as the set of its execution traces [26, 107],

where each trace is an infinite sequence ofconfigurations. First-order logical structures provide a natural

representation of configurations with an unbounded number of objects: an individual of the structure’s

domain (universe) corresponds to an anonymous, unique store location, and predicates represent prop-

erties of store locations. Such a representation allows properties of the heap contents to be maintained

while abstracting away any information about the actual physical locations in the store.

A program configurationencodes a global state of the program. Technically, we use a first-order

logical structure to represent a program configuration.

Definition 5.2.3 (Constant-domain program configuration) Aconfiguration is represented via a first-

order logical structureC\ = 〈Uc, ιc〉, whereUc is the infinite domain (universe) of the structure, and

ιc is the interpretation function that maps predicates to their truth values; that is, for eachp ∈ Pk,

ιc(p) : Uk
c → {0, 1}, such that for allu ∈ Uc, ιc(eq)(u, u) = 1, and for allu1, u2 ∈ Uc such thatu1

andu2 are distinct individualsιc(eq)(u1, u2) = 0. We also require thatιc(ε)(u) = 1 only for a finite

number of individuals. (However, there is no a priori upper bound on the number of individualsu in a

structure for whichιc(ε) = 1.)



5.2. EVOLUTION TEMPORAL LOGIC 103

Figure 5.2: A possible configurationC\
5.2 of the marking procedure.

As in previous chapters, we use directed graphs to depict configurations. Each individual of the

universe that actually exists in the configuration is shown as a node. Individuals for whichε(v) is 0

are not shown. A unary predicatep(v) that holds for an individualu is drawn inside the nodeu; the

predicateε(v) is not shown because it holds for all individuals depicted. A predicate that can hold at

most for a single object (e.g.,x(v)) is shown as an edge from the predicate symbol to the node in which

it holds. A binary predicatep(u1, u2) that evaluates to1 is drawn as directed edge fromu1 to u2 labeled

with the predicate symbol. Finally, a nullary predicatep() is drawn inside a box.

Example 5.2.4 Fig. 5.2shows a possible configuration of the marking procedure when execution is at

program labelm10. In this configuration,root points to an object from which seven other objects

are reachable by transitively traversingright and left fields. The predicater[root] records the

value of the formulaϕr of Example5.2.2, corresponding to transitive reachability fromroot . The

importance of recording this value as a predicate will become clear in later sections. Three objects

in this configuration have already been marked by previous loop iterations; these are the objects for

which the predicatemarked holds. Similarly, two objects in the configuration are in the pending set

(predicatepending holds for these). In this configuration, three objects are not reachable fromroot

and shown in the upper part of the figure. The nullary predicateat[m10] shown inside a box indicates

that procedure execution is currently at labelm10.

We define an operational semantics that manipulates configurations by means ofactions. Informally,

an action consists of a precondition under which the action is enabled and a definition of how predicates

are updated as a result of the action. In this chapter, we prefer the use of two-vocabulary formulae for

specifying actions (over the precondition/update formulation of Chapter2) as two-vocabulary formu-

lae naturally correspond to program transitions, and are also used to define progress measures in later

sections. More formally, an action is defined as follows:

Definition 5.2.5 (Action) An action is a two-vocabulary formulaoverP, that is, a formula over the

predicates inP ∪{p′|p ∈ P} containing primed and non-primed versions of predicates inP. An action



104 CHAPTER 5. AUTOMATIC VERIFICATION OF TEMPORAL HEAP PROPERTIES

consists of two parts: (i) aprecondition, containing only non-primed predicates; (ii) an update part

which is allowed to include both non-primed and primed predicates. We say that an action isenabled

in a configuration when its precondition has a satisfying assignment in that configuration. For brevity,

we assume that a primed predicate not appearing in the formula maintains its original (non-primed)

value.

Example 5.2.6 Given a vocabulary

P = {at[m1](), . . . , at[m17](), x(v), t(v), left(v1, v2), right(v1, v2)}, the action

at[m9]() ∧ ¬at[m9]′() ∧ at[m10]′() ∧ ∀v.(t′(v) ⇐⇒ ∃v1.x(v1) ∧ left(v1, v))

represents a transition in which program location changes from labelm9 tom10 and t is assigned the

value ofx.left . Its precondition,at[m9](), is enabled at configurations that represent a state of

program execution that is at labelm9.

In this thesis, we assume that the program is represented as a first-order transition system. To

simplify the presentation, we do not discuss the fairly standard additional Justice and Compassion con-

ditions that are added to support the notions of weak and strong fairness (see [69, 81]).

In the sequel, we use the term program to also refer to the first-order transition system that represents

the program.

Definition 5.2.7 (First Order Transition System (FOTS)) A first order transition system (FOTS)is

a pair 〈P, τ〉 whereP is a vocabulary, andτ is the set of actions given as a set of two-vocabulary

formulae.

A first order transition system induces a transition relation as follows.

Definition 5.2.8 (Transition Relation) Given a program, we say that a configurationC\ rewritesinto

a configurationC\′ underac (denoted byC\ ac⇒C\′) whereac is a program action, ifac is enabled atC\

and the values of predicates inC\′ are determined by the primed predicates inac. We writeC\⇒C\′

when there exists an actionac s.t.C\ ac⇒C\′.

We make the usual assumption that the transition relation is total. This allows us to only consider

infinite traces. For terminating programs we make the transition relation total by letting the final config-

uration rewrite into itself with an “idle action”.

Definition 5.2.9 (Trace) Given a program, atrace is an infinite sequence of program configurations

C\
0, C

\
1 . . ., where each configuration represents a global state of the program,C\

0 is an initial configu-

ration, and for eachC\
i andC\

i+1, C\
i ⇒ C\

i+1.
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The semantics for ETL is a constant-domain semantics, in which all configurations of a program

share the same (infinite) universe. We denote this universe byU and note thatUπ0 = . . . = Uπi =

. . . = U . The quantification in the constant-domain semantics is a possibilist quantification that ranges

over all individuals ofU , that is, over individuals thatpossibly existin a configuration. Individuals that

actually existin a configuration are distinguished by having the value1 for the predicateε (andε can be

used to write queries restricted to individuals that actually exist).

In the following,head(π) denotes the first configuration in a traceπ, tail(π) denotes the suffix of

π without the first configuration, andπi denotes the suffix ofπ starting at thei-th configuration.

The goal of the ETL semantics we present is to find whether a violation-formula, i.e., a formula

defining forbidden behaviors, could hold for a program. The following trace-based semantics is there-

fore an existential trace semantics in which a program is said to satisfy a given property if there exists a

program trace that satisfies the property.

Throughout the chapter, we assume that formulae are inpositive normal form, in which negations

only appear over atomic formulae. For simplicity and brevity, we only show the semantics for future

ETL (where no past operators are used). The semantics of the past operators is added in the standard

manner as in [69], or in a manner similar to [26] (the interested reader can find the full definitions in

AppendixC.3).

Definition 5.2.10 (ETL Trace-based Semantics)We define when an ETL formulaϕ is satisfied over a

traceπ with an assignmentZ (denoted byπ,Z |= ϕ) as follows:

• π,Z |= 1, and notπ,Z |= 0.

• π,Z |= p(v1, . . . , vk) whenιhead(π)(p)(Z(v1), . . . , Z(vk)) = 1

• π,Z |= ¬ϕ when notπ,Z |= ϕ

• π,Z |= ϕ ∨ ψ whenπ,Z |= ϕ or π,Z |= ψ

• π,Z |= ∃v.ϕ(v) when there existsu ∈ U s.t.π,Z[v 7→ u] |= ϕ(v)

• π,Z |= (TC v1, v2 : ϕ)(v3, v4) when there existsu1, . . . , un+1 ∈ U , s.t. Z(v3) = u1, Z(v4) =

un+1, and for all1 ≤ i ≤ n, π, Z[v1 7→ ui, v2 7→ ui+1] |= ϕ.

• π,Z |=©ϕ whentail(π), Z |= ϕ.

• π,Z |= ϕUψ when there existsk ≥ 0, s.t.,πk, Z |= ψ and for all0 ≤ j < k, πj , Z |= ϕ.

• π,Z |= ϕWψ when there existsk ≥ 0, s.t.,πk, Z |= ψ and for all0 ≤ j < k, πj , Z |= ϕ, or for

all j ≥ 0, πj , Z |= ϕ.
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We omit definitions for∧, ∀ since they are defined similarly. We writeπ |= ϕ whenπ,Z |= ϕ for every

assignmentZ. Given a programP , we say thatP |= ϕ when there exists a traceπ of the programP ,

such thatπ |= ϕ.

Note that the trace-based semantics guarantees that an eventuality (represented using the until oper-

ator) is fulfilled in a finite future.

5.2.3 State-Based Semantics

We now define a state-based semantics for ETL. The state-based semantics we define is an abstraction

of the trace-based semantics of Definition5.2.10— we say that a state (configuration) existentially

satisfies an ETL formula when there exists a trace emanating from the configuration (i.e., a suffix for

future properties, and a prefix for past properties) that satisfies the ETL formula.

To allow the semantics to treat different assignments separately, we restrict our attention to ETL

formulae that only allow a bounded number of simultaneous temporal requirements, i.e., we allow

conjunctions, but forbid universal quantification over temporal subformulae. We still allow universal

quantifiers to be used in a configuration-local manner, i.e., when the formula under the quantifier does

not include temporal operators. Note that since the semantics is used to evaluate the violation formula,

the subset we consider includes universally-quantified specifications.

We use the termbounded demonic formulato denote the fact that the number of requirements that

should simultaneously hold for the formula is bounded (the termdemonicis intentionally borrowed

from demonic-nondeterminism).

Definition 5.2.11 (Bounded-Demonic ETL)An ETL formula in positive normal form is abounded-

demonic ETL formula(BDETL) when no temporal operator appears under a universal quantifier.

Definition 5.2.12 (ETL Existential State-Based Semantics)Given a set of BDETL formulaeF , and

a programP , we say thatF is existentially satisfiedfrom a configuration (state)C\ with an assignment

Z (denoted byC\, Z |=E F ) when one of the following conditions holds:

(A0) F = ∅

(A1) F = F ′ ∪ {1} andC\, Z |=E F ′,

(A2) F = F ′ ∪ {p(v1, . . . , vk)} andιC\(p)(Z(v1), . . . , Z(vk))=1, andC\, Z |=E F ′

(A3) F = F ′ ∪ {¬ϕ} and notC\, Z |=E {ϕ}, andC\, Z |=E F ′

(A4) F = F ′ ∪ {ϕ ∨ ψ} andC\, Z |=E F ′ ∪ {ϕ} or C\, Z |=E F ′ ∪ {ψ}

(A5) F = F ′ ∪ {ϕ ∧ ψ} andC\, Z |=E F ′ ∪ {ϕ,ψ}
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(A6) F = F ′ ∪ {∃v.ϕ(v)} and there existsu ∈ UC\ s.t.C\, Z[v 7→ u] |=E F ′ ∪ {ϕ(v)}

(A7) F = F ′ ∪ {©ϕ} and existsC\′, C\ ⇒ C\′ s.t.,C\′, Z |=E {ϕ} andC\, Z |=E F ′.

(A8) F = F ′ ∪ {ϕUψ} andC\, Z |=E F ′ ∪ {ψ} or

C\, Z |=E F ′ ∪ {ϕ} and there existsC\′ s.t.C\ ⇒ C\′ andC\′, Z |=E {ϕUψ}.

(A9) F = F ′ ∪ {ϕWψ} andC\, Z |=E F ′ ∪ {ψ} or

C\, Z |=E F ′ ∪ {ϕ} and there existsC\′ s.t.C\ ⇒ C\′ andC\′, Z |=E {ϕWψ}.

We omit the definition for∀ since it is defined similarly. This semantics has the additional require-

ment that eventualities (i.e.,ϕUψ) are fulfilled within a finite future (note that this requirement is what

differentiates (A8) from (A9) which otherwise have identical structure).

The rules of Definition5.2.12could be viewed as rewrite rules for the construction of a joint product

tableau combining a program and a violation property. These rules could be then viewed as a general-

ization of the rules used in PTL tableau construction [69]. In this respect, note that formulae in the set

F of Definition 5.2.12are only formulae contained in the closure of the original propertyΦ, where the

closure ofΦ is defined to be all its subformulae and their negations.

The following theorem establishes a connection between the state-based semantics defined above

and the trace-based semantics of Definition5.2.10.

Theorem 5.2.13Given a BDETL formulaϕ, and a programP , P |= ϕ =⇒ P |=E {ϕ}

Proof: in AppendixB

Theorem5.2.13allows us to check whether a programP satisfies a BDETL violation-propertyϕ by

checking if its initial configuration satisfies the set{ϕ} according to the semantics of Definition5.2.12.

Note that it is still not obvious how to compute the state-based semantics (as was the case with the

trace semantics) since it may require reasoning about infinite traces.

Reasoning about infinite traces is required to show that there exists a violation trace for a liveness

property. In a finite-state system this can be done by compactly representing infinite traces as cycles in

the finite state-space. In an infinite-state system, this is more complicated since an infinite trace does

not necessarily repeat past configurations.

5.3 Abstract Semantics

Because the semantics of the previous section may be non-terminating, we now show how to guarantee

termination by conservatively evaluating BDETL formulae using abstract interpretation [25].
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Figure 5.3: An abstract configurationC5.2 that represents the concrete configurationC\
5.2.

5.3.1 Abstract Configurations

We conservatively represent multiple concrete program configurations using a single logical structure

with an extra truth-value1/2, which denotes values which may be1 and may be0. We allow an abstract

configuration to includesummary nodes, i.e., individuals that represent one or more individuals in a

represented concrete configuration. Technically, a summary nodeu hasι(eq)(u, u) = 1/2.

Definition 5.3.1 (Abstract configuration) An abstract configurationis a 3-valued logical structure

C = 〈U, ι〉 where: (i)U is the universe of the structure, each individual inU represents possibly many

objects; (ii)ι is the interpretation function mapping predicates to their truth-value in the structure, i.e.,

for every predicatep ∈ P of arity k, ι(p) : Uk → {0, 1/2, 1}.

As mentioned in Section2.4.3, it is possible to refine the abstraction by addinginstrumentation

predicates[91]. In this chapter, we use the reachability instrumentation predicate of [91] for recording

reachability from theroot variable. The unary instrumentation predicater[root](v) holds for individ-

uals that are reachable from theroot variable.

Example 5.3.2 Fig. 5.3shows an abstract configurationC5.2 that represents the concrete configuration

C\
5.2 of Fig. 5.2. Nodes with double-line boundaries are summary nodes, which possibly represent mul-

tiple concrete nodes. Dotted edges represent binary predicates with the value1/2. Note thatr[root](v)

holds for all nodes excluding a single summary node that represents the “garbage” objects that are not

reachable fromroot .

Canonical Abstraction

As in Chapter2, we usecanonical abstractionto define how configurations are represented by abstract

configurations. Canonical abstraction maps concrete individuals to an abstract individual based on the
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values of the individuals’ unary predicates. All individuals having the same values for unary predicate

symbols are mapped by the abstraction to the same abstract individual. Canonical abstraction guarantees

that the resulting abstract configuration is of bounded size. We denote the canonical abstraction of a

configurationC by blur(C), and denote byC vblur C
′ the fact that canonical abstractionembedC into

C ′.

5.3.2 Abstract Semantics

The abstraction of the previous section induces an abstract transition relation defined as follows.

Definition 5.3.3 (Abstract Transition Relation) We say that an abstract configurationC rewritesinto

an abstract configurationC ′ underac (denoted byC
ac⇒] C

′) whereac is an action, if forC and forC ′

thereexistsC\ andC\′ such that: (i) C\ is in the concretization ofC, i.e.,C representsC\; (ii) ac is

enabled atC\ andC\′ is a result of the updates applied byac; (iii) canonical abstraction embedsC\′

intoC ′. We writeC ⇒] C
′ if for some actionac C

ac⇒] C
′.

Note that this abstract transition relation only adds behaviors over the concrete transition relation.

In particular, for any two concrete configurationsC\ ⇒ C\′, the abstract transition relation relates their

abstractions, i.e.,blur(C\)⇒] blur(C\′).

To define the abstract semantics, we first define the concretization of an abstract configuration and

an assignment:γ(〈C,Z〉) = {〈C\′, Z ′〉 | C\′ vblur C,blur ◦ Z ′ = Z}

Definition 5.3.4 (Abstract State-Based Semantics)The abstract state-based semantics is derived from

Definition5.2.12by using abstract interpretation. We define when an abstract configurationC and an

assignmentZ potentially satisfya set of BDETL formulaeF , as follows:C,Z |=]
E F when there exists〈C\′, Z ′〉 ∈

γ(〈C,Z〉) such thatC\′, Z ′ |=E F

The following theorem establishes the soundness of the abstract semantics. Intuitively, the abstract

transition relation only adds behaviors over the concrete transition relation. Therefore, any behavior that

was present in the concrete transition relation is also present in the abstract transition relation.

Theorem 5.3.5 For a programP and a set of BDETL formulaeF , P |=E F =⇒ P |=]
E F

Proof: in AppendixB

Note that the above theorem does not guarantee completeness. Indeed, the abstract semantics may

potentially satisfy formulae that are not satisfied by the concrete semantics.

Generally, the concretization of an abstract configuration and an assignment may be an infinite num-

ber of concrete configurations, and is therefore non-computable. In practice, our abstract semantics is
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based on direct manipulation of abstract configurations (without the need to compute the concretization)

which is more conservative [91].

Theorem5.3.5guarantees that if there exists a trace that satisfies a propertyϕ under the concrete

semantics, there also exists a trace that potentially satisfiesϕ under the abstract semantics. We use

this theorem combined with Theorem5.2.13to check whether a given program potentially satisfies the

violation-propertyϕ.

If a program potentially satisfies the violation-property then it may have an incorrect behavior, but

this behavior may also be a spurious behavior not exhibited by the concrete semantics and resulting from

the abstraction. Otherwise, when the program does not satisfy the violation-property, it is guaranteed

that the concrete semantics also exhibits only desired behaviors (i.e., behaviors that do not satisfy the

violation property). The soundness of our approach is guaranteed by the following theorem

Theorem 5.3.6 For a programP , and a BDETL formulaϕ, P |= ϕ =⇒ P |=]
E ϕ

Proof: P |= ϕ =⇒ P |=E {ϕ} [Thm.5.2.13], P |=E {ϕ} =⇒ P |=]
E {ϕ} [Thm.5.3.5]

The abstract semantics of Definition5.3.4 requires that eventualities are fulfilled within a finite

future. Since abstract configurations are of bounded size, the number of abstract configurations is finite,

and the abstract transition relation is guaranteed to be finite and thus contain cycles. The requirement

that eventualities are fulfilled within a finite future may be violated by some cycles.

It is important to note that we are trying to find a trace in which the violation-property holds. Thus,

we may conservatively say that the violation-property holds even when it doesn’t hold in the concrete

semantics. Therefore, saying that the violation-property holds due to a spurious cycle is sound.

5.4 First-Order Representation

In this section, we use first-order logic with transitive closure to encode the existential state-based se-

mantics of the previous section. To show how the abstract existential state-based semantics of Def-

inition 5.3.4is expressed in terms of a first-order transition system, we first show how to express the

concrete existential state-based semantics of Definition5.2.12as a first-order transition system, and then

apply the abstraction of Section5.3.2, which produces a3-valued first-order transition system for the

semantics of Definition5.3.4.

5.4.1 ETL Existential State-Based Semantics as First-Order Transition System

Given an FOTS representing the program to be verified, and a BDETL property, we construct an aug-

mented FOTS that encodes the semantics of Definition5.2.12and combines it with the program’s FOTS.

The combined FOTS could be viewed as performing an interpretation of the ETL formula where the un-

derlying program states are constructed on-the-fly as formula evaluation takes place.
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We augment the vocabulary of the original transition system with a vocabulary for encoding the

semantics. We note that the elements of the sets used while evaluating a formula in the existential

state-based semantics can only be formulae in the closure of the formula (subformulae of the original

formula, and their negations).

We use predicates corresponding to the formulae in the closure of the ETL formula as our vocab-

ulary. We call predicates in this vocabularyformula-predicates. These predicates model members of

the setF of Definition 5.2.12: a formula-predicate has the value1 when the formula is in the setF .

Intuitively, these predicates correspond to future obligations that should be satisfied by the program’s

execution. We denote by〈ϕ〉 the predicate recording the fact thatϕ should be satisfied by the future (or

present) of program execution. Initially, we require that the future of the execution satisfies the violation

property. As the analysis progresses, future obligations may be fulfilled, possibly leading to a repeatable

state in which no further obligations exist, satisfying the violation property.

The transitions in the FOTS are directly derived from the rules in Definition5.2.12. The FOTS

consists of two types of transitions: (i) semantic transitions, which correspond to the way the setF is

updated by the rules of the semantics. These transitions update the formula-predicates and could be

viewed as tableau rewrite rules; (ii) program transitions, which correspond to state updates as result of

a step taken by the program. These transitions update predicates of the original vocabulary (rather than

formula-predicates).

Note that when the semantics uses a program transition to find a successor state, it chooses from all

enabled actions. Technically, the transitionC\ ⇒ C\′ is realized as
∨

i aci whereaci are the actions of

the program (as two-vocabulary formulae).

Evaluation of an ETL formula using the semantics of Definition5.2.12corresponds to a run of the

first-order transition system encoding the semantics of the formula.

Definition 5.4.1 (Run of an FOTS) A run of an FOTS is an infinite sequence of first-order configura-

tionsC\
0, C

\
1, . . .whereC\

0 is an initial state, and each configurationC\
i+1 is derived from its predecessor

C\
i by a single action of the transition system.

Recall that the semantics of Definition5.2.12requires that eventualities are satisfied within a finite

future. To express this requirement, we distinguish between formula-predicates that are allowed to be

repeated forever, and formulae-predicates that represent formulae that are required to be satisfied within

a finite-future. A formula-predicate is said to beacceptingif its formula is of the formϕWψ or is1. All

non-accepting formula-predicates represent subformulae that are required to be satisfied within afinite

future.

Definition 5.4.2 (Acceptance)A run of an FOTS isacceptingwhen every non-accepting formula-

predicate gets the value0 within a finite future. An FOTS is said to beacceptingwhen it has an

accepting run.
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The following definition requires that the translation from the property to an FOTS preserves cor-

rectness, that is, that the FOTS constructed for a propertyϕ is accepting if and only if the program

satisfiesϕ.

Definition 5.4.3 Given a BDETL formulaϕ, let Tϕ be the FOTS constructed for evaluatingϕ. We say

that the translation is correct when a programP and an initial configurationc satisfyϕ if and only if

Tϕ is accepting when starting fromc.

The following example shows how an FOTS is constructed for the example property(P1).

Example 5.4.4 Consider the propertyΦ = ∀εv.r[root](v) → 1marked(v). We start by taking the

negation of the propertyϕ = ¬Φ = ∃εv.r[root](v) ∧ 0 ¬marked(v), and taking its closure. Using

〈ψ〉(x1, . . . , xk) to denote the formula-predicate for a formulaψ with free variablesx1, . . . , xk, we

define the predicates

{〈∃εv.r[root](v) ∧ (¬marked(v)W0)〉(), 〈r[root](v) ∧ (¬marked(v)W0)〉(v),
〈(¬marked(v)W0)〉(v), 〈ε(v)〉(v), 〈marked(v)〉(v), 〈r[root](v)〉(v)}

and also their version for the next program-successor, which we denote by〈ϕ〉• (recall that these

predicates correspond to future obligations that should be satisfied by the program’s execution). We

denote by〈ϕ〉′ the value of the predicate in the next configuration of semantics evaluation, that is, after

a semantics transition. Note that〈ϕ〉• denotes the value of the predicate after a program transition.

The semantics transitions are shown in Table5.2. For example, the encoding of the rule(A6)

corresponds to the expansion of an existential quantifier. In this transition, the nullary formula predicate

〈∃εv.r[root](v) ∧ (¬marked(v)W0)〉() is expanded to a non-deterministic selection of an individual

for which the unary formula predicate〈r[root](v)∧ (¬marked(v)W0)〉 holds. Fig.5.4shows a single

successor (out of the many possible successors) resulting from the application of the rule(A6) to an

initial concrete configuration of the marking procedure.

Abstract Semantics

The above definitions and Definition5.4.3show how to implement the concrete existential state-based

semantics as a first-order transition system. Because the implementation is given in terms of a first-order

transition system, we can apply the abstraction of Section5.3.2to perform an abstract interpretation of

this transition system.

The acceptance condition of Definition5.4.2is realized in terms of repeated reachability of abstract

configurations. This may lead to spurious acceptance when a repeated abstract configuration represents

an infinite sequence of different concrete configurations. However, because we are trying to verify a

violation-property, spurious acceptance is still a sound result.
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Rule Instance

(A6) 〈∃εv.r[root](v) ∧ (¬marked(v)W0)〉()
∧ ¬〈∃εv.r[root](v) ∧ (¬marked(v)W0)〉′() ∧ ∃εv.〈r[root](v) ∧ (¬marked(v)W0)〉′(v)

(A5) 〈r[root](v) ∧ (¬marked(v)W0)〉(v)
∧ ¬〈r[root](v) ∧ (¬marked(v)W0)〉′(v) ∧ 〈r[root](v)〉′(v) ∧ 〈¬marked(v)W0)〉′(v)

(A2) 〈r[root](v)〉(v) ∧ r[root](v) ∧ ¬〈r[root](v)〉′(v)
〈r[root](v)〉(v) ∧ ¬r[root](v) ∧ ¬〈r[root](v)〉′(v) ∧ 〈0〉′(v)

(A9) 〈¬marked(v)W0〉(v)
∧ ¬〈¬marked(v)W0)〉′(v) ∧ 〈¬marked(v)〉(v) ∧ 〈¬marked(v)W0〉•(v)

(A2) 〈¬marked(v)〉(v) ∧marked(v) ∧ ¬〈¬marked(v)〉′(v) ∧ 〈0〉′(v)
〈¬marked(v)〉(v) ∧ ¬marked(v) ∧ ¬〈¬marked(v)〉′(v)

Table 5.2: Transitions in the FOTS for the property of Example5.4.4.

Figure 5.4: One successor derived by application of rule (A6) to an initial configuration.
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Figure 5.5: Partial abstract interpretation of the example FOTS. Only part of the abstract configurations

are shown. Interpretation is continued on Fig.5.6
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Figure 5.6: Partial abstract interpretation of the example FOTS, continued from Fig.5.5. Only part of

the abstract configurations are shown.
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Example 5.4.5 Fig. 5.5 and Fig. 5.6 show a partial abstract interpretation of the FOTS constructed

for the violation property of the property(P1) (as described in Example5.4.4), and a possible initial

abstract configuration at the entry to the marking procedure.

Initially, the predicate〈∃εv.r[root](v) ∧ (¬marked(v)W0)〉() holds, corresponding to the fact

that the violation property has to be accepted. In the first step, the rule(A6) is applied to the initial

abstract configuration, resulting in a set of abstract configurations (only3 shown). In each of these

resulting abstract configurations, a single individual is chosen as the individual for which the property

is expected to hold. Following the transitions of the FOTS, rule(A5) is now applicable, transforming the

single predicate〈r[root](v)∧ (¬marked(v)W0)〉 that should hold for an individual into two separate

predicates〈r[root](v)〉 and 〈¬marked(v)W0〉 that should hold for the same individual. Next, we

apply rule (A2) that evaluates the non-temporal requirement of〈r[root](v)〉 in the current abstract

configuration and sets〈r[root](v)〉 to 0 for the individuals for which〈r[root](v)〉 should hold and

which are reachable from the root (i.e., for whichr[root](v) holds). In each of the resulting abstract

configurations, there is now a single individual for which the formula predicate〈¬marked(v)W0〉
holds. This expresses a requirement on the current configuration and future configurations, applying

rule (A9) transforms the requirement into two separate requirements: one for the current configuration,

i.e., 〈¬marked(v)〉; and one for future configurations, i.e.,〈¬marked(v)W0〉•. Rule (A2) again

resolves the formula predicates that are satisfied by the current configuration.

The resulting abstract configurations are configurations in which the only requirement is〈¬marked(v)W0〉•

for the selected individual. The next step in the abstract interpretation of the FOTS is to evaluate a

program transition, and turn〈¬marked(v)W0〉• to 〈¬marked(v)W0〉 in the resulting abstract con-

figurations (as〈¬marked(v)W0〉• expresses the requirement after a program’s transition).

Eventually, all reachable nodes will be marked, and requirements of the form〈¬marked(v)W0〉
are therefore violated. Hence, the property violation property is not satisfied by the example program

(and the original property holds).

5.4.2 Liveness and Progress

Verifying liveness properties requires observing progress. To observe progress under abstraction, we

need to consider the abstraction of transitions (pairs of configurations) rather than the abstraction of

single configurations.

In order to observe progress, we classify transitions using a progress measure as suggested in [68,

75, 57], i.e., as being “helpful”, “neutral” or “harmful” with respect to a predefined progress measure. A

“helpful” transition is one that decreases the measure, a “neutral” transition does not change the progress

measure, and a “harmful” transition increases the progress measure. Using this transition classification

allows us to rule out abstract traces for which the progress measure is infinitely decreasing.

The progress measure we use for the running example is based on the fact that the set of individuals
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Figure 5.7: Abstract helpful transition fromm8 tom9.

which are reachable from root and which are unmarked is decreasing on each iteration of the loop. We

formulate the progress measure as the following two-vocabulary formulae:

ϕ↓ = ∃εv.¬marked(v) ∧ r[root](v) ∧ (marked′(v) ∨ ¬r[root]′(v))
ϕ↑ = ∃εv.(marked(v) ∨ ¬r[root](v)) ∧ ¬marked′(v) ∧ r[root]′(v)

whereϕ↓ corresponds to a transition in which the progress measure is decreasing, andϕ↑ to a transition

in which the progress measure is increasing. A transition for which neitherϕ↓ norϕ↑ holds is a neutral

transition that does not change the progress measure.

The above progress measure rules out the trace in which the loop does not terminate because the

progress measure is infinitely decreasing along this trace.

Example 5.4.6 The transition fromm9 tom9 is a helpful transition in which a previously reachable but

unmarked node becomes marked. This is shown in Fig.5.7. Note thatϕ↓ holds for this transition. Also

note thatϕ↑ does not hold for any transition of the example program.
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5.4.3 Safety Properties

For safety properties, verification could be performed more efficiently, without splitting successor con-

figurations for different assignments. The intuition is that we only need to observe events in the past.

This allows evaluating quantifiers in a configuration-local manner. In particular, formulating the prop-

erties of [95] and [115] using past formulae in our framework, yields the same algorithms as used there.

5.5 Conclusion

We have presented a framework for verifying temporal properties of sequential and concurrent heap-

manipulating programs. The framework can be used for verification of safety and liveness properties.

AppendixC provides additional ETL properties for the mark and sweep algorithm, and additional ex-

amples of ETL specifications.

The framework described in this chapter generalizes our previous work on verification of heap-

manipulating programs and allows systematic formulation of properties that previously required ad-hoc

solutions. In particular, it generalizes our work on verifying strong safety properties (Chapter2), ver-

ifying non-nested liveness properties (Chapter4), and verifying local temporal safety properties (Sec-

tion 7.1).



Chapter 6

Verifying Safety Properties using

Separation and Heterogeneous

Abstraction

In this chapter, we show howseparation(decomposing a verification problem into a collection of ver-

ification subproblems) can be used to improve the efficiency and precision of verification of safety

properties. We present a simple language for specifyingseparation strategiesfor decomposing a single

verification problem into a set of subproblems. (The strategy specification is distinct from the safety

property specification and is specified separately.) We present a general framework ofheterogeneous

abstractionthat allows different parts of the heap to be abstracted using different degrees of precision at

different points during the analysis. We show how the goals of separation (i.e., more efficient verifica-

tion) can be realized by first using a separation strategy to transform (instrument) a verification problem

instance (consisting of a safety property specification and an input program), and by then utilizing het-

erogeneous abstraction during the verification of the transformed verification problem.

Some tasks are best done by machine,

while others are best done by human insight;

and a properly designed system will find the right balance.

– D. Knuth

6.1 Introduction

Recently there has been significant and growing interest in static verification of safety properties (e.g.,

see [21, 29, 6, 44, 43, 4, 84, 41, 27]). Such verification is valuable since it can identify software de-

fects early on, thereby improving programmer productivity, reducing software development costs, and

119
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...

10 ConnectionManager cm = new ConnectionManager();

11 Connection con1 = cm.getConnection();

12 Statement stmt1 = cm.createStatement(con1);

...

15 ResultSet maxRs = stmt1.executeQuery(maxQry);

16 if (maxRs.next())

...

18 ResultSet rs1 = stmt1.executeQuery(balancesQry);

19 if (maxBalance1 < threshold) {
20 stmt1.close();

21 closed1 = true;

22 }

23 Connection con2 = cm.getConnection();

24 Statement stmt2 = cm.createStatement(con2);

...

27 ResultSet rs2 = stmt2.executeQuery(balancesQry);

28 ResultSet maxRs2 = stmt2.executeQuery(maxQry);

29 if (maxRs2.next())

...

31 ResultSet minRs2 = stmt2.executeQuery(minQry);

...

40 while (rs2.next())

...

Figure 6.1: JDBC example snippet.

increasing software quality and reliability.

Consider the Java program fragment shown in Fig.6.1. This program performs a number of database

queries using JDBC [109]. This example violates one of the usage constraints imposed by the JDBC

library. Specifically, the execution of a query in line 28, using aStatement object, has the implicit

effect of discarding the results to the previous query executed in line 27 (using the sameStatement

object). Hence, the subsequent attempt to use these discarded results, in line 40, is invalid.

We are interested in verifying that a given program satisfies safety properties of the kind illustrated

above. While significant progress has been made recently in such lightweight verification, doing precise

verification that can scale to large and complex programs still remains a challenge. In this chapter, we

investigate a technique to improve the precision and efficiency of such verification.

The starting point for our work is the notion ofseparation: the idea that separating or decomposing

a verification problem into a collection of smaller subproblems can help scale verification algorithms

(e.g., see [27]). Consider again the example in Fig.6.1. This example program executes 5 different

queries, producing 5 differentResultSet s. We can verify that the program satisfies the desired safety

property byindependentlyverifying the property for each of theseResultSet s.

It may seem like we are just restating the problem, but this restatement is important from the point

of view of the underlying analysis. It can significantly increase the efficiency of the analysis by reducing

the size of the state-space that needs to be explored. In our running example,Statement stmt1 and

ResultSet rs1 can be in several possible states in line 28. While this information is relevant for

verifying subsequent use ofResultSet rs1 , it is irrelevant for verifying the usage ofResultSet

rs2 , for example. The motivation for separation is to exploit this to improve efficiency, without losing

precision.

In this chapter, we explore this approach by addressing the following questions:

(1) How do we decompose a verification problem into a collection of subproblems?

(2) How can we adapt the state abstractions to each subproblem (so that we may achieve the desired
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efficiency improvement)? One of the key characteristics of our approach is that we break up this question

into two parts: (a) What are the objects that arerelevantto a verification subproblem? (b) Given the set

of relevant objects, how can weadaptthe state abstraction to utilize this information?

In this chapter, we introduce the notion of aseparation strategyas something that can help answer

question (1) and partly help answer (2)(a). Rather than adopt a fixed strategy for separation, we introduce

a simple language for specifying separation strategies that can be used to manually specify strategies.

One strategy for the JDBC problem would be to apply separation at the level of aConnection , where

verification of allResultSet s created over a singleConnection is treated as a single verification

subproblem.

Currently, we see the strategy specification language as a way for analysis designers, such as our-

selves, to specify and experiment with different strategies. Our intuition, however, is that end users may

be able to easily identify objects of interest and relevance to some verification subproblem and that the

strategy specification may be a lightweight way to allow end user input to guide verification.

Given a verification problem instance (consisting of a safety property specification and an input

program) and a separation strategy, the first step of our approach is totransform(or instrument) the

verification problem instance to reflect the separation strategy. (Here, it is worth pointing out that when

we talk about “decomposing a verification problem into subproblems”, we are talking at a conceptual

level; the transformed verification problem mentioned above is equivalent to solving the subproblems in

parallel.)

The second step is to perform verification for the transformed program and safety property in a way

that exploits the separation. This leads us to question (2) above. One of the distinguishing characteristic

of our approach is that we rely on anintegratedanalysis that performs, for example, heap analysis in

conjunction with the verification (as opposed to performing it as a separate preceding analysis). Thus,

we are interested in exploitingseparationeven for the heap analysis. (Indeed, the benefits of separation

may be greatest for the heap analysis component if the verification utilizes precise, but expensive, heap

analysis.)

In this chapter, we utilizeheterogeneous abstractionsthat allow us to model different parts of the

heap with different degrees of precision at different points in time as a technique to exploit separation.

Consider the example in Fig.6.1. Fig. 6.2(a) informally shows two possible states of the heap at

line 28 , corresponding to different branches taken at line19 . TheStatement referenced bystmt1

and theResultSet references byrs1 are in aclosedstate inC2 (as illustrated by the “c” inside the

component node). Fig.6.2(b) illustrates the abstract representation produced by our technique (with

a simple separation): the representation above the line corresponds to one subproblem (corresponding

to Connection con1 ), and the representation below the line corresponds to a different subproblem

(corresponding toConnection con2 ). We present more details about these representations in later

sections.
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Figure 6.2: Separation and heterogenous abstraction.
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Main Results

The main contributions of this chapter are:

• We present a simple language for specifying separation strategies for decomposing a single veri-

fication problem into a set of subproblems.

• We present a general framework ofheterogeneous abstractionsthat allows different parts of the

heap to be abstracted using different degrees of precision at different points during the analysis.

• We show how the goals of separation (i.e., more efficient verification) can be realized by first using

a separation strategy to transform (instrument) a verification problem instance (consisting of a

safety property specification and an input program), and then utilizing heterogeneous abstraction

during the verification of the transformed verification problem.

• We have implemented a prototype of a separation verification engine using TVLA, and applied it

to verify properties of several Java programs, using several different separation strategies. Initial

results indicate that separation does improve the efficiency, and possibly precision, of verification

results.

One of the themes to emerge in recent work (e.g., see [84, 41, 27]) is that maintaining just the

right correlation required between “analysis facts” can be the key to efficient and precise verification:

maintaining no correlations (independent attribute analysis) can lead to imprecision, while maintaining

all correlations (relational analysis) can lead to inefficiency. However, finding this intermediate ground

can be hard for heap analyses that, for instance, use graph-based representations of the heap. Our

approach may be seen as a step towards achieving such a balance in a heap representation.

Existing approaches to verification range from more automated techniques that rely on no extra

human input (other than the safety property specification) to techniques that rely on end users to pro-

vide significant annotation, such as program invariants. We see the strategy specifications we use as a

potentially useful, lightweight, way for users to assist a verifier.

Related Work

ESP [27] is a system for typestate verification [103] that utilizes a simple fixed separation technique.

Our work differs from ESP in several respects. ESP uses a two-phased approach to verification in which

pointer-analysis is performed first, followed by typestate verification. This often prevents ESP from

applying “strong” updates necessary for successful verification. Separation in ESP is exploited only in

the typestate verification phase. We utilize an integrated analysis, where heap analysis and verification

are performed simultaneously, allowing the heap analysis to benefit from separation. We also explore

separation in a more general setting than ESP: we explore its applicability to first-order safety properties,
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while (?) {
f = new File();

f.read();

f.close();

}

Figure 6.3: Program illustrating the difficulty of verifying that a file component is never read after it has

been closed.

such as the ones shown earlier for JDBC, which involve relationships among multiple objects; we allow

user-specifiable separation strategies; finally, our technique can achieve separation between multiple

objects allocated at the same allocation site. Since our analysis is capable of separating out asingle

object (even from among multiple objects allocated at the same allocation site), it can apply “strong”

updates when ESP is forced to use “weak” updates. This can lead to more precise results, as illustrated

by the example in Fig.6.3. Unlike ESP, our technique can successfully verify this example.

The instrumentation technique we use to implement separation strategies may be seen as an exten-

sion of techniques previously used (e.g., by Bandera [21, 22] and SLAM [72]) to instrument a program

with respect to a safety property specification prior to verification. However, these approaches use such

instrumentation purely to encode the verification problem, and do not exploit it for separation and the

generation of adaptive abstractions as we do.

Separation is similar in spirit to McMillan’s functional decomposition [70], which divides the ver-

ification task according to units-of-work rather than dividing it according to the program syntax. His

division, however, is applied at the specification level since all entities have static names.

Guyer and Lin [50] show that it is valuable to have pointer analyses that are client-driven. His

analysis is a two-pass analysis, with a client-independent first pass pointer analysis, followed by a second

pass pointer analysis that uses different levels of context-sensitivity for different analyzed procedures,

based on sources of imprecision identified using the results computed by the first pass.

[84] explores techniques to derive abstractions that are specialized to a safety property. Our work on

separation is orthogonal to these techniques. In [95], a heap-safety-automaton (HSA) is used to specify

local heap properties (corresponding to typestate properties) which are later verified without using any

form of separation. We believe that the separation techniques in this chapter could be beneficial for their

analysis as well.

Our heterogeneous abstraction technique is based on the parametric analysis framework of Sagiv

et al. [91]. This analysis framework has been used to derive several powerful and precise, but very

expensive, heap analyses. We believe that successful verification systems need to use such powerful

analyses when needed (to handle difficult cases when they arise), but scalability requires that the scope
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of such analyses be restricted to a small enough universe. We believe that the identification of “relevant”

objects via our separation technique is a step towards achieving this.

An alternative separation technique would be to decompose a verification problem into subproblems

that verify that eachuseof an object, such as aResultSet , is safe, utilizing demand-driven analysis

to solve the subproblems. This inherently involves “backward analysis”, while our approach utilizes

“forward analysis”. The motivation for our approach is that “backward analysis” is inherently hard

when complex heap analysis is involved.

6.2 Safety Properties

We are interested in verifying that client programs that use a component (library) satisfy correct usage

constraints imposed by the library API. In this chapter, we use some of the usage constraints imposed

by the JDBC library to illustrate our separation technique for verification of such safety properties.

The JDBC library allows client programs to createConnection s to databases. Any number of

Statement s may be created over aConnection . A Statement can be used to execute a SQL

query over the database, via theexecuteQuery() method, which returns the results of the query

as aResultSet . Thenext() method of aResultSet can be used repeatedly to iterate over the

results of the query. However, the execution of theexecuteQuery() method of aStatement

implicitly closesany ResultSet previously returned by theStatement , and it is invalid to use

any of thoseResultSet s anymore. Similarly, after closing aConnection , it is invalid to use any

of the Statement s created from thatConnection or any of theResultSet s returned by these

Statement s.

Thus, the execution of line 28 in the example of Fig.6.1 implicitly closes theResultSet created

in line 27, and this will cause an error when this closedResultSet is used in line 40.

We specify safety properties usingEasl [84], a procedural language for specifying an abstract

semantics for a component library.Easl statements are a subset of Java statements containing assign-

ments, conditionals, looping constructs, and object allocation.Easl types are restricted to booleans,

heap-references, and built-in abstract Set and Map types. Finally,Easl provides arequires state-

ment to specify the correct usage constraints imposed by the library: it is the responsibility of any

program that uses the library to ensure that the condition specified by therequires clause holds at

the corresponding program point. These are the safety properties we are interested in checking.

Easl supports object references and dynamic allocation. This allows us to naturally express the

structural relationships between the objects of interest, as well as dynamic allocation of these objects.

Fig. 6.4shows anEasl specification for the JDBC1 safety properties described above.

Note the use of the setstatements and the fieldsmyResultSet , myConnection , andownerStmt

1Field names from Sun’s SDK1.3.1 sun.jdbc.odbc implementation.
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class Connection {
boolean closed;

Easl.Set statements;

Connection() {
closed = false;

statements = {};
}
Statement createStatement() {

requires !closed;

Statement st = new Statement(this);

statements = statements U { st };
return st;

}
void close() {

closed = true;

for each st in statements

if (st.myResultSet != null) {
st.closed = true;

st.myResultSet.closed = true;

}
}
}

class Statement {
boolean closed;

ResultSet myResultSet;

Connection myConnection;

Statement(Connection c) {
closed = false;

myConnection = c;

myResultSet = null;

}
ResultSet executeQuery(String qry) {

requires !closed;

if (myResultSet != null)

myResultSet.closed = true;

myResultSet = new ResultSet(this);

return myResultSet;

}
void close() {

closed = true;

if (myResultSet != null)

myResultSet.closed = true;

}
}

class ResultSet {
boolean closed;

Statement ownerStmt;

ResultSet(Statement s) {
closed = false ;

ownerStmt = s;

}
void close() {

closed = true;

}
boolean next() {

requires !closed;

}
}

Figure 6.4: AnEasl specification for a simplified subset of the JDBC API.

to specify the relationships between the components. Also note that applyingexecuteQuery closes

theResultSet component referenced bymyResultSet if one exists.

In the rest of this chapter we will address the problem of verifying that a given Java program satisfies

the safety properties specified by anEasl specification.

6.3 Separation Strategies

The goal of a separation strategy is to separate or decompose a verification problem into a collection

of verification subproblems. We now present an informal description of separation strategies. A more

formal meaning will be given to separation strategies in Section6.4.2.

Consider a typestate property, such as “anInputStream should not beread after it isclosed ”.

In this case, verification of the safety property for oneInputStream object does not depend on the

state of anotherInputStream object. Hence, the verification can be done independently for each

InputStream object. This amounts to a very simple separation strategy.

Some safety properties, such as theJDBC ResultSet property, involve multiple related objects

– we refer to these asfirst-order safety properties. Consequently, verification of such properties can

be separated into subproblems in several different ways, each with potentially different efficiency and

precision tradeoffs. Before we present some of the possible separation strategies, we introduce a simple
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language for specifying a separation strategy.

In our approach, a separation strategy represents a method forchoosinga set of objects. A set

of chosen objects identifies a subproblem where verification is restricted to the chosen objects. For

effective verification, a strategy should identify other objects that may have an impact on a chosen

object and choose them too. This motivates the definition of the following language for specifying

strategies.

An (atomic) separation strategy is a sequence ofchoiceoperations, where each choice operation

identifies one or more objects that are chosen, as a function of previously chosen objects.

<atomic-strategy> ::= <choice-spec> *

<choice-spec> ::=

choose (some|all) <var>:<constr> [/<condition>]

<constr> = <type-name> ( <var-list> )

Each choice operation consists of a variable name, a signature of a constructor, and an optional

condition. The choice operationchoose some performs a non-deterministic selection of objects, cre-

ated through the specified constructor, that satisfy the condition. The operationchoose all chooses

all objects created through the specified constructor that satisfy the condition. Both choice operations

evaluate the condition, and apply their choice on entry to the specified constructor. For simplicity, we

assume that each type has a single constructor.

We now present some strategies for theJDBC ResultSet property.

Single Choice The motivation for our first strategy is the observation that there is no interaction be-

tween differentConnection s: it should be possible to perform verification for eachConnection

independently. Hence, the following strategy performs separation at the level of aConnection .

choose some c : Connection()

choose all s : Statement(x) / x == c

choose all r : ResultSet(y) / y == s

The separation strategy described above first non-deterministically chooses a singleConnection ,

then proceeds by choosingall Statement s created from thisConnection , and then choosingall

ResultSet s created from theseStatement s. For the running example, this amounts to separating

the verification problem into two independent subproblems, one for eachConnection .

Multiple Choice However, it should be clear from the JDBC specification that it is possible to perform

a more fine-grained separation than the single choice strategy described above. In particular, the correct

usage of aResultSet does not really depend on howany otherResultSet is used. Thus, it is

not necessary to perform verification of the differentResultSet s created, for isntance, from a single
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Statement together. However, the correct usage of aResultSet does depend on theStatement

andConnection underlying theResultSet . These observations motivate the following separation

strategy.

choose some c : Connection()

choose some s : Statement(x) / x == c

choose some r : ResultSet(y) / y == s

For the running example, this strategy produces a set of5 subproblems, one for each combination

of matchingConnection , Statement andResultSet .

Note that using a finer-grained separation strategy may or may not lead to more efficient verification.

On one hand, finer-grained separation leads to smaller subproblems that can be verified more easily. On

the other hand, it also leads to a larger number of subproblems. The relative performance of a strategy

may depend on the amount of work that is duplicated across the different subproblems. The strategy we

present next is likely to reduce the amount of work duplicated across subproblems.

Incremental The two strategies we have seen are examples ofatomicstrategies. In this chapter, we

also explore the possibility of applying a sequence of increasingly complex separation strategies to

perform verification. The motivation for this is simple: usually many verification subproblems may

be amenable to simple and efficient verification, but some verification subproblems may require more

precise analysis for successful verification.

An incremental strategy is a sequence of atomic strategies, which are tried one after another, stop-

ping when one of the atomic strategies completely verifies the program. An atomic strategy can make

use of failure information from the previous atomic strategy applied to the program. We restrict our-

selves to a very simple form of failure information, where the choice operation can restrict attention to

individuals that failed verification in the previous step. We will illustrate this with examples first, and

later explain how these strategy specifications are interpreted.

{
choose some r : ResultSet(y)

} on failure {
choose some s : Statement(x)

choose some failing r : ResultSet(y) / y == s

} on failure {
choose some c : Connection()

choose some failing s : Statement(x) / x == c

choose some failing r : ResultSet(y) / y == s

}
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The above strategy optimistically first attempts to verify usage of eachResultSet independent

of even theStatement underlying theResultSet . If that fails, it then attempts to verify usage of

ResultSet s, while tracking usage of the underlyingStatement . If that too fails, it then attempts

verification using even more context.

Note that an incremental strategy may be thought of as a very simple (fixed) iterative refinement

scheme. For our running example, the very first atomic strategy in the sequence above successfully

verifies all correct uses ofResultSet .

Semantics and Correctness Note that the language presented above is powerful enough to specify

partial verification problems, where the checking is done only for the specifiedsubsetof objects. This

power is useful in some contexts. However, the goal of astrategyis typically to improve the precision

and efficiency of verification but not affect its correctness. In order for a separation strategy to guarantee

correctness, it has tocoverall objects of the types being verified.

We later describe how a strategy specification defines an instrumented semantics for a program:

every program-state in the standard semantics corresponds to a set of instrumented-program-states in the

instrumented semantics, where an instrumented-program-state may be roughly thought of as a program-

state plus a set of objects in the program-state (which are the “chosen” objects). A strategy is said to

completely cover a typeT if for every program-stateσ in the standard semantics, and for every object

obj of typeT in σ, there exists an instrumented-program-state in whichobj is a chosen object.

Theorem 6.3.1 A separation strategy that consists only of choice operations with no condition and

choice operations of the form:

choose all x : T ( w1,..., wk) / ( wi == zj)

wherewi (1 ≤ i ≤ k) is a parameter of the constructorT, andzj is a variable bound by earlier choice

operations, completely coversT.

6.4 Separation

In this section, we show how a separation strategy is utilized to decompose a verification problem into

a set of verification subproblems. We first illustrate how anEasl safety property specification and a

Java program together can be translated into an analysis problem instance in the parametric analysis

framework of [91]. We then show how anEasl safety property specification, a Java program, and a

separation strategy specification together can be translated into amodifiedanalysis problem instance

(corresponding to a set of verification subproblems). (This translation provides the semantics of a sepa-

ration strategy.)
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Predicates Intended Meaning

eq(v1, v2) v1 equals tov2

x(v) reference variablex points to the objectv

fld(v1, v2) field fld of the objectv1 points to the objectv2

bv() boolean variablebv has true value

bf(v) boolean fieldbf holds for objectv

site[AS](v) objectv was allocated in allocation siteAS

Table 6.1: Predicates for partial Java semantics.

6.4.1 Background

We now present an overview offirst-order transition systems(FOTS), the formalism underlying the

parametric analysis framework of [91]. FOTS may be thought of as an imperative language built around

an expression sub-language based on first-order logic

In a FOTS, the state of a program is represented using a first-order logical structure in which each

individual corresponds to a heap-allocated object and predicates of the structure correspond to properties

of heap-allocated objects.

Definition 6.4.1 A 2-valued logical structure over a set of predicatesP is a pairC\ = 〈U \, ι\〉 where:

• U \ is the universe of the2-valued structure. Each individual inU \ represents a heap-allocated

object.

• ι\ is the interpretation function mapping predicates to their truth-value in the structure: for every

predicatep ∈ P of arity k, ι\(p) : U \k → { 0, 1 }.

In the following we will usep(v) as shorthand forι\(p)(v) when no confusion is likely.

Table6.1shows some of the predicates we use to record properties of individuals in this chapter. A

unary predicatex(v) holds when the reference (or pointer) variablex points to the objectv. Similarly,

a binary predicatefld(v1, v2) records the value of a reference (or pointer-valued) fieldfld . A nullary

predicatebv() records the value of a local boolean variablebv and a unary predicatebf(v) records the

value of a boolean fieldbf . Finally, a unary predicatesite[AS](v) records the allocation siteAS in

which an object was allocated.

In order to enable interprocedural analysis we explicitly represent stack frames and a corresponding

set of predicates following [89]. Since this does not interfere with the material in this chapter, to simplify

presentation we do not describe these predicates.
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(a)

(b)

Figure 6.5: Concrete program configurations representing a possible program state (a) at line28 and

(b) after execution of the statement at line28

In this chapter, program configurations are depicted as directed graphs. Each individual of the

universe is drawn as a node. A unary predicatep(o) which holds for a nodeu is drawn inside the node

u. A binary predicatep(u1, u2) which evaluates to 1 is drawn as a directed edge fromu1 to u2 labeled

with the predicate symbol.

Example 6.4.2 Fig. 6.5shows a concrete program configuration representing a global state of the pro-

gram before executing the statement at line28 . In this configuration, threeString objects were

allocated in the heap and are referenced bymaxQry , minQry , balancesQry . The configuration

also contains twoConnection objects referenced bycon1 andcon2 , twoStatement objects ref-

erenced bystmt1 andstmt2 , and threeResultSet objects referenced bymaxRs, rs1 , andrs2 .

Note that theResultSet referenced bymaxRs is closed. The meaning of the predicatesrelevant(u),

chosen[c](u), chosen[s](u), andchosen[r](u) will become clear in the next section.
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Predicates Intended Meaning

chosen[x](v) objectv was chosen by choice operation

for strategy variablex

wasChosen[x]() some object was chosen for strategy variablex

chosen(v) objectv was chosen by some choice operation

relevant(v) abstraction-directing predicate

recording relevant objects

Table 6.2: Additional predicates of the instrumented semantics.

6.4.2 Instrumentation For Separation

In this section we explain how we translate a Java program, anEasl specification, and a strategy speci-

fication into a FOTS. Specifically, the strategy specification is used to instrument the standard translation

of a Java program andEasl specification into a FOTS. (This translation also directly provides a for-

mal semantics for a separation strategy as a method for non-deterministically choosing a set of objects

during program execution.) We use the predicates in Table6.2 to instrument the semantics. Predicates

of the formchosen[x](v),wasChosen[x](), andchosen(v) are used to express the separation strategy.

The predicaterelevant(v) is an abstraction-directing predicate that controls the way in which an object

is abstracted.

Consider a choice operation

choose all x : T ( w1,..., wi) / e( w1,..., wi, z1,..., zk)

Here, we say that the choice operation binds variablex . Variablesw1 throughwi are free variables

corresponding to parameters of a call to a constructor for typet , while z1 throughzk are variables

bound by earlier choice operations. In order to model the specified choice operation, we introduce an

instrumentation predicatechosen[x](u). The idea is for the predicatechosen[x](u) to hold true for

exactly the objects that are chosen by the above choice operation. We achieve this by translating the

conditione(...) specified for the choice operation into a first-order logic formula which is evaluated

on entry to the specified constructor oft to compute the value ofchosen[x](u) for the newly created

objectu. (Technically, this translation works by converting the free occurrences of a variablezj by

occurrences of an existentially quantified logical variableOj that is constrained to satisfy predicate

chosen[zj ](Oj).)

The translation of achoose some x operation is similar, except that the translation ensures that

at most one of the objects that is eligible for selection by the operation is chosen. This is done by

introducing a second instrumentation predicatewasChosen[x]() that indicates if an object has already

been selected during program execution for the corresponding choice operation (thus, it is defined by the

instrumentation formula∃O.chosen[x](O)). When a newt objectO is constructed,chosen[x](O) is
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set to false ifwasChosen[x]() evaluates to true or if the selection formula corresponding to the choice

operation evaluates to false. Otherwise,chosen[x](O) is non-deterministically assigned either true or

false, andwasChosen[x]() is correspondingly updated.

Given a simple strategy specification consisting ofn choice operations over variablesz1 through

zn, we also introduce a unary predicatechosen(O) that indicates if an object was chosen by any of

the n choice operations: thus, it is defined by the instrumentation formulachosen[z1](O) ∨ · · · ∨
chosen[zn](O).

Finally, the actual checks on objects that verify they satisfy the necessary preconditions when meth-

ods are invoked on them, are instrumented to perform the checks only for chosen objects.

For now, the predicaterelevant(u) may be thought of as being equivalent tochosen(u). We will

later see that the set of relevant objects includes all the chosen objects and potentially some other objects

as well.

Example 6.4.3 The single-choice strategy for JDBC is modelled using predicateschosen[c](u), chosen[s](u),

and chosen[r](u). Upon entry to the constructorStatement(Connection c) , the condition of

the corresponding choice operation is evaluated and theStatement is chosen if the passedConnection

is the one for whichchosen[c](u) holds. Similarly, the condition for choosing aResultSet is

evaluated on entry to constructorResultSet(Statement s) . As a result, for each subproblem

chosen[c](u) holds for (at most) a singleConnection component, andchosen[s](u), chosen[r](u)

hold for Statement s andResultSet s that are related to the chosenConnection . Part of the

instrumented program for this strategy is shown in Fig.6.6(For clarity, we useEasl syntax to present

the instrumented program).

We now briefly indicate how incremental strategies are handled. The notion of a failed individual is

fairly straightforward. A single strategy specification produces multiple verification subproblems, each

over a set of chosen individuals. An individual is said to be a failed individual if it is a chosen individual

of a verification subproblem that fails verification. However, we want to utilize simple strategy speci-

fications that restrict their attention to individuals that failed the previous simple strategy specification.

In general, this requires instrumentation that can identify at object-allocation time whether the allocated

object corresponds to a failed individual in the previous verification step. This is hard to do in a very

general way, and we restrict ourselves to allocation-site based identification of failed individuals: thus,

if any one individual allocated at an allocation site fails verification, then all individuals allocated at that

site are treated as failed individuals in the next verification step.

Operational Semantics

In a FOTS, program statements are modeled byactionsthat specify how the statement transforms an

incoming logical structure into an outgoing logical structure. This is done primarily by defining the
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class Connection {
...

Connection() {
if (!wasChosen) {

if (?) {
chosen = true;

wasChosen = true;

} else

chosen = false;

}
closed = false;

statements = {};
}
Statement createStatement() {

if (chosen)

requires !closed;

Statement st = new Statement(this);

statements = statements U { st };
return st;

}
...

}

class Statement {
...

Statement(Connection c) {
chosen = c.chosen

closed = false;

myConnection = c;

myResultSet = null;

}
ResultSet executeQuery(String qry) {

if (chosen)

requires !closed;

if (myResultSet != null)

myResultSet.closed = true;

myResultSet = new ResultSet(this);

return myResultSet;

}
...

}

class ResultSet {
...

ResultSet(Statement s) {
chosen = s.chosen;

closed = false ;

ownerStmt = s;

}
...

boolean next() {
if (chosen)

requires !closed;

}
}

Figure 6.6: An instrumentedEasl specification for a simplified subset of the JDBC API with single-

choice separation strategy.

values of the predicates in the outgoing structure using first-order logic formulae with transitive closure

over the incoming structure [91].

Example 6.4.4 Fig. 6.5(b) shows the effect of the statementmaxRs2 = stmt2.executeQuery(maxQry)

at line 28 , where the statement is applied to the configuration in Fig.6.5. The effect of the statement

is reflected by its updates to predicate values. Here, we assume that the choice predicates and the in-

strumentation predicates are updated according to the single-choice strategy of Section6.3. Since the

constructor of the newResultSet is invoked with a chosenStatement object, the choice condition

is satisfied and the newly createdResultSet is chosen and made relevant.

6.4.3 Additional Instrumentation

The predicaterelevantis intended to identify objects that must be modeled precisely for a verification

subproblem. The separation strategy specification allows users to identify relevant objects (via choice

clauses). An analysis designer, or a component library designer, can create separation strategies that

reflect the dependencies that exist among component library objects, while an end user can create sepa-

ration strategies that provide more dependency information (specific to their own program).

Currently, however, we do not assume that such extra dependency information will be available from
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an end user. Instead, we rely on a more automatic approach that considers objects which reach a relevant

object as relevant themselves, thus creating a notion oftransitive relevance. Transitive relevance causes

all objects that are on a path to a relevant object to become relevant as well, thus separating heap paths

that may reach a relevant object from heap paths that cannot.

We achieve this by defining the instrumentation predicaterelevant(u) to be true if and only if there

is a path fromu to some chosen objectv (i.e., some objectv for which chosen(v) is true). We update

this predicate using the techniques of [86].

6.5 Heterogeneous Abstraction

The essence of our separation-based verification is the following: first, a separation strategy is used to

choose a set of objects (for a given program trace); second, we utilize specialized abstractions to per-

form verification for the chosen objects efficiently. These specialized abstractions represent the chosen

objects much more precisely than the remaining objects. We refer to these abstractions asheteroge-

neousabstractions as they represent different parts of the heap with different degrees of precision. In

this section we describe the abstractions we use for separation-based verification.

Abstract Program Configurations

The goal of an abstraction is to create a finite representation of a potentially unbounded set of 2-valued

structures (representing heaps) of potentially unbounded size. The abstractions we use are based on

3-valued logic [91], which extends boolean logic by introducing a third value1/2 denoting values that

may be 0 or 1.

Definition 6.5.1 A 3-valued logical structure over a set of predicatesP is a pairC = 〈U, ι〉 where:

• U is the universe of the3-valued structure. An individual inU may represent multiple heap-

allocated objects.

• ι is the interpretation function mapping predicates to their truth-value in the structure: for every

predicatep ∈ P of arity k, ι(p) : Uk → { 0, 1, 1/2 }.

An abstract configuration may includesummary nodes, i.e., an individual which corresponds to one

or more individuals in a concrete configuration represented by that abstract configuration. A summary

nodeu haseq(u, u) = 1/2, indicating that it may represent more than a single individual.

As in [91], the abstract interpretations we use work by abstracting the set of 2-valued structures that

can arise at a program point by a set of 3-valued structures. However, this can be done in a number of

ways as shown below.
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Individual Merging The basic abstraction primitive used by [91] is that of individual merging: a

larger structures can be safely approximated by a smaller 3-valued structure by merging multiple indi-

viduals into one, and by approximating the predicate values appropriately. Given an equivalence relation

≡ on individuals, lets/≡ denote the structure obtained by merging individuals ofs that are≡-equivalent

together.

The above primitive induces a functionabs1[≡] that abstracts a set of 2-valued structures by a set

of 3-valued structures, defined byabs1[≡](S) = {s/≡ | s ∈ S}. (Strictly speaking,abs1[≡](S)

retains only a single representative of isomorphic structures, but we ignore the fine distinction between

isomorphism and equality for the sake of simplicity.)

[91] utilizes the equivalence relation≡A induced by a set of unary predicatesA (referred to as the

abstractionpredicates) defined as follows:o1≡Ao2 iff p(o1) = p(o2) for everyp ∈ A.

Structure Merging Subsequently, TVLA [65] introduced more aggressive abstraction mechanisms

based on the idea ofmerging multiple structuresinto one. Define theunions1 ∪ s2 of two structures to

be the structure whose universe is the disjoint union of the universes ofs1 ands2, with the predicate in-

terpretations ofs1 ands2 extended appropriately. The union of a set of structuresS is defined similarly.

Structures are merged by first taking their union, and then merging individuals of the union along the

lines indicated previously: define
⊔
≡(S) to be(

⋃
S)/≡.

Now, consider an equivalence relation' defined onstructures, indicating which structures must be

merged together, and an equivalence relation≡ defined onindividuals. We can now define a parame-

terized abstraction functionabs2[',≡](S) that first appliesindividual mergingto every structures in

S, and then merges together the resulting structures that are'-equivalent. Formally,abs2[',≡](S) is

defined to be:

{
⊔
≡
(C) | C is an'-equivalence class ofabs1[≡](S) }

TVLA utilizes the following' definitions: (a)s1 ' s2 iff s1 ands2 are isomorphic, (b)s1 ' s2 iff

s1 ands2 have the same values for a specified setB of nullary abstractionpredicates, (c)s1 ' s2 iff s1

ands2 have the same universes (modulo≡).

TVLA utilizes an extra unary predicateactive, which indicates if an individual definitely exists in

the universe or not, so that the structure
⊔
≡(S) can be used as an abstraction of every structure inS.

Thus, ifS is a set of 2-valued structures, then the predicateactiveis true for an individualo in
⊔
≡(S)

iff the equivalence class represented byo includes at least one individual from every structure inS.

Heterogeneous Abstraction

Separation creates the possibility for achieving better efficiency by adapting the abstractions to model

chosen individuals more precisely and the other individuals less precisely. In particular, this can be done

by:
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Figure 6.7: An abstract program configuration representing the concrete configuration of Fig.6.5(b).

• Adapting individual merging: We can make finer distinctions between chosen individuals than

between unchosen individuals, when we decide which individuals should be merged together.

For instance, we can choose to use the less expensive allocation-site based merging for unchosen

individuals, and more expensive variable-name based merging for chosen individuals.

• Adapting structure merging: Similarly, when deciding which structures should be merged into

one, we could choose to treat chosen and unchosen individuals differently.

• Adapting predicate values retained: One could choose to not record the values of certain predi-

cates for unchosen individuals. While this can reduce the space required to represent a structure,

this does not, unlike the preceding techniques, reduce the number of structures in the abstraction.

We will not discuss this issue in this chapter.

We now define a new family of equivalence relations for identifying individuals to be merged. Con-

sider a quadruple〈c, A1, A0, A1/2〉 wherec is a unary predicate, andA1, A0, andA1/2 are all sets of

unary predicates. The equivalence relation≡〈c,A1,A0,A1/2〉 on individuals is defined by:

(c(o1) = c(o2) = 1) ∧ ∀p ∈ A1.p(o1) = p(o2)) ∨

((c(o1) = c(o2) = 0) ∧ ∀p ∈ A0.p(o1) = p(o2)) ∨

((c(o1) = c(o2) = 1/2) ∧ ∀p ∈ A1/2.p(o1) = p(o2))

Given a setΓ of such tuples, we define≡Γ to be
d

γ∈Γ ≡γ .

We similarly define a new criteria for structure merging. Given a unary predicatec, defines1 'c s2

iff the substructures ofs1 ands2 consist only of individualsi for which c(i) = 1 are isomorphic.

For our separation-based verification, we utilize the abstraction induced by the equivalence relations

≡〈relevant,A,∅,A〉 and'relevant, whereA is the set of abstraction predicates utilized by the underlying
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separation-less verification. (In our implementation, this consists of the set of unary predicates).

Implementation Notes Our current implementation uses a very close approximation of the individual

merging induced by the equivalence relation≡〈relevant,A,∅,A〉 as follows: for every predicatep in A, we

introduce a new instrumentation predicatepr(o) = p(o) ∧ relevant(o), and use the set of predicates

{ pr | p ∈ A } as the set of abstraction predicates.

Example 6.5.2 Fig. 6.7 shows an abstract configuration representing the concrete configuration of

Fig. 6.5(b), obtained by heterogeneous relevance-based abstraction. Abstract program configurations

are depicted similarly to concrete configurations with an additional representation of summary nodes

as nodes with double-line boundaries, and a1/2-valued binary predicate as a dashed edge. All individ-

uals for whichrelevant holds are abstracted by the values of the predicates inA1. Other individuals,

for which relevant does not hold, are merged into a single summary node sinceA0 = ∅. In partic-

ular, this abstract configuration abstracts away the current state of objects related toConnection

con1 , including the state ofStatement stmt1 . In the figure, we use. . . = 1/2 instead of listing

all predicates that have1/2 value for the summary node.

If we had used a “homogeneous” abstraction, the non-relevant objects would have been abstracted

using the same set of predicates as the relevant objects (A1), thus keeping the objects related to the

Connection referenced bycon1 with the same precision and cost, as the ones related toConnection

referenced bycon2 . The ability to treat these structurally-similar objects very differently during analy-

sis is a key to obtaining good results with our method.

Abstract Semantics

We will now briefly describe the abstract semantics (“transfer functions”) we utilize for program state-

ments.

A key idea underlying [91] is that the actions defining a standard operational semantics for a pro-

gram statement (as a transformer of 2-valued structures) also define a corresponding abstract semantics

for the statement (as a transformer of 3-valued structures). This abstract semantics is simply obtained

by reinterpreting logical formulae using a 3-valued logic semantics and serves as the basis for an ab-

stract interpretation. However, [91] also presents techniques, such as materialization, that improve the

precision of such an abstract semantics. We directly utilize the implementation of these ideas available

in TVLA.

We described earlier (see Section6.4.2) how we utilize instrumentation predicates to identify rele-

vant objects. We currently also utilize instrumentation predicates to achieve a heterogeneous abstrac-

tion. We use the techniques in [86] for automatically generating, from the instrumentation formula, an

instrumented abstract semantics for statements to update the values of these instrumentation predicates.
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6.6 Prototype Implementation

We have implemented a prototype of the separation verification engine using TVLA [65]. To translate

Java programs and their specifications to TVP (TVLA input language) we have extended an existing

Soot-based [105] front-end for Java developed by R. Manevich.

The implementation emulates heterogeneous abstraction using instrumentation predicates in TVLA,

which adds some overhead. We believe that a native implementation of heterogeneous abstraction will

yield better performance.

We applied our framework to verify various specifications for a number of example programs. Our

specifications include correct usage of JDBC, IO streams, Java collections and iterators, and additional

small but interesting specifications. The experiments were performed on a machine with a1 Ghz Pen-

tium 4 processor, and1 GB RAM2. Results are shown in Table6.3. The column titled “mode” shows

the analysis mode for each line in the table. Verification with TVLA with no separation is referred to

asvanilla mode. “Rep. Err.” shows the number of reported errors, while “Act. Err.” shows the number

of actual errors. When counting errors, we count all errors reported at the same program location as a

single error.

Our implementation allows control over which subproblems are verified simultaneously. This allows

verification of subproblems related to one (or more) allocation-sites separately (as a separate execution

of the analysis) from other subproblems, reducing the maximal memory footprint of the verification.

Our implementation supports the following execution modes:

• vanilla—verification with TVLA with no separation.

• single—single choiceseparation strategy, where each subproblem is verified separately (as a sep-

arate execution of the analysis).

• sim—single choiceseparation strategy, where all subproblem are verified simultaneously (in a

single execution of the analysis).

• multi—multiple choiceseparation strategy, where each subproblem is verified separately.

• inc—incrementalseparation strategy, where each subproblem is verified separately.

The space measurement shown in Table6.3 for separation modes (single, multi, incremental) is the

maximal space required for analyzing a single set of subproblems. The time is the accumulated time

for analyzing all subproblems. The table also shows measurements for simultaneous verification of all

subproblems using single-mode (sim mode). For the JDBC example, the simultaneous single-choice

mode is identical to the non-simultaneous mode.

ISPath is a simple correct program manipulating input streams. InputStream5 is a heapful example

program that manipulates input-streams in holder objects at an arbitrary depth of the heap. For this

program, the vanilla version produces a false-alarm that is avoided by the separation-based analysis.

2SQLExecutor analyzed on a machine with a 2.79Ghz processor.
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Program Description Mode Line Space Time Rep. Act.

No. (MB) (Sec) Err. Err.

ISPath inp. streams vanilla 71 9.17 145.5 0 0

/ IOStreams single 2.51 17.4 0

sim 3.94 12.3 0

Input inp. streams vanilla 64 16.35 439 1 0

Stream5 holders single 17.65 240 0

/ IOStreams sim 21.35 202 0

Input inp. streams vanilla 64 13.72 343 1 1

Stream5b holders err single 19.71 279 1

/IOStreams sim 22.74 243 1

Input inp. streams vanilla 66 37.17 1344 1 0

Stream6 holders single 13.91 69.4 1

/ IOStreams sim 12.14 51.3 1

JDBC extended vanilla 149 33.43 2500 1 1

Example example single 28.71 1090 1

/ JDBC multi 16 7340 1

inc 12.5 3579 1

JDBC extended vanilla 153 32.8 2500 0 0

Example example single 28.8 1090 0

fixed / JDBC multi 29.5 7500 0

inc 25.7 3339 0

db SpecJVM98 vanilla 644 89.25 10454 0 0

db single 90 2500 0

/ IOStreams sim 91.17 1496 0

Kernel Collections vanilla 82 42.23 8321 1 1

Bench.1 benchmark single 13.15 657 1

/ CMP sim 13.84 255 1

multi 14.45 4552 1

inc 14.45 960 1

Kernel Collections vanilla 146 − − − 1

Bench.3 benchmark single 107.8 12098 1

/ CMP sim 128.7 7588 1

multi 119 69631 1

inc 106 12881 1

SQL JDBC vanilla 1297 − − − 0

Executor framework single 80.59 5028 0

/ JDBC multi 72.64 4919 0

inc 42.68 412 0

Table 6.3: Analysis results and cost for the benchmark programs.
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This stems from the use oftransitive relevance, which makes the separation-based analysis more precise

(for the relevant objects). Generally, since the separation-based analysis is more focused, it may allow

use of a more precise abstraction than the one that could be used when applied uniformly. InputStream5b

is an erroneous version of InputStream5 containing a single error. InputStream6 is another variation of

InputStream5.

JDBCExample is an extended version of the running example that uses5 Connection s. The high

running-time result for incremental mode in this case is affected by the fact that there is a small number

of Statement s (1) andResultSet s (up to 3) associated with eachConnection . db is a program

from SpecJVM98 performing multiple database functions on a memory resident database.

KernelBenchmark1 and KernelBenchmark3 are part of a benchmark suite for testing Collections and

Iterators used in [84]. SQLExecutor is an open source JDBC framework. For this benchmark, vanilla

verification failed to terminate after more than5 hours, but incremental-mode successfully verified the

program in412 seconds. This is a result of the correct and relatively simple usage of JDBC objects in

this benchmark.

In some benchmarks separation gained an overall performance increase, while in others the total

verification time in some modes was larger than the time for vanilla-mode verification. In all cases,

however, the average time for verifying a single subproblem was significantly lower than the time re-

quired for vanilla verification. Thus, separation may be useful for answering on-demand queries when

one is only interested in checking whether an object (or a set of correlated objects) can produce an

error. For example, while the total time for multi-mode and incremental-mode in the JDBC example

was larger than the time required for vanilla-mode, the average time for verifying each subproblem was

approximately670 seconds.

One interesting future direction is to exploit separation for increasing performance by parallelizing

verification of subproblems.

6.7 Extensions and Future Work

We have experimented with two classes of iterative refinement schemes for approximating the set of

relevant objects for a subproblem: the first iteratively identifies more “relevant program variables” and

turns objects pointed-to by these variables relevant; the second iteratively identifies “relevant allocation

sites” and turns objects allocated at these sites relevant. Both classes of our refinement schemes are

guaranteed to terminate (with all objects being relevant in the worst case), but are not guaranteed to

yield a successful verification. Our initial experience indicates that these techniques work well for

relatively small examples.
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Chapter 7

Applications

In this chapter, we show several applications of our techniques for verifying non-trivial Java programs.

Section7.1 shows how to use our techniques for establishing local temporal heap properties, and use

these for compile-time memory management. In Section7.2, we apply our techniques to verify concur-

rent queue algorithms, which are in part implemented in thejava.util.concurrent package of

JDK1.5. We conclude this chapter with Section7.3, describing our solution to the apprentice challenge,

a Java verification challenge posed by J. Moore.

The theories which I have expressed there, and which appear to you to be so chimerical,

are really extremely practical — so practical that I depend upon them for my bread and cheese.

–Sir Arthur Conan Doyle,A Study in Scarlet.

7.1 Compile-Time Memory Management

In this section, we present a framework for statically reasoning about temporal heap safety properties.

We focus onlocal temporal heap safety properties, in which the verification process may be performed

for a program object independently of other program objects (this kind of properties was referred to as

spatially separablein Section4.3). We apply our framework to produce new conservative static algo-

rithms for compile-time memory management, which prove for certain program points that a memory

object or a heap reference will not be needed further. These algorithms can be used for reducing space

consumption of Java programs. We have implemented a prototype of our framework, and used it to ver-

ify compile-time memory management properties for several small, but interesting example programs,

including JavaCard programs.

Research in this section was conducted in collaboration with R. Shaham, as part of his PhD thesis.

A preliminary version of this research also appeared in [95]. In this section, we only describe parts of

the research that are relevant to this thesis. In particular, we omit discussion of empirical results that

could be found at [95].

143



144 CHAPTER 7. APPLICATIONS

7.1.1 Introduction

This work is motivated by the need to reduce space consumption, for example, for memory-constrained

applications in a JavaCard environment. Static analysis can be used to reduce space consumption by

identifying source locations at which a heap-allocated object is no longer needed by the program. Once

such source locations are identified, the program may be transformed to directly free unneeded objects,

or aid a runtime garbage collector collect unneeded objects earlier during the run.

The problem of statically identifying source locations at which a heap-allocated object is no longer

needed can be formulated as a local temporal heap safety property — a temporal safety property spec-

ified for each heap-allocated object independently of other objects (this kind of properties was referred

to asspatially separablein Section4.3).

The contributions described in this section can be summarized as follows:

• We present a framework for verifying local temporal heap safety properties of Java programs.

• Using this framework, we formulate two important compile-time memory management properties

that identify when a heap-allocated object or heap reference is no longer needed, allowing space

savings in Java programs.

• We have implemented a prototype of our framework, and used it as a proof of concept to verify

compile-time memory management properties for several small but interesting example programs,

including JavaCard programs.

• We show that our heap abstraction is precise enough to verify interesting compile-time memory

management properties, while other points-to based heap abstractions fail to verify our properties

of interest.

Local Temporal Heap Safety Properties

This section describes a framework for automatically verifyinglocal temporal heap safety properties,

i.e., temporal safety properties that could be specified for a program object independently of other

program objects. In this section, we refer to properties as beinglocal temporal heap safetyproperties

instead oftypestateproperties (as used in Chapter3) to emphasize that the verification algorithms in

this section handle typestate verification for programs with arbitrary aliasing relationships. The class

of properties handled in this section is contained in the class ofspatially separableproperties (used in

Section4.3) since in this section we only address spatially separable safety properties.

We assume that a safety property is specified using aheap safety automaton(HSA), which is a

deterministic finite state automaton. The HSA defines the valid sequences of events that could occur for

a single program object.
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During the analysis, events are triggered for state machines associated with objects. It is important

to note that our framework implicitly allows infinite state machines, since the number of objects is

unbounded, and a state machine is associated with every object. Thus, precise information on heap paths

to disambiguate program objects is crucial for the precise association of an event and its corresponding

program object’s state machine.

Local temporal heap properties are properties that consider the temporal behavior of each object

separately. This allows the verification algorithm to consider each object independently. In this section,

this allows us to simplify the general rewrite rules of the ETL existential semantics (Definition5.2.12) to

a preconstructed automaton associated with each object. Furthermore, in this section we only consider

safety properties, which allows us to simplify the acceptance criterion of the automaton using finite-

automaton acceptance instead of a Büchi acceptance.

In this section, we develop static analysis algorithms that verify that on all execution paths, all

objects are in an HSA accepting state. In particular, we show how the framework is used to verify prop-

erties that identify when a heap-allocated object or heap reference is no longer needed by the program.

This information could be used by an optimizing compiler or communicated to the runtime garbage

collector to reduce the space consumption of an application. Our techniques could also be used for

languages like C to find a misplaced call tofree that prematurely deallocates an object.

Compile-Time Memory Management Properties

Runtime garbage collection (GC) algorithms are implemented in Java andC# environments. However,

GC does not (and in generalcannot) collect all the garbage that a program produces. Typically, a

GC collects objects that are no longer reachable from a set ofroot references. However, there are

some objects that the program never accesses again and therefore not needed further, even though they

are reachable. In [93, 94] Shaham et. al. show a potential of saving39% of the space by freeing

reachable unneeded objects. Moreover, in some applications, such as those for JavaCard, GC is avoided

by employing static object pooling, which leads to non-modular, limited, and error-prone programs.

Existing compile-time techniques produce limited savings. For example, [2] produces a limited

savings of a few percent due to the fact that its static algorithm ignores references from the heap. Indeed,

our dynamic experiments indicate that the vast majority of savings require analyzing the heap.

In this section, we develop two new static algorithms for detecting and deallocating garbage objects:

free analysis Statically identify source locations at which it is safe to insert a free statement in order to

deallocate a garbage element.

assign-null analysisStatically identify source locations at which it is safe to assign null to heap refer-

ences that are not used further in the run.
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The assign-null analysis leads to space savings by allowing the GC to collect more space. In [94]

Shaham et. al. show that assigning null to heap references immediately after their last use has an average

space-saving potential of15% beyond existing GCs. Free analysis could be used with runtime GC in

standard Java environments and without GC for JavaCard.

Both of these algorithms handle heap references and destructive updates. They employ both forward

(history) and backward (future) information on the behavior of the program. This allows us to free more

objects than reachability-based compile-time garbage collection mechanisms (e.g., [56]), which only

consider the history.

A Motivating Example

Fig. 7.1shows a program that creates a singly-linked list and then traverses it. We would like to verify

that for this program afree y statement can be added immediately after line10. This is possible

because once a list element is traversed, it cannot be accessed along any execution path starting after line

10. It is interesting to note that even in this simple example, standard compile-time garbage collection

techniques (e.g., [56]) will not issue such a free statement, since the element referenced byy is reachable

via a heap path starting fromx . Furthermore, integrating limited information on the future of the

computation such as liveness of local reference variables (e.g., [2]) is insufficient for issuing such a free

statement. Nevertheless, our analysis is able to verify that the list element referenced byy is no longer

needed, by investigating all execution paths starting at line10.

In order to prove that a free statement can be added after line10, we have to verify that all program

objects referenced byy at line10 are no longer needed on execution paths starting at this line. More

specifically, for every execution path and for every objecto, we have to verify that from line10 there

is no use of a reference too. In the sequel, we show how to formulate this property as a heap safety

property and how our framework is used to successfully verify it.

A Framework for Verifying Heap Safety Properties

Our framework is conservative, i.e., if a heap safety property is verified, it is never violated on any

execution path of the program. As usual for a conservative framework, we might fail to verify a safety

property which holds on all execution paths of the program.

Assuming the safety property is described by an HSA, we instrument the program semantics to

record the automaton state for every program object. First-order logical structures are used to represent

a global state of the program. We augment this representation to incorporate information about the

automaton state of every heap-allocated object.

Our abstract domain uses first-order 3-valued logical structures to represent an abstract global state

of the program, which represents several (possibly an infinite number of) concrete logical structures [91].
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class L { // L is a singly linked list

public L n; // next field

public int val; // data field

}
class Main { // Creation and traversal of a singly-linked list

public static void main(String args[]) {
L x, y, t;

1 x = null;

2 while (...) { // list creation

3 y = new L();

4 y.val = ...;

5 y.n = x;

6 x = y;

}
7 y = x;

8 while (y != null) { // list traversal

9 System.out.print(y.val);

10 t = y.n;

11 y = t;

}
}

}

Figure 7.1: A program for creating and traversing a singly linked list.

We usecanonical abstractionthat maps concrete program objects (i.e., individuals in a logical structure)

to abstract program objects based on the properties associated with each program object. In particular,

the abstraction is refined by the automaton state associated with every program object.

For the purpose of our analyses one needs to: (i) consider information on the history of the com-

putation, to approximate the heap paths, and (ii) consider information on the future of the computation,

to approximate the future use of references. Our approach here uses a forward analysis, where the

automaton maintains the temporal information needed to reason about the future of the computation.

Outline

The rest of this section is organized as follows. In Section7.1.2, we describe heap safety properties

in general, and a compile-time memory management property of interest — the free property. Then,

in Section7.1.3, we give our instrumented concrete semantics which maintains an automaton state for

every program object. Section7.1.4describes our property-guided abstraction and provides an abstract

semantics. In Section7.1.5, we describe an additional property of interest — the assign-null property,

and discuss efficient verification of multiple properties.
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7.1.2 Specifying Compile-Time Memory Management Properties via Heap Safety Prop-

erties

In this section, we introduce heap safety properties in general, and a specific heap safety property that

allows us to identify source locations at which heap-allocated objects may be safely freed.

Informally, a heap safety property may be specified via a heap safety automaton (HSA), which is a

deterministic finite state automaton that defines the valid sequences of events for a single object in the

program. An HSA defines a prefix-closed language, i.e., every prefix of a valid sequence of events is

also valid. This is formally defined by the following definition.

Definition 7.1.1 (Heap Safety Automaton (HSA))A heap safety automaton

A = 〈Σ, Q, δ, init, F 〉 is a deterministic finite state automaton, whereΣ is the automaton alphabet

which consists of observable events,Q is the set of automaton states,δ : Q×Σ→ Q is the deterministic

transition function mapping a state and an event to a single successor state,init ∈ Q is theinitial state,

err∈ Q is a distinguishedviolation state(the sink state), for which for alla ∈ Σ, δ(err, a) = err, and

F = Q \ {err} is the set of accepting states.

In our framework, an observable event is derived from the program state and the current statement.

We assume the observable events are part of the specification. We associate an HSA state with every

object in the program, and verify that on all program execution paths, all objects are in an accepting

state. The HSA is used to define an instrumented semantics, which maintains the state of the automaton

for each object. The automaton state isindependentlymaintained for every program object. However,

the same automaton is used for all program objects.

When an objecto is allocated, it is assigned the initial automaton state. The state of an objecto is

then updated by automaton transitions corresponding to events associated witho, triggered by program

statements. For example, an objecto in automaton stateq is updated by automaton transitionα to have

a new automaton stateδ(q, α), if o is associated with the observable eventα occurring in the current

program statement.

The states in the automaton capture history information on memory locations. Transitions in the

automaton capture the changes in the history information when a statement corresponding to the event

is executed. This can be formalized using trace semantics. To make the material more accessible, we

use automata directly and define self-explanatory events.

Free Property

We now formulate the free property, which allows us to issue a free statement to reclaim objects un-

needed further in the run. In the sequel, we make a simplifying assumption and focus on verification of



7.1. COMPILE-TIME MEMORY MANAGEMENT 149

initial // 0ONMLHIJK {use, ref10,y} //

{¬use, ref10,y}

44

BCED
{use,¬ref10,y}

GF��
1ONMLHIJK BCED

{¬use, ref10,y}

GF��
{use, ref10,y} //

{use,¬ref10,y}

44 errONMLHIJK BCED
Σ

GF��

Figure 7.2: A heap safety automatonAfree
10,y for freey at line10.

the property for a single program point. In Section7.1.5we discuss a technique for efficient verification

for a set of program points.

In order to formulate the free property we first consider the notions of a program state and a program

trace. Aprogram stateσi = 〈storei,pti〉 represents the global state of the program, which consists of

the store (storei) and the current program point (pti). A traceπ = σ1, σ2, . . . is a (possibly infinite)

sequence of program statesσi. A trace reflects a program execution.

In order to define thefreeproperty, we also define the notion ofdynamic location liveness.

Definition 7.1.2 (Dynamic Location Liveness)A memory location l is dynamically live in a pro-

gram stateσi along a traceπ if (i) l is used inσj , for somej ≥ i, and (ii) l is not assigned in all

σi, . . . , σj−1.

Intuitively, an object can be collected as soon as its references are no longer used. This observation

leads to the following intuitive definition of the free property.

Definition 7.1.3 (Free Property〈pt, x〉) The property free 〈pt, x〉 holds if there exists no traceπ with

a program stateσi = 〈storei, pt〉 such that there exists a reference to the object referenced byx in σi+1,

which is dynamically live inσi+1 in π.

The free property allows us to free an object that is not needed further in the run. In particular,

when a free property〈pt, x〉 holds for a program pointpt and a reference variablex , it guarantees that

it is safeto issue afree(x) statement immediately afterpt. That is, it guarantees that adding such

free(x) statement preserves the semantics of the original program (for a more formal treatment of

semantic preserving transformations see [96]). Interestingly, such an object can still be reachable from

a program variable through a heap path. For simplicity, we assume that afree(x) statement does

nothing (and in particular does not abort) whenx references the specialnull value.

Finally, for expository purposes, we only present the free property for an object referenced by a

program variable. However, this free property can easily handle the free for an object referenced through

an arbitrary reference expressionexp , by introducing a new program variablez , assigned withexp just

afterpt, and verifying thatfree(z) may be issued just after the statementz = exp .
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Free Property for the Running Example

Consider the example program of Fig.7.1. We would like to verify that afree y statement can be

added immediately after line10, i.e., a list element can be freed as soon as it has been traversed in the

loop.

The HSAAfree
10,y shown in Fig.7.2represents the free property〈10, y〉. All states buterr are accept-

ing, and we therefore do not mark accepting states in the figure. The state labelederr is the automaton’s

violation state.

An arbitrary free property is formulated as a heap safety property using an HSA similar to the one

shown in Fig.7.2where the program point and program variable are set accordingly. In particular, for a

free property〈pt, x〉, the corresponding HSAAfree
pt,x may be obtained from the automaton in Fig.7.2by

replacing10 with pt, and by replacingy with x.

The HSA could be automatically derived from an ETL specification such as Property7.1. For-

mulating this property as a quantifier free formula (where free variables are interpreted as implicitly

universally quantified), and using its negation with the rewrite rules of Definition5.2.12yields an au-

tomaton that is equivalent to the automaton of Fig.7.2.

The alphabet of the automaton consists of sets of observable object attributes. For the purpose of

verifying the free property, we maintain the following object attributes in the instrumented semantics

(see Section7.1.3) for an objecto: (i) useattribute, which holds foro if the r-value of reference expres-

sione (of the formx or of the formx.f ) is used in the current statement execution, and the r-value ofe

is o, and (ii) ref10,y attribute, which holds foro if the program execution is immediately after execution

of the statement at line10 andy referenceso after the execution of the statement at line10.

Based on the above object attributes we define the alphabet of the HSAAfree
10,y to be

Σ = {{use, ref10,y}, {use,¬ref10,y}, {¬use, ref10,y}}

For readability purposes, we show for a set of attributes (an alphabet symbol) the attributes that hold

for an object as well as the attributes that do not hold for an object1. For example, the alphabet symbol

{use,¬ref10,y} denotes that the attributeuseholds for an object (i.e., a reference to that object is used

in the current statement), while the attributeref10,y does not hold for that object (i.e., either the current

statement is not atpt, or this object is not referenced byy after the current statement is executed).

Finally, we useΣ in the self-loop emanating from theerr state (see Fig.7.2) as a shorthand expressing

the fact that for all alphabet symbols theerr state may only be transitioned to itself (i.e., when reaching

the violation state, the automaton state cannot be changed, since the property is violated).

The HSA is in an accepting state along an execution path if and only ifo can be freed in the program

after line10. Thus, when on all execution paths, for all program objectso, only accepting states are

1An equivalent way of writing the alphabet would beΣ = {{use, ref10,y}, {use}, {ref10,y}}, where only attributes that
hold for an object are shown.
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associated witho, we conclude thatfree(y) can be added immediately after line10.

First, when an object is allocated, it is assigned the initial state ofAfree
10,y (state0). Then, a use of a

reference to an objecto (theuseattribute holds foro) when the program execution is not immediately

after line10 (the ref10,y attribute does not hold foro) does not change the state ofAfree
10,y for o (the

self-loop on state0 labeled with{use,¬ref10,y} is taken). When the program is immediately after line

10 andy references an objecto (the ref10,y attribute holds foro), o’s automaton state is set to1 (if

theuseattribute holds foro the labeled edge{use, ref10,y} is taken, otherwise if theuseattribute does

not hold foro then the labeled edge{¬use, ref10,y} is taken). If a reference too is used further, (i.e.,

in the subsequent program configurations along the execution path a reference too is used), ando’s

automaton state is1 the automaton state foro reaches the violation state of the automaton (either via

the{use, ref10,y} edge or via the{use,¬ref10,y} edge). In that case the property is violated, and it is not

possible to add afree y statement immediately after line10 since it will free an object that is needed

later in the program. However, in the program of Fig.7.1, references to objects referenced byy at line

10 are not used further, hence the property is not violated, and it is safe to add afree y statement at

this program point. Indeed, in Section7.1.4we show how thefree〈10, y〉 property is verified.

The above definition of the free property directly and naturally corresponds to the ETL property

0 ∀v.at[pt] ∧ x(v)→©0 ¬use(v) (7.1)

In the formulation of this property, we use the combination of the predicateat[pt] (that holds when

program execution is at the program pointpt) and the next temporal operator to achieve the same ef-

fect of using theafter[pt] predicate, as this exposes the temporal relationships in a manner closer to

Definition7.1.3.

7.1.3 Instrumented Concrete Semantics

We define an instrumented concrete semantics that maintains an automaton state for each heap-allocated

object. As in previous chapters, we use first-order logical structures to represent a global state of the pro-

gram. In this section, we augment this representation to incorporate information about the automaton

state of every heap-allocated object. We then describe an operational semantics manipulating instru-

mented configurations.

We use the predicates of Table7.1 to record information used by the properties discussed in this

section. The nullary predicateafter[pt]() records the program location in a configuration and holds in

configurations in which the program is immediately after linept. The unary predicatex(o) records

the value of a reference variablex and holds for the individual referenced byx . The binary predicate

f(o1, o2) records the value of a field reference, and holds when the fieldf of o1 points to the objecto2.

The predicatesuse(o) andrefpt,x maintain the object attributes needed for triggering events in the

HSAAfree
pt,x . We describe these object attributes more completely in Section7.1.3and Section7.1.3
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Predicates Intended Meaning

after[pt]() program execution is immediately after program pointpt

x(o) program variablex references the objecto

f(o1, o2) field f of the objecto1 points to the objecto2

use(o) a reference too is used in the current program statement

refpt,x(o) o is referenced byx and the execution is immediately afterpt

s[q](o) the current state ofo’s automaton isq

Table 7.1: Predicates for partial Java semantics.
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Figure 7.3: Concrete program configurations (a) before — and (b) immediately after execution oft =

y.n at line10.

Predicates of the forms[q](o) (referred to asautomaton state predicates) maintain temporal in-

formation by maintaining the automaton state for each object. Such predicates (corresponding to the

formula-predicatesof Section5.4.1) record history information that is used to refine the abstraction.

The abstraction is refined further by predicates that record spatial information, such asreachabilityand

sharing(referred to asinstrumentation predicatesin [91]).

As in previous chapters, we depict program configurations as directed graphs. Each individual of

the universe is displayed as a node. A unary predicate of the formp(o) is shown as an edge from the

predicate symbol to a node in which it holds. The name of a node is written inside the node using

an italic face. Node names are only used for ease of presentation and do not affect the analysis. A

binary predicatep(u1, u2) which evaluates to 1 is drawn as directed edge fromu1 to u2 labeled with the

predicate symbol. Finally, a nullary predicatep() is drawn inside a box.

Example 7.1.4 The configuration shown in Fig.7.3(a) corresponds to a global state of the program

in which execution is immediately after line9. In this configuration, a singly-linked list of7 elements
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has been traversed up to the4-th element (labeledu4) by the reference variabley, and the reference

variablet still points to the same element asy. This is shown in the configuration by the fact that both

predicatesy(o) and t(o) hold for the individualu4. Directed edges labeled byn correspond to values

of then field. The nullary predicate after[9]() shown in a box in the upper-right corner of the figure

records the fact that the program is immediately after line9. The predicate use(o) holds for an objecto

if a reference too is used in the current statement. For example, a reference tou4 is used (due the use of

y in the statement at line9) thus we see an edge connecting use andu4. The predicate ref10,y does not

hold for any objects in this configuration, since the execution is not immediately after line10. Finally,

the predicatess[0](o) ands[1](o) record which objects are in state0 of the automaton and which are

in state1. For example, the individualu3 is in automaton state1 and the individualu4 is in automaton

state0.

Operational Semantics

Program statements are modeled by generating the logical structure representing the program state after

execution of the statement. First order logical formulae can be used to formally define the effect of

every statement (see [91]). In particular, first-order logical formulae are used to model the change of the

automaton state of every affected individual.

In general, the operational semantics associates a program statement with a set of HSA events that

update the automaton state of program objects. The translation from the set of HSA events to first-order

logical formulae reflecting the change of the automaton state of every affected individual is automatic.

We now show how program statements are associated withAfree
pt,x events. For expository purposes, and

without loss of generality, we assume the program is normalized to a 3-address form. In particular, a

program statement may manipulate reference expressions of the formx or x.f .

Object Allocation:

For a program statementx = new C() , a new objectonew is allocated, which is assigned the

initial state of the HSA, i.e., we set the predicates[init](onew) to 1.

Example 7.1.5 Consider the HSAAfree
10,y of the example in Section7.1.2. For this HSA we define a set

of predicates{s[0](o), s[1](o), s[err](o)} to record the state of the HSA individually for every heap-

allocated object. Initially, when an objecto is allocated at line3 of the example program, we sets[0](o)

to 1, and other state predicates ofo to 0.

Maintaining the useattribute

Theuseattribute reflects information for an object depending on the current state of the program. Thus,

conceptually, this means that before executing a statement theuseattribute is set tofalsefor all program
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statement use-attribute is set totrue for

an object referenced by

x = y y

x = y.f y, y.f

x.f = null x

x.f = y x, y

x binop y x, y

Table 7.2: Use-attributes set by program statements.

objects, and then theuseproperty is set totrue for some of the objects depending on the executed

program statement, as shown in Table7.2.

In general, a use ofx in a program statement updates theuse(o) attribute to1 for the object refer-

enced byx . In addition, a use of the fieldf of the object referenced byx in a program statement updates

use(o) attribute to1 for object referenced byx.f . For example, as shown in Table7.2, the statementx

= y.f setsuse(o) to 1 for the objects referenced byy andy.f .

Maintaining the refpt,x attribute

As in the case of theuseattribute, therefpt,x attribute reflects information for an object depending on

the current state of the program. Thus, conceptually, this means that before executing a statement the

refpt,x attribute is set tofalsefor all program objects, and then this property is set totrue for some of

the objects depending on the executed program statement. In particular, we set therefpt,x attribute to

true for the object referenced byx when the execution is immediately afterpt (i.e., when the currently

executed statement is at program pointpt). For example, for theref10,y attribute,ref10,y(o) is set to1

for the object referenced byy, when the execution is immediately after line10.

Maintaining s[q] predicates

We can now determine the transition taken in the automaton for an objecto changing its associated

automaton state fromqi to qj . The idea is that an edge emanating fromqi is taken if the label on that

edge matches the values ofo’s use, refpt,x attributes. For example, in our running example, if an objecto

is associated with state0, and bothuse, ref10,y attributes hold foro, then the edge labeled{use, ref10,y}
connecting state0 to state1 (see Fig.7.2) is taken, updatings[0](o) to 0, ands[1](o) to 1. In general, a

transition from stateqi to stateqj for an objecto is reflected by settings[qi](o) to 0, and settings[qj ](o)

to 1.

Example 7.1.6 Fig. 7.3 shows the effect of thet = y.n statement at line10, where the statement is
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x
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Figure 7.4: An abstract program configuration representing the concrete configuration of Fig.7.3(a).

applied to the configuration labeled by (a). First, this statement updates the predicatet(o) to reflect the

assignment by setting it to1 for u5, and setting it to0 for u4. In addition, it updates the program point

by setting after[10]() to 1 and after[9]() to 0. Then, use(o) is set to1 for bothu4, u5. This is due to the

use ofy andy.f in this statement. Also, ref10,y(o) is set to1 for u4, since the execution is after line10

andu4 is referenced byy at that time.

We can now update the automaton states associated with program objects. Foru4 the current

associated automaton state is0. The attributes use, ref10,y hold for u4; thus, the{use, ref10,y} edge

connecting automaton state0 to automaton state1 is taken, updatings[0](u4) to 0, ands[1](u4) to 1. In

addition, foru5, the attribute use holds, and the attribute ref10,y does not hold, thus the{use,¬ref10,y}
edge connecting state0 to itself is taken, leavings[0](u5) unchanged with the value1.

7.1.4 An Abstract Semantics

In this section, we present a conservative abstract semantics [25] abstracting the concrete semantics of

Section7.1.3.

As in earlier sections, we conservatively represent multiple concrete program configurations using

a single logical structure with an extra truth-value1/2 that denotes values that could be1 or could be0.

Example 7.1.7 The abstract configuration shown in Fig.7.4 represents the concrete configuration of

Fig. 7.3(a). The summary node labelled byu23 represents the linked-list itemsu2 andu3, both having

the same values for their unary predicates. Similarly, the summary nodeu567 represents the nodesu5,

u6, andu7.

Note that this abstract configuration represents many configurations. For example, it represents any

configuration in which program execution is immediately after line10 and a linked-list with at least4

items has been traversed up to some item after the third item.

Note that since automaton states are represented using unary predicates, the abstraction is refined

by the automaton state of each object. This provides a simple property-guided abstraction since in-

dividuals at different automaton states are not summarized together. Indeed, adding unary predicates

to the abstraction increases the worst-case cost of the analysis. However, as noted in [91] in practice
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Figure 7.5: Concretization, predicate-update including automaton transition updates, and abstraction for

the statementt = y.n at li ne10.

this abstraction refinement often decreases significantly the cost of the analysis. Finally, our analysis is

relational, allowing multiple3-valued logical structures at a single program point, reflecting different

behaviors.

Implementing an abstract semantics directly manipulating abstract configurations is non-trivial since

one has to consider all possible relations on the (possibly infinite) set of represented concrete configu-

rations. The following example conceptually shows how an action is applied directly to abstract config-

urations.

Example 7.1.8 Fig. 7.5 shows the stages of an abstract action: first, concretization is applied to the

abstract configuration resulting in an infinite set of concrete configuration represented by it. The pro-

gram statement update is then applied to each of these concrete configurations. The program statement

update also includes the update of the use and refpt,x, attributes, and the application of automaton tran-

sition updates described in Section7.1.3. That is, theuseattribute is set to1 for the objects referenced
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by y andy.n , and the ref10,y attribute set to1 for the object referenced byy . Then,s[1] is set to1 for

the object referenced byy , ands[0] is set to0 for the object referenced byy . Finally, after all transi-

tion updates have been applied, the resulting concrete configurations are abstracted resulting in a finite

representation.

Our prototype implementation described in [95] operates directly on abstract configurations using

abstract transformers. The implemented actions are more conservative than the ones obtained by the

best transformers. Interestingly, since temporal information is encoded as part of the concrete config-

uration via automaton state predicates, the soundness of the abstract transformers is still guaranteed

by theEmbedding Theoremof [91]. Our experience shows that the abstract transformers used in the

implementation are still precise enough to allow verification of our heap safety properties.

When the analysis terminates, we verify that in all abstract configurations, all individuals are asso-

ciated with an accepting automaton state, i.e., in all abstract configurations, for every individualo, the

predicates[err](o) evaluates to0. The soundness of our abstraction guarantees that this implies that

in all concrete configurations, all individuals are associated with an accepting automaton state, and we

conclude that the property holds.

7.1.5 Extensions

In this section, we extend the applicability of our framework by: (i) formulating an additional compile-

time memory management property — the assign-null property; and (ii) extending the framework to

simultaneously verify multiple properties.

Assign-Null Analysis

The assign-null problem determines source locations at which statements assigning null to heap ref-

erences can be safely added. Such null assignments lead to objects being unreachable earlier in the

program, and thus may help a runtime garbage collector collect objects earlier, thus saving space. As

in Section7.1.2, we show how to verify the assign-null property for a single program point and discuss

efficient verification for a set of program points in the next section.

Definition 7.1.9 (Assign-Null Property〈pt, x, f〉) The property assign-null 〈pt, x, f〉 holds if there

exists no traceπ that includes a program stateσi = 〈storei,pt〉 such that the location denoted byx.f in

σi+1 is dynamically live inσi+1 in π.

The assign-null property allows us to assign null to a dead heap reference. In particular, when

an assign-null property〈pt, x, f〉 holds for a program pointpt, a reference variablex and a reference

field f , it guarantees that it issafeto issue ax.f = null statement immediately afterpt. That is, it

guarantees that adding suchx.f = null statement preserves the semantics of the original program
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Figure 7.6: A heap safety automatonAan
10,y,n for assign null toy.n at10.

[1] Node root = CreateTree();
[2] processTree(root.right);

... // no further uses of root

Figure 7.7: A code snippet demonstrating the importance of assign-null analysis

(for a more formal treatment of semantic preserving transformations see [96]). As in the free property

case, our assign-null property can also handle arbitrary reference expressions (e.g., of the formexp.f ),

by introducing a new program variablez , assigned withexp , and verifying thez.f may be issued just

after the statementz = exp .

The above definition of the assign-null property directly and naturally corresponds to the ETL prop-

erty

0 ∀v.at[pt] ∧ x(v)→©¬usen(v)Wdefn(v) (7.2)

In the formulation of this property, we use the combination of the predicateat[pt] and the next tem-

poral operator to achieve the same effect of using theafter[pt] predicate, as this exposes the temporal

relationships in a manner closer to Definition7.1.9.

The potential for space savings beyond GC is demonstrated using the code snippet in Fig.7.7. A tree

of objects is allocated, but only the right side of the tree is processed. We assume that the typeNode

contains two instance fields:left and right . After line 1 all tree objects are reachable, thus GC

cannot reclaim the entire left subtree of the root. However, it is easy to see that the assign-null property

〈1, root, left〉 holds, thus it is safe to insert aroot.left = null statement after line1 allowing

GC to collect the left side of the tree before the processing at line2.

Simultaneous Verification of Multiple Properties

So far we showed how to verify the free and assign-null properties for a single program point. Clearly,

in practice one wishes to verify these properties for a set of program points without repeating the ver-

ification procedure for each program point. Our framework supports simultaneous verification of mul-

tiple properties, and in particular verification of properties for multiple program points. Assuming

HSA1, . . . ,HSAk describek verification properties, thenk automaton statess1, . . . , sk are maintained
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public class SimultaneousVerification {
public static void main(String args[]) {

Object x1, . . ., xk;

Object y1, . . ., yk;

Random r = new Random();

int count = r.nextInt();

x1 = new Object();

pt1 y1 = x1;

x2 = new Object();

pt2 y2 = x2;

...

xk = new Object();

ptk yk = xk;

if (count > 1) {
y1 = x1;

}
if (count > 10) {

y1 = x2;

}
...

if (count > 73) {
y1 = xk;

}
}

}

Figure 7.8: A program demonstrating exponential blowup due to simultaneous verification of the free

properties{〈pti, xi〉|1 ≤ i ≤ k}.

for every program object, wheresi maintains an automaton state for HSAi. Technically, as described

in Section7.1.3, a statesi is represented by automaton state predicatessi[q], whereq ranges over the

states of HSAi. The events associated with the automata HSA1, . . . ,HSAk at a program point are trig-

gered simultaneously, updating the corresponding automaton state predicates of individuals.

The worst-case cost of simultaneous verification of properties is higher than the worst-case cost of

verifying the same properties one by one (see Chapter6). For example, an attempt to simultaneously

verify the free properties{〈pti, xi〉|1 ≤ i ≤ k} for the program of Fig.7.8 exhibits an exponential

blowup due to recording of the correlations between the various property (typestate) automata. For this

example program, simultaneous verification fork = 10 takes125 seconds and consumes58.81MB of

memory, whereas verification of a single property requires only5.9 seconds and2.72MB.

Nevertheless, verifying properties one by one ignores the potential of computing overlapping heap

information just once, whereas in simultaneous verification of properties this overlap is taken into con-

sideration. Thus, we believe that in practice simultaneous verification of a small number of properties
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may sometimes achieve a lower cost than verifying the properties one by one. In fact, our initial find-

ings in [95] show that verifying two properties one by one, takes close to double the time it takes to

verify these properties simultaneously. This is because for a small number of properties, and a pro-

gram performing intricate heap manipulations, verification cost is dominated by computation of heap

information.
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7.2 Automatically Verifying Concurrent Queue Algorithms

In this section, we show how the TVLA/3VMC framework can be applied to automatically verify partial

correctness of non-trivial concurrent queue algorithms.

7.2.1 Concurrent Queue Algorithms

Concurrent FIFO queues are widely used in concurrent systems. Queues are used in scheduling mech-

anisms, and as the basis of many concurrent algorithms. Concurrent manipulation of a shared queue

requires synchronization to guarantee consistent results. An ill-synchronized concurrent queue may be

subject to read-write conflicts, write-write conflicts, or both.

A naive concurrent queue implementation uses a single shared lock to prevent concurrent manip-

ulations of queue contents. Naturally, this limits the level of system concurrency. Many algorithms

were suggested to increase concurrency while maintaining the correctness of queue manipulations

[71, 100, 82, 111, 99]. The algorithms in [71, 100, 82, 99] are given without a formal proof of cor-

rectness, and [111] provides a manual formal proof.

We focus on the non-blocking queue and two-lock queue algorithms presented in [71]. A Java-like

code for the queue implementations is given in Fig.7.9.

To emulate the intention of [71], our programming model diverges from Java by assuming a free

operation, and supporting several operations defined below.

In this section, we present the concurrent queue algorithms and the correctness properties we will

verify for these algorithms.

Non-Blocking Queue

Java-like pseudo-code for the non-blocking queue algorithm is shown in Fig.7.9(a). The queue uses an

underlying singly-linked list which is pointed-to by two reference variables — Head and Tail, pointing

to the head and tail of the queue correspondingly. The list always contains a dummy item at its head to

avoid degenerate cases.

The algorithm is based on iterated attempts of a thread to perform a queue operation without being

interrupted by other threads. A thread operates on shared-variables only using the compare-and-swap

(CAS) primitive which allows it to atomically observe possible updates by other threads and apply its

own update when the value of the shared variable has not been updated by other threads.

The CAS primitive takes 3 arguments — an address, an expected value, and a new value, it then

atomically compares the address value to the expected value, and if the values are equal, it updates the

address to contain the new value. If the address value is not equal to the expected value, no update is

performed.
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class NonBlockingQueue {
private QueueItem Head;

private QueueItem Tail;

...

public NonBlockingQueue() {
node = new QueueItem();

node.next.ref = NULL;

this.Head = this.Tail = node;

}
public void enqueue(Object value) {
e1 node = new QueueItem(value);

e2 node.value = value;

e3 node.next.ref = NULL;

e4 while(true) { //Keep trying until done

e5 tail = this.Tail;

e6 next = tail.ref.next;

e7 if (tail == this.Tail) {
e8 if (next.ref == NULL) {
e9 if CAS(tail.ref.next, next,

<node, next.count+1>) {
e10 break // enqueue done

e11 }
e12 } else {
e13 CAS(this.Tail, tail,

<next.ref, tail.count+1>);

e14 }
e15 }
e16 }
e17 CAS(this.Tail, tail, <node, tail.count+1>);

e18 }
public Object dequeue() {

Object result = null;

d1 while(true) {
d2 head = this.Head;

d3 tail = this.Tail;

d4 next = head.next;

d5 if (head == this.Head) {
d6 if (head.ref == tail.ref) {
d7 if (next.ref == NULL) {//is empty?

d8 return result;

d9 }
d10 CAS(this.Tail, tail,

<next.ref, tail.count+1>);

d11 } else { //No need to deal with Tail

d12 result = next.ref.value;

d13 if CAS(this.Head, head,

<next.ref, head.count+1>) {
d14 break; // dequeue done

d15 }
d16 }
d17 }
d18 }
d19 free (head.ref);

d20 return result;

d21 }

(a)

// TwoLockQueue.java

class TwoLockQueue {
private QueueItem head;

private QueueItem tail;

private Object headLock;

private Object tailLock;

...

public TwoLockQueue() {
node = new QueueItem();

node.next = null;

this.head = this.hail = node;

}

public void enqueue(Object value) {
lp1 QueueItem x i =

new QueueItem(value);

lp2 synchronize(tailLock) {
lp3 tail.next = x i;

lp4 tail = x i;

lp5 }
lp6 }

public Object dequeue() {
Object x d;

lt1 synchronized(headLock) {
lt2 QueueItem node = this.head;

lt3 QueueItem new head =

this.head.next;

lt4 if (new head != null) {
lt5 x d = new head.value;

lt6 new head = first;

lt7 new head.value = null;

lt8 free (node);

}
lt9 }
lt10 return x d;

lt11 }
}

(b)

// QueueItem.java

class QueueItem {
public QueueItem next;

public Object value;

...

}

(c)

Figure 7.9: Java-like pseudo-code for (a) non-blocking queue, (b) two-lock queue, (c) queue-item.
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CAS-based algorithms may suffer from the “ABA” problem [71] in which a sequence of read-

modify-CAS results with a swap when it should not. This happens when a threadt1 reads a value A of a

shared variable, computes a new value and preforms a CAS. Meanwhile, another threadt2 changes the

value of the shared variable from A to B and back to A. In order to avoid this problem, each reference

variable is augmented with a modification counter and shared references are only updated through the

CAS primitive which increments the value of the modification counter. This could have been modeled

in Java by adding a wrapper class which contains a reference and an unsigned integer counter. To sim-

plify the exposition of our figures, we have added a primitive type that consists of a reference-value

ref and an integer valuecount for the modification counter. All reference operations that use only

the reference name apply to both components, for example, the assignment at labele5 assigns the values

of this.Tail.ref and this.Tail.count to tail.ref and tail.count correspondingly.

When we specifically update a single component of the reference variable, we state that explicitly as at

labeld6 which performs a comparison of theref component of two reference variables.

Two-Lock Queue

Fig. 7.9(b) shows a Java-like code for the two-lock queue algorithm. This algorithm also uses an under-

lying linked-list, and uses a dummy item at the list head to simplify special cases. The algorithm uses a

separate head lock and tail lock to separate synchronization of enqueueing and dequeueing threads.

Correctness of Algorithms

The correctness of the queue algorithms in [71] is established by an informal proof. Safety of the

algorithm is shown by induction, proving that the following properties are satisfied by the algorithm:

P1 The linked list is always connected.

P2 Nodes are only inserted after the last node of the linked list.

P3 Nodes are only deleted from the beginning of the linked list.

P4 Headalways points to the first node in the linked list.

P5 Tail always points to a node in the linked list.

In the following sections, we formally state these claims, and automatically verify them using

TVLA/3VMC.

7.2.2 Vanilla Verification Attempt

In this section, we describe the basic steps required to verify the concurrent queue algorithms using

TVLA/3VMC.
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Figure 7.10: A concrete configurationC\
7.10 with two enqueueing and one dequeueing threads.

Representing Program Configurations using First-Order Logical Structures

We now show how to apply our technique for verifying the concurrent queue algorithms.

The non-blocking queue algorithm uses unsigned integer values as reference time-stamps. As de-

scribed in Section2.3, we represent integer values using individuals of type unsigned integer, the unary

predicatezero(v), the binary predicatesucc(v1, v2), and the binary predicateiv[fld](v1, v2). This al-

lows us to naturally and quite precisely model an integer being incremented and decremented. It is also

possible to support arbitrary arithmetic operations on integers, however, the abstraction presented in

Section7.2.3is not precise enough to provide useful results when the verified property depends on the

result of such operations.

To ease presentation, we depict nodes that represent unsigned integers as circles with straight mar-

gins.

Example 7.2.1 The configurationC\
7.10 shown in Fig.7.10corresponds to a global state of the non-

blocking queue program with3 threads: two enqueueing threads and a single dequeueing thread. The

two enqueueing threads are at labele2 and have just allocated new nodes to be enqueued. Each en-

queueing thread refers to its node by itsnode field.

All threads in the example use a single shared queue containing 4 items (including the dummy item).

The integer values of the fieldsHead andTail in this configuration are both0.

Safety

The first step in verifying the properties of Section7.2.1in TVLA/3VMC is to formulate them inFOTC

using the predicates defined in Table2.1. In Table7.3 these formulae are given for the non-blocking

queue algorithm. The formulation of these properties for the two-lock queue only differs in label names.

For each property defined informally in Section7.2.1, we provide a corresponding formula inFOTC .

In the table, we use the shorthandnbq to abbreviateNonBlockingQueue .

Formula P1 uses transitive reachability fromTail andHead to require that each object that is

reachable from the queue tail (including the tail node itself) is also reachable from the queue head —

thus the queue is always connected. Note that requirement P5 guarantees that a tail element always



7.2. AUTOMATICALLY VERIFYING CONCURRENTQUEUE ALGORITHMS 165

Property Property Formula

P1 tail reachable ∀q : nbq, vt.rv[Tail](q, vt)

from head =⇒ ∃vh.rv[Head](q, vh) ∧ rv[next]∗(vh, vt)

P2 insert after ∀q : nbq, ti : thread, vi, vt.at[e18](ti) ∧ rv[node](ti, vi) ∧ rv[tail](ti, vt)

last ∧rv[this](ti, q)→ rv[next](vt, vi) ∧ rv[Tail](q, vi)

P3 delete first ∀q : nbq, td : thread, vd, vh.at[d19](td) ∧ rv[head](td, vd)

∧rv[this](td, q) ∧ rv[Head](q, vh) =⇒ rv[next](vd, vh)

P4 head first ¬∃q : nbq, v, u.rv[Head](q, v) ∧ rv[next](u, v)
P5 tail exists ∀q : nbq.∃v.rv[Tail](q, v)

Table 7.3: Safety properties for non-blocking queue algorithm.

Figure 7.11: An abstract configurationC7.10 representing the concrete configurationC\
7.10 of Fig. 7.10.

exists. Formula P2 uses the (program) location predicateat[e18](t) in order to check the requirement

only at the end of an insertion operation, when it is meaningful. In this formula, we treat the local

variablenode as a field of the thread object. Formula P3 similarly uses the location predicateat[d19](t)

to bind the requirement with the end of a deletion operation. Formula P4 simply requires that there is

no queue elementu such that it precedes the head of the queue. Finally, formula P5 requires that a tail

element exists.

Abstraction

Example 7.2.2 The abstract configurationC7.10 shown in Fig.7.11is obtained by applying canonical

abstraction to the concrete configurationC\
7.10 of Fig. 7.10.

The summary thread-node represents the two enqueueing threads of the concrete configuration

C\
7.10, the summary unsigned-integer node (double-line circle with straight margins) summarizes all

unsigned integers but zero, the third summary node summarizes all queue items, and the queue object

itself.

Note that this abstract configuration represents an infinite number of configurations. For example,

it represents any configuration in which an arbitrary number of enqueuing threads have just allocated

new nodes to be enqueued, and are sharing the same queue with an arbitrary number of dequeueing
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Figure 7.12: A concrete configurationC\
7.10,1 that is embedded inC7.10 and violates queue connected-

ness (property P1).

threads that are at their initial labels.

Unfortunately, this abstract configuration also represents the concrete configurationC\
7.10,1 which

violates the connectedness property (P1), meaning that we fail to verify that P1 holds. Indeed, since

each subformula of P1’s body evaluates to1/2 over the abstract configurationC7.10, using Kleene

evaluation of boolean operators yields the value1/2 for P1. In the next section, we will see a way to

remedy that.

7.2.3 Refining the Vanilla Solution

In order to verify the desired properties, in this section we refine the abstraction to record essential

information. A natural way to do that would be to record which property-formulae hold using nullary

predicates. This is a useful technique, also known as predicate abstraction [48]. TVLA/3VMC also

allows to use unary predicates in order to observe whether subformulae hold for a given individual.

This allows TVLA/3VMC to provide useful results without changing the set of predicates for each

program. We believe that the same distinctions can be used for many programs. Furthermore, these

distinctions correspond to fundamental properties of data-structures (e.g., sharing, reachability). This

section confirms this by showing that the standard set of distinctions suffices for verifying all the desired

properties for the concurrent queue algorithms.

Technically, refining the abstraction is achieved by introducing the unary predicates of Table7.4.

The additional information recorded refines the abstraction and reduces the set of concrete configura-

tions that are represented by an abstract configuration.

In principle, some instrumentation predicates could be derived automatically (e.g., [41]), however,

for this case study we just use the standard TVLA/3VMC instrumentation predicates.

Predicatesrt[fld, n](t, o) (we usen as a shorthand fornext in the predicate name) allow us to

track reachability information of items inside the queue. For example, the instrumentation predicate

rt[Head, n](v) may be used to track reachability of items from the head of the queue using a path of
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C\
7.13

C7.13

Figure 7.13: Concrete configurationC\
7.13 using instrumentation predicates, and its canonical abstrac-

tionC7.13.

Predicate Intended Meaning Defining Formula

r by[fld](l) l is referenced by the fieldfld ∃o.rv[fld](o, l)
of some object

i by[fld](n) n is the integer value offld of some object ∃o.iv[fld](o, l)
is[fld](o) o is shared byfld of two ∃v1, v2.¬eq(v1, v2) ∧ rv[fld](v1, o)

different objects ∧rv[fld](v2, o)
exists[fld](o) there exists an object referenced ∃v1.rv[fld](o, v1)

by fld of o

is acquired(l) l is acquired by some thread ∃t.held by(l, t)

rt[fld, n](o) o is reachable from object referenced ∃t, ot.rv[fld](t, ot)

by fieldfld using path of next fields ∧ rv[next]∗(ot, o)

Table 7.4: Instrumentation predicates used in our example program.
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nextreferences. These predicates are an adaptation for multithreaded programs of the reachability in-

strumentation predicates presented in [91]. Similarly, predicatesis[fld](o) are an adaptation of sharing

predicates of [91]. The predicatesis acquired(l) andr by[fld](l) were discussed in Section2.4.3, and

the predicatesexists[fld](o) used there but not explicitly mentioned. Since these predicates record

widely-usedfundamental propertiesof data-structures and thread/lock relationships, they are part of the

standard predicates used in TVLA/3VMC.

Subformulae of the safety properties are replaced with the corresponding instrumentation predicate

to improve precision.

Example 7.2.3 Fig. 7.13shows the concrete configurationC\
7.13 which is an instrumented version of

C\
7.10, and its canonical abstractionC7.13. The additional information recorded by the instrumentation

predicatesrt[Head, n](v) andrt[Tail, n](v) allows us to observe that queue connectedness (property

P1) is maintained in the abstract configurationC7.13 since P1 evaluates to1. Moreover, this implies

that concrete configurations of the form ofC\
7.10,1 are no longer represented.

7.2.4 Experimental Results

Our prototype implementation operates directly on abstract configurations usingabstract transformers,

thereby obtaining actions which are more conservative than the ones obtained by the best transformers.

Our experience shows that the abstract transformers used in the implementation are still precise enough

to allow verification of our safety properties.

Update formulae for the instrumentation predicates used in this case study were supplied manually

due to technical limitations of automatic derivation using finite differencing [86].

Table7.5presents the analysis results for various variations of the concurrent queue algorithms.

For the non-blocking queue, we have also tested a version in which the conditional in labele8 is

flipped, i.e., it checks for the next field being non-equal to null. As another erroneous version, we have

used an uninitialized queue in which no dummy node was present. Both cases reported errors.

For the two-lock queue, we have also tested a version in which no synchronization is imposed

on producer threads inserting items into the queue. In this version, we show that it is possible for

requirement 1 to be violated, and the underlying linked-list to be broken.

Limitations: Since our tool does not apply any partial-order reductions and does not attempt to

decrease the level of interleaving, it is currently limited to small concurrent programs or to ones that

are well-synchronized. This is due to the worst-case complexity of our algorithm which is doubly

exponential in the number of labels.

A fundamental question in program analysis is how to predict the precision of a given analysis on

a given program. In principle, this is a hard question, we note that the abstraction in TVLA/3VMC

significantly loses information when arbitrary arithmetic operations on integer variables (which affect
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Program Configs Space Time Comments

(MB) (sec)

nbq enqueue 1833 14.2 727 unbounded number of enqueue-ing threads

nbq dequeue 1098 5.3 309 unbounded number of dequeue-ing threads

nonblockqerr1 36 0.1 11 err - negated condition at e8

nonblockquni 17 0.1 3 err - start with uninitialized queue

tlq enqueue 982 10 6162 unbounded number of enqueueing thrads

tlq dequeue 225 4.1 304 unbounded number of dequeuing threads

twolockqn 975 7.5 577 single producer and single consumer

twolockq err1 24 0.1 30 err - broken producer synchronization

Table 7.5: Analysis results for variations of the queue algorithms — number of configurations explored,

space requirements, and analysis time.

the safety of the algorithm) are performed.
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7.3 Solving the Apprentice Challenge

In this section, we describe how our framework is applied for solving a Java verification challenge

known as the Apprentice Challenge.

7.3.1 Problem Statement

The apprentice challenge was presented by Moore [73] as a challenge in verification of Java programs.

The challenge is to show that the value of thecounter variable of theContainer class in Fig.7.14

increases monotonically (under all possible schedules).

7.3.2 Solution

Our solution of the apprentice challenge does not assume anya priori bound on the number ofJob

threads or on the value of thecounter field. This should be contrasted with previous attempts to solve

the apprentice challenge using model-checking (i.e., the “finite Apprentice”).

In our solution, we use the predicates described earlier in Section2.3and Section7.2.3. The model

used here could be easily extended to handle the overflow of integer variables (by introducing a special

terminating node in the representation of the integers). For simplicity, we do not introduce any treatment

of such overflow and assume that integers may increase infinitely.

The initial configuration for the apprentice challenge is shown in Fig.7.15. In this configuration

there is a single thread node, corresponding to the main program thread. This thread resides at the initial

labelgl 1, and is ready to be scheduled. The other nodes in this configuration represent integer values:

one node represents the value zero, and the summary node summarizes the rest of the integer values.

Our system requires two technical modifications of theincr() method (shown in Fig.7.16):

(i) splitting the increment statement into two assignments, one assigningcounter + 1 to a tem-

porary variable, and another copying the value of the temporary variable intocounter (In principle,

this could be performed by a trivial front-end); (ii) instrumenting the method to record the previous

value of the counter, this again is a technical issue that could be avoided in principle. A conceptual

view of the instrumented method is shown in Fig.7.16. It is important to note thatprevcounter

is introduced as an additional predicate in the model and not as an additional program variable, i.e., it

cannot be modified by the program.

7.3.3 Results

We applied3VMC to verify that the original Apprentice program satisfies the goal property. Verification

produced1757 configurations and took approximately120 seconds and2.46 MB of memory.
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class Container {
public int counter;

}

class Job extends Thread {
Container objref;

public Job incr () {
synchronized(objref) {

objref.counter = objref.counter + 1;

}
return this;

}
public void setref(Container o) {

objref = o;

}
public void run() {

for (;;) {
incr();

}
}

}

class Apprentice {
public static void main(String[] args) {

Container container = new Container();

for (;;) {
Job job = new Job();

job.setref(container);

job.start();

}
}

}

Figure 7.14: Source of the Apprentice Challenge.

Figure 7.15: Initial configuration for the apprentice challenge.



172 CHAPTER 7. APPLICATIONS

public Job incr () {
synchronized(objref) {

//objref.prevcounter = objref.counter;

temp = objref.counter + 1;

objref.counter = temp;

}
return this;

}

Figure 7.16: Conceptual rewrite ofincr() method.

We have also applied3VMC to find errors in an erroneous version of the Apprentice program in

which no synchronization was used byJob threads while performing theincr() operation. In this

analysis, an error was detected after approximately720 seconds, processing6066 configurations taking

13.8 MB of memory. Note that since no synchronization was applied betweenJob threads, the number

of possible interleaving considered in this exploration is huge.

Unlike the ACL2 solution for the apprentice challenge, our approach is based on a conservative

abstraction of the concrete Java semantics. Generally, this means that we might produce alarms even

when a property does hold for the verified program. However, for the Apprentice challenge, we are able

to verify the goal property without any false alarms.
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Conclusions and Further Work

8.1 Conclusion

We have presented a parametric framework for specifying and verifying properties of concurrent and se-

quential heap-manipulating programs. Our framework generalizes existing model-checking techniques.

The framework allows verification of multithreaded programs manipulating heap-allocated objects, and

does not put a bound on the number of allocated objects (and threads).

The framework uses an integrated verification and pointer analysis, leading to results that are al-

ways more precise than those of the two-phased approach applied by other systems. In addition, our

framework also handles properties of correlated objects.

Our framework combines thread scheduling information and information about the shape of the

heap. This leads to error-detection algorithms that are more precise than existing techniques. Using this

approach, we were able to automatically verify non-trivial properties of heap-manipulating programs

that have not been automatically verified in the past.

We have also presented a technique for scaling verification to large(r) programs with a small number

of false alarms. This allows us automatic verification of programs and properties not automatically

verified earlier.

We have applied our framework to verify several interesting properties and programs, and in partic-

ular for applying compile-time GC and proving the correctness of concurrent queue algorithms.

8.2 Contrast with Closely Related Work

It is important to view our contributions in the context of closely related work. Fig.8.1shows a classi-

fication of our contributions (shown in bold typeface) and closely related work. Classification is shown

using a3-dimensional cube, as done in Chapter1, and using the same dimensions:

Heap Abstraction Describes the strength of the applied heap-abstraction. Zero on this axis means that

173
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Figure 8.1: Overview of closely related work.

no heap abstraction is used, thus forcing an assumed a priori bound on the number of allocated

objects and threads.

Program Complexity Describes the complexity of the programs that could be handled. Along this

dimension we only distinguish between sequential and concurrent programs.

Property Complexity Describes the complexity of the properties that could be handled. Property com-

plexity ranges from non-temporal safety properties to full temporal specification.

Bandera [19], FLAVERS [77], and dSPIN [32] do not apply any heap abstraction. These approaches

are therefore forced to assume an a priori bound on the number of allocated objects and threads, making

them generally unsound.

SLAM [72], and BLAST [53] take the two-phased approach, and use a predicate abstraction to

verify a safety property against a finite-state model of a program. The finite-state model is produced

using a preceding pointer-analysis phase. ESP [27], uses a two-phased approach for verifying typestate

properties. As mentioned earlier, the two-phased approach may result in an extensive number of false

alarms, but is more scalable since the pointer-analysis phase may be flow-insensitive.

8.3 Further Work

8.3.1 Property Guided Abstraction

Ideally, we would like the cost of verification to depend only on the verified program and the complexity

of the verified property.
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I plan to further investigate methods for directing the abstraction by the property specification pro-

vided by the user. More generally, users often have some insight of what actually makes their program

work correctly. Rather than forcing the user to write program annotations and loop-invariants which

are often complicated and non-intuitive, it would be interesting to let the user direct the abstraction

used by the static-analysis algorithms. A first attempt to let user specification direct the abstraction was

described in Chapter6. In the approach presented there, the user provides a strategy for choosing “rel-

evant” heap-allocated objects that should be abstracted using a more precise abstraction than the rest of

the heap.

8.3.2 Verification of Heap-Manipulating Programs

The verification algorithms we have investigated so far are very precise and appealing but are not likely

to scale to verification of industrial software. Verifying real-world applications requires cheaper verifi-

cation algorithms. There are several directions I would like to pursue here:

• use property-guided abstraction and apply precise (and costly) abstraction only to some parts of

the heap.

• develop efficient verification algorithms for useful subsets of ETL specifications.

• apply partial-order reductions to explore only representatives of equivalent interleavings.

• use information from dynamic (runtime) analyses to direct static verification.
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Appendix A

2 and 3-valuedFOTC

In this appendix, we give a brief summary of2 and3 valuedFOTC . The material presented here is

fairly standard and included only for completeness of presentation.

A.1 Syntax

Formally, the syntax of first-order formulae with transitive closure is defined as follows:

Definition A.1.1 A formula over thevocabulary P = {eq, p1, . . . , pn} is defined inductively, as fol-

lows:

Atomic Formulae Thelogical literals 0 and1 are atomic formulae with no free variables.

For every predicate symbolp ∈ P of arity k, p(v1, . . . , vk) is an atomic formula with free vari-

ables{v1, . . . , vk}.

Logical Connectives If ϕ1 andϕ2 are formulae whose sets of free variables areV1 andV2, respectively,

then(ϕ1 ∧ϕ2), (ϕ1 ∨ϕ2), and(¬ϕ1) are formulae with free variablesV1 ∪ V2, V1 ∪ V2, andV1,

respectively.

Quantifiers If ϕ1 is a formula with free variables{v1, v2, . . . , vk}, then(∃v1 : ϕ1) and(∀v1 : ϕ1) are

both formulae with free variables{v2, v3, . . . , vk}.

Transitive Closure If ϕ1 is a formula with free variablesV such thatv3, v4 6∈ V , then(TC v1 : v2)(ϕ1)v3v4
is a formula with free variables(V − {v1, v2}) ∪ {v3, v4}.

A formula isclosedwhen it has no free variables.
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A.2 2-valued Interpretation

In this section, we define the (2-valued) semantics for first-order logic with transitive closure in the

standard way.

Definition A.2.1 A 2-valued interpretation of the language of formulae overP is a 2-valued logical

structure S = 〈US , ιS〉, whereUS is a set ofindividuals andιS maps each predicate symbolp of arity

k to a truth-valued function:

ιS(p) : (US)k → {0, 1}.

An assignmentZ is a function that maps free variables to individuals (i.e., an assignment has the

functionalityZ : {v1, v2, . . .} → US). An assignment that is defined on all free variables of a formula

ϕ is calledcompletefor ϕ. In the sequel, we assume that every assignmentZ that arises in connection

with the discussion of some formulaϕ is complete forϕ.

The(2-valued) meaningof a formulaϕ, denoted by[[ϕ]]S2 (Z), yields a truth value in{0, 1}. The

meaning ofϕ is defined inductively as follows:

Atomic Formulae For an atomic formula consisting of a logical literall ∈ {0, 1}, [[l]]S2 (Z) = l (where

l ∈ {0, 1}).

For an atomic formula of the formp(v1, . . . , vk),

[[p(v1, . . . , vk)]]S2 (Z) = ιS(p)(Z(v1), . . . , Z(vk))

Logical Connectives Whenϕ is a formula built from subformulaeϕ1 andϕ2,

[[ϕ1 ∧ ϕ2]]S2 (Z) = min([[ϕ1]]S2 (Z), [[ϕ2]]S2 (Z))

[[ϕ1 ∨ ϕ2]]S2 (Z) = max([[ϕ1]]S2 (Z), [[ϕ2]]S2 (Z))

[[¬ϕ1]]S2 (Z) = 1− [[ϕ1]]S2 (Z)

Quantifiers Whenϕ is a formula that has a quantifier as the outermost operator,

[[∀v1 : ϕ1]]S2 (Z) = min
u∈US

[[ϕ1]]S2 (Z[v1 7→ u])

[[∃v1 : ϕ1]]S2 (Z) = max
u∈US

[[ϕ1]]S2 (Z[v1 7→ u])

Transitive Closure Whenϕ is a formula of the form(TC v1 : v2)(ϕ1)v3v4,

[[(TC v1 : v2)(ϕ1)v3v4]]S2 (Z) =

max
n ≥ 1, u1, . . . , un+1 ∈ U,

Z(v3) = u1, Z(v4) = un+1

n
min
i=1

[[ϕ1]]S2 (Z[v1 7→ ui, v2 7→ ui+1])

We say thatS andZ satisfyϕ (denoted byS,Z |= ϕ) if [[ϕ]]S3 (Z) = 1. We writeS |= ϕ if for everyZ

we haveS,Z |= ϕ.
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A.3 3-valued Interpretation

We now generalize Defn.A.2.1 to define the meaning of a formula with respect to a3-valued structure.

Definition A.3.1 A 3-valued interpretation of the language of formulae overP is a 3-valued logical

structure S = 〈US , ιS〉, whereUS is a set of individuals andιS maps each predicate symbolp of arity

k to a truth-valued function:

ιS(p) : (US)k → {0, 1, 1/2}.

For an assignmentZ, the (3-valued) meaningof a formulaϕ, denoted by[[ϕ]]S3 (Z), now yields a

truth value in{0, 1, 1/2}. The meaning ofϕ is defined inductively as in Defn.A.2.1.

We say thatS andZ potentially satisfyϕ, denoted byS,Z |=3 ϕ, if [[ϕ]]S3 (Z) = 1/2 or [[ϕ]]S3 (Z) =

1. We writeS |=3 ϕ if for everyZ we haveS,Z |=3 ϕ.
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Appendix B

Additional Proofs

B.1 Proofs for Chapter 4

For proving Theorem4.4.5we need a few additional definitions.

We first have to formally definerep(π), and also introduce an intermediate assignmentZ which

will be used to record values of intermediate assignments through evaluation.

Definition B.1.1 (Trace representation) Given a traceπ, we definerep(π) = 〈Urep(π), ιrep(π)〉 to be

the representation ofπ as a first-order logical structure, where:

• for every worldπi in π, there exists a world individualwi ∈ Urep(π) s.t. ιrep(π)(world)(wi) = 1.

• for every individualu in the universeUπi of a worldπi in the trace, there exists a corresponding

non-world individualũ ∈ Urep(π), s.t. ιrep(π)(world)(ũ) = 0.

• for every two successive worldsπi andπi+1 in π, having corresponding world individualswi, wi+1 ∈
Urep(π), ιrep(π)(succ)(wi, wi+1) = 1.

• for the first world of the traceπ0 in π, having a corresponding world individualw0 ∈ Urep(π),

ιrep(π)(initialWorld)(w0) = 1.

• for every worldπi with a corresponding world individualwi, and for every individualu ∈ Uπi

with a corresponding individual̃u ∈ Urep(π), ιrep(π)(exists)(ũ, wi) = 1, and for every other

world πj , j 6= i with a corresponding world individualwj , ιrep(π)(exists)(ũ, wj) = 0.

• for every two consecutive worldsπi, πi+1 in π, and for every two individualsui ∈ Uπi andui+1 ∈
Uπi+1 with corresponding individuals̃ui, ũi+1 ∈ Urep(π) , ιrep(π)(evolution)(ũi, ũi+1) = 1 iff

eπi(ui) = ui+1.

• for every worldπi and an individualu ∈ πi with a corresponding individual̃u ∈ Urep(π),

ιrep(π)(isNew)(ũ) = 1 iff u ∈ Aπi .
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• for every worldπi and an individualu ∈ πi with a corresponding individual̃u ∈ Urep(π),

ιrep(π)(isFreed)(ũ) = 1 iff u ∈ Dπi .

We augment the notion of assignment as follows: an assignmentZ assigns individuals from the

universe to logical variables, and assigns a world of the trace to the designated logical variablew.

Definition B.1.2 Given a traceπ, an ETL formulaϕ, an assignmentZ, and a world of the traceπi for

somei, we say thatπ,Z |=t [ϕ]w when:

• Z(w) = πi

• πi, Z |= ϕ

That is, when the suffix ofπ starting from the world assigned tow satisfies the property.

Lemma B.1.3 (Prefix Redundancy)Given a traceπ and an assignmentZ assigning a worldπi tow,

π,Z |=t [ϕ]w ⇐⇒ πi, Z |=t [ϕ]w

Proof:

π,Z |=t [ϕ]w ⇐⇒ (by DefinitionB.1.2)

πi, Z |= ϕ ⇐⇒ (by DefinitionB.1.2)

πi, Z |=t [ϕ]w

Definition B.1.4 We define an additional operation on traces,Bw(π) that takes a trace and a logical

variable assigned byZ to a world in the trace. The operation returns the suffix of the trace starting at

the given world.

The initial assignmentZ assignsw to the first world of the trace.

Proof:[Theorem4.4.5]

We need to prove that for every closed ETL formulaϕ and a traceπ, π |= ϕ if and only if rep(π) |=
(ϕ)†, whererep(π) is the first-order representation ofπ. We will now show that:

π,Z |=t [ϕ]w if and only if rep(Bw(π)), Z |= (ϕ)†w

0,1 trivially holds.

p(v1, . . . ,vk)

rep(Bw(π)), Z |= (p(v1, . . . , vk))†w ⇐⇒ (Definition4.8.1)

rep(Bw(π)), Z |= p(v1, . . . , vk) ⇐⇒ (DefinitionA.2.1)

ιhead(Bw(π))(p)(Z(v1), . . . , Z(vk)) = 1 ⇐⇒ (Definition5.2.10)

πi, Z |= p(v1, . . . , vk) whereZ(w) = πi ⇐⇒ (DefinitionB.1.2)

π,Z |=t [p(v1, . . . , vk)]w
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ϕ ∧ ψ
rep(Bw(π)), Z |= (ϕ ∧ ψ)†w ⇐⇒ (Definition4.8.1)

rep(Bw(π)), Z |= (ϕ)†w andrep(Bw(π)), Z |= (ψ)†w ⇐⇒ inductive assumption

π,Z |=t [ϕ]w andπ,Z |=t [ψ]w ⇐⇒ (Definition5.2.10)

π,Z |=t [ϕ ∧ ψ]w

ϕ ∨ ψ
rep(Bw(π)), Z |= (ϕ ∨ ψ)†w ⇐⇒ (Definition4.8.1)

rep(Bw(π)), Z |= (ϕ)†w or rep(Bw(π)), Z |= (ψ)†w ⇐⇒ inductive assumption

π,Z |=t [ϕ]w or π,Z |=t [ψ]w ⇐⇒ (Definition5.2.10)

π,Z |=t [ϕ ∨ ψ]w

∃v.ϕ(v)

rep(Bw(π)), Z |= (∃v.ϕ(v))†w ⇐⇒ (Definition4.8.1)

rep(Bw(π)), Z |= ∃v.exists(w, v) ∧ (ϕ(v))†w ⇐⇒
(assume only v is free without loss of generality)

existsu ∈ Uhead(Bw(π)) s.t. rep(Bw(π)), Z[v 7→ u] |= (ϕ(v))†w

existsu ∈ Uhead(Bw(π)) s.t.π,Z[v 7→ u] |=t [ϕ(v)]w ⇐⇒ (Definition5.2.10)

π,Z |=t [∃v.ϕ(v)]w

(TC v1,v2 : ϕ)(v3,v4)

rep(Bw(π)), Z |= ((TC v1, v2 : ϕ)(v3, v4))†w ⇐⇒ (Definition4.8.1)

rep(Bw(π)), Z |= (TC v1, v2 : (ϕ)†w ∧ exists(w, v1) ∧ exists(w, v2))(v3, v4) ⇐⇒
existsu1, . . . , uk ∈ UT . s.t.Z(v3) = u1 ∧ Z(v4) = uk

and for all1 ≤ i ≤ k.
rep(Bw(π)), Z[v1 7→ ui, v2 7→ ui+1] |= (ϕ)†w ∧ exists(w, v1) ∧ exists(w, v2) ⇐⇒

existsu1, . . . , uk ∈ Uhead(Bw(π)). s.t.Z(v3) = u1 ∧ Z(v4) = uk

and for all1 ≤ i ≤ k.rep(Bw(π)), Z[v1 7→ ui, v2 7→ ui+1] |= (ϕ)†w ⇐⇒
π,Z |=t [(TC v1, v2 : ϕ)(v3, v4)]w

©ϕ(x1, . . . ,xn)

rep(Bw(π)), Z |= (©ϕ(x1, . . . , xn))†w ⇐⇒ (LemmaB.1.5)

rep(Bw′(π)), Z ′ |= (ϕ(x1, . . . , xn))†w
′

wheresucc(w,w′), Z ′ is an evolution ofZ ⇐⇒
π,Z ′ |=t [ϕ]w′ ⇐⇒ chop worlds beforew′, LemmaB.1.3

tail(π), Z ′ |=t [ϕ]w′ ⇐⇒ (Definition5.2.10)

π,Z |=t [©ϕ]w
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ϕ(x1, . . . ,xn)Uψ(y1, . . . ,yn)

rep(Bw(π)), Z |= (ϕ(x1, . . . , xn)Uψ(y1, . . . , yn))†w ⇐⇒ (Definition4.8.1)

rep(Bw(π)), Z |= ∃w′:world.∃y′1, . . . , y′k.succ∗(w,w′) ∧ (ψ(y′1, . . . , y
′
k))
†w′

∧
∧

1≤i≤k evolution
∗(yi, y

′
i) ∧ ∀w̃:world.∃x′1, . . . , x′n.(succ∗(w, w̃)

∧ succ∗(w̃, w′)→ (ϕ(x′1, . . . , x
′
n))†w̃ ∧

∧
1≤j≤n evolution

∗(xj , x
′
j)) ⇐⇒

existsw′, rep(Bw(π)), Z |= succ∗(w,w′) and

existsZ ′, rep(Bw(π)), Z ′ |= (ψ(y1, . . . , yk))†w
′
and

for all w̃, rep(Bw(π)), Z |= (succ∗(w, w̃) ∧ succ∗(w̃, w′) implies

existsZ̃, rep(Bw(π)), Z |= (ϕ(x1, . . . , xn))†w̃ ⇐⇒ (LemmaB.1.6)

existsw′, k ≥ 0, s.t.Z(w′) = πk and

existsZ ′, rep(Bw(π)), Z ′ |= (ψ(y1, . . . , yk))†w
′
and

for all w̃, rep(Bw(π)), Z |= (succ∗(w, w̃) ∧ succ∗(w̃, w′) implies

existsZ̃, rep(Bw(π)), Z |= (ϕ(x1, . . . , xn))†w̃ ⇐⇒
existsw′, k ≥ 0, s.t.Z(w′) = πk and

existsZ ′, rep(Bw(π)), Z ′ |= (ψ(y1, . . . , yk))†w
′
and

for all w̃, Z(w̃) = πi, 1 ≤ i ≤ k,
there exists̃Z, rep(Bw(π)), Z |= (ϕ(x1, . . . , xn))†w̃ ⇐⇒

existsw′, k ≥ 0, s.t.Z(w′) = πk and

existsZ ′, rep(Bw′(π)), Z ′ |= (ψ(y1, . . . , yk))†w
′
and

for all w̃, Z(w̃) = πi, 1 ≤ i ≤ k,
there exists̃Z, rep(Bw̃(π)), Z |= (ϕ(x1, . . . , xn))†w̃ ⇐⇒ (ind.)

existsw′, k ≥ 0, s.t.Z(w′) = πk and

existsZ ′, π, Z ′ |=t [ψ(y1, . . . , yk)]w′ and

for all w̃, Z(w̃) = πi, 1 ≤ i ≤ k,
there exists̃Z, π, Z̃ |=t [ϕ(x1, . . . , xn)]w̃ ⇐⇒ (LemmaB.1.3)

existsw′, k ≥ 0, s.t.Z(w′) = πk and

existsZ ′, πk, Z ′ |=t [ψ(y1, . . . , yk)]w′ and

for all w̃, Z(w̃) = πi, 1 ≤ i ≤ k,
there exists̃Z, πi, Z̃ |=t [ϕ(x1, . . . , xn)]w̃ ⇐⇒ (Def. B.1.2+ Definition5.2.10)

π,Z |=t [ϕ(x1, . . . , xn)Uψ(y1, . . . , yn)]w

Lemma B.1.5

rep(Bw(π)), Z |= (©ϕ(x1, . . . , xn))†w ⇐⇒ rep(Bw′(π)), Z ′ |= (ϕ(x1, . . . , xn))†w
′

wheresucc(w,w′) andZ ′ is the evolution ofZ.
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Proof:

rep(Bw(π)), Z |= (©ϕ(x1, . . . , xn))†w ⇐⇒
rep(Bw(π)), Z |= ∃w′:world.∃x′1, . . . , x′n.succ(w,w′) ∧ (ϕ(x′1, . . . , x

′
n))†w

′∧∧
1≤j≤n evolution(xj , x

′
j) ∧ exists(x′j , w′) ⇐⇒

(whensucc(w,w′))

rep(Bw′(π)), Z |= ∃x′1, . . . , x′n.(ϕ(x′1, . . . , x
′
n))†w

′ ∧
∧

1≤j≤n evolution(xj , x
′
j) ∧ exists(x′j , w′) ⇐⇒

(whenZ ′ is the evolution ofZ)

rep(Bw′(π)), Z ′ |= (ϕ(x1, . . . , xn))†w
′

Lemma B.1.6 Given a traceπ, an assignmentZ assigning a world individual to the logical variable

w, for anyw′,

rep(Bw(π)), Z |= succ∗(w,w′) ⇐⇒ there existsk ≥ 0, Z(w′) = πk

Proof: Trivial from definition ofTC operator. This lemma is provided to emphasize thatsucc∗(w,w′)

corresponds to the existence of a successor within afinite future.

B.1.1 Embedding Theorem

Proof:[Embedding Theorem for Infinite Configurations, Theorem4.5.6] This theorem generalizes the

embedding theorem of [91] for the infinite case. The proof is identical to the proof given for the origi-

nal embedding theorem since the same arguments hold for the infinite case. The proof is by structural

induction onϕ:

Basis: For atomic formulap(v1, v2, . . . , vk), u1, u2, . . . , uk ∈ US , andZ = [v1 7→ u1, v2 7→ u2, . . . , vk 7→
uk] we have

[[p(v1, v2, . . . , vk)]]S3 (Z)

= ιS(p)(u1, u2, . . . , uk) (DefinitionA.3.1)

v ιS′
(p)(f(u1), f(u2), . . . , f(uk)) (Definition4.5.3)

= [[p(v1, v2, . . . , vk)]]S
′

3 (f ◦ Z) (DefinitionA.3.1)
Also, for l ∈ {0, 1, 1/2}, we have:

[[l]]S3 (Z)

= l (DefinitionA.3.1)

v l (Definition4.5.2)

= [[l]]S
′

3 (f ◦ Z) (DefinitionA.3.1)

Induction step: Supposeϕ is a formula with free variablesv1, v2, . . . vk. LetZ be a complete assignment

for ϕ. If [[ϕ]]S
′

3 (Z) = 1/2, then the theorem holds trivially. Therefore assume that[[ϕ]]S
′

3 (f ◦ Z) ∈
{0, 1}. We distinguish between the following cases:



196 APPENDIX B. ADDITIONAL PROOFS

Logical-and ϕ ≡ ϕ1 ∧ ϕ2. The proof splits into the following subcases:

Case 1: [[ϕ1 ∧ ϕ2]]S
′

3 (f ◦ Z) = 0.

In this case, either[[ϕ1]]S
′

3 (f ◦ Z) = 0 or [[ϕ2]]S
′

3 (f ◦ Z) = 0. Without loss of generality

assume that[[ϕ1]]S
′

3 (f ◦ Z) = 0. Then, by the induction hypothesis forϕ1, we conclude that

[[ϕ1]]S3 (Z) = 0. Therefore, by DefinitionA.3.1, [[ϕ1 ∧ ϕ2]]S3 (Z) = 0.

Case 2: [[ϕ1 ∧ ϕ2]]S
′

3 (f ◦ Z) = 1.

In this case, both[[ϕ1]]S
′

3 (f ◦ Z) = 1 and[[ϕ2]]S
′

3 (f ◦ Z) = 1. Then, by the induction hypothesis

for ϕ1 andϕ2, we conclude that[[ϕ1]]S3 (Z) = 1 and

[[ϕ2]]S3 (Z) = 1. Therefore, by DefinitionA.3.1, [[ϕ1 ∧ ϕ2]]S3 (Z) = 1.

Logical-negation ϕ ≡ ¬ϕ1. The proof splits into the following subcases:

Case 1: [[¬ϕ1]]S
′

3 (f ◦ Z) = 0.

In this case,[[ϕ1]]S
′

3 (f ◦ Z) = 1.

Then, by the induction hypothesis forϕ1, we conclude that[[ϕ1]]S3 (Z) = 1.

Therefore, by DefinitionA.3.1, [[¬ϕ1]]S3 (Z) = 0.

Case 2: [[¬ϕ1]]S
′

3 (f ◦ Z) = 1.

In this case,[[ϕ1]]S
′

3 (f ◦ Z) = 0.

Then, by the induction hypothesis forϕ1, we conclude that[[ϕ1]]S3 (Z) = 0.

Therefore, by DefinitionA.3.1, [[¬ϕ1]]S3 (Z) = 1.

Existential-Quantification ϕ ≡ ∃v0 : ϕ1. The proof splits into the following subcases:

Case 1: [[∃v1 : ϕ1]]S
′

3 (f ◦ Z) = 0.

In this case, for allu ∈ US , [[ϕ1]]S
′

3 ((f ◦ Z)[v1 7→ f(u)]) = 0. Then, by the induction hypothesis

for ϕ1, we conclude that for allu ∈ US [[ϕ1]]S3 (Z[v1 7→ u]) = 0. Therefore, by DefinitionA.3.1,

[[∃v1 : ϕ1]]S3 (Z) = 0.

Case 2:[[∃v1 : ϕ1]]S
′

3 (f ◦ Z) = 1.

In this case, there exists au′ ∈ US′
such that[[ϕ1]]S

′
3 ((f ◦ Z)[v1 7→ u′]) = 1. Becausef is

surjective, there exists au ∈ US such thatf(u) = u′ and [[ϕ1]]S
′

3 ((f ◦ Z)[v1 7→ f(u)]) = 1.

Then, by the induction hypothesis forϕ1, we conclude that[[ϕ1]]S3 (Z[v1 7→ u]) = 1. Therefore,

by DefinitionA.3.1, [[∃v1 : ϕ1]]S3 (Z) = 1.

Transitive Closure ϕ ≡ (TC v1, v2 : ϕ1)(v3, v4). The proof splits into the following subcases:

Case 1: [[(TC v1, v2 : ϕ1)(v3, v4)]]S
′

3 (f ◦ Z) = 1.

By Definition A.3.1, there existu′1, u
′
2, . . . , u

′
n+1 ∈ US′

such that for all1 ≤ i ≤ n,

[[ϕ1]]S
′

3 ((f ◦ Z)[v1 7→ u′i, v2 7→ u′i+1]) = 1, (f ◦ Z)(v3) = u′1, and(f ◦ Z)(v4) = u′n+1. Be-

causef is surjective, there existu1, u2, . . . , un+1 ∈ US such that for all1 ≤ i ≤ n+ 1, f(ui) =
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u′i. Therefore,Z(v3) = u1, Z(v4) = un+1, and by the induction hypothesis, for all1 ≤ i ≤ n,

[[ϕ1]]S3 (Z[v1 7→ ui, v2 7→ ui+1]) = 1. Hence, by DefinitionA.3.1, [[(TC v1, v2 : ϕ1)(v3, v4)]]S3 (Z) =

1.

Case 2: [[(TC v1, v2 : ϕ1)(v3, v4)]]S
′

3 (f ◦ Z) = 0.

We need to show that[[(TC v1, v2 : ϕ1)(v3, v4)]]S3 (Z) = 0. Assume on the contrary that

[[(TC v1, v2 : ϕ1)(v3, v4)]]S
′

3 (f ◦ Z) = 0

, but [[(TC v1, v2 : ϕ1)(v3, v4)]]S3 (Z) 6= 0. Because[[(TC v1, v2 : ϕ1)(v3, v4)]]S3 (Z) 6= 0, by De-

finition A.3.1 there existu1, u2, . . . , un+1 ∈ US such thatZ(v3) = u1, Z(v4) = un+1, and for

all 1 ≤ i ≤ n, [[ϕ1]]S3 (Z[v1 7→ ui, v2 7→ ui+1]) 6= 0. Hence, by the induction hypothesis there

exist u′1, u
′
2, . . . , u

′
n+1 ∈ US′

such that(f ◦ Z)(v3) = u′1, and (f ◦ Z)(v4) = u′n+1 and

for all 1 ≤ i ≤ n, [[ϕ1]]S
′

3 ((f ◦ Z)[v1 7→ u′i, v2 7→ u′i+1]) 6= 0. Therefore, by DefinitionA.3.1,

[[(TC v1, v2 : ϕ1)(v3, v4)]]S
′

3 (f ◦ Z) 6= 0, which is a contradiction.

B.2 Proofs for Chapter 5

Proof:[Theorem5.2.13] We will show that given a BDETL formulaϕ, and a programP , P |= ϕ =⇒
P |=E {ϕ}, by proving that for every program traceπ, π,Z |= ϕ =⇒ c, Z |=E {ϕ} wherec =

head(π)

ϕ = 1

π,Z |= 1 =⇒ head(π), Z |=E {1}

ϕ = 0

π,Z |= 0 =⇒ head(π), Z |=E {0}

ϕ = p(v1, . . . , vk)

π,Z |= p(v1, . . . , vk) ⇐⇒
ιhead(π)(p)(Z(v1), . . . , Z(Vk)) = 1 ⇐⇒
head(π), Z |=E {p(v1, . . . , vk)}

ϕ = ¬ϕa whereϕa is an atomic formula

π,Z |= ¬ϕa ⇐⇒
notπ,Z |= ϕa ⇐⇒
head(π), Z |=E {¬ϕa}
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ϕ = ϕ1 ∨ ϕ2

π,Z |= ϕ1 ∨ ϕ2 ⇐⇒
π,Z |= ϕ1 or π,Z |= ϕ2 =⇒
head(π), Z |=E {ϕ1} or head(π), Z |=E {ϕ2} ⇐⇒
head(π), Z |=E {ϕ1 ∨ ϕ2}

ϕ = ϕ1 ∧ ϕ2

π,Z |= ϕ1 ∧ ϕ2 ⇐⇒
π,Z |= ϕ1 andπ,Z |= ϕ2 =⇒
head(π), Z |=E {ϕ1} andhead(π), Z |=E {ϕ2} ⇐⇒
head(π), Z |=E {ϕ1 ∧ ϕ2}

ϕ = ∃v.ϕ1

π,Z |= ∃v.ϕ1(v) ⇐⇒
existsu ∈ Uhead(π) s.t.π,Z[v 7→ u] |= ϕ1(v) =⇒
existsu ∈ Uhead(π) s.t.head(π), Z[v 7→ u] |=E {ϕ1(v)} ⇐⇒
head(π), Z[v 7→ u] |=E {∃v.ϕ1(v)}

ϕ =©ϕ1

π,Z |=©ϕ1 ⇐⇒
tail(π), Z |= ϕ1 =⇒
c′, Z |=E ϕ1 wherec′ = head(tail(π)) =⇒
there exists a successorc′ of head(π), s.t.c′, Z |=E ϕ1 =⇒ head(π), Z |=E {©ϕ1}

ϕ = ϕ1Uϕ2

π,Z |= ϕ1Uϕ2 ⇐⇒
there existsk ≥ 0, πk, Z |= ϕ2 and for all0 ≤ j ≤ k, πj , Z |= ϕ1

we will show that this implieshead(π), Z |=E {ϕ1Uϕ2}
by induction on k

base:k = 0

π0, Z |= ϕ2 =⇒ head(π), Z |=E {ϕ2} =⇒
head(π), Z |=E {ϕ1Uϕ2}
step:k > 0

there existsk > 0, πk, Z |= ϕ2 and for all0 ≤ j ≤ k, πj , Z |= ϕ1

=⇒ π,Z |= ϕ1 =⇒ head(π), Z |=E {ϕ1}
now considerπ′ = tail(π)

there existsk′ = k − 1 ≥ 0, π′k
′
, Z |= ϕ2 and for all0 ≤ j ≤ k′, π′j , Z |= ϕ1
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ϕ = ϕ1Wϕ2

π,Z |= ϕ1Wϕ2 ⇐⇒
there existsk ≥ 0, πk, Z |= ϕ2 and for all0 ≤ j ≤ k, πj , Z |= ϕ1

or for all j ≥ 0, πj , Z |= ϕ1

we will show that this implieshead(π), Z |=E {ϕ1Wϕ2}
case 1: there existsk ≥ 0, πk, Z |= ϕ2

by induction on k

base:k = 0

π0, Z |= ϕ2 =⇒ head(π), Z |=E {ϕ2} =⇒
head(π), Z |=E {ϕ1Wϕ2}
step:k > 0

there existsk > 0, πk, Z |= ϕ2 and for all0 ≤ j ≤ k, πj , Z |= ϕ1

=⇒ π,Z |= ϕ1 =⇒ head(π), Z |=E {ϕ1}
now considerπ′ = tail(π)

there existsk′ = k − 1 ≥ 0, π′k
′
, Z |= ϕ2 and for all0 ≤ j ≤ k′, π′j , Z |= ϕ1

case 2: nok ≥ 0 exists s.t.πk, Z |= ϕ2

for all j ≥ 0, πj , Z |= ϕ1 =⇒
for all j ≥ 1, πj , Z |= ϕ1 andπ0, Z |= ϕ1 =⇒
π1, Z |= ϕ1Wϕ2 andπ0, Z |= ϕ1 =⇒
head(tail(π)), Z |=E {ϕ1Wϕ2} andhead(π), Z |=E {ϕ1} =⇒
head(π), Z |=E {ϕ1Wϕ2}

Proof:[Theorem5.3.5] We show that the abstract state-based semantics is an abstract interpretation of

the concrete state-based semantics of Definition5.2.12. We will show that

c |=E F =⇒ blur(c), |=]
E F

In order to show that, we establish a Galois connection between concrete and abstract configurations.

β(c) = blur(c)

α(C) =
⋃

c∈C blur(c)

γ(A) = {c | blur(c) ∈ A}
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Appendix C

ETL Supplements

C.1 Additional Properties for Mark And Sweep

Fig. C.1shows the code for the sweep phase of the mark and sweep collector. The properties of interest

for the sweep phase are formulated as the following ETL formulae.

(S1) ∀εv.¬marked(v)→1�(v)

(S2) 0 ∀εv.� (v)→ ¬marked(v)
The progress measure required to verify these properties is:

ϕ↓ = ∃εv.pending(v) ∧ ¬pending′(v))
ϕ↑ = ∃εv.¬pending(v) ∧ pending′(v))

C.2 Additional ETL Properties

TableC.1 presents a list of simple programs and program properties specified via ETL. The program

Mutex is a program that dynamically allocates an unbounded number of threads and lets them com-

pete for a critical section protected by a single lock [115]. The programTwo lock queue is an

implementation of a concurrent shared queue protected by two locks [115]. The programDelAll is a

simple sequential program that deletes all the elements of a given linked list. The propertiesfree and

assign−null could be used for performing compile-time garbage collection, as done in [95]. TheWeb

Server program is a simple implementation of a web-server as used in [119].

C.3 ETL with Past Operators

This appendix completes the partial (but less cumbersome) definitions of ETL trace-based and state-

based semantics given in Chapter5.

201
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Program Property S/L UB Comments

Mutex ∀t.1 at[lcrit](t) L T absence of starvation

1∃t.at[lcrit](t) L T progress

∃t.1 at[lcrit](t) L T specific progress

0 ∀t1, t2.¬(at[lcrit](t1) ∧ at[lcrit](t)) S T mutex

Two lock 0 ∃v.tail(v)→ rf [head, next](v) S O/T queue connected

queue 0 ∃ti, v, u.at[lp6](ti) ∧ rv[xi](ti, v) S O/T insert after last

∧ rf [head, next](v) ∧ tail(u)→ rval[next](u, v)

0 ∃td, v.at[lt9](td) ∧ rv[xd](td, v) S O/T delete first

∧ rf [head, next](v)→ head(v)

0 6 ∃v, u.head(v) ∧ rv[next](u, v) S O/T head is first

0 ∀t.¬at[li4](t)→ ∃v : tail(v) S O/T tail exists

0 ∀t.at[lp2](t)→1 at[lp5](t) L O/T producer liveness

0 ∀t.at[lt1](t)→1 at[lt8](t) L O/T consumer liveness

DelAll ∀v.1x(v) L O
all items eventually

traversed by x

1 at[lexit]() L O termination

various 0(∀v.at[pt]() ∧ y(v)→©0 ¬use(v)) S O free〈pt, y〉
various 0(∀v.at[pt]() ∧ y(v)→©¬usen(v)Wdefn(v)) S O asgn− null〈pt, y〉

Web
0 ∀t1, t2: thread.(t1 6= t2)

→ ¬(at[lwc](t1) ∧ at[lwc](t2))
S O/T mutex over the shared resource

server 0 ∀t: thread.at[lw1](t)→1 at[lwc](t) L O/T
absence of starvation

for worker threads

0(∀t: thread.¬ � t)∨
(∀t: thread.¬ � t)U (∃v: request.� v)

S O/T
a thread only created when

request received

0 ∃v: request.� v →1∃t: thread.� t L O/T
each request followed by

thread creation

0 ∀t1, t2: thread.(t1 6= t2)

→ ¬(at[ls2](t1) ∧ at[la3](t2))
S O/T

mutex of listener and scheduler

over sched. queue

0 ∀t: thread.� t
→1∃q: queue.rval[head.next∗](q, t)

L O/T
each created thread is eventually

inserted into the sched. queue

0 ∀t: thread.at[lw1](t)

→ ¬∃q: queue.rval[head.next∗](q, t)
L O/T

each scheduled worker thread

removed from sched. queue

∃q: queue.0 ∀t: thread.
(rval[head.next∗](q, t))

→1¬(rval[head.next∗](q, t))

L O/T
each worker thread waiting in

queue eventually leaves queue

Table C.1: Example programs and ETL specifications
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public Set sweep(Set marked, Element root) {
s1 Set pending = Heap.universe;

s2 Set collected = new HashSet();

s3 if (root != null) {
s4 while (!pending.isEmpty()) {
s5 Element x = (Element) pending.iterator().next();

s6 pending.remove(x);

s7 if (!marked.contains(x))

s8 collected.add(x);

s9 else

s10 marked.remove(x);

s11 }
s12 }
s13 return collected;

}

Figure C.1: Java source for the sweep-phase procedure.

Definition C.3.1 (ETL Trace-based Semantics)We define when an ETL formulaϕ is satisfied over a

traceπ starting at indexi of the trace with an assignmentZ (denoted byπ, i, Z |= ϕ) as follows:

• π, i, Z |= 1, and notπ, i |= 0Z.

• π, i, Z |= p(v1, . . . , vk) whenιπi(p)(Z(v1), . . . , Z(vk)) = 1

• π, i, Z |= ¬ϕ when notπ, i, Z |= ϕ

• π, i, Z |= ϕ ∨ ψ whenπ, i, Z |= ϕ or π, i |= ψZ

• π, i, Z |= ∃v.ϕ(v) when there existsu ∈ U s.t.π, i, Z[v 7→ u] |= ϕ(v)

• π, i, Z |= (TC v1, v2 : ϕ)(v3, v4) when there existsu1, . . . , un+1 ∈ U , s.t.Z(v3) = u1, Z(v4) =

un+1, and for all1 ≤ j ≤ n, π, i, Z[v1 7→ uj , v2 7→ uj+1] |= ϕ.

• π, i, Z |=©ϕ whenπ, i+ 1, Z |= ϕ.

• π, i, Z |= ϕUψ when there existsk ≥ i, s.t.,π, k, Z |= ψ and for all i ≤ j < k, π, j, Z |= ϕ.

• π, i, Z |= ϕWψ when there existsk ≥ i, s.t.,π, k, Z |= ψ and for all i ≤ j < k, π, j, Z |= ϕ, or

for all j ≥ i, π, j, Z |= ϕ.

• π, i, Z |=�ϕ whenπ, i− 1, Z |= ϕ.

• π, i, Z |= ϕSψ when there exists0 ≤ k ≤ i, s.t.,π, k, Z |= ψ and for allk ≤ j < i, π, j, Z |= ϕ.
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• π, i, Z |= ϕBψ when there exists0 ≤ k ≤ i, s.t.,π, k, Z |= ψ and for allk ≤ j < i, π, j, Z |= ϕ,

or for all 0 ≤ j < i, π, j, Z |= ϕ.

We omit definitions for∧, ∀, since they are defined similarly. We writeπ |= ϕ whenπ, 0, Z |= ϕ for

every assignmentZ. Given a programP , we say thatP |= ϕ when there exists a traceπ of the program

P , such thatπ |= ϕ.

Definition C.3.2 (ETL Existential State-Based Semantics)Given a set of BDETL formulaeF , and a

programP , we say thatF is existentially satisfiedfrom a configuration (state)C\ with an assignment

Z (denoted byC\, Z |=E F ) when one of the following conditions holds:

(A0) F = ∅

(A1) F = F ′ ∪ {1} andC\, Z |=E F ′,

(A2) F = F ′ ∪ {p(v1, . . . , vk)} andιC\(p)(Z(v1), . . . , Z(vk))=1, andC\, Z |=E F ′

(A3) F = F ′ ∪ {¬ϕ} and notC\, Z |=E {ϕ}, andC\, Z |=E F ′

(A4) F = F ′ ∪ {ϕ ∨ ψ} andC\, Z |=E F ′ ∪ {ϕ} or C\, Z |=E F ′ ∪ {ψ}

(A5) F = F ′ ∪ {ϕ ∧ ψ} andC\, Z |=E F ′ ∪ {ϕ,ψ}

(A6) F = F ′ ∪ {∃v.ϕ(v)} and there existsu ∈ UC\ s.t.C\, Z[v 7→ u] |=E F ′ ∪ {ϕ(v)}

(A7) F = F ′ ∪ {©ϕ} and existsC\′, C\ ⇒ C\′ s.t.,C\′, Z |=E {ϕ} andC\, Z |=E F ′.

(A8) F = F ′ ∪ {ϕUψ} andC\, Z |=E F ′ ∪ {ψ} or

C\, Z |=E F ′ ∪ {ϕ} and there existsC\′ s.t.C\ ⇒ C\′ andC\′, Z |=E {ϕUψ}.

(A9) F = F ′ ∪ {ϕWψ} andC\, Z |=E F ′ ∪ {ψ} or

C\, Z |=E F ′ ∪ {ϕ} and there existsC\′ s.t.C\ ⇒ C\′ andC\′, Z |=E {ϕWψ}.

(A10) F = F ′ ∪ {�ϕ} and existsC\′, C\ ⇐ C\′ s.t.,C\′, Z |=E {ϕ} andC\, Z |=E F ′.

(A11) F = F ′ ∪ {ϕSψ} andC\, Z |=E F ′ ∪ {ψ} or

C\, Z |=E F ′ ∪ {ϕ} and there existsC\′ s.t.C\ ⇐ C\′ andC\′, Z |=E {ϕSψ}.

(A12) F = F ′ ∪ {ϕBψ} andC\, Z |=E F ′ ∪ {ψ} or

C\, Z |=E F ′ ∪ {ϕ} and there existsC\′ s.t.C\ ⇐ C\′ andC\′, Z |=E {ϕBψ}.

where⇐ is the reverse transition relation of⇒.
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