
Inferring Synchronization under Limited Observability
Martin Vechev, Eran Yahav, and Greta Yorsh

IBM T.J. Watson Research Center

Abstract. This paper addresses the problem of automatically inferring synchronization for
concurrent programs. Given a program and a specification, we infer synchronization that
avoids all interleavings violating the specification, but permits as many valid interleavings
as possible. We let the user specify an upper bound on the cost of synchronization, which
may limit the observability — what observations on program state can be made by the
synchronization code. We present an algorithm that infers, under certain conditions, the
maximally permissive synchronization for a given cost. We implemented a prototype of our
approach and applied it to infer synchronization in a number of small programs.

1 Introduction
Concurrency is hard. Concurrent execution of operations that share data requires syn-
chronization to guarantee correctness. Typically, the programmer is required to reason
about all the ways in which concurrent operations can interleave, and introduce syn-
chronization code that avoids incorrect interleavings. Because of the excruciating diffi-
culty in finding even a single choice of synchronization that makes the program correct
and reasonably efficient [15], programmers often introduce synchronization in an ad-
hoc manner, and rarely explore alternative choices. In particular, programmers often
resort to coarse-grained synchronization because: (i) it simplifies reasoning about the
program, and (ii) the overhead incurred by finer-grained synchronization is prohibitive.

Our goal is to assist the programmer in systematically exploring alternative choices
of synchronization, based on the cost that she is willing to accept. Given a program P ,
and a specification S, we define the set VP(P, S) of concurrent programs that satisfy
S and can be obtained from P by adding synchronization. To understand the tradeoffs
between different choices of synchronization code, we examine two dimensions along
which programs in VP(P, S) can be compared:

– Permissiveness: Given two programs P1, P2∈VP(P, S), we say that P1 is more
permissive than P2 when the set of traces permitted by P1 is a superset of the set of
traces permitted by P2.

– Synchronization Cost: Given two programs P1, P2 ∈ VP(P, S), we say that P1

has lower cost than P2 when the running time of the synchronization code in P1 is
lower than that of P2.
There is a connection between the cost of synchronization and its permissiveness.

For the synchronization code to be more permissive, it needs to draw finer distinctions
between interleavings, which typically requires atomically observing more of the pro-
gram’s state. Atomically observing more of the program’s state means increasing the
synchronization cost.

In general, the user would like to maximize permissiveness and minimize the cost.
However, the synchronization solution that provides maximal permissiveness maybe
too costly. There may be another (incomparable) solution, with less permissiveness and
lower cost, which is acceptable. We let the user specify an upper bound on the cost, and
infer a maximally permissive solution within the limits of this upper bound.

There are various synchronization mechanisms available to concurrent program-
mers today. In this paper we choose to focus on the classical conditional critical regions
(CCRs), an elegant construct originally introduced by Hoare [7]. A CCR consists of a
guard and a sequence of statements that are to be executed atomically if the guard evalu-
ates to true. If the guard evaluates to false, the thread blocks until it is able to atomically
re-evaluate the guard. Guards only observe program state, but cannot modify it. CCRs
have been implemented as a synchronization construct in the language Edison [5], as
a language extension of Java via software transactional memory [6], and recently in
the high-performance parallel language X10 [14]. One of the advantages of CCRs over
other lower-level operational primitives such as locks and condition variables is their
concise and declarative nature.

A key challenge in using CCRs is finding the appropriate guard expressions. A pro-
grammer must address the following: (i) correctness — guards must eliminate invalid
interleavings that violate S; (ii) permissiveness — guards should allow as many inter-
leavings as possible: a thread executing a guard should not block unless its execution
is doomed to violate S; (iii) cost — it is important to reduce the cost of evaluating the
guard expression. Because the guard is evaluated atomically, this cost is typically dic-
tated by the number of shared variables accessed in the guard. One way to reduce the
cost is by restricting the code to observe only a subset of these variables. Balancing
these trade-offs may require the programmer to simultaneously consider all guards in
all of the CCRs in the program.

This work addresses the challenge of automatically inferring correct and maximally
permissive guards, without exceeding the upper bound on the cost of the guards, speci-
fied by the user. This bound restricts the language of guards — the expressions that can
be used as guards — to those that cost less than the specified bound.

Consider a concurrent program P , a specification S, and a language of guards LG.
We denote by VP(P, S, LG) the set of programs that satisfy S and are obtained from
P by adding guards from LG. It is possible that no program P ′ ∈ VP(P, S, LG) per-
mits all valid interleavings of P . The reason is that the language LG may not be ex-
pressive enough to distinguish between a valid and an invalid interleaving and thus
a valid program P ′ must avoid both. It is therefore natural to define the notion of a
maximally-permissive program under a given language of guards: P ′ ∈ VP(P, S, LG)
is maximally-permissive with respect to LG if there is no program in VP(P, S, LG) that
permits more interleavings than P ′. In other words, it is impossible to modify P ′ using
expressions from LG to permit more interleavings without violating the specification S.
Our goal in this paper can be stated as follows:

Given a concurrent program P , a specification S, and a language of guards
LG, construct a program P ′ ∈ VP(P, S, LG), such that P ′ is maximally per-
missive with respect to LG, and has minimal synchronization cost.

The above problem statement is closely related to the ones addressed by program
repair [9] and controller synthesis [12]. However, in contrast to these approaches, our
work focuses on inferring synchronization code that observes the state without modi-
fying it, and takes into account the cost of synchronization when attempting to find the
maximally permissive solution.

2

1.1 Main Contributions

The contributions of this paper can be summarized as follows:

– We present a technique for automatically inferring correctly-synchronized concur-
rent programs. To explore alternative choices of synchronization, we let the user
control the upper bound on the cost.

– We first present an exponential algorithm that infers a maximally permissive pro-
gram for a given language of guards. Next, we define a greedy algorithm that infers,
under certain conditions, a maximally permissive program for the given language
of guards. Both algorithms minimize synchronization cost.

– We implemented a prototype of our approach and applied it to several programs,
including classical ones such as dining philosophers and asynchronous counters.

Next, we use a simple example to illustrate the challenges that our goal presents,
and show how they are addressed in our approach.

1.2 A Simple Motivating Example

Fig. 1 is a simple program consisting of three operations op1, op2, and op3, that are
executed concurrently by the client program (the main procedure). The interleavings
for this example are shown in Fig. 2. In this example, the global state consists of the pro-
gram counter of each of the three threads, and the value of the shared variables x,y,z.
We denote the global state using a tuple 〈pc1, pc2, pc3, x, y, z〉 where pc1,pc2, pc3 are
program counters and x, y, z are the values of the corresponding shared variables. For
this program, we would like to guarantee that the global invariant y 6= 2 ∨ z 6= 1 is
maintained. Unfortunately, while most interleavings indeed satisfy this specification,
the interleaving x=z+1;z=y+1;y=x+1 leads to its violation. In the figure, we use nodes
with red dotted boundaries to denote states in which the invariant is violated.

op1 { 1: x = z + 1 }
op2 { 2: y = x + 1 }
op3 { 3: z = y + 1 }

main:
int x = 0, y = 0, z = 0;
op1 || op2 || op3

Fig. 1. An example program with three threads.

Implementability Our goal in the example is to construct a new maximally permissive
program in which the invalid interleaving above is not allowed. Generally, to eliminate
invalid traces, we consider the (possibly infinite) set of program traces represented using
a transition system, and compute a subset of the transitions in the transition system for
which all resulting traces are guaranteed to be accepting. However, since our goal is to
construct a program, it is not sufficient to find a valid transition system, we need to find
one that is expressible as a program in the provided programming language. Similar
implementability challenges occur in other synthesis settings, e.g., synthesis of reactive
modules [12].

Cost vs. Permissiveness The ability to avoid a specific transition depends on the amount
of information that can be obtained atomically from the global state and reflected in a
CCR guard. Atomically reading the entire program state is often too costly. Reducing
the cost of synchronization is achieved by restricting the language of guards. When
the language of guards is restricted, the information available for a guard might not

3

be sufficient to uniquely identify a single transition. This limited observability induces
a natural equivalence between transitions. Informally, we define two transitions to be
equivalent when they execute the same statement, and their source states cannot be
distinguished by the language of guards. Under limited observability, the addition of a
guard to a statement in order to eliminate a transition t results in the elimination of all
transitions that are equivalent to t.

Fig. 3(a) shows a valid version of the example of Fig. 1 using CCRs with guards
where the bound on the cost allows the solution to observe the entire program state.
The synchronization in this program was automatically inferred by our tool. In this pro-
gram, the guard (x 6= 1 ∨ y 6= 0 ∨ z 6= 0) (directly) eliminates only the transition

〈e, 2, 3, 1, 0, 0〉 z=y+1−→ 〈e, 2, e, 1, 0, 1〉 which would have inevitably led to an error state.
Note that in this example, allowing the guards to observe the values of all shared vari-
ables leads to the maximally permissive result of only eliminating invalid interleavings.

< 1,2,3,
 0,0,0 >

< e,2,3,
 1,0,0 >

x=z+1

< 1,e,3,
 0,1,0 >

y=x+1

< 1,2,e,
 0,0,1 >

z=y+1

< e,e,3,
 1,2,0 >

y=x+1

< e,2,e,
 1,0,1 >

z=y+1

< e,e,3,
 1,1,0 >

x=z+1

< 1,e,e,
 0,1,2 >

z=y+1

< e,2,e,
 2,0,1 >

x=z+1

< 1,e,e,
 0,1,1 >

y=x+1

< e,e,e,
 1,2,3 >

z=y+1

< e,e,e,
 1,2,1 >

y=x+1

< e,e,e,
 1,1,2 >

z=y+1

< e,e,e,
 3,1,2 >

x=z+1

< e,e,e,
 2,3,1 >

y=x+1

< e,e,e,
 2,1,1 >

x=z+1

Fig. 2. Transition system for the example program of Fig. 1.(Self-loops on exit states are omitted.)

op1 { 1: x = z + 1 }
op2 { 2: y = x + 1 }
op3 { 3: (x 6= 1 ∨ y 6= 0 ∨ z 6= 0) ->

z = y + 1 }

op1 { 1: (x 6= 0 ∨ z 6= 0) ->
x = z + 1 }

op2 { 2: y = x + 1 }
op3 { 3: (x 6= 1 ∨ z 6= 0) ->

z = y + 1 }
(a) (b)

Fig. 3. Example program with synchronization, observing (a) all shared variables , (b) only x,z.

However, suppose that our solution is restricted to use CCR guards whose cost
is limited to only observing the values of variables x,z (and not the entire program
state). Under such limited observability, the states 〈e, 2, 3, 1, 0, 0〉, 〈e, e, 3, 1, 2, 0〉, and
〈e, e, 3, 1, 1, 0〉 cannot be distinguished by any guard. Therefore, the guard (x 6= 1∨z 6=
0) added to the statement z=y+1 to eliminate the bad transition 〈e, 2, 3, 1, 0, 0〉 z=y+1−→
〈e, 2, e, 1, 0, 1〉 has the side effect of eliminating the two other equivalent transitions.
This triggers further elimination of transitions from state 〈1, e, 3, 0, 1, 0〉 of statement
x=z+1. Fig. 3(b) shows a valid solution of the example of Fig. 1 inferred by our tool.

Sometimes it is possible to simplify the guards of a solution without affecting the
set of allowed interleavings. For example, in Fig. 3(a), we can use only variables x and
y in the guard of z=y+1. Such optimizations are further discussed in Section 4.1.

4

The key point to take away from this example is the connection between synchro-
nization cost and permissibility. Restricting the cost of synchronization by limiting ob-
servability may lead to eliminating valid interleavings that cannot be distinguished from
invalid ones. For instance, the solution in Fig. 3(b) permits a subset of the traces allowed
by the solution in Fig. 3(a) because it is not allowed to observe variable y.

In the rest of the paper we describe our approach in more detail. Due to space
restrictions, our description is somewhat informal. Additional formal details, examples,
proofs, and discussion of related work are available in [16].

2 Preliminaries
Transition System A transition system ts is a tuple 〈Σ, T, Init〉 where Σ is a set of
states, T ⊆ Σ × Σ is a set of transitions between states, and Init ⊆ Σ are the initial
states. For a transition t ∈ T , we use src(t) to denote the source state of t, and dst(t)
to denote its destination state.

For a transition system ts, we use the following notations. We use s Ãts s′ to
denote that there exists a path in ts starting in state s and ending in state s′. Formally,
the relation Ãts is the reflexive transitive closure of the successor relation defined by T.
A stuck state is a state that does not have any successors in ts. The set of stuck states is
denoted by Stuckts. A doomed state is a state from which all paths end in stuck states.
The set of doomed states is denoted by Doomedts. We say that a state s ∈ Σ is reachable
when there exists a path to s from some initial state. The set of all reachable states of
ts is denoted by Reachts. A transition system ts is valid, denoted by valid(ts), if and
only if no doomed state is reachable. For a transition system ts, a trace is a (possibly
infinite) sequence of transitions t0, t1, . . . such that src(t0) ∈ Init and for every i ≥ 0,
ti ∈ T and dst(ti) = src(ti+1). We use [[ts]] to denote the set of traces of a transition
system ts. A trace is valid if it does not contain any doomed state.

Conditional Critical Regions (CCRs) The conditional critical region (CCR) construct,
originally introduced by Hoare [7], allows the programmer to specify what opera-
tions have to be executed atomically and under what condition. A CCR has the form:
guard → stmt where guard is a boolean expression and stmt is a statement (in-
cluding a sequential composition of statements) that have to be executed atomically.
The guard is evaluated atomically and if true, the statements are executed atomically.
Otherwise, the thread blocks until the guard evaluates to true.

Program Syntax For the purpose of this paper, we consider a program that consists of
a set of (named) operations, Op def= {op1, . . . , opn}, executed in parallel by different
threads. An operation is a code fragment defined using a simple, flat, programming
language with assignment, conditional and unconditional goto, sequential composition,
and CCRs. The language does not contain parallel composition, allocation of threads,
nested CCRs, and invocation of operations.

If not stated otherwise, each basic statement is in a separate CCR, guarded by true,
and the guard is omitted. The user may define CCRs in which the atomic statement
consists of a sequence of statements, and not a single basic statement. We assume that
every statement participates in (exactly one) CCR.

We use Var to denote the set of (shared) program variables, which can be referenced
by any operation. To simplify the exposition, we do not use local variables. There is

5

nothing in our approach that prevents us from using local variables, but having local
variables makes the formal definitions cumbersome. We assume that all program vari-
ables have integer values, initialized to 0.

Program Semantics Let P be a program with variables Var. A program state s is a
pair 〈pcs, vals〉 where pcs : {1, . . . , n} → Int maps a thread identifier to the program
counter of the corresponding thread, ranging over program locations in the operation
executed by the thread, and vals : Var → Int is a valuation of the variables. We use
ΣP to denote the set of all program states. The set of initial program states is denoted
by InitP ⊆ ΣP . The value of a program expression e in a state s ∈ ΣP is denoted by
[[e]](s). It is computed using standard evaluation rules for program expressions.

We define a transition system for a program P to be 〈ΣP , TP , InitP 〉 where a tran-
sition (s, s′) ∈ TP is labeled by a program location l and a thread identifier tid. A
transition (s, s′) labeled with l and tid is in TP if (i) the program counter of the thread
tid in state s is at program location l, (ii) the guard of the CCR at program location l
is satisfied in s, and (iii) execution of the statement corresponding to CCR at l in pro-
gram state s by thread tid results in state s′. In addition, we guarantee that states at the
program exit are not stuck by adding the corresponding self-loop transitions to ts. For a
transition t ∈ TP , we use lbl(t), tid(t), and ccr(t) to denote the corresponding program
location, thread id, and the (unique) CCR at program location lbl(t), respectively.

The semantics of a program P , denoted by [[P]], is the (prefix closed) set of traces
of the corresponding transition system 〈ΣP , TP , InitP 〉.
Specification The user can specify a global invariant S, which describes a set of states.
An invariant can refer to program variables and to the program counter of each thread
(e.g., to model local assertions). Our approach can be extended to handle any temporal
safety specifications, expressed as a property automaton, by computing the synchronous
product of program’s transition system and the property automaton [3].

We define 〈ΣP , TP,S , InitP 〉 to be a transition system for a program P and global
invariant S, where TP,S ⊆ TP is defined by removing from TP all transitions in which
the source state does not satisfy S: TP,S = {t ∈ TP |src(t) satisfies S}. This effectively
means that in the transition system for P and S, all states which do not satisfy S become
stuck states — states with no outgoing transitions. If a stuck state is reachable, the
transition system for P and S is not valid.

A program P is valid with respect to S if and only if the corresponding transition
system 〈ΣP , TP,S , InitP 〉 is valid. This notion of validity includes both safety properties
defined by the global invariant S and a progress guarantee that the program does not
get stuck, in any execution.

3 Maximally-Permissive Programs
Given an input program P and a specification S, we modify P by adding synchroniza-
tion such that the modified program satisfies the specification S. Conceptually, we take
the following steps: (i) construct the transition system ts of P and S; (ii) remove a min-
imal set of transitions from ts such that the resulting transition system ts′ is valid with
respect to S; (iii) implement ts′ as a program, by adding synchronization code to P .

In this work, we rely on standard techniques to construct the transition system of P ,
e.g., [8], and focus on steps (ii) and (iii).

6

3.1 Removing Transitions under Limited Observability
By limiting the cost of synchronization code, we induce limited observability. Hence,
not every transition system obtained by removing a bunch of transitions from ts can be
implemented as a program with the same traces by adding synchronization code to P .

To remove a transition t, and implement the result as a program, the input program
P is modified by strengthening the guard of ccr(t), preventing its execution from the
source state src(t). When the state src(t) can be uniquely characterized by an expres-
sion in the language of guards LG, we can use its characterization to strengthen the
guard of ccr(t) without affecting transitions other than t. Our ability to uniquely char-
acterize a state src(t) depends on LG. Usually, due to limited observability, we may
not be able to uniquely characterize src(t). In such cases, the removal of the transition
t may remove other transitions executing the same statement, because they have the
same guard. We say that two transitions are equivalent when the language of guards
is not expressive enough to remove one of the transition without removing the other
one. We now provide a formal definition of the transition equivalence under limited
observability.

Observational Equivalence First, we define equivalence relation on states with respect
to LG. Two states are equivalent with respect to LG, when there is no guard in LG that
can be used to distinguish them. Formally, for all s, s′ ∈ ΣP ,

s ≈LG s′ if and only if for all g ∈ LG.[[g]](s) = [[g]](s′) (1)

We now define equivalence relation on transitions with respect to LG. Two tran-
sitions t and t′ are equivalent when they execute the same statement and their source
states are indistinguishable by LG. Formally, for all t, t′ ∈ TP,S ,

t ≈LG t′ if and only if lbl(t) = lbl(t′) and src(t) ≈LG src(t′) (2)

We use [t]LG to denote the equivalence class of t with respect to ≈LG. For a set of
transitions E ⊆ TP,S , we use [E]LG to denote ∪t∈E [t]LG.

Characterizing Observable States We define a characterization function to respect the
equivalence relation ≈LG. Let χ be a function that takes as input a state s ∈ ΣP and
returns a guard in LG. We say that χ characterizes the states observable by LG, when
for all s, s′ ∈ ΣP ,

[[χ(s)]](s′) = true if and only if s ≈LG s′ (3)

Our method is applicable to any guard languages for which a characterization func-
tion is defined. Usually, it is easy to define a characterization function, e.g., by enumer-
ating the values of observable variables in the state.

Example 1. Consider the program of Fig. 1 and its transition system in Fig. 2. Let LG
be boolean combinations of predicates of the form var == c, where var is one of the
program variables {x,z}, and c is a constant. Under LG, many of the states in Fig. 2 are
equivalent. For example, the states s1 = 〈e, 2, 3, 1, 0, 0〉, s2 = 〈e, e, 3, 1, 2, 0〉, and s3 =
〈e, e, 3, 1, 1, 0〉 are equivalent as they cannot be distinguished by LG. Consequently, the
transitions corresponding to the statement z=y+1 outgoing from s1, s2, and s3 are
equivalent. When the characterization function is defined by enumerating the values of
observable variables in the state, χ(s1)=χ(s2)=χ(s3) = (x == 1)∧(z == 0).

7

3.2 Implementability
We can use χ to define a guard in LG that removes a transition t ∈ TP,S , and all the
transitions in its equivalence class [t]LG, but does not affect any other transitions.

Lemma 1. For all t, t′ ∈ TP,S such that lbl(t) = lbl(t′), t′ ≈LG t if and only if
[[χ(src(t))]](src(t′)) = true.

A transition system ts is implementable from P and LG when there exists a pro-
gram P ′ obtained from P by introducing guards from LG such that the set of traces
of ts and P ′ are the same. The following theorem relates implementability to observa-
tional equivalence. Intuitively, if we remove an equivalence class of transitions from an
implementable transition system, the result is an implementable transition system.

Theorem 1 (Implementability). For every R ⊆ TP,S , the transition system ts defined
by 〈ΣP , TP,S \ [R]LG, InitP 〉 is implementable from P and LG:
(1) There exists a program P ′ such that [[P ′]] = [[ts]].
(2) P ′ can obtained from P by introducing guards from LG.

implement(P:Program,R:Transitions):Program {
P ′ = P
foreach t ∈ R

let ccr(t) be l : guard → stmt in
P ′ = P ′[l : ¬χ(src(t)) ∧ guard → stmt]

return P ′

}
Fig. 4. The procedure implement.

Given P and [R]LG, for some
R ⊆ TP,S , the simple algorithm
implement from Fig. 4 computes
such P ′. It relies on Lemma 1 to
guarantee that only transitions from
[R]LG are removed. The algorithm
constructs P ′ from P by strength-
ening the guards of CCRs that cor-
respond to transitions in [R]LG. For
a transition t, we use the notation
P ′[l : ¬χ(src(t))∧guard → stmt] for the program obtained from P ′ by strengthening
the guard of ccr(t) to be ¬χ(src(t)) ∧ guard. This change is sufficient (by Lemma 1)
to remove the transition t itself and all its equivalence class [t]LG, but only them.

3.3 Maximally Permissive Programs
We now define the natural notion of a maximally-permissive program for a given lan-
guage of guards. We note that maximal permissiveness arises in many other settings
(e.g., [10, 13]).

Definition 1 (Maximally-Permissive). Consider a program P and a language of guards
LG. Let P ′ be a program obtained from P by introducing guards from LG. P ′ is
maximally-permissive with respect to LG if and only if P ′ is valid and for every pro-
gram P ′′ obtained from P by introducing guards from LG, if [[P ′]] ⊂ [[P ′′]], then P ′′ is
not valid.

We use MP(P, LG) to denote the set of all maximally-permissive programs that
can be obtained from P by introducing guards from LG. Note that the programs in
MP(P, LG) have identical or incomparable sets of traces, i.e., for every pair P, P ′ ∈
MP(P, LG), [[P]] 6⊂ [[P ′]]. When we cannot eliminate all invalid interleavings (that end
in stuck states) only by introducing guards, MP(P, LG) is empty.

8

In the rest of this section, we show that every maximally-permissive program can
be implemented by removing edges from the transition system of P . We present two
algorithms for computing maximally permissive programs with respect to the language
of guards LG. The language LG is required in all of the algorithms. To avoid clutter we
do not pass it as an explicit parameter.

3.4 EXHAUSTIVE Algorithm
Theorem 1 allows us to implement any transition system defined by removing a set of
transitions [R]LG from the transition system that corresponds to the original program P .
We are interested in valid transition systems. Therefore, we restrict our attention to sets
of transitions that yield valid and implementable transition systems. Rather than con-
sidering all subsets of transitions as possible candidates for removal, we define the set
of bad transitions, and only consider transitions from this set as candidates for removal.

We define a bad transition as a transition that lies on an invalid trace. More formally,
given a transition system 〈Σ, T, Init〉 we say that a transition t ∈ T is a bad transition
when i Ãts src(t), dst(t) Ãts d, such that i ∈ Init, d ∈ Doomedts. Using this defi-
nition, we would like to construct an algorithm that computes a maximally permissive
program, but only considers bad transitions as candidates for removal.

Side effects Implementability restrictions require that when we remove a transition t
we also remove all other equivalent transitions [t]LG. As a result, the removal of a bad
transition might introduce additional bad transitions.

Definition 2. We say that a removal of a transition t has a side effect when |[t]LG| > 1.
When the removal of a transition t does not have a side-effect, we say that it is side-
effect free.

Example 2. Consider the example program of Fig. 1 and its transition system in Fig. 2.
Assume that the algorithm has chosen to remove the bad transition 〈e, 2, 3, 1, 0, 0〉 z=y+1−→
〈e, 2, e, 1, 0, 1〉, denote it t. The statement executed by this transition is 3: true →
z=y+1. Under observability limited to variables x,z, this removal has the side effect
of removing the (equivalent) transitions from 〈e, e, 3, 1, 1, 0〉 and 〈e, e, 3, 1, 2, 0〉. Since
there are no other outgoing transitions from these states, the removal of t makes these
states doomed, thus adding bad transitions.

Because the removal of a bad transition can introduce additional bad transitions (by
introducing doomed and stuck states), an algorithm based on selecting bad transitions
has to remove transitions gradually, and recompute the set of bad transitions after every
step. This leads to the following algorithm.

Fig. 5 shows the EXHAUSTIVE algorithm for inferring synchronization. The algo-
rithm takes a program as input and constructs a valid program by iteratively eliminating
bad transitions. The algorithm maintains a set R of transitions to be removed. Initially,
this set is empty. On every iteration of the algorithm, we construct a transition system ts
by removing the transitions in R from the transition system of the input program P . If
the resulting transition system is valid, the algorithm uses the procedure implement
to return a modified version of P that avoids all transitions in R. If the transition system
ts is not valid, the algorithm computes a set of bad transitions by using the procedure

9

EXHAUSTIVE(P : Program) : Program {
1: R = ∅
2: while (true) {
3: ts = 〈ΣP , TP,S \R, InitP 〉
4: if valid(ts) return implement(P,R)
5: B = bad-transitions(ts)
6: if B = ∅ abort “cannot find valid synchronization”
7: select a transition t ∈ B
8: R = R ∪ [t]LG

}
}
bad-transitions(ts : TransSys) : Set of Transitions {

let ts be 〈Σ, T, Init〉 in
return {t ∈ T | i Ãts src(t), dst(t) Ãts d, i ∈ Init, d ∈ Doomedts}

}
Fig. 5. EXHAUSTIVE algorithm.

bad-transitions(ts). If the set is empty, it means that the transition system is not valid,
but there are no more bad transitions to be removed (in this algorithm, it means that no
bad transitions remain in ts and there exists a stuck state in Init). If the set B of bad
transitions is not empty, the algorithm non-deterministically chooses one of the tran-
sitions in B as the transition to be removed. To guarantee that a program that avoids
transitions in R is implementable, when we add a bad transition t to R, we add to R all
transitions in its equivalence class [t]LG.

Theorem 2 (Correctness of EXHAUSTIVE). A run of the EXHAUSTIVE algorithm termi-
nates with either a valid program or abort.

Example 3. This example demonstrates how the algorithm is applied to the program
of Fig. 1 and its transition system in Fig. 2. The first step in the algorithm is to check
whether ts = 〈ΣP , TP,S \ R, InitP 〉 is valid. Since at this point R = ∅, the transition
system is the one of Fig. 2 which is invalid (there is a trace reaching the stuck state
〈e, e, e, 1, 2, 1〉). The algorithm now computes the set B, and lets assume that it chooses

to remove the bad transition t = 〈e, 2, 3, 1, 0, 0〉 z=y+1−→ 〈e, 2, e, 1, 0, 1〉. The statement
executed by this transition is the statement 3: true → z=y+1. Under full observ-
ability, χ(src(t)) = (x == 1 ∧ y == 0 ∧ z == 0). Using this formula, the algorithm
creates a new program P ′ in which the statement has the guard ¬χ(src(t)), that is,
3: (x 6= 1 ∨ y 6= 0 ∨ z 6= 0) → z=y+1.

Next, we show how to use the EXHAUSTIVE algorithm to compute all maximally
permissive programs for a given input program, specification and language of guards.
The idea is to implement the non-deterministic choice of a transition t ∈ B in line 7
using backtracking. As a result, we obtain different sets of transitions to remove, where
each set yields a valid program. (It is different from enumerating all possible subsets of
bad transitions of the original program, because of side effects.) The following lemma
shows that all maximally permissive programs can be obtained this way.

10

Lemma 2. For every maximally permissive program P ′ ∈ MP (P, LG), there exists a
run of the EXHAUSTIVE algorithm that returns P ′′ such that [[P ′]] = [[P ′′]].

Let PS denote the set of (valid) programs obtained from all possible runs of EX-
HAUSTIVE, for different choices of t ∈ B in line 7. To compare permissiveness of pro-
grams P1, P2 ∈ PS, we look at the corresponding sets of removed transitions R1, R2 ⊆
TP,S , computed by the EXHAUSTIVE algorithm, where Pi = implement(P, Ri), for
i = 1, 2. If R1 ⊂ R2, then the transition system obtained by removing R1 has more
traces (is more permissive) than the transition system obtained by removing R2. For-
mally, let RS be the set of sets of removed transitions that correspond to the programs
in PS. We define the operation min(RS) that chooses from RS the minimal sets of
transitions that guarantee a valid transition system:

min(RS) def= {R ∈ RS | ∀R′ ∈ RS.R′ 6⊂ R} (4)

This allows us to generate all maximally permissive programs:

Theorem 3. For every maximally permissive program P ′ ∈ MP (P, LG), there exists
R ∈ min(RS) such that [[P ′]] = [[implement(P, R)]]. For every R ∈ min(RS),
implement(P,R) ∈ MP (P, LG).

Complexity A single run of EXHAUSTIVE is polynomial in the size of the (original)
transition system. The size of RS is exponential in the transition system. Computing
min(RS) is polynomial in the size of RS. Therefore, computing MP (P, LG) is expo-
nential in the size of the transition system.

3.5 GREEDY Algorithm
The EXHAUSTIVE algorithm of Fig. 5 is choosing transitions for removal from the set
bad-transitions(ts). This set may also contain transitions from one doomed state to an-
other. Removal of a transition between doomed states is redundant, as such a transition
will become unreachable (and therefore transitively removed) when transitions into
dominating doomed states are removed. We can further leverage the structure of the
transition system and avoid removal of a transition between doomed states by having
the algorithm pick transitions from the cut between non-doomed and doomed states.

The GREEDY algorithm is a modification of the EXHAUSTIVE algorithm such that
instead of using bad-transitions(ts), it uses the following procedure cut-transitions(ts).
cut-transitions(ts : TransSys) : Transitions {
let ts be 〈Σ, T, Init〉 in
return {t ∈ T | i Ãts src(t), i ∈ Init, src(t) /∈ Doomedts, dst(t) ∈ Doomedts}

}

Example 4. Consider the program of Fig. 1. Assume LG is as earlier boolean combina-
tions of equality to constants, and is limited to only observing variables x and z. The
starting point of the algorithm is the transition system of Fig. 2. In the first step, the
only transition in the cut is the transition t = 〈e, 2, 3, 1, 0, 0〉 z=y+1−→ 〈e, 2, e, 1, 0, 1〉,
and so the algorithm chooses to eliminate this transition. This results in the addition
of the guard (x 6= 1 ∨ z 6= 0) to the statement z=y+1, and has the side-effect of
removing the transitions from 〈e, e, 3, 1, 1, 0〉 and 〈e, e, 3, 1, 2, 0〉, which now become

11

doomed states. In the second step, the algorithm chooses to eliminate the transition
〈1, e, 3, 0, 1, 0〉 x=z+1−→ 〈e, e, 3, 1, 1, 0〉. This adds the guard (x 6= 0∨z 6= 0) to the state-
ment x=z+1, which has the side effect of removing the transition 〈1, 2, 3, 0, 0, 0〉 x=z+1−→
〈e, 2, 3, 1, 0, 0〉. The resulting program is shown in Fig. 3(b).

Theorem 4 (Correctness of GREEDY). A run of the GREEDY algorithm terminates with
either a valid program or abort.

In GREEDY, the non-deterministic choice of a transition t at line 7 of Fig. 5 returns
a cut transition. In contrast to EXHAUSTIVE, where the non-deterministic choice is im-
plemented using backtracking, in GREEDY we implemented it as an arbitrary choice, be-
cause any choice returns a reasonable (in fact, locally optimal) solution, while enumer-
ating all possibilities does not guarantee maximal permissiveness. Finding a maximally-
permissive solution is exponential in the size of the transition system in the worst-case
(using EXHAUSTIVE with backtracking), while GREEDY is polynomial. GREEDY computes
a maximally permissive solution when the removal of transitions has no side-effects:

Theorem 5. If a run of GREEDY has no side-effects then it computes a maximally per-
missive program for P and LG or aborts. If it aborts, then MP(P, LG) = ∅.

Note that the theorem only requires that transitions removed during the run of
GREEDY to be side-effect free. Recall that under full observability, there cannot be any
side-effects, but GREEDY does not require full observability. That is, even under limited
observability, it is possible that a run of GREEDY has no side-effects, in which case, it
produces a maximally permissive program. However, in cases where limited observabil-
ity causes side-effects, there are no guarantees: GREEDY may fail or succeed in finding a
maximally permissive solution. The following example demonstrates that GREEDY fails
to find a maximally permissive program when EXHAUSTIVE manages to find it.

Example 5. Consider the program of Fig. 1, and its transition system in Fig. 2. For
this program, when the guard language is limited to only allow the observability of
the variable z, the result of GREEDY is a program that admits no traces. However, the
EXHAUSTIVE algorithm does find a solution with this guard language. The solution found
by EXHAUSTIVE is the addition of a guard z 6= 0 to the statements x=z+1 and z=y+1.

In most examples we considered, even when GREEDY encountered side-effects, it
was always able to find the best solution. Characterizing more accurately when GREEDY

guarantees maximal permissiveness is an interesting subject of future work.

3.6 Challenges in Inferring Synchronization under Abstraction
The algorithms presented in this paper operate on a finite transition system. To handle
infinite-state systems, we use finite-state abstraction. Given a program P and a specifi-
cation S, we first compute an abstract transition system for it (see, e.g., [4]), and then
apply EXHAUSTIVE or GREEDY to it. If the algorithm does not abort, then the resulting
program is guaranteed to satisfy S. However, under abstraction, we cannot guarantee
that the resulting program does not reach a stuck state. That is, we might generate
guards that make a thread block indefinitely. The reason for this limitation is that under
abstraction we might lose the information that a state becomes stuck.

12

We can conservatively eliminate abstract states that potentially become stuck, los-
ing the ability to guarantee that the result is maximally-permissive. In many cases the
conservative approach does not manage to find even a single valid program and aborts.
Another approach is to refine an abstract transition system when a state becomes po-
tentially stuck. In the case that the concrete transition system has a finite bisimulation
quotient, our algorithm terminates and produces a valid program (or abort). Yet another
approach is to use an abstraction that record information about stuck states. There are
abstractions that can record some progress properties, but their precision for detecting
stuck states has not been evaluated. This is a challenging problem, but it is beyond the
scope of this paper.

4 Prototype Implementation
We have implemented the GREEDY algorithm in a prototype tool based on the SPIN
model-checker [8]. The tool takes as input a program P , which uses CCRs, a specifica-
tion S and a set of variables Obs ⊆ Var that guards may refer to. The set of variables
Obs is used to determine an upper bound on the synchronization cost. The tool then
automatically infers correct synchronization with minimal cost, using the cost function
from Section 4.1.

We used the tool on several small but instructive examples, described in [16], in-
cluding dining philosophers and asynchronous counters. In all of the examples we start
with a program that is initially incorrect and does not use any synchronization (our tool
also works on input programs that already contain guards). In all examples, out tool
successfully inferred guards that achieve maximal permissiveness.

4.1 Reducing Synchronization Cost
The algorithms presented so far infer correct (and maximally permissive) guards whose
cost is less than a user-specified upper bound, however, the guards they produce are
not guaranteed to have the least synchronization cost for this level of permissiveness.
Sometimes, it may be possible to reduce the cost of these guards while maintaining
correctness and maximal permissiveness. We now demonstrate how this is done for a
specific cost model.

Cost as the Number of Shared Accesses Depending on the environment and the under-
lying architecture (e.g. cache costs), there may be different cost models for comparing
the synchronization cost of two guard expressions. Here, we consider one intuitive cost
model: we compare the number of distinct shared variables accessed in each guard. This
is a natural measure reflecting the atomic observations about the shared state.

Formally, given a program P , we denote the number of distinct variables accessed
by the CCR guard in location l of P by nga(P, l). Given a program P , and a specifica-
tion S, we say that P1 ∈ VP(P, S) has lower cost than a program P2 ∈ VP(P, S) if for
every location l of P , nga(P1, l) ≤ nga(P2, l).

The language of guards is restricted to boolean combinations of equalities between a
variable in the user-provided set Obs and an (integer) constant. We denote this language
of guards by EQ(Obs) and define a characterization function χ as follows:

χObs(s)
def=

∧

v∈Obs,[[v]](s)=c

v = c

13

It is easy to see that χObs is well defined and characterizes the states observable by the
language defined above. The characterization function χObs can be extended naturally
to apply to sets of states. Given a set of states S ⊆ Σ, χObs(S) =

∨
s∈S χObs(s).

The simple version of implement shown in Fig. 4 uses χ which finds a guard
in the language, but does not attempt to minimize its cost. Synchronization derived
using simple version of implement always has the same high cost: for each label l,
nga(P, l) = |Obs|. Our tool uses an improved version of implement, shown in Fig. 6,
which results in a program with the same permissiveness as for the simple version of
implement, but has minimal cost. The main idea is to replace χObs with a “separator”
formula, as we briefly describe next (see [16] for details).

Separator A separator is a guard in LG that distinguishes between two sets of states.
Given S1, S2 ⊆ Σ, separator g satisfies (i) for all s1 ∈ S1, [[g]](s1) = true, and (ii) for
all s2 ∈ S2, [[g]](s2) = false.

implement(P:Program,R:Transitions) {
P ′ = P
ts = 〈ΣP , TP,S \R, InitP 〉
L = {lbl(t) | t ∈ R}
foreach l ∈ L
BS={src(t)∈Reachts | lbl(t) = l, t∈R}
GS={src(t)∈Reachts | lbl(t) = l}
sep = SEPARATOR(BS, GS)
let ccr(l) be guard → stmt in
P ′ = P ′[l : ¬sep ∧ guard → stmt]

return P ′

}
SEPARATOR(S1, S2 : Set of States) {
foreach k = 1, . . . , |Obs|

foreach V ⊆ Obs such that |V | = k
if (S1 ↓ V) ∩ (S2 ↓ V) = ∅

return χV (S1);
abort ”cannot find separator”
}
Fig. 6. implement with separator.

There may be multiple separators in LG,
with different costs: for example χObs(S1)
is a separator. However, the cost of this sep-
arator may be higher than necessary, be-
cause it does not take into account S2. The
algorithm in Fig. 6 computes a separator in
the language EQ(Obs) with the minimal
number of variables. It enumerates subsets
V of Obs of increasing size until it finds one
that can distinguish between S1 and S2, and
builds a separator formula using χV .

The variables in V cannot distinguish
between two states s and s′ when the val-
ues of all these variables are identical in s
and s′. Technically, we use s ↓ V to denote
the projection of the state s onto the set of
variables V ⊆ Obs. For a set S ⊆ Σ, we
use S ↓ V to denote {s ↓ V | s ∈ S}. A set
of variables V can distinguish between sets
of states S1 and S2, if their projections onto
V are disjoint.

Example 6. Let Var = {x, y, z}. Let S1 = {〈1, 1, 1〉} and S2 = {〈1, 1, 2〉, 〈1, 2, 3〉}.
Suppose that Obs = {x, z}. Then, a possible separator for S1 and S2 is χObs(〈1, 1, 1〉) def=
x = 1∧z = 1, which performs two shared accesses. Another separator for S1 and S2 is
z = 1, and it only accesses a single variable. The algorithm in Fig. 6 returns the latter.

5 Related Work
Early work by Emerson and Clarke [2] uses temporal specifications to generate a syn-
chronization skeleton. The generated programs assume full observability of the pro-
gram state. This has been later extended by Attie and Emerson to synthesize programs
with finer grained atomic sections [1]. Early work by Manna and Wolper [11] synthe-
sizes CSP programs. In contrast, we synthesize programs for shared memory. These

14

approaches have no notion of optimality, and no notion of synchronization cost. Our
approach allows us to phrase the question of synchronization cost and optimality rela-
tive to a given language of guards. We also assume that the computation performed by
the program is provided, and the goal of the synthesis algorithm is to add the required
synchronization that guarantees that the specification is satisfied. Pnueli and Rosner
[12] consider the problem of synthesizing a reactive module based on an LTL specifica-
tion. They discuss the problem of implementability in this setting, and define necessary
and sufficient conditions for the implementability of a given specification.

The work of Joshi et. al. [10] discusses a method for proving that a given program
P is maximally concurrent (permissive) with respect to a specification S. This requires
a manual phase where the input program P is translated to another equivalent program
P’ and maximal concurrency is then manually proved on P’. In contrast, we recognize
that maximal concurrency is only one component of a more general problem that in-
volves other important dimensions such as synchronization cost. We study how both of
these two dimensions are connected and provide algorithms that take into account both
dimensions when inferring synchronization.

Acknowledgements: We thank Barbara Jobstmann, and the anonymous referees.

References
1. P.C. Attie and E.A. Emerson. Synthesis of concurrent systems for an atomic read/atomic

write model of computation. In PODC ’96, pages 111–120. ACM, 1996.
2. E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons using

branching-time temporal logic. In Logic of Programs, Workshop, pages 52–71, 1982.
3. E.M. Clarke, Jr., O. Grumberg, and D.A. Peled. Model Checking. The MIT Press, 1999.
4. D. Dams. Abstract Interpretation and Partition Refinement for Model Checking. PhD thesis,

Eindhoven University of Technology, The Netherlands, December 1996.
5. Brinch Hansen. Edison - a multiprocessor language. Software - Practice and Experience,

11(4):325–361, 1981.
6. T. Harris and K. Fraser. Language support for lightweight transactions. In OOPSLA ’03,

pages 388–402. ACM, 2003.
7. C. A. R. Hoare. Towards a theory of parallel programming. In The origin of concurrent

programming: from semaphores to remote procedure calls, pages 231–244. 2002.
8. G. J. Holzmann. The Spin Model Checker, Primer and Reference Manual. Addison-Wesley,

Reading, Massachusetts, 2003.
9. B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a game. In Conference on

Computer Aided Verification (CAV), pages 226–238, 2005. LNCS 3576.
10. R. Joshi and J. Misra. Toward a theory of maximally concurrent programs (shortened ver-

sion). In PODC ’00, pages 319–328, New York, NY, USA, 2000. ACM.
11. Z. Manna and P. Wolper. Synthesis of communicating processes from temporal logic speci-

fications. ACM Trans. Program. Lang. Syst., 6(1):68–93, 1984.
12. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL ’89, pages 179–

190, New York, NY, USA, 1989. ACM.
13. P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event processes.

SIAM J. Control Optim., 25(1):206–230, 1987.
14. V.A. Saraswat, V. Sarkar, and C. von Praun. X10: concurrent programming for modern

architectures. In PPoPP ’07, pages 271–271, New York, NY, USA, 2007. ACM.
15. H. Sutter and J. Larus. Software and the concurrency revolution. Queue, 3(7):54–62, 2005.
16. M. Vechev, E. Yahav, and G. Yorsh. Inferring synchronization under limited observability.

Technical report, IBM, 2008. http://www.research.ibm.com/paraglide/.

15

