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Abstract

We addresses the problem of automatic verification and fence inference in concur-
rent programs running under relaxed memory models. Modern architectures implement
relaxed memory models in which memory operations may be reordered and executed
non-atomically. Instructions called memory fences are provided to the programmer,
allowing control of this behavior. To ensure correctness of many algorithms, the pro-
grammer is often required to explicitly insert memory fences into her program. How-
ever, she must use as few fences as possible, or the benefits of the relaxed architecture
may be lost. It is our goal to help automate the fence insertion process.

We present an algorithm for automatic inference of memory fences in concurrent
programs, relieving the programmer from this complex task. Given a finite-state pro-
gram, a safety specification and a description of the memory model our algorithm com-
putes a set of ordering constraints that guarantee the correctness of the program under
the memory model. The computed constraints are maximally permissive: removing
any constraint from the solution would permit an execution violating the specification.
These constraints are then realized as additional fences in the input program.

We implemented our approach in a pair of tools called fender and blender and
used them to infer correct and efficient placements of fences for several non-trivial algo-
rithms, including practical mutual exclusion primitives and concurrent data structures.

1 Introduction

In 1979, in his seminal paper “How to Make a Multiprocessor Computer That Correctly Exe-
cutes Multiprocess Programs” [20], Leslie Lamport defined the “sequential consistency” (SC)
criterion for correctness of multiprocessor computers. Such a computer is called sequentially
consistent if:

The result of any execution is the same as if the operations of all processes were
executed in some sequential order, and the operations of each individual processor
appear in the sequence in the order specified by its program.

It was Lamport’s intent that any correct multiprocessor computer implementation must
meet this criterion. However, modern hardware architectures are not, in fact, sequen-
tially consistent. Instead, they implement so-called “relaxed” (or “weak”) memory models
(RMMs) [1]. These models enable improved hardware performance compared to sequentially
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consistent hardware [15]. This is achieved by allowing the CPU and memory subsystems to
perform memory operations out of order and non-atomically. Unfortunately, this behavior
poses an additional burden on the programmer. Even when the underlying architecture is
sequentially consistent, highly-concurrent algorithms are notoriously hard to get right [26].
When programming for an architecture that implements an RMM, programmers must also
reason about executions that have no sequential analogue. This reasoning is non-intuitive
and may lead to subtle concurrency bugs.

To allow programmers avoid non-sequentially consistent executions, architectures provide
special memory fence (also known as memory barrier) instructions. Very informally, a fence
instruction restricts the CPU and memory subsystem’s ability to reorder operations, thus
eliminating some undesired non-SC executions. Finding a correct and efficient placement of
memory fences for a given concurrent program is a challenging task. Using too many fences
(over-fencing) hinders performance, while using too few fences (under-fencing) may allow
unexpected incorrect executions to occur. Manually balancing between over- and under-
fencing is very difficult, time-consuming and error-prone (cf. [16, 5, 6]). Furthermore, the
process of finding fences has to be repeated whenever the algorithm changes, and whenever
it is ported to a different architecture.

As an example, consider the problem of implementing the Chase-Lev work-stealing
queue [11] (“CL”) on a relaxed memory model. Work stealing is a popular mechanism
for efficient load-balancing used in runtime libraries for languages such as Java, Cilk [3] and
X10 [10]. Fig. 1 shows an implementation of this data structure in C-like pseudo-code. For
now, ignore the fence instructions that appear on unnumbered lines. CL maintains an ex-
pandable array of items called wsq and two indices top and bottom, initialized to 0. The queue
is considered empty when top ≥ bottom When the queue is not empty, top%(queue→ size)
points to the oldest element in the queue, while bottom%(queue→ size) points one past the
newest element. The queue has a single owner thread that can only invoke the operations
push() and take() which operate on one end of the queue, while other threads may call
steal() to take items out from the opposite end. The queue can be dynamically expanded
in response to a push() when additional space is required to store the item. This is done
by the push() operation invoking the expand() procedure. For simplicity, we assume that
items in the array are integers and that memory is collected by a garbage collector (manual
memory management presents orthogonal challenges, cf. [25]).

We would like to guarantee that there are no out of bounds array accesses, no items
are lost (by being overwritten before being read), and no “phantom” items are read after
being removed. All these properties hold for the CL queue under the sequentially consistent
memory model. However, they may be violated when it is used under a relaxed model.

Under weak memory models, e.g. the SPARC RMO [30] memory model, some of the
memory operations in the code may be executed out of order. Tab. 1 shows possible RMO
re-orderings that lead to violation of the specification. The column locations lists the two
lines in a given method which contain memory operations that might get reordered and lead
to a violation. The next column gives an example of an undesired effect when the operations
at the two labels are reordered. The last column shows the type of fence that can be used
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1 typedef struct {

2 long size;

3 int *ap;

4 } item_t;

5
6 long top , bottom;

7 item_t *wsq;

1 void push(int task) {

2 long b = bottom;

3 long t = top;

4 item_t* q = wsq;

5 if (b-t ≥ q→size -1){

6 q = expand ();

7 }

8 q→ap[b % q→size]=task;

fence("store -store");

9 bottom = b + 1;

10 }

1 int take() {

2 long b = bottom - 1;

3 item_t* q = wsq;

4 bottom = b;

fence("store -load");

5 long t = top;

6 if (b < t) {

7 bottom = t;

8 return EMPTY;

9 }

10 task = q→ap[b % q→size];

11 if (b > t)

12 return task;

13 if (!CAS(&top , t, t+1))

14 return EMPTY;

15 bottom = t + 1;

16 return task;

17 }

1 int steal() {

2 long t = top;

fence("load -load");

3 long b = bottom;

fence("load -load");

4 item_t* q = wsq;

5 if (t ≥ b)

6 return EMPTY;

7 task=q→ap[t % q→size];

fence("load -store");

8 if (!CAS(&top , t, t+1))

9 return ABORT;

10 return task;

11 }

1 item_t* expand () {

2 int newsize = wsq→size * 2;

3 int* newitems = (int *) malloc(newsize*sizeof(int));

4 item_t *newq = (item_t *) malloc(sizeof(item_t ));

5 for (long i = top; i < bottom; i++) {

6 newitems[i % newsize] = wsq→ap[i % wsq→size];

7 }

8 newq→size = newsize;

9 newq→ap = newitems;

fence("store -store");

10 wsq = newq;

11 return newq;

12 }

Figure 1: Pseudo-code of the Chase-Lev work stealing queue
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to prevent the undesirable reordering. Informally, the type describes what kinds of memory
operations have to complete before other type of operations. For example, a store-load fence
executed by a processor forces all stores issued by that processor to complete before any new
loads by the same processor start.

For a more detailed example of the effect the memory model has on execution, we con-
sider the failure described in line 2 of Tab. 1. This corresponds to a reordering of oper-
ations at lines 4 and 5 in the take() method: if these two lines are reordered, the read
from top is executed before the write to bottom. The failure scenario involves one pro-
cess running the steal() method in parallel to another processes running a sequence of
take();push();take();push() as follows:

1. Initially the queue has one item with top = 0 and bottom = 1.
2. A take() reads top and gets preempted before executing line 6.
3. An entire steal() executes, correctly returns the item at index 0, and advances top to 1.
4. The take() resumes and succeeds, returning the same item as the previous steal(),

setting bottom to 0.
5. A complete push() now pushes some item i.
6. A complete take() executes and returns EMPTY instead of item i.
7. A complete push() executes and overwrites item i (losing item i).
To guarantee correctness under RMO, the programmer can try to manually insert fences

that avoid undesirable behavior. As an alternative to placing fences based purely on her
intuition, the programmer may also use a tool such as CheckFence [6] that can check the
correctness of a given fence placement. However, repeatedly adding fences to avoid each
counterexample can easily lead to over-fencing: a fence used to fix a counterexample may
be made redundant by another fence inferred for a later example. In practice, localizing
a failure to a single reordering is challenging and time consuming as a single failure trace
might include multiple instances of non-SC behavior. Furthermore, a single reordering can
be exhibited as multiple failures, and it is sometimes hard to identify the cause underlying
an observed failure trace.

In a nutshell, the programmer is required to manually produce Tab. 1: summarize and
understand all counterexamples from a checking tool, localize the cause of failure to a single
reordering, and propose a fix that eliminates the counterexample. Further, this process might
have to be repeated manually every time the algorithm is modified or ported to a new memory

# Locations Effect of Reorder Needed Fence
1 push:8:9 steal() returns phantom item store-store
2 take:4:5 lost items store-load
3 steal:2:3 lost items load-load
4 steal:3:4 array access out of bounds load-load
5 steal:7:8 lost items load-store
6 expand:9:10 steal() returns phantom item store-store

Table 1: Potential reorderings of operations in the Chase-Lev algorithm of Fig. 1 running
on the RMO memory model
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model. Even a subtle change in the algorithm may require a complete re-examination.
It is easy to see that the process of manual fence inference does not scale. In this paper

we present an algorithm that automatically infers correct and efficient fence placements for
finite-state programs. Our inference algorithm is defined in a way that makes the dependen-
cies on the underlying memory model explicit. This makes it possible to use our algorithm
with various memory models. To demonstrate the applicability of our approach, we imple-
mented a relaxed memory model that supports key features of several modern RMMs.

Requiring the input program to be finite-state means we must overcome several challenges
for the algorithm to be practical. First, this requirement means the algorithm, taken as is,
is not suitable for fence inference in open systems (such as library implementations). This
is in contrast to our goal to apply the algorithm to concurrent data structures. To formally
verify that a data structure meets a specification (and, consequentially, to infer a correct
fence placement), one generally needs to verify the “most general client” which is usually
not finite-state. We deal with this in a manner similar to other related work in the field
(e.g., Burckhardt et al. [6]) by using representative clients. Another problem is that even if
a program is finite state under sequential consistency it will often not be finite-state under
a relaxed model. As this phenomenon is common in practice, a direct implementation of
our algorithm fails to infer fences for many interesting programs. To solve this problem we
developed the concept of abstract memory models (AMMs). Very informally, an abstract
memory model is an over-approximation of a relaxed memory model, in the sense that any
program behavior possible in the RMM is also possible in the abstract model. Our abstract
memory models are designed so as a program that is finite-space under SC remains finite
state under the AMM. By utilizing AMMs, we can use our algorithm for any program that
is finite-space under SC. More detail on AMMs can be found in [19] and [17].

In this paper, we describe an algorithm that automatically infers a correct and efficient
placement of memory fences in finite-state concurrent programs. The paper is based on work
previously published as [18] and [17].

2 Fence Inference

2.1 Constraint Generation

We first present our inference algorithm in a general setting, without instantiating it for a
specific memory model. We then prove that when properly instantiated, it is correct and
optimal.

Goal The input to the algorithm is a finite-state program P , a safety specification S, and
an operational description of the memory model M . We assume that P satisfies S under
sequential consistency but not necessarily under M . The output of the algorithm is a new
program P ′, that satisfies S under M , which is obtained by adding memory fences to P . For
“reasonable” memory models, this problem always has a trivial solution, as placing a fence
between every two memory operations will reduce the possible executions to those allowed
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under SC. Therefore, we also add an optimality constraint: we would like the program P ′ to
have performance as close to the original program as possible. In other words, since there
may be many possible ways to “fix” P by adding fences, we want to choose only the best
solution(s).

Algorithm Structure Our algorithm follows these three steps:
1. Construct the transition system for P under M .
2. Find the set of “error states” E violating S in the transition system.
3. Compute a set of program locations in P s.t. adding fences in those locations would

“cut off” the error states, and output a program P ′ with fences added in these locations.
Steps 1 and 2 are standard in the world of software verification (in particular, software

model checking [12]). The focus of this work, and the “heart” of our algorithm is therefore
step 3. The general approach we use (similarly to the work of Vechev et al. [35]) is not to
try to compute fence locations directly, but use an intermediate constraint language.

The high-level idea is that we first choose a constraint language F and associate with
every transition t some constraint χ(t) from F . Very informally, we say that a constraint
χ(t) is enforceable if we can “cut the transition t off” from the transition system by adding
(syntactic) fences to the program. We call adding such fences enforcing the constraint.

We can use this idea to break the problem down into the 3 following major sub-steps:
constraint generation, solving and implementation.

1. (Generation) Compute a boolean formula ψ over the constraints that represents all
of the ways to cut off all error states in E (that is, make them unreachable in the
transition system).

2. (Solving) Find a minimal satisfying assignment to ψ. This gives us a minimal constraint
set δ that, if enforced, will cut off all error states. Note that it is possible that there
are several such minimal constraint sets.

3. (Implementation) Transform δ into a fence placement that enforces those constraints.
Again, there may be many ways to implement the constraints as fences.

For this scheme to work, we need to compute ψ such that every satisfying assignment (con-
straint set) δ of ψ satisfies the following two properties:
• Every constraint in the set δ are enforceable using memory fences inserted into the

program code of P .
• If all constraints in δ are enforced by inserting memory fences into P (creating a new

program P ′), then P ′ does not violate the specification S.
Additionally, we want the computed constraint formula ψ to be maximally permissive: a
constraint set satisfies the formula if and only if enforcing it will make the modified program
adhere to the specification. This means a minimal satisfying assignment δ of ψ represents
a “globally minimal” constraint set: it is impossible to fix the program by enforcing only a
strict subset of δ.

Transition System Construction The first stage of the algorithm is to construct the
transition system (TS) for the program. The transition system is a graph that consists of
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vertices which represent the states that can be reached by running the program and edges
that represent state transitions. The notation we use for the transition system of the program
P is 〈σ0,ΣP , TP 〉, where ΣP is the set of states, TP is the set of transitions, and σ0 the initial
state. The transitions link a state to all of its possible successor states. Here, we assume
the input program P is finite-state under the memory model. This means that when P is
executed under the memory model, there is only a finite number of reachable states. Note
that if a program is finite-state under sequential consistency, this does not imply it is also
finite-state under a more relaxed model.

Since our algorithm is designed to work with operational memory models, given a program
state σ we are able to directly compute its set of successors. This means we can construct
the transition system iteratively, using a standard worklist algorithm.

Marking Error States Once the TS is constructed, we can identify a subset of error
states : the set of states that violate the provided safety specification. It is well known that
every LTL safety property φ can be expressed as Gp where p is a “past-formula”, that is, a
formula that only refers to the past of the computation. We further assume that that the
specification is given as Gp where p is a state property - for example, an assertion on the
values of program variables. This restriction is introduced for two reasons:

1. While our algorithm is sound in the general case, it is no longer necessarily optimal.
This is because for a general past-formula, fixing the program may be possible not only
by cutting off the error states themselves, but by cutting off some of their predecessors.
It is possible that our algorithm can be extended to this case, but we did not explore
this possibility in detail.

2. This restriction allows us to check whether a state is an error state immediately after
we encounter it during exploration. This allows us not to explore any of the error
states’ descendants, which improves the algorithm’s performance.

As many practically useful safety properties can be expressed as Gp where p is a state
property, we believe this to be a reasonable restriction.

Constraints Our goal is to transform an input program P into a new output program P ′

that satisfies S. At this stage, it is convenient to “abstract away” the two programs and focus
purely on transition systems. Given a transition system 〈σ0,ΣP , TP 〉 under a memory model
M , we can identify some transitions as avoidable and others as unavoidable. A transition
t = σ1 −→ σ2 is considered avoidable if it is possible to construct a program P ′ by adding
fences to P s.t. 〈σ0,ΣP ′ , TP ′〉 does not contain a transition that corresponds to t. Since
discussing two separate transition systems (for P and P ′) is cumbersome, we informally
refer to this process as cutting t from the transition system 〈σ0,ΣP , TP 〉.

More practically, we need to pick (according to the memory model) a set of constraints
such that every such constraint can be enforced by adding memory fences to P . We then

associate with every transition σ1
t−→ σ2 a set of constraints χ(t), that satisfies the following

properties:
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• If at least one of the constraints in χ(t) is enforced, then σ2 is no longer reachable from
σ1 in P ′.
• If none of the constraints are enforced, and σ1 is reachable in P ′, then σ2 is also

reachable.
In other words, χ(t) precisely captures all the ways to cut the transition t.

This means a transition is avoidable if and only if χ(t) is non-empty. We can “lift” this
definition from transitions to program traces and states: An avoidable trace is a trace in
which at least one transition is avoidable, and an avoidable state is a state such that all
program traces leading to it are avoidable.

Given a transition system and a specification we wish to find a constraint set which would
cut all traces leading to error states. One possible approach, in the spirit of previous work
by Vechev et al. [35], is to enumerate all (acyclic) traces leading to an error state and try
to prevent each trace by enforcing appropriate constraints. However, such enumeration does
not scale to practical programs as the number of traces can be exponential in the size of the
transition system which is itself exponential in program length. Instead, our algorithm works
on a state-by-state basis by assigning an avoid formula to each state. The avoid formula of
a state captures all the ways to cut that state from the transition system.

Suppose we want to cut the state σ. Let the incoming transitions of σ be t1, . . . , tk,
with source states σ1, . . . , σk respectively. To cut σ, we must make it unreachable through
all of its incoming transitions. For each transition ti, this means either cutting ti itself or
removing the source state σi. More concretely, we must either enforce some constraint in
χ(ti) or recursively find the avoid formula for σi and enforce some satisfying assignment of
that formula. This is in fact recursive only if the transitions system 〈σ0,ΣP , TP 〉 is acyclic
- if it contains cycles, the avoid formula of σi may itself depend on the avoid formula of σ.
This suggests that the desired avoid formula for a state is a fixed point of a function that
relates the avoid formula of a state to those of its predecessor states.

Constraint Generation Algorithm Now that the definitions are in place, we can present
the algorithm used for the constraint formula generation phase. Instead of dealing directly
with formulae, we will for convenience present the algorithm in terms of boolean functions
(“avoid functions”). We will, however, often abuse notation and identify boolean variables
with atomic propositions, and monotone boolean functions with monotone propositional
formulae that define those functions. In particular:
• For a function f and an assignment of values to variables δ we will use δ |= f to mean

that f(δ) = tt.
• For functions f1, f2, we use f1 =⇒ f2 to mean f1 v f2, f1 ∨ f2 to mean f1 t f2, etc.
Let V be a set of variables, representing possible constraints on execution. Let F be

the set of monotone boolean functions over V with the standard order relation (also known
as the free distributive lattice over V). Let 〈σ0,ΣP , TP 〉 be a transition system and σ0 the
initial state. Then a legal labeling function is a function L : ΣP → F , such that L(σ0) = ff.
Intuitively, the labeling function L attaches an avoid function to a state. We require L(σ0)
to always be false as the initial state can never be avoided. For a given transition system
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〈σ0,ΣP , TP 〉, we denote by ΛP the set of all legal labeling functions for that transition system.
Given a labeling function L and a state σ ∈ ΣP , we define:

avoid(L, σ) =
∧
{L(µ) ∨ χ(t) | (µ t−→ σ) ∈ TP}

This formalizes the previously presented intuition: given a labeling L, to avoid a state σ we

must avoid all incoming transitions µ
t−→ σ, either by cutting t (using χ(t)) or by enforcing

L(µ). In the above definition, we abuse notation by treating χ(t) not as a subset of V,
but rather as the function represented by

∨
{p | p ∈ χ(t)}. We will continue this abuse

throughout this paper. Whether χ is treated as a set or a function should always be clear
from the context.
Using avoid we define an operator trans : (ΣP → F )→ (ΣP → F ) that updates the labeling
to the “next generation” of avoid functions:

trans[L] = λσ ∈ ΣP .L(σ) ∧ avoid(L, σ)

If L is legal, then so is trans(L) because:
• trans[L](σ0) = (L(σ0) ∧ ...) = ff
• avoid(L, σ) is monotone, as is L(σ), and a conjunction of two monotone functions is

also monotone.
The algorithm to find the desired labeling function is now very simple: we take the initial

labeling function L0 defined below, and iteratively apply trans until a fixed point is reached.

L0 = λσ ∈ ΣP .

{
ff if σ = σ0

tt if σ 6= σ0

From this point on, we refer to the L function to which the fixed point computation converges
as av.

However, directly applying this algorithm is inefficient, for two reasons. First, it requires
maintaining two copies of the transition system. More importantly, a lot of unnecessary
computation is performed because it is possible that in every application of trans only few
L(σ) values actually change. Therefore we use an optimized version based on the stan-
dard “chaotic iteration” method due to Cousot & Cousot [13]. This version is shown in
Algorithm 1.

Lines 2-4 of the algorithm set the initial labeling to L0. The labeling is then updated in
the following fashion. First, the entire transition system is added to a workset. Then, if the
worklist is not empty we pick an arbitrary state σ, and update it from L(σ) to trans[L](σ)
(lines 8 - 10). We then check whether L(σ) was changed by the application of trans. If it
has, we may need to update the labeling of its descendant states, so we add all descendants
of σ to the workset. When the workset becomes empty, a fixed point has been reached, so
we can return the conjunction of constraints for the error states.
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R1 = R2 = X = Y = 0 ;

A:
A1 : STORE X = 1
A2 : STORE Y = 1

||
B:

B1 : LOAD R1 = Y
B2 : LOAD R2 = X

(a)

(b)

Figure 2: An example program (a) and its partial transition system (b). Avoidable transi-
tions are drawn with thicker lines
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Algorithm 1: Constraint Generation
Input: Program P, Specification S, Memory Model M
Output: Program P’ satisfying S

1 compute 〈σ0,ΣP , TP 〉 under the memory model M
2 L(σ0)← false
3 foreach state σ ∈ ΣP \ {σ0} do
4 L(σ)← true

5 workset← ΣP \ {σ0}
6 while workset is not empty do
7 σ ← select and remove state from workset
8 ϕ← L(σ)
9 foreach transition t = (µ −→ σ) ∈ TP do

10 ϕ← ϕ ∧ (L(µ) ∨ χ(t))

11 if L(σ) 6≡ ϕ then
12 L(σ)← ϕ
13 add all successors of σ in ΣP to workset

14 ψ ←
∧
{L(σ) | σ 2 S}

15 return ψ.

Example Consider the simple concurrent program shown in Fig. 2(a). X and Y are integer
variables shared between processes A and B, while R1 and R2 are integer variables local to
process B. For illustrative purposes, the memory model we use here is a simplified version
of RLX (described formally in [18]). In this model any two (data and control) independent
instructions can be reordered. However, as opposed to full RLX, stores to shared memory
are preformed atomically.

The constraint language we use in the example consists of constraints on execution order.
The constraint [L1 ≺ L2] where L1 and L2 are program labels means we forbid L2 to bypass
L1. That is, if [L1 ≺ L2] is enforced, and L1 precedes L2 in program order, then L1 must
be executed before L2. We give a more detailed explanation of the constraints later in this
section.

Fig. 2(b) shows part of the transition system of this program running on this specific
memory model. We only show states that can lead to an error state, as the rest of the
transition system is not relevant to the example. Inside each state in the figure we show:
(i) assignments to the local variables of each process (L1 and L2), and the global variables
G; (ii) the execution buffer of each process (E1 and E2); (iii) the (final) avoid formula of the
state. Since stores are atomic, we do not show Bσ.

For this program, our specification is that R1 ≥ R2 in the program’s final state. In the
initial state (state 1) all four variables have the value 0. The transition system also contains
a single error state (state 9) where R1 = 0 and R2 = 1 (state 9). Since the transition system
is acyclic, we can find av(σ) by topologically sorting the states, and then computing av once
for each state. For example:
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• Since state 1 is the initial state, the avoid formula is necessarily ff.
• The avoid formula for state 2 is computed by taking the disjunction of avoiding the

transition A2 and avoiding the source state of the transition (state 1). To do so we first
need to know χ(1 −→ 2). Informally, we need to know whether A2 is executed out of
order, and which alternative instructions could have been executed by A instead. If we
examine the execution buffer E1 of state 1 and look at the instructions that precede
A2, we find that A2 is executed out of order, and that A1 precedes it in the buffer.
This implies we can enforce the constraint [A1 ≺ A2] as a way to avoid the transition
A2. Since the source state (state 1) cannot be avoided, the avoid formula for state 2 is
simply [A1 ≺ A2]. The formula [B1 ≺ B2] for state 3 is obtained similarly.
• The transition from state 2 to state 4 is taken “in order”, that is, it doesn’t violate

any enforceable constraint. Therefore, the transition itself cannot be avoided and the
only way to avoid reaching 4 is through enforcing the avoid formula of its predecessor,
state 2. So the avoid formula of state 4 is also [A1 ≺ A2].
• State 5 has two incoming transitions: B2 and A2. B2 is taken out of order from

state 2 and can be prevented by enforcing the constraint [B1 ≺ B2]. The constraint
for the source state 2 is [A1 ≺ A2], so the overall constraint is [B1 ≺ B2] ∨ [A1 ≺ A2].
Similarly, we perform the computation for transition A2 from state 3 which generates
an identical constraint. The final avoid formula for state 5 is thus the conjunction of
[B1 ≺ B2] ∨ [A1 ≺ A2] with itself. In other words, it is [B1 ≺ B2] ∨ [A1 ≺ A2].
• For the error state 9, the two incoming transitions are executed in-order and cannot be

avoided. The overall constraint is thus generated as a conjunction of the constraints
of the predecessor states 7 and 8, and it is [B1 ≺ B2] ∧ [A1 ≺ A2].

Note that since there is only one error state, the resulting overall formula is the avoid
formula of that error state: [B1 ≺ B2] ∧ [A1 ≺ A2].

Handling Boolean Functions The algorithm, as presented above, “hides” several rep-
resentation and performance issues related to boolean functions. The clearest issue is that
the algorithm returns a boolean function that represents a constraint formula. However, to
actually place fences we require not the formula but rather its minimal satisfying assign-
ments. We “offload” this task to standard SAT solving tools. As our experience shows, the
SAT-solving stage is not a performance bottleneck.

A bigger issue is the fact every step of the algorithm requires an equivalence check of two
boolean functions (the test L(σ) 6≡ ϕ in Line 11). This is NP-hard in general, and remains
NP-hard even under the restriction that both functions are monotonic. With an explicit
formulae representation those checks become very computationally expensive. However, if
the functions are represented as Binary Decision Diagrams (BDDs) [4], then the equivalence
check is, in our experience, also not a practical bottleneck.

Algorithm Correctness and Optimality To show our algorithm is correct, we need to
demonstrate that (a) the fixed point computation terminates, and (b) once it terminates,
enforcing the avoid formula av(σ) indeed cuts the state σ. The algorithm we presented
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above is not only sound, but also maximally permissive. That is, the formula av(σ) is the
“weakest” (most permissive) formula that describes the constraints that must be enforced
to make σ unreachable. The interested reader can find proofs of the above claims in [17].

2.2 Instantiation for a concrete model

In the previous section, we presented a general algorithm for inferring optimal constraints.
When we instantiate this algorithm for a specific memory model, we first need to choose the
type of constraints we can actually enforce. That means our constraints must satisfy at least
the following basic property: For every transition t to which we assign χ(t) 6= ∅ it is possible
use fences to construct a program P ′ for which the transition system does not contain t.

To choose the constraint language we must first introduce a few more details of the
RLX memory model framework. To model the RMM effects, RLX uses “execution buffers”
— similar to the “reordering box” of [28] and “local instruction buffer” of [36]. Informally,
every processor p processes its instruction stream in its original order. However, “processing”
does not in fact mean the instruction is executed. Rather, every instruction is placed in a
buffer E(p). An instruction is actually executed when it is removed from the buffer by
the environment. If the buffers behave in a FIFO fashion, this is equivalent to sequential
consistency. However if the executed instruction is not necessarily the oldest in the buffer,
relaxed behavior occurs. In this framework, different RMMs can be specified by providing
different rules for removing instructions from the buffer. A complete definition of RLX

semantics can be found in [18, 17].
The constraint language appropriate for RLX is the langauge of “ordering constraints”

of the form ψ = [l1 ≺ l2] where l1, l2 are program labels. Intuitively, enforcing the constraint
[l1 ≺ l2] means that P ′ cannot execute the instruction with label l2 out of order with respect
to the instruction at label l1. We then define χ(t) for a transition t = σ −→ σ2 with label lt
to be χ(t) = {[l ≺ lt] | l <σ,p lt}. The relation l <σ,p lt holds when:

1. The transition t was caused by executing the instruction at label lt by some process p.
2. The execution buffer E(p) of state σ contained an instance of the instruction at l before

the instruction at lt.
This is equivalent to saying the transition t represents the instruction at lt being executed
while bypassing l.

To show that the chosen constraint language is useful, we need to show a correspondence
between the constraints and syntactic fences. More concretely, we need to show that:
• We know how to enforce any constraint formula produced by the algorithm by adding

fences to P .
• Enforcement can be done efficiently. To see this is a non-trivial property, consider

the constraint language consisting of a single constraint β, where the enforcement
mechanism is “If ψ = β add a fence between every two instructions in P”. Clearly, we
can enforce this constraint, and enforcing it would create a correct program, but this
is not the desired outcome.

First, we can show that adding fences can never introduce new error states. It is clear
that adding nop operations (with new labels) to a program has no effect on the program’s
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behavior. So it is enough to show that the set of behaviors a program P with a fence at
label l has is a subset of the possible behaviors of P with a nop at the same label. This can
show this through a simple simulation argument.

Lemma 2.1 Let P be a program with a nop instruction at label l, and P ′ the program P
with the nop replaced by a fence. Then 〈σ0,ΣP , TP 〉 simulates 〈σ0,ΣP ′ , TP ′〉.

This lemma is trivially extendable to replacing any number of nop instructions by fences.
After we have established inserting fences cannot add new error states, the next thing we
need to show is that we can in fact use syntactic fences to cut any transition t s.t. χ(t) 6= ∅.
This is established by the following lemma.

Lemma 2.2 Let P be a program, t = σ1
lt−→ σ2 a transition in 〈σ0,ΣP , TP 〉 and v ∈ χ(t),

where v = [l ≺ lt]. Let P ′ be a modification of P s.t. a fence instruction is placed on every
control path between l and lt. Then there is no t′ in 〈σ0,ΣP ′ , TP ′〉 that corresponds to t.

A corollary of the lemma above is that we can enforce any constraint v = [l1 ≺ l2] (thus
cutting any transition t s.t. v ∈ χ(t)) by placing a fence on every control path between l1
and l2. Using these lemmas we can prove the main soundness theorem.

Theorem 2.3 Let P be a program, S a specification, ψ =
∧
{av(σ) | σ 2 S} and δ |= ψ.

Let P ′ be the program P modified s.t. for any [l1 ≺ l2] ∈ δ a fence instruction is placed on
every control path between l1 and l2. Then ∀σ ∈ ΣP ′ .σ |= S.

To show that the produced constraints are optimal, we can prove the following theorem.

Theorem 2.4 Let P be a program, S a specification, ψ =
∧
{av(σ) | σ 2 S}, and P ′ the

program P modified by inserting fences. If for every satisfying assignment δ |= ψ there exists
[l1 ≺ l2] ∈ δ s.t. there is no fence on any control path between l1 and l2, then there is some
σ ∈ ΣP ′ s.t. σ 6|= S.

2.3 Synthesizing Fences from Constraints

Theorem 2.3 shows that we can syntactically implement any solution to the constraint for-
mula ψ produced by our algorithm. It shows that if for every constraint [l1 ≺ l2] that needs
to be enforced fences are placed on all control-flow paths between l1 and l2 then the resulting
program is safe. Unfortunately, while Theorem 2.4 shows a fence must be placed on some
control path between l1 and l2, it does not require placing a fence on all of them. There
are, in fact, several reasons a fence placement constructed by simply taking some minimal
satisfying assignment δ of ψ and adding fences on all control-flow paths may be suboptimal:

• It is not even clear which optimality metric we should use. The number of (static)
fences added to the program seems like a convenient choice, but may be misleading.
Several fences placed before a loop may have a much smaller (dynamic) execution cost
than a single fence placed inside the loop body.
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• Theorem 2.4 shows we must add a fence on some control path of every constraint that
belongs to a minimal satisfying assignment, as opposed to all control-flow paths. This
is not a weakness of the theorem, as placing fences on all paths is in fact not always
required. This may happen for two reasons. First, some control-flow paths may be
infeasible, and putting fences on these paths is thus unnecessary. More subtly, it is
possible that a given re-ordering of instructions is only harmful on some execution
paths. Our chosen constraint language does not preserve enough information to make
these distinctions. We could use an alternative constraint language to preserve it, but
this would dramatically increase the size of ΛP — the number of possible constraints
would be exponential in the number of labels, as opposed to quadratic.

• Often, it is possible to satisfy several constraints with a single fence. Thus a judicious
placement of fences is still required, even once a minimal assignment to the constraint
formula is known. Moreover, different minimal assignments may lead to different place-
ment tradeoffs.

We resolve the first issue by working with the natural partial order on fence placements:
a set of added fences C is better then a set C ′ if C ′ ⊆ C. We then produce all minimal
incomparable placements and leave the choice between them to the programmer. Choosing
between incomparable (by containment) fence placements is a separate hard problem, which
we leave to future work.

The second issue could be resolved by adopting a more precise “flow-sensitive” constraint
language. This could be done by encoding in the constraints χ(t) of a transition t = σ1 −→ σ2
information about program paths that lead to t. Moreover, if we used a “context-sensitive”
implementation mechanism instead of fences (for example “conditional fences” — fences
that are only sometimes executed, depending on the current program state) we could use
even finer constraints. For the input programs we used, none of these improvements were
necessary. Therefore, we also defer examination of these alternatives to the future.

The third issue requires further examination. While there are in general many ways to
implement a given constraint v = [l1 ≺ l2], for simple programs it usually sufficient (while
clearly not optimal in general) to consider two options:
• Place a fence immediately after instruction l1
• Place a fence immediately before instruction l2 (if there are branch instructions pointing

to l2 they should point to the newly added fence).
This is complicated slightly by the fact that even in this case, there is interdependence
between constraints. For example, consider a program with three statements with labels
l1, l2, l3 in sequence and the constraint formula v1 ∧ v2 where v1 = [l1 ≺ l2] , v2 = [l1 ≺ l3].
Obtaining the (only) solution {v1, v2} and then deciding to place a fence immediately before
l2 (to enforce v1) and before l3 (to enforce v2) will result in a placement that contains two
fences, instead of the expected single fence after l1. We solve this by replacing the constraint
formula ψ with a new formula ζ.

A fence may only be placed after an existing code label. Therefore, for each label we define
a new variable vl. We also define a function prev that returns for each label l the preceding
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(in the program code) label. We then produce ζ by replacing every variable v = [l1 ≺ l2] in
ψ with the clause vl1 ∨ vprev(l2). It is easy to show that every satisfying assignment to ζ still
produces a sound fence placement. However, it alleviates the interdependence problem by
“off-loading” it to a SAT solver. In the preceding example, the formula v1∧v2 is transformed
into vl1 ∧ (vl1 ∨ vl2), with the minimal solution {vl1} as desired.

Limitations The main drawback of the algorithm described in this section is the fact
that it requires explicit enumeration of the program’s state-space. While this is possible for
some programs, many programs for which we want to infer fences do not allow such explicit
enumeration because the state-space is not finite. This might happen due to a combination
of several reasons. Three common reasons are:

1. We are interested in inferring a fence placement for an open system (e.g. library code),
and not a single finite-state program.

2. The program for which we wish to infer fences utilizes a potentially unbounded number
of heap locations.

3. The program is finite-state under SC but not finite-state under the desired relaxed
memory model.

In case (1), the problem boils down to the fact we are not interested in placing fences in a
single program. Rather, we want to place fences in the code of a library implementation such
that it remains correct irrespective of the code using the library (the data structure client).
A different way to phrase this is to say we want the most general client (which represents all
possible clients) of the library to be correct. Unfortunately, the most general client itself is
usually not a finite-state program. For example, consider a queue implementation that uses
a linked list as the underlying data representation. A client that may add an unbounded
number of elements to the queue will use unbounded memory, and the state-space for the
client/queue combination is unbounded. In general, this is a hard problem that we do not
try to completely solve. We attempt to reduce it using two methods: (a) Hand-picked
clients that we believe are representative of the data structure’s behavior. (b) Exhaustive
enumeration of clients up to a specified bound on the number of operations. Neither of these
two solutions produces a sound verification (or fence inference) procedure. However, in
practice these methods allow us to infer optimal fences for realistic data structures. We have
verified that the results are indeed optimal by manually comparing them to fence placements
found in the literature.

In case (2), the problem is that due to use of an unbounded number of heap locations,
the program is infinite-state even under the sequentially-consistent model. One way to deal
with this problem is to “work around it” by applying the algorithm to slightly different
programs, and dealing with the difference separately (e.g. using finite-state clients instead
of the infinite-state most general client as in case (1)). Another is to use heap abstractions.

Regarding case (3), as Atig et al. have shown [2], this is in general a very hard problem.
Given a finite-state (under SC) program P , deciding reachability for the same program
under SPARC TSO or PSO has non-primitive recursive complexity. Further, under SPARC
RMO, reachability for SC-finite-state programs becomes undecidable. One way to deal with
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1 void enqueue ( queue t ∗queue , va l u e t va lue )
2 {
3 node t ∗node , ∗ t a i l , ∗next ;
4 node = new node ( ) ;
5 node−>value = value ;
6 node−>next = 0 ;
7 fence ( ” s tore−s t o r e ” ) ;
8 while ( t rue ) {
9 t a i l = queue−>t a i l ;

10 fence ( ” load−load ” ) ;
11 next = t a i l−>next ;
12 fence ( ” load−load ” ) ;
13 i f ( t a i l == queue−>t a i l )
14 i f ( next == 0) {
15 i f ( cas (& t a i l−>next ,
16 (unsigned ) next , (unsigned ) node ) )
17 break ;
18 } else
19 cas (&queue−>t a i l ,
20 (unsigned ) t a i l , (unsigned ) next ) ;
21 }
22 fence ( ” s tore−s t o r e ” ) ;
23 cas (&queue−>t a i l ,
24 (unsigned ) t a i l , (unsigned ) node ) ;
25 }

Figure 3: Enqueue operation of the Michael-Scott queue (from [6])

problems of this kind is through the use of abstract interpretation — a technique explored
in [19] and [17].

3 Experimental Evaluation

We have implemented our algorithm in a pair of tools called fender and blender. fender is
a direct implementation of the fence inference algorithm of section 2 for the RLX framework.
In blender we adapted the implementation to work with a wider range of memory mod-
els [19]. To give a flavor of the capabilities of these tools, we present the fence inference
results for the Michael-Scott nonblocking queue [27]. This queue is one of few algorithms
for which a correct fence placement (for RMO) has been previously published [6]. We refer
to that placement of fences as the “reference placement”. The reference placement uses 7
fences, 4 in enqueue(), and 3 in dequeue(). As [6] notes, all of the fences were found us-
ing small test-cases. Our hypothesis was that by running fender with a small number of
test-cases, we can automatically infer the appropriate fences.

Under RMO (which is closest to the model used by [6]), a small set of clients produced
20 different sets of 4 constraints. Using the local fence placement method there are only
4 different ways to implement those sets using 3 fences: 1 fence in enqueue() and 2 in
dequeue(). One of those placements was, as expected, a proper subset of the reference
placement found in [6], and the others were similar.

Fig. 3 is copied verbatim from [6] and shows the enqueue() method for the algorithm
(including 4 of the 7 fences placed using CheckFence). The reference placement contains 7
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fences, while our tool inferred only 3 of these 7, which may seem, at first glance, insufficient.
However, manual examination of the 4 missing fences confirms that they are in fact redundant
in our model.
• The load-load fence on line 10 of Fig. 3 prevents the load on line 11 from being exe-

cuted before the load on line 9 (note that the two loads are data dependent). To the
best of our understanding SPARC RMO only allows control speculation, but not data
speculation, which means this fence is in fact not necessary.
• The store-store fence on line 22 prevents the CAS on line 23 from being executed before

the CAS on line 15. However, this may only happen if the CAS on line 23 is executed
speculatively, since its execution is control-dependent on the success of the CAS in line
15. Under RMO operations that write to memory (and, in particular, CAS operations)
may not be executed speculatively, so this fence is never needed.
• The two load-load fences on line 12 and on line 57 of the dequeue() code given in

[6] enforce the correct execution of a construct meant to solve a certain type of ABA
problem that only occurs when immediate reuse of memory is allowed. However, under
the assumption of automatic memory management, the statements in lines 13 and 58
are redundant (see [25]). Since the correct execution of these two statements is no
longer important, fendercorrectly omits the two fences that “protect” them.

Under PSO, only sets of two constraints (implementable by a single store-store fence) in the
enqueue() method were inferred. This is consistent with the fact that, under this model,
loads are not reordered with each other so load-load constraints are unnecessary. Under
TSO, no fences were inferred, again consistent with our expectations, and with the claim in
[6] that under the x86 memory model (which resembles TSO), no fences should be necessary.

A wide range of our experimental results, as well as details on our methodology, appear
in [18, 19].

4 Related Work

Several automated techniques to place memory fences in concurrent programs have been
developed over the years. A large body of work dating back to the late 1980s relies on the
concepts of delay set analysis of Shasha & Snir [29] for reasoning about relaxed memory
models. This analysis enables one to find all potential conflicts (more or less equivalent
to data races), and place fences accordingly. A fence inference scheme based on delay set
analysis was successfully implemented in the “Pensieve” Java compiler [21, 14, 31], which can
effectively process large amounts of code. However, a violation of SC does not necessarily
cause a violation of any high-level properties. Thus those algorithms are often needlessly
conservative. Unlike this previous work, the approach outlined in this paper, uses a high-level
specification and allows a trade-off between performance and optimality of the solution.

Another possible approach to fence inference is to use a verification tool combined with
syntactic exploration. There exist several techniques for program testing and verification
under relaxed memory models, and tools have been developed that implement these tech-
niques (cf. [6, 7, 9, 8, 22].) To utilize a verification tool (e.g. CheckFence [6]) for inference,

ACM SIGACT News 18 June 2012 Vol. 43, No. 2



the programmer may use an iterative process. She starts with an initial fence placement and
if the placement is incorrect, she has to examine the (non-trivial) counterexample from the
verification tool, understand the cause of error and attempt to fix it by placing a memory
fence at some program location. It is also possible to use the tool by starting with a very
conservative placement and choose fences to remove until a counterexample is encountered.
This process, while simple, may easily lead to a “local minimum” and an inefficient place-
ment. In [23], Linden & Wolper automate this approach, using the technique described
in [22] as the underlying verification tool. However, their tool still suffers from the same
problem - it does not necessarily provide a globally optimal solution.

5 Conclusion

We presented a novel fence inference algorithm and demonstrated its practical effectiveness
by evaluating it on various challenging state-of-the-art concurrent algorithms. The work
presented here is a small sample from our wider work on synthesis of synchronization in con-
current programs (e.g., [32, 34, 33, 35, 24]). In the future, we plan to extend our techniques
to handle infinite-state programs (e.g., heap-manipulating programs) running on relaxed
memory models.
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