

Automatic Inference of Memory Fences

Michael Kuperstein, Martin Vechev, Eran Yahav

Abstract

We address the problem of automatic verification and fence inference in concurrent programs running under relaxed memory models. Modern architectures implement relaxed memory models in which memory operations may be reordered and executed non-atomically. Instructions called *memory fences* are provided to the programmer, allowing control of this behavior. To ensure correctness of many algorithms, the programmer is often required to explicitly insert memory fences into her program. However, she must use as few fences as possible, or the benefits of the relaxed architecture may be lost. It is our goal to help automate the fence insertion process.

We present an algorithm for automatic inference of memory fences in concurrent programs, relieving the programmer from this complex task. Given a finite-state program, a safety specification and a description of the memory model our algorithm computes a set of ordering constraints that guarantee the correctness of the program under the memory model. The computed constraints are maximally permissive: removing any constraint from the solution would permit an execution violating the specification. These constraints are then realized as additional fences in the input program.

We implemented our approach in a pair of tools called **FENDER** and **BLENDER** and used them to infer correct and efficient placements of fences for several non-trivial algorithms, including practical mutual exclusion primitives and concurrent data structures.

1 Introduction

In 1979, in his seminal paper “How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs” [20], Leslie Lamport defined the “sequential consistency” (SC) criterion for correctness of multiprocessor computers. Such a computer is called sequentially consistent if:

The result of any execution is the same as if the operations of all processes were executed in some sequential order, and the operations of each individual processor appear in the sequence in the order specified by its program.

It was Lamport’s intent that any correct multiprocessor computer implementation must meet this criterion. However, modern hardware architectures are not, in fact, sequentially consistent. Instead, they implement so-called “relaxed” (or “weak”) memory models (RMMs) [1]. These models enable improved hardware performance compared to sequentially

consistent hardware [15]. This is achieved by allowing the CPU and memory subsystems to perform memory operations out of order and non-atomically. Unfortunately, this behavior poses an additional burden on the programmer. Even when the underlying architecture is sequentially consistent, highly-concurrent algorithms are notoriously hard to get right [26]. When programming for an architecture that implements an RMM, programmers must also reason about executions that have no sequential analogue. This reasoning is non-intuitive and may lead to subtle concurrency bugs.

To allow programmers avoid non-sequentially consistent executions, architectures provide special *memory fence* (also known as *memory barrier*) instructions. Very informally, a fence instruction restricts the CPU and memory subsystem’s ability to reorder operations, thus eliminating some undesired non-SC executions. Finding a *correct and efficient* placement of memory fences for a given concurrent program is a challenging task. Using too many fences (over-fencing) hinders performance, while using too few fences (under-fencing) may allow unexpected incorrect executions to occur. Manually balancing between over- and under-fencing is very difficult, time-consuming and error-prone (cf. [16, 5, 6]). Furthermore, the process of finding fences has to be repeated whenever the algorithm changes, and whenever it is ported to a different architecture.

As an example, consider the problem of implementing the Chase-Lev work-stealing queue [11] (“CL”) on a relaxed memory model. Work stealing is a popular mechanism for efficient load-balancing used in runtime libraries for languages such as Java, Cilk [3] and X10 [10]. Fig. 1 shows an implementation of this data structure in C-like pseudo-code. For now, ignore the fence instructions that appear on unnumbered lines. CL maintains an expandable array of items called *wsq* and two indices *top* and *bottom*, initialized to 0. The queue is considered empty when $top \geq bottom$. When the queue is not empty, *top* ($queue \rightarrow size$) points to the oldest element in the queue, while *bottom* ($queue \rightarrow size$) points one past the newest element. The queue has a single owner thread that can only invoke the operations `push()` and `take()` which operate on one end of the queue, while other threads may call `steal()` to take items out from the opposite end. The queue can be dynamically expanded in response to a `push()` when additional space is required to store the item. This is done by the `push()` operation invoking the `expand()` procedure. For simplicity, we assume that items in the array are integers and that memory is collected by a garbage collector (manual memory management presents orthogonal challenges, cf. [25]).

We would like to guarantee that there are no out of bounds array accesses, no items are lost (by being overwritten before being read), and no “phantom” items are read after being removed. All these properties hold for the CL queue under the sequentially consistent memory model. However, they may be violated when it is used under a relaxed model.

Under weak memory models, e.g. the SPARC RMO [30] memory model, some of the memory operations in the code may be executed out of order. Tab. 1 shows possible RMO re-orderings that lead to violation of the specification. The column *locations* lists the two lines in a given method which contain memory operations that might get reordered and lead to a violation. The next column gives an example of an undesired effect when the operations at the two labels are reordered. The last column shows the type of fence that can be used

```

1  typedef struct {
2      long size;
3      int *ap;
4  } item_t;
5
6  long top, bottom;
7  item_t *wsq;
8
9
10 void push(int task) {
11     long b = bottom;
12     long t = top;
13     item_t* q = wsq;
14     if (b-t >= q->size-1){
15         q = expand();
16     }
17     q->ap[b % q->size]=task;
18     fence("store-store");
19     bottom = b + 1;
20 }
21
22 int take() {
23     long b = bottom - 1;
24     item_t* q = wsq;
25     bottom = b;
26     fence("store-load");
27     long t = top;
28     if (b < t) {
29         bottom = t;
30         return EMPTY;
31     }
32     task = q->ap[b % q->size];
33     if (b > t)
34         return task;
35     if (!CAS(&top, t, t+1))
36         return EMPTY;
37     bottom = t + 1;
38     return task;
39 }
40
41 item_t* expand() {
42     int newsize = wsq->size * 2;
43     int* newitems = (int *) malloc(newsize*sizeof(int));
44     item_t *newq = (item_t *)malloc(sizeof(item_t));
45     for (long i = top; i < bottom; i++) {
46         newitems[i % newsize] = wsq->ap[i % wsq->size];
47     }
48     newq->size = newsize;
49     newq->ap = newitems;
50     fence("store-store");
51     wsq = newq;
52     return newq;
53 }
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
787
788
789
789
790
791
792
793
794
795
796
797
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
817
818
819
819
820
821
822
823
824
825
826
826
827
828
828
829
829
830
831
832
833
834
835
835
836
837
837
838
838
839
839
840
841
842
843
844
844
845
846
846
847
847
848
848
849
849
850
851
852
853
853
854
855
855
856
856
857
857
858
858
859
859
860
861
862
862
863
863
864
864
865
865
866
866
867
867
868
868
869
869
870
870
871
871
872
872
873
873
874
874
875
875
876
876
877
877
878
878
879
879
880
880
881
881
882
882
883
883
884
884
885
885
886
886
887
887
888
888
889
889
890
890
891
891
892
892
893
893
894
894
895
895
896
896
897
897
898
898
899
899
900
900
901
901
902
902
903
903
904
904
905
905
906
906
907
907
908
908
909
909
910
910
911
911
912
912
913
913
914
914
915
915
916
916
917
917
918
918
919
919
920
920
921
921
922
922
923
923
924
924
925
925
926
926
927
927
928
928
929
929
930
930
931
931
932
932
933
933
934
934
935
935
936
936
937
937
938
938
939
939
940
940
941
941
942
942
943
943
944
944
945
945
946
946
947
947
948
948
949
949
950
950
951
951
952
952
953
953
954
954
955
955
956
956
957
957
958
958
959
959
960
960
961
961
962
962
963
963
964
964
965
965
966
966
967
967
968
968
969
969
970
970
971
971
972
972
973
973
974
974
975
975
976
976
977
977
978
978
979
979
980
980
981
981
982
982
983
983
984
984
985
985
986
986
987
987
988
988
989
989
990
990
991
991
992
992
993
993
994
994
995
995
996
996
997
997
998
998
999
999
1000
1000
1001
1001
1002
1002
1003
1003
1004
1004
1005
1005
1006
1006
1007
1007
1008
1008
1009
1009
1010
1010
1011
1011
1012
1012
1013
1013
1014
1014
1015
1015
1016
1016
1017
1017
1018
1018
1019
1019
1020
1020
1021
1021
1022
1022
1023
1023
1024
1024
1025
1025
1026
1026
1027
1027
1028
1028
1029
1029
1030
1030
1031
1031
1032
1032
1033
1033
1034
1034
1035
1035
1036
1036
1037
1037
1038
1038
1039
1039
1040
1040
1041
1041
1042
1042
1043
1043
1044
1044
1045
1045
1046
1046
1047
1047
1048
1048
1049
1049
1050
1050
1051
1051
1052
1052
1053
1053
1054
1054
1055
1055
1056
1056
1057
1057
1058
1058
1059
1059
1060
1060
1061
1061
1062
1062
1063
1063
1064
1064
1065
1065
1066
1066
1067
1067
1068
1068
1069
1069
1070
1070
1071
1071
1072
1072
1073
1073
1074
1074
1075
1075
1076
1076
1077
1077
1078
1078
1079
1079
1080
1080
1081
1081
1082
1082
1083
1083
1084
1084
1085
1085
1086
1086
1087
1087
1088
1088
1089
1089
1090
1090
1091
1091
1092
1092
1093
1093
1094
1094
1095
1095
1096
1096
1097
1097
1098
1098
1099
1099
1100
1100
1101
1101
1102
1102
1103
1103
1104
1104
1105
1105
1106
1106
1107
1107
1108
1108
1109
1109
1110
1110
1111
1111
1112
1112
1113
1113
1114
1114
1115
1115
1116
1116
1117
1117
1118
1118
1119
1119
1120
1120
1121
1121
1122
1122
1123
1123
1124
1124
1125
1125
1126
1126
1127
1127
1128
1128
1129
1129
1130
1130
1131
1131
1132
1132
1133
1133
1134
1134
1135
1135
1136
1136
1137
1137
1138
1138
1139
1139
1140
1140
1141
1141
1142
1142
1143
1143
1144
1144
1145
1145
1146
1146
1147
1147
1148
1148
1149
1149
1150
1150
1151
1151
1152
1152
1153
1153
1154
1154
1155
1155
1156
1156
1157
1157
1158
1158
1159
1159
1160
1160
1161
1161
1162
1162
1163
1163
1164
1164
1165
1165
1166
1166
1167
1167
1168
1168
1169
1169
1170
1170
1171
1171
1172
1172
1173
1173
1174
1174
1175
1175
1176
1176
1177
1177
1178
1178
1179
1179
1180
1180
1181
1181
1182
1182
1183
1183
1184
1184
1185
1185
1186
1186
1187
1187
1188
1188
1189
1189
1190
1190
1191
1191
1192
1192
1193
1193
1194
1194
1195
1195
1196
1196
1197
1197
1198
1198
1199
1199
1200
1200
1201
1201
1202
1202
1203
1203
1204
1204
1205
1205
1206
1206
1207
1207
1208
1208
1209
1209
1210
1210
1211
1211
1212
1212
1213
1213
1214
1214
1215
1215
1216
1216
1217
1217
1218
1218
1219
1219
1220
1220
1221
1221
1222
1222
1223
1223
1224
1224
1225
1225
1226
1226
1227
1227
1228
1228
1229
1229
1230
1230
1231
1231
1232
1232
1233
1233
1234
1234
1235
1235
1236
1236
1237
1237
1238
1238
1239
1239
1240
1240
1241
1241
1242
1242
1243
1243
1244
1244
1245
1245
1246
1246
1247
1247
1248
1248
1249
1249
1250
1250
1251
1251
1252
1252
1253
1253
1254
1254
1255
1255
1256
1256
1257
1257
1258
1258
1259
1259
1260
1260
1261
1261
1262
1262
1263
1263
1264
1264
1265
1265
1266
1266
1267
1267
1268
1268
1269
1269
1270
1270
1271
1271
1272
1272
1273
1273
1274
1274
1275
1275
1276
1276
1277
1277
1278
1278
1279
1279
1280
1280
1281
1281
1282
1282
1283
1283
1284
1284
1285
1285
1286
1286
1287
1287
1288
1288
1289
1289
1290
1290
1291
1291
1292
1292
1293
1293
1294
1294
1295
1295
1296
1296
1297
1297
1298
1298
1299
1299
1300
1300
1301
1301
1302
1302
1303
1303
1304
1304
1305
1305
1306
1306
1307
1307
1308
1308
1309
1309
1310
1310
1311
1311
1312
1312
1313
1313
1314
1314
1315
1315
1316
1316
1317
1317
1318
1318
1319
1319
1320
1320
1321
1321
1322
1322
1323
1323
1324
1324
1325
1325
1326
1326
1327
1327
1328
1328
1329
1329
1330
1330
1331
1331
1332
1332
1333
1333
1334
1334
1335
1335
1336
1336
1337
1337
1338
1338
1339
1339
1340
1340
1341
1341
1342
1342
1343
1343
1344
1344
1345
1345
1346
1346
1347
1347
1348
1348
1349
1349
1350
1350
1351
1351
1352
1352
1353
1353
1354
1354
1355
1355
1356
1356
1357
1357
1358
1358
1359
1359
1360
1360
1361
1361
1362
1362
1363
1363
1364
1364
1365
1365
1366
1366
1367
1367
1368
1368
1369
1369
1370
1370
1371
1371
1372
1372
1373
1373
1374
1374
1375
1375
1376
1376
1377
1377
1378
1378
1379
1379
1380
1380
1381
1381
1382
1382
1383
1383
1384
1384
1385
1385
1386
1386
1387
1387
1388
1388
1389
1389
1390
1390
1391
1391
1392
1392
1393
1393
1394
1394
1395
1395
1396
1396
1397
1397
1398
1398
1399
1399
1400
1400
1401
1401
1402
1402
1403
1403
1404
1404
1405
1405
1406
1406
1407
1407
1408
1408
1409
1409
1410
1410
1411
1411
1412
1412
1413
1413
1414
1414
1415
1415
1416
1416
1417
1417
1418
1418
1419
1419
1420
1420
1421
1421
1422
1422
1423
1423
1424
1424
1425
1425
1426
1426
1427
1427
1428
1428
1429
1429
1430
1430
1431
1431
1432
1432
1433
1433
1434
1434
1435
1435
1436
1436
1437
1437
1438
1438
1439
1439
1440
1440
1441
1441
1442
1442
1443
1443
1444
1444
1445
1445
1446
1446
1447
1447
1448
1448
1449
1449
1450
1450
1451
1451
1452
1452
1453
1453
1454
1454
1455
1455
1456
1456
1457
1457
1458
1458
1459
1459
1460
1460
1461
1461
1462
1462
1463
1463
1464
1464
1465
1465
1466
1466
1467
1467
1468
1468
1469
1469
1470
1470
1471
1471
1472
1472
1473
1473
1474
1474
1475
1475
1476
1476
1477
1477
1478
1478
1479
1479
1480
1480
1481
1481
1482
1482
1483
1483
1484
1484
1485
1485
1486
1486
1487
1487
1488
1488
1489
1489
1490
1490
1491
1491
1492
1492
1493
1493
1494
1494
1495
1495
1496
1496
1497
1497
1498
1498
1499
1499
1500
1500
1501
1501
1502
1502
1503
1503
1504
1504
1505
1505
1506
1506
1507
1507
1508
1508
1509
1509
1510
1510
1511
1511
1512
1512
1513
1513
1514
1514
1515
1515
1516
1516
1517
1517
1518
1518
1519
1519
1520
1520
1521
1521
1522
1522
1523
1523
1524
1524
1525
1525
1526
1526
1527
1527
1528
1528
1529
1529
1530
1530
1531
1531
1532
1532
1533
1533
1534
1534
1535
1535
1536
1536
1537
1537
1538
1538
1539
1539
1540
1540
1541
1541
1542
1542
1543
1543
1544
1544
1545
1545
1546
1546
1547
1547
1548
1548
1549
1549
1550
1550
1551
1551
1552
1552
1553
1553
1554
1554
1555
1555
1556
1556
1557
1557
1558
1558
1559
1559
1560
1560
1561
1561
1562
1562
1563
1563
1564
1564
1565
1565
1566
1566
1567
1567
1568
1568
1569
1569
1570
1570
1571
1571
1572
1572
1573
1573
1574
1574
1575
1575
1576
1576
1577
1577
1578
1578
1579
1579
1580
1580
1581
1581
1582
1582
1583
1583
1584
1584
1585
1585
1586
1586
1587
1587
1588
1588
1589
1589
1590
1590
1591
1591
1592
1592
1593
1593
1594
1594
1595
1595
1596
1596
1597
1597
1598
1598
1599
1599
1600
1600
1601
1601
1602
1602
1603
1603
1604
1604
1605
1605
1606
1606
1607
1607
1608
1608
1609
1609
1610
1610
1611
1611
1612
1612
1613
1613
1614
1614
1615
1615
1616
1616
1617
1617
1618
1618
1619
1619
1620
1620
1621
1621
1622
1622
1623
1623
1624
1624
1625
1625
1626
1626
1627
1627
1628
1628
1629
1629
1630
1630
1631
1631
1632
1632
1633
1633
1634
1634
1635
1635
1636
1636
1637
1637
1638
1638
1639
1639
1640
1640
1641
1641
1642
1642
1643
1643
1644
1644
1645
1645
16
```

to prevent the undesirable reordering. Informally, the type describes what kinds of memory operations have to complete before other type of operations. For example, a store-load fence executed by a processor forces all stores issued by that processor to complete before any new loads by the same processor start.

For a more detailed example of the effect the memory model has on execution, we consider the failure described in line 2 of Tab. 1. This corresponds to a reordering of operations at lines 4 and 5 in the `take()` method: if these two lines are reordered, the read from *top* is executed before the write to *bottom*. The failure scenario involves one process running the `steal()` method in parallel to another processes running a sequence of `take();push();take();push()` as follows:

1. Initially the queue has one item with *top* = 0 and *bottom* = 1.
2. A `take()` reads *top* and gets preempted before executing line 6.
3. An entire `steal()` executes, correctly returns the item at index 0, and advances *top* to 1.
4. The `take()` resumes and succeeds, returning the same item as the previous `steal()`, setting *bottom* to 0.
5. A complete `push()` now pushes some item *i*.
6. A complete `take()` executes and returns `EMPTY` instead of item *i*.
7. A complete `push()` executes and overwrites item *i* (losing item *i*).

To guarantee correctness under RMO, the programmer can try to manually insert fences that avoid undesirable behavior. As an alternative to placing fences based purely on her intuition, the programmer may also use a tool such as CheckFence [6] that can check the correctness of a given fence placement. However, repeatedly adding fences to avoid each counterexample can easily lead to over-fencing: a fence used to fix a counterexample may be made redundant by another fence inferred for a later example. In practice, localizing a failure to a single reordering is challenging and time consuming as a single failure trace might include multiple instances of non-SC behavior. Furthermore, a single reordering can be exhibited as multiple failures, and it is sometimes hard to identify the cause underlying an observed failure trace.

In a nutshell, the programmer is required to manually produce Tab. 1: summarize and understand all counterexamples from a checking tool, localize the cause of failure to a single reordering, and propose a fix that eliminates the counterexample. Further, this process might have to be repeated manually every time the algorithm is modified or ported to a new memory

#	Locations	Effect of Reorder	Needed Fence
1	push:8:9	<code>steal()</code> returns phantom item	store-store
2	take:4:5	lost items	store-load
3	steal:2:3	lost items	load-load
4	steal:3:4	array access out of bounds	load-load
5	steal:7:8	lost items	load-store
6	expand:9:10	<code>steal()</code> returns phantom item	store-store

Table 1: Potential reorderings of operations in the Chase-Lev algorithm of Fig. 1 running on the RMO memory model

model. Even a subtle change in the algorithm may require a complete re-examination.

It is easy to see that the process of manual fence inference does not scale. In this paper we present an algorithm that *automatically* infers *correct and efficient* fence placements for *finite-state* programs. Our inference algorithm is defined in a way that makes the dependencies on the underlying memory model explicit. This makes it possible to use our algorithm with various memory models. To demonstrate the applicability of our approach, we implemented a relaxed memory model that supports key features of several modern RMMs.

Requiring the input program to be finite-state means we must overcome several challenges for the algorithm to be practical. First, this requirement means the algorithm, taken as is, is not suitable for fence inference in open systems (such as library implementations). This is in contrast to our goal to apply the algorithm to concurrent data structures. To formally verify that a data structure meets a specification (and, consequentially, to infer a correct fence placement), one generally needs to verify the “most general client” which is usually not finite-state. We deal with this in a manner similar to other related work in the field (e.g., Burckhardt et al. [6]) by using representative clients. Another problem is that even if a program is finite state under sequential consistency it will often not be finite-state under a relaxed model. As this phenomenon is common in practice, a direct implementation of our algorithm fails to infer fences for many interesting programs. To solve this problem we developed the concept of *abstract memory models* (AMMs). Very informally, an abstract memory model is an over-approximation of a relaxed memory model, in the sense that any program behavior possible in the RMM is also possible in the abstract model. Our abstract memory models are designed so as a program that is finite-space under SC remains finite state under the AMM. By utilizing AMMs, we can use our algorithm for any program that is finite-space under SC. More detail on AMMs can be found in [19] and [17].

In this paper, we describe an algorithm that automatically infers a correct and efficient placement of memory fences in finite-state concurrent programs. The paper is based on work previously published as [18] and [17].

2 Fence Inference

2.1 Constraint Generation

We first present our inference algorithm in a general setting, without instantiating it for a specific memory model. We then prove that when properly instantiated, it is correct and optimal.

Goal The input to the algorithm is a finite-state program P , a safety specification S , and an operational description of the memory model M . We assume that P satisfies S under sequential consistency but not necessarily under M . The output of the algorithm is a new program P' , that satisfies S under M , which is obtained by adding memory fences to P . For “reasonable” memory models, this problem always has a trivial solution, as placing a fence between every two memory operations will reduce the possible executions to those allowed

under SC. Therefore, we also add an optimality constraint: we would like the program P' to have performance as close to the original program as possible. In other words, since there may be many possible ways to “fix” P by adding fences, we want to choose only the best solution(s).

Algorithm Structure Our algorithm follows these three steps:

1. Construct the transition system for P under M .
2. Find the set of “error states” E violating S in the transition system.
3. Compute a set of program locations in P s.t. adding fences in those locations would “cut off” the error states, and output a program P' with fences added in these locations.

Steps 1 and 2 are standard in the world of software verification (in particular, software model checking [12]). The focus of this work, and the “heart” of our algorithm is therefore step 3. The general approach we use (similarly to the work of Vechev et al. [35]) is not to try to compute fence locations directly, but use an intermediate constraint language.

The high-level idea is that we first choose a constraint language F and associate with every transition t some constraint $\chi(t)$ from F . Very informally, we say that a constraint $\chi(t)$ is *enforceable* if we can “cut the transition t off” from the transition system by adding (syntactic) fences to the program. We call adding such fences *enforcing* the constraint.

We can use this idea to break the problem down into the 3 following major sub-steps: constraint *generation*, *solving* and *implementation*.

1. (Generation) Compute a boolean formula ψ over the constraints that represents *all* of the ways to cut off all error states in E (that is, make them unreachable in the transition system).
2. (Solving) Find a minimal satisfying assignment to ψ . This gives us a minimal constraint set δ that, if enforced, will cut off all error states. Note that it is possible that there are several such minimal constraint sets.
3. (Implementation) Transform δ into a fence placement that enforces those constraints.

Again, there may be many ways to implement the constraints as fences.

For this scheme to work, we need to compute ψ such that every satisfying assignment (constraint set) δ of ψ satisfies the following two properties:

- Every constraint in the set δ are enforceable using memory fences inserted into the program code of P .
- If all constraints in δ are enforced by inserting memory fences into P (creating a new program P'), then P' does not violate the specification S .

Additionally, we want the computed constraint formula ψ to be maximally permissive: a constraint set satisfies the formula *if and only if* enforcing it will make the modified program adhere to the specification. This means a minimal satisfying assignment δ of ψ represents a “globally minimal” constraint set: it is impossible to fix the program by enforcing only a strict subset of δ .

Transition System Construction The first stage of the algorithm is to construct the transition system (TS) for the program. The transition system is a graph that consists of

vertices which represent the states that can be reached by running the program and edges that represent state transitions. The notation we use for the transition system of the program P is $\langle \sigma_0, \Sigma_P, T_P \rangle$, where Σ_P is the set of states, T_P is the set of transitions, and σ_0 the initial state. The transitions link a state to all of its possible successor states. Here, we assume the input program P is *finite-state under the memory model*. This means that when P is executed under the memory model, there is only a finite number of reachable states. Note that if a program is finite-state under sequential consistency, this does not imply it is also finite-state under a more relaxed model.

Since our algorithm is designed to work with *operational* memory models, given a program state σ we are able to directly compute its set of successors. This means we can construct the transition system iteratively, using a standard worklist algorithm.

Marking Error States Once the TS is constructed, we can identify a subset of *error states*: the set of states that violate the provided safety specification. It is well known that every LTL safety property ϕ can be expressed as Gp where p is a “past-formula”, that is, a formula that only refers to the past of the computation. We further assume that the specification is given as Gp where p is a state property - for example, an assertion on the values of program variables. This restriction is introduced for two reasons:

1. While our algorithm is sound in the general case, it is no longer necessarily optimal. This is because for a general past-formula, fixing the program may be possible not only by cutting off the error states themselves, but by cutting off some of their predecessors. It is possible that our algorithm can be extended to this case, but we did not explore this possibility in detail.
2. This restriction allows us to check whether a state is an error state immediately after we encounter it during exploration. This allows us not to explore any of the error states’ descendants, which improves the algorithm’s performance.

As many practically useful safety properties can be expressed as Gp where p is a state property, we believe this to be a reasonable restriction.

Constraints Our goal is to transform an input program P into a new output program P' that satisfies S . At this stage, it is convenient to “abstract away” the two programs and focus purely on transition systems. Given a transition system $\langle \sigma_0, \Sigma_P, T_P \rangle$ under a memory model M , we can identify some transitions as *avoidable* and others as *unavoidable*. A transition $t = \sigma_1 \rightarrow \sigma_2$ is considered avoidable if it is possible to construct a program P' by adding fences to P s.t. $\langle \sigma_0, \Sigma_{P'}, T_{P'} \rangle$ does not contain a transition that corresponds to t . Since discussing two separate transition systems (for P and P') is cumbersome, we informally refer to this process as *cutting* t from the transition system $\langle \sigma_0, \Sigma_P, T_P \rangle$.

More practically, we need to pick (according to the memory model) a set of constraints such that every such constraint can be *enforced* by adding memory fences to P . We then associate with every transition $\sigma_1 \xrightarrow{t} \sigma_2$ a set of constraints $\chi(t)$, that satisfies the following properties:

- If at least one of the constraints in $\chi(t)$ is enforced, then σ_2 is no longer reachable from σ_1 in P' .
- If none of the constraints are enforced, and σ_1 is reachable in P' , then σ_2 is also reachable.

In other words, $\chi(t)$ precisely captures *all the ways* to cut the transition t .

This means a transition is avoidable if and only if $\chi(t)$ is non-empty. We can “lift” this definition from transitions to program traces and states: An avoidable trace is a trace in which *at least one* transition is avoidable, and an avoidable state is a state such that *all* program traces leading to it are avoidable.

Given a transition system and a specification we wish to find a constraint set which would cut all traces leading to error states. One possible approach, in the spirit of previous work by Vechev et al. [35], is to enumerate all (acyclic) traces leading to an error state and try to prevent each trace by enforcing appropriate constraints. However, such enumeration does not scale to practical programs as the number of traces can be exponential in the size of the transition system which is itself exponential in program length. Instead, our algorithm works on a state-by-state basis by assigning an *avoid formula* to each state. The avoid formula of a state captures all the ways to cut that state from the transition system.

Suppose we want to cut the state σ . Let the incoming transitions of σ be t_1, \dots, t_k , with source states $\sigma_1, \dots, \sigma_k$ respectively. To cut σ , we must make it unreachable through all of its incoming transitions. For each transition t_i , this means either cutting t_i itself or removing the source state σ_i . More concretely, we must either enforce some constraint in $\chi(t_i)$ or recursively find the avoid formula for σ_i and enforce some satisfying assignment of that formula. This is in fact recursive only if the transitions system $\langle \sigma_0, \Sigma_P, T_P \rangle$ is acyclic - if it contains cycles, the avoid formula of σ_i may itself depend on the avoid formula of σ . This suggests that the desired avoid formula for a state is a fixed point of a function that relates the avoid formula of a state to those of its predecessor states.

Constraint Generation Algorithm Now that the definitions are in place, we can present the algorithm used for the constraint formula generation phase. Instead of dealing directly with formulae, we will for convenience present the algorithm in terms of boolean functions (“avoid functions”). We will, however, often abuse notation and identify boolean variables with atomic propositions, and monotone boolean functions with monotone propositional formulae that define those functions. In particular:

- For a function f and an assignment of values to variables δ we will use $\delta \models f$ to mean that $f(\delta) = \text{tt}$.
- For functions f_1, f_2 , we use $f_1 \implies f_2$ to mean $f_1 \sqsubseteq f_2$, $f_1 \vee f_2$ to mean $f_1 \sqcup f_2$, etc.

Let \mathbb{V} be a set of variables, representing possible constraints on execution. Let F be the set of monotone boolean functions over \mathbb{V} with the standard order relation (also known as the free distributive lattice over \mathbb{V}). Let $\langle \sigma_0, \Sigma_P, T_P \rangle$ be a transition system and σ_0 the initial state. Then a legal *labeling function* is a function $L : \Sigma_P \rightarrow F$, such that $L(\sigma_0) = \text{ff}$. Intuitively, the labeling function L attaches an avoid function to a state. We require $L(\sigma_0)$ to always be false as the initial state can never be avoided. For a given transition system

$\langle \sigma_0, \Sigma_P, T_P \rangle$, we denote by Λ_P the set of all legal labeling functions for that transition system.

Given a labeling function L and a state $\sigma \in \Sigma_P$, we define:

$$\text{avoid}(L, \sigma) = \bigwedge \{L(\mu) \vee \chi(t) \mid (\mu \xrightarrow{t} \sigma) \in T_P\}$$

This formalizes the previously presented intuition: given a labeling L , to avoid a state σ we must avoid all incoming transitions $\mu \xrightarrow{t} \sigma$, either by cutting t (using $\chi(t)$) or by enforcing $L(\mu)$. In the above definition, we abuse notation by treating $\chi(t)$ not as a subset of \mathbb{V} , but rather as the function represented by $\bigvee \{p \mid p \in \chi(t)\}$. We will continue this abuse throughout this paper. Whether χ is treated as a set or a function should always be clear from the context.

Using avoid we define an operator $\text{trans} : (\Sigma_P \rightarrow F) \rightarrow (\Sigma_P \rightarrow F)$ that updates the labeling to the “next generation” of avoid functions:

$$\text{trans}[L] = \lambda \sigma \in \Sigma_P. L(\sigma) \wedge \text{avoid}(L, \sigma)$$

If L is legal, then so is $\text{trans}(L)$ because:

- $\text{trans}[L](\sigma_0) = (L(\sigma_0) \wedge \dots) = \text{ff}$
- $\text{avoid}(L, \sigma)$ is monotone, as is $L(\sigma)$, and a conjunction of two monotone functions is also monotone.

The algorithm to find the desired labeling function is now very simple: we take the initial labeling function L_0 defined below, and iteratively apply trans until a fixed point is reached.

$$L_0 = \lambda \sigma \in \Sigma_P. \begin{cases} \text{ff} & \text{if } \sigma = \sigma_0 \\ \text{tt} & \text{if } \sigma \neq \sigma_0 \end{cases}$$

From this point on, we refer to the L function to which the fixed point computation converges as av .

However, directly applying this algorithm is inefficient, for two reasons. First, it requires maintaining two copies of the transition system. More importantly, a lot of unnecessary computation is performed because it is possible that in every application of trans only few $L(\sigma)$ values actually change. Therefore we use an optimized version based on the standard “chaotic iteration” method due to Cousot & Cousot [13]. This version is shown in Algorithm 1.

Lines 2-4 of the algorithm set the initial labeling to L_0 . The labeling is then updated in the following fashion. First, the entire transition system is added to a workset. Then, if the worklist is not empty we pick an arbitrary state σ , and update it from $L(\sigma)$ to $\text{trans}[L](\sigma)$ (lines 8 - 10). We then check whether $L(\sigma)$ was changed by the application of trans . If it has, we may need to update the labeling of its descendant states, so we add all descendants of σ to the workset. When the workset becomes empty, a fixed point has been reached, so we can return the conjunction of constraints for the error states.

R1 = R2 = X = Y = 0;		
A:	B:	
A1: STORE X = 1		B1: LOAD R1 = Y
A2: STORE Y = 1		B2: LOAD R2 = X
(a)		

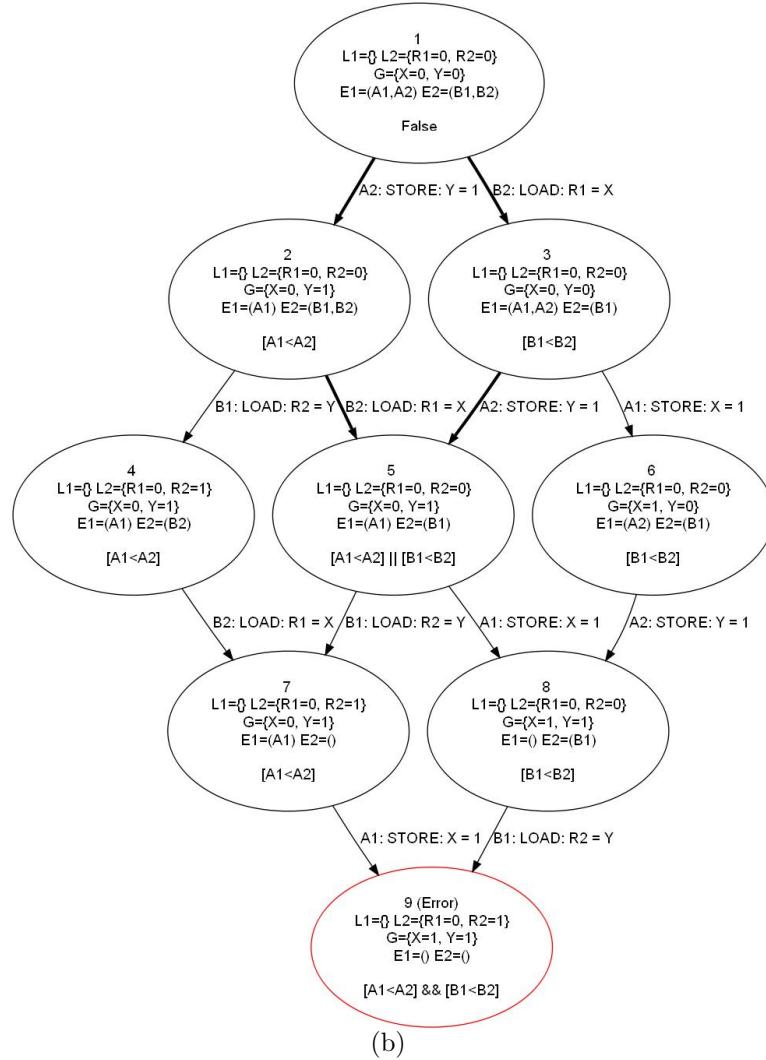


Figure 2: An example program (a) and its partial transition system (b). Avoidable transitions are drawn with thicker lines

Algorithm 1: Constraint Generation

Input: Program P, Specification S, Memory Model M
Output: Program P' satisfying S

```

1  compute  $\langle \sigma_0, \Sigma_P, T_P \rangle$  under the memory model M
2   $L(\sigma_0) \leftarrow \text{false}$ 
3  foreach state  $\sigma \in \Sigma_P \setminus \{\sigma_0\}$  do
4     $L(\sigma) \leftarrow \text{true}$ 
5  workset  $\leftarrow \Sigma_P \setminus \{\sigma_0\}$ 
6  while workset is not empty do
7     $\sigma \leftarrow$  select and remove state from workset
8     $\varphi \leftarrow L(\sigma)$ 
9    foreach transition  $t = (\mu \longrightarrow \sigma) \in T_P$  do
10    $\varphi \leftarrow \varphi \wedge (L(\mu) \vee \chi(t))$ 
11   if  $L(\sigma) \not\equiv \varphi$  then
12      $L(\sigma) \leftarrow \varphi$ 
13     add all successors of  $\sigma$  in  $\Sigma_P$  to workset
14  $\psi \leftarrow \bigwedge \{L(\sigma) \mid \sigma \not\models S\}$ 
15 return  $\psi$ .

```

Example Consider the simple concurrent program shown in Fig. 2(a). X and Y are integer variables shared between processes A and B, while R_1 and R_2 are integer variables local to process B. For illustrative purposes, the memory model we use here is a simplified version of RLX (described formally in [18]). In this model any two (data and control) independent instructions can be reordered. However, as opposed to full RLX, stores to shared memory are preformed atomically.

The constraint language we use in the example consists of constraints on execution order. The constraint $[L_1 \prec L_2]$ where L_1 and L_2 are program labels means we forbid L_2 to bypass L_1 . That is, if $[L_1 \prec L_2]$ is enforced, and L_1 precedes L_2 in program order, then L_1 must be executed before L_2 . We give a more detailed explanation of the constraints later in this section.

Fig. 2(b) shows part of the transition system of this program running on this specific memory model. We only show states that can lead to an error state, as the rest of the transition system is not relevant to the example. Inside each state in the figure we show: (i) assignments to the local variables of each process (L_1 and L_2), and the global variables G ; (ii) the execution buffer of each process (E_1 and E_2); (iii) the (final) avoid formula of the state. Since stores are atomic, we do not show B_σ .

For this program, our specification is that $R_1 \geq R_2$ in the program's final state. In the initial state (state 1) all four variables have the value 0. The transition system also contains a single error state (state 9) where $R_1 = 0$ and $R_2 = 1$ (state 9). Since the transition system is acyclic, we can find $av(\sigma)$ by topologically sorting the states, and then computing av once for each state. For example:

- Since state 1 is the initial state, the avoid formula is necessarily **ff**.
- The avoid formula for state 2 is computed by taking the disjunction of avoiding the transition A_2 and avoiding the source state of the transition (state 1). To do so we first need to know $\chi(1 \rightarrow 2)$. Informally, we need to know whether A_2 is executed out of order, and which alternative instructions could have been executed by A instead. If we examine the execution buffer E_1 of state 1 and look at the instructions that precede A_2 , we find that A_2 is executed out of order, and that A_1 precedes it in the buffer. This implies we can enforce the constraint $[A_1 \prec A_2]$ as a way to avoid the transition A_2 . Since the source state (state 1) cannot be avoided, the avoid formula for state 2 is simply $[A_1 \prec A_2]$. The formula $[B_1 \prec B_2]$ for state 3 is obtained similarly.
- The transition from state 2 to state 4 is taken “in order”, that is, it doesn’t violate any enforceable constraint. Therefore, the transition itself cannot be avoided and the only way to avoid reaching 4 is through enforcing the avoid formula of its predecessor, state 2. So the avoid formula of state 4 is also $[A_1 \prec A_2]$.
- State 5 has two incoming transitions: B_2 and A_2 . B_2 is taken out of order from state 2 and can be prevented by enforcing the constraint $[B_1 \prec B_2]$. The constraint for the source state 2 is $[A_1 \prec A_2]$, so the overall constraint is $[B_1 \prec B_2] \vee [A_1 \prec A_2]$. Similarly, we perform the computation for transition A_2 from state 3 which generates an identical constraint. The final avoid formula for state 5 is thus the conjunction of $[B_1 \prec B_2] \vee [A_1 \prec A_2]$ with itself. In other words, it is $[B_1 \prec B_2] \vee [A_1 \prec A_2]$.
- For the error state 9, the two incoming transitions are executed in-order and cannot be avoided. The overall constraint is thus generated as a conjunction of the constraints of the predecessor states 7 and 8, and it is $[B_1 \prec B_2] \wedge [A_1 \prec A_2]$.

Note that since there is only one error state, the resulting overall formula is the avoid formula of that error state: $[B_1 \prec B_2] \wedge [A_1 \prec A_2]$.

Handling Boolean Functions The algorithm, as presented above, “hides” several representation and performance issues related to boolean functions. The clearest issue is that the algorithm returns a boolean function that represents a constraint formula. However, to actually place fences we require not the formula but rather its minimal satisfying assignments. We “offload” this task to standard SAT solving tools. As our experience shows, the SAT-solving stage is not a performance bottleneck.

A bigger issue is the fact *every* step of the algorithm requires an equivalence check of two boolean functions (the test $L(\sigma) \not\equiv \varphi$ in Line 11). This is NP-hard in general, and remains NP-hard even under the restriction that both functions are monotonic. With an explicit formulae representation those checks become very computationally expensive. However, if the functions are represented as Binary Decision Diagrams (BDDs) [4], then the equivalence check is, in our experience, also not a practical bottleneck.

Algorithm Correctness and Optimality To show our algorithm is correct, we need to demonstrate that (a) the fixed point computation terminates, and (b) once it terminates, enforcing the avoid formula $av(\sigma)$ indeed cuts the state σ . The algorithm we presented

above is not only sound, but also maximally permissive. That is, the formula $av(\sigma)$ is the “weakest” (most permissive) formula that describes the constraints that must be enforced to make σ unreachable. The interested reader can find proofs of the above claims in [17].

2.2 Instantiation for a concrete model

In the previous section, we presented a general algorithm for inferring optimal constraints. When we instantiate this algorithm for a specific memory model, we first need to choose the type of constraints we *can* actually enforce. That means our constraints must satisfy at least the following basic property: For every transition t to which we assign $\chi(t) \neq \emptyset$ it is possible use fences to construct a program P' for which the transition system does not contain t .

To choose the constraint language we must first introduce a few more details of the RLX memory model framework. To model the RMM effects, RLX uses “execution buffers” — similar to the “reordering box” of [28] and “local instruction buffer” of [36]. Informally, every processor p processes its instruction stream in its original order. However, “processing” does not in fact mean the instruction is executed. Rather, every instruction is placed in a buffer $E(p)$. An instruction is actually executed when it is removed from the buffer by the environment. If the buffers behave in a FIFO fashion, this is equivalent to sequential consistency. However if the executed instruction is not necessarily the oldest in the buffer, relaxed behavior occurs. In this framework, different RMMs can be specified by providing different rules for removing instructions from the buffer. A complete definition of RLX semantics can be found in [18, 17].

The constraint language appropriate for RLX is the language of “ordering constraints” of the form $\psi = [l_1 \prec l_2]$ where l_1, l_2 are program labels. Intuitively, enforcing the constraint $[l_1 \prec l_2]$ means that P' cannot execute the instruction with label l_2 out of order with respect to the instruction at label l_1 . We then define $\chi(t)$ for a transition $t = \sigma \rightarrow \sigma_2$ with label l_t to be $\chi(t) = \{[l \prec l_t] \mid l <_{\sigma,p} l_t\}$. The relation $l <_{\sigma,p} l_t$ holds when:

1. The transition t was caused by executing the instruction at label l_t by some process p .
2. The execution buffer $E(p)$ of state σ contained an instance of the instruction at l before the instruction at l_t .

This is equivalent to saying the transition t represents the instruction at l_t being executed while bypassing l .

To show that the chosen constraint language is useful, we need to show a correspondence between the constraints and syntactic fences. More concretely, we need to show that:

- We know how to enforce any constraint formula produced by the algorithm by adding fences to P .
- Enforcement can be done efficiently. To see this is a non-trivial property, consider the constraint language consisting of a single constraint β , where the enforcement mechanism is “If $\psi = \beta$ add a fence between every two instructions in P ”. Clearly, we can enforce this constraint, and enforcing it would create a correct program, but this is not the desired outcome.

First, we can show that adding fences can never introduce new error states. It is clear that adding nop operations (with new labels) to a program has no effect on the program’s

behavior. So it is enough to show that the set of behaviors a program P with a fence at label l has is a subset of the possible behaviors of P with a nop at the same label. This can show this through a simple simulation argument.

Lemma 2.1 *Let P be a program with a nop instruction at label l , and P' the program P with the nop replaced by a fence. Then $\langle \sigma_0, \Sigma_P, T_P \rangle$ simulates $\langle \sigma_0, \Sigma_{P'}, T_{P'} \rangle$.*

This lemma is trivially extendable to replacing any number of nop instructions by fences. After we have established inserting fences cannot add new error states, the next thing we need to show is that we can in fact use syntactic fences to cut any transition t s.t. $\chi(t) \neq \emptyset$. This is established by the following lemma.

Lemma 2.2 *Let P be a program, $t = \sigma_1 \xrightarrow{l_t} \sigma_2$ a transition in $\langle \sigma_0, \Sigma_P, T_P \rangle$ and $v \in \chi(t)$, where $v = [l \prec l_t]$. Let P' be a modification of P s.t. a fence instruction is placed on every control path between l and l_t . Then there is no t' in $\langle \sigma_0, \Sigma_{P'}, T_{P'} \rangle$ that corresponds to t .*

A corollary of the lemma above is that we can enforce any constraint $v = [l_1 \prec l_2]$ (thus cutting any transition t s.t. $v \in \chi(t)$) by placing a fence on every control path between l_1 and l_2 . Using these lemmas we can prove the main soundness theorem.

Theorem 2.3 *Let P be a program, S a specification, $\psi = \bigwedge \{av(\sigma) \mid \sigma \not\models S\}$ and $\delta \models \psi$. Let P' be the program P modified s.t. for any $[l_1 \prec l_2] \in \delta$ a fence instruction is placed on every control path between l_1 and l_2 . Then $\forall \sigma \in \Sigma_{P'} \sigma \models S$.*

To show that the produced constraints are optimal, we can prove the following theorem.

Theorem 2.4 *Let P be a program, S a specification, $\psi = \bigwedge \{av(\sigma) \mid \sigma \not\models S\}$, and P' the program P modified by inserting fences. If for every satisfying assignment $\delta \models \psi$ there exists $[l_1 \prec l_2] \in \delta$ s.t. there is no fence on any control path between l_1 and l_2 , then there is some $\sigma \in \Sigma_{P'}$ s.t. $\sigma \not\models S$.*

2.3 Synthesizing Fences from Constraints

Theorem 2.3 shows that we can syntactically implement any solution to the constraint formula ψ produced by our algorithm. It shows that if for every constraint $[l_1 \prec l_2]$ that needs to be enforced fences are placed on all control-flow paths between l_1 and l_2 then the resulting program is safe. Unfortunately, while Theorem 2.4 shows a fence must be placed on *some* control path between l_1 and l_2 , it does not require placing a fence on *all* of them. There are, in fact, several reasons a fence placement constructed by simply taking some minimal satisfying assignment δ of ψ and adding fences on all control-flow paths may be suboptimal:

- It is not even clear which optimality metric we should use. The number of (static) fences added to the program seems like a convenient choice, but may be misleading. Several fences placed before a loop may have a much smaller (dynamic) execution cost than a single fence placed inside the loop body.

- Theorem 2.4 shows we must add a fence on *some* control path of every constraint that belongs to a minimal satisfying assignment, as opposed to *all* control-flow paths. This is not a weakness of the theorem, as placing fences on all paths is in fact not always required. This may happen for two reasons. First, some control-flow paths may be infeasible, and putting fences on these paths is thus unnecessary. More subtly, it is possible that a given re-ordering of instructions is only harmful on some execution paths. Our chosen constraint language does not preserve enough information to make these distinctions. We could use an alternative constraint language to preserve it, but this would dramatically increase the size of Λ_P — the number of possible constraints would be exponential in the number of labels, as opposed to quadratic.
- Often, it is possible to satisfy several constraints with a single fence. Thus a judicious placement of fences is still required, even once a minimal assignment to the constraint formula is known. Moreover, different minimal assignments may lead to different placement tradeoffs.

We resolve the first issue by working with the natural partial order on fence placements: a set of added fences C is better than a set C' if $C' \subseteq C$. We then produce all minimal incomparable placements and leave the choice between them to the programmer. Choosing between incomparable (by containment) fence placements is a separate hard problem, which we leave to future work.

The second issue could be resolved by adopting a more precise “flow-sensitive” constraint language. This could be done by encoding in the constraints $\chi(t)$ of a transition $t = \sigma_1 \longrightarrow \sigma_2$ information about program paths that lead to t . Moreover, if we used a “context-sensitive” implementation mechanism instead of fences (for example “conditional fences” — fences that are only sometimes executed, depending on the current program state) we could use even finer constraints. For the input programs we used, none of these improvements were necessary. Therefore, we also defer examination of these alternatives to the future.

The third issue requires further examination. While there are in general many ways to implement a given constraint $v = [l_1 \prec l_2]$, for simple programs it usually sufficient (while clearly not optimal in general) to consider two options:

- Place a fence immediately after instruction l_1
- Place a fence immediately before instruction l_2 (if there are branch instructions pointing to l_2 they should point to the newly added fence).

This is complicated slightly by the fact that even in this case, there is interdependence between constraints. For example, consider a program with three statements with labels l_1, l_2, l_3 in sequence and the constraint formula $v_1 \wedge v_2$ where $v_1 = [l_1 \prec l_2], v_2 = [l_1 \prec l_3]$. Obtaining the (only) solution $\{v_1, v_2\}$ and then deciding to place a fence immediately before l_2 (to enforce v_1) and before l_3 (to enforce v_2) will result in a placement that contains two fences, instead of the expected single fence after l_1 . We solve this by replacing the constraint formula ψ with a new formula ζ .

A fence may only be placed after an existing code label. Therefore, for each label we define a new variable v_l . We also define a function $prev$ that returns for each label l the preceding

(in the program code) label. We then produce ζ by replacing every variable $v = [l_1 \prec l_2]$ in ψ with the clause $v_{l_1} \vee v_{\text{prev}(l_2)}$. It is easy to show that every satisfying assignment to ζ still produces a sound fence placement. However, it alleviates the interdependence problem by “off-loading” it to a SAT solver. In the preceding example, the formula $v_1 \wedge v_2$ is transformed into $v_{l_1} \wedge (v_{l_1} \vee v_{l_2})$, with the minimal solution $\{v_{l_1}\}$ as desired.

Limitations The main drawback of the algorithm described in this section is the fact that it requires explicit enumeration of the program’s state-space. While this is possible for some programs, many programs for which we want to infer fences do not allow such explicit enumeration because the state-space is not finite. This might happen due to a combination of several reasons. Three common reasons are:

1. We are interested in inferring a fence placement for an open system (e.g. library code), and not a single finite-state program.
2. The program for which we wish to infer fences utilizes a potentially unbounded number of heap locations.
3. The program is finite-state under SC but not finite-state under the desired relaxed memory model.

In case (1), the problem boils down to the fact we are not interested in placing fences in a single program. Rather, we want to place fences in the code of a library *implementation* such that it remains correct irrespective of the code *using* the library (the data structure *client*). A different way to phrase this is to say we want the *most general* client (which represents all possible clients) of the library to be correct. Unfortunately, the most general client itself is usually not a finite-state program. For example, consider a queue implementation that uses a linked list as the underlying data representation. A client that may add an unbounded number of elements to the queue will use unbounded memory, and the state-space for the client/queue combination is unbounded. In general, this is a hard problem that we do not try to completely solve. We attempt to reduce it using two methods: (a) Hand-picked clients that we believe are representative of the data structure’s behavior. (b) Exhaustive enumeration of clients up to a specified bound on the number of operations. Neither of these two solutions produces a sound verification (or fence inference) procedure. However, in practice these methods allow us to infer optimal fences for realistic data structures. We have verified that the results are indeed optimal by manually comparing them to fence placements found in the literature.

In case (2), the problem is that due to use of an unbounded number of heap locations, the program is infinite-state even under the sequentially-consistent model. One way to deal with this problem is to “work around it” by applying the algorithm to slightly different programs, and dealing with the difference separately (e.g. using finite-state clients instead of the infinite-state most general client as in case (1)). Another is to use heap abstractions.

Regarding case (3), as Atig et al. have shown [2], this is in general a very hard problem. Given a finite-state (under SC) program P , deciding reachability for the same program under SPARC TSO or PSO has non-primitive recursive complexity. Further, under SPARC RMO, reachability for SC-finite-state programs becomes undecidable. One way to deal with

```

1 void enqueue(queue_t *queue, value_t value)
2 {
3     node_t *node, *tail, *next;
4     node = new_node();
5     node->value = value;
6     node->next = 0;
7     fence("store-store");
8     while (true) {
9         tail = queue->tail;
10        fence("load-load");
11        next = tail->next;
12        fence("load-load");
13        if (tail == queue->tail)
14        if (next == 0) {
15            if (cas(&tail->next,
16                    (unsigned) next, (unsigned) node))
17                break;
18        } else
19            cas(&queue->tail,
20                 (unsigned) tail, (unsigned) next);
21    }
22    fence("store-store");
23    cas(&queue->tail,
24         (unsigned) tail, (unsigned) node);
25 }

```

Figure 3: Enqueue operation of the Michael-Scott queue (from [6])

problems of this kind is through the use of abstract interpretation — a technique explored in [19] and [17].

3 Experimental Evaluation

We have implemented our algorithm in a pair of tools called **FENDER** and **BLENDER**. **FENDER** is a direct implementation of the fence inference algorithm of section 2 for the **RLX** framework. In **BLENDER** we adapted the implementation to work with a wider range of memory models [19]. To give a flavor of the capabilities of these tools, we present the fence inference results for the Michael-Scott nonblocking queue [27]. This queue is one of few algorithms for which a correct fence placement (for RMO) has been previously published [6]. We refer to that placement of fences as the “reference placement”. The reference placement uses 7 fences, 4 in `enqueue()`, and 3 in `dequeue()`. As [6] notes, all of the fences were found using small test-cases. Our hypothesis was that by running **FENDER** with a small number of test-cases, we can automatically infer the appropriate fences.

Under RMO (which is closest to the model used by [6]), a small set of clients produced 20 different sets of 4 constraints. Using the local fence placement method there are only 4 different ways to implement those sets using 3 fences: 1 fence in `enqueue()` and 2 in `dequeue()`. One of those placements was, as expected, a proper subset of the reference placement found in [6], and the others were similar.

Fig. 3 is copied verbatim from [6] and shows the `enqueue()` method for the algorithm (including 4 of the 7 fences placed using CheckFence). The reference placement contains 7

fences, while our tool inferred only 3 of these 7, which may seem, at first glance, insufficient. However, manual examination of the 4 missing fences confirms that they are in fact redundant in our model.

- The load-load fence on line 10 of Fig. 3 prevents the load on line 11 from being executed before the load on line 9 (note that the two loads are data dependent). To the best of our understanding SPARC RMO only allows control speculation, but not data speculation, which means this fence is in fact not necessary.
- The store-store fence on line 22 prevents the CAS on line 23 from being executed before the CAS on line 15. However, this may only happen if the CAS on line 23 is executed speculatively, since its execution is control-dependent on the *success* of the CAS in line 15. Under RMO operations that write to memory (and, in particular, CAS operations) may not be executed speculatively, so this fence is never needed.
- The two load-load fences on line 12 and on line 57 of the `dequeue()` code given in [6] enforce the correct execution of a construct meant to solve a certain type of ABA problem that only occurs when immediate reuse of memory is allowed. However, under the assumption of automatic memory management, the statements in lines 13 and 58 are redundant (see [25]). Since the correct execution of these two statements is no longer important, FENDERcorrectly omits the two fences that “protect” them.

Under PSO, only sets of two constraints (implementable by a single store-store fence) in the `enqueue()` method were inferred. This is consistent with the fact that, under this model, loads are not reordered with each other so load-load constraints are unnecessary. Under TSO, no fences were inferred, again consistent with our expectations, and with the claim in [6] that under the x86 memory model (which resembles TSO), no fences should be necessary.

A wide range of our experimental results, as well as details on our methodology, appear in [18, 19].

4 Related Work

Several automated techniques to place memory fences in concurrent programs have been developed over the years. A large body of work dating back to the late 1980s relies on the concepts of *delay set analysis* of Shasha & Snir [29] for reasoning about relaxed memory models. This analysis enables one to find all potential conflicts (more or less equivalent to data races), and place fences accordingly. A fence inference scheme based on delay set analysis was successfully implemented in the “Pensieve” Java compiler [21, 14, 31], which can effectively process large amounts of code. However, a violation of SC does not necessarily cause a violation of any high-level properties. Thus those algorithms are often needlessly conservative. Unlike this previous work, the approach outlined in this paper, uses a high-level specification and allows a trade-off between performance and optimality of the solution.

Another possible approach to fence inference is to use a verification tool combined with syntactic exploration. There exist several techniques for program testing and verification under relaxed memory models, and tools have been developed that implement these techniques (cf. [6, 7, 9, 8, 22].) To utilize a verification tool (e.g. CheckFence [6]) for inference,

the programmer may use an iterative process. She starts with an initial fence placement and if the placement is incorrect, she has to examine the (non-trivial) counterexample from the verification tool, understand the cause of error and attempt to fix it by placing a memory fence at some program location. It is also possible to use the tool by starting with a very conservative placement and choose fences to remove until a counterexample is encountered. This process, while simple, may easily lead to a “local minimum” and an inefficient placement. In [23], Linden & Wolper automate this approach, using the technique described in [22] as the underlying verification tool. However, their tool still suffers from the same problem - it does not necessarily provide a globally optimal solution.

5 Conclusion

We presented a novel fence inference algorithm and demonstrated its practical effectiveness by evaluating it on various challenging state-of-the-art concurrent algorithms. The work presented here is a small sample from our wider work on *synthesis of synchronization* in concurrent programs (e.g., [32, 34, 33, 35, 24]). In the future, we plan to extend our techniques to handle infinite-state programs (e.g., heap-manipulating programs) running on relaxed memory models.

Acknowledgements

Eran Yahav is a Deloro Fellow. This research was partially supported by The Israeli Science Foundation (grant no. 965/10).

References

- [1] ADVE, S. V., AND GHARACHORLOO, K. Shared memory consistency models: A tutorial. *IEEE Computer* 29 (1995), 66–76.
- [2] ATIG, M. F., BOUAJJANI, A., BURCKHARDT, S., AND MUSUVATHI, M. On the verification problem for weak memory models. In *POPL* (2010), pp. 7–18.
- [3] BLUMOFE, R. D., JOERG, C. F., KUSZMAUL, B. C., LEISERSON, C. E., RANDALL, K. H., AND ZHOU, Y. Cilk: an efficient multithreaded runtime system. In *PPOPP '95*.
- [4] BRYANT, R. E. Symbolic boolean manipulation with ordered binary-decision diagrams. *ACM Comput. Surv.* 24, 3 (1992), 293–318.
- [5] BURCKHARDT, S., ALUR, R., AND MARTIN, M. M. K. Bounded model checking of concurrent data types on relaxed memory models: A case study. In *CAV'06*.
- [6] BURCKHARDT, S., ALUR, R., AND MARTIN, M. M. K. Checkfence: checking consistency of concurrent data types on relaxed memory models. In *PLDI* (2007), pp. 12–21.

- [7] BURCKHARDT, S., AND MUSUVATHI, M. Effective program verification for relaxed memory models. In *CAV* (2008), pp. 107–120.
- [8] BURNIM, J., SEN, K., AND STERGIOU, C. Testing concurrent programs on relaxed memory models. In *ISSTA '11*, pp. 122–132.
- [9] BURNIM, J., SEN, K., AND STERGIOU, C. Sound and complete monitoring of sequential consistency for relaxed memory models. In *TACAS'11* (2011), pp. 11–25.
- [10] CHARLES, P., GROTHOFF, C., SARASWAT, V., DONAWA, C., KIELSTRA, A., EBCIOGLU, K., VON PRAUN, C., AND SARKAR, V. X10: an object-oriented approach to non-uniform cluster computing. In *OOPSLA* (2005), pp. 519–538.
- [11] CHASE, D., AND LEV, Y. Dynamic circular work-stealing deque. In *SPAA* (2005), pp. 21–28.
- [12] CLARKE, E. M., GRUMBERG, O., AND PELED, D. *Model Checking*. The MIT Press, 1999.
- [13] COUSOT, P., AND COUSOT, R. Abstract interpretation: A unified lattice model for static analysis of programs by construction of approximation of fixed points. In *POPL* (1977), pp. 238–252.
- [14] FANG, X., LEE, J., AND MIDKIFF, S. P. Automatic fence insertion for shared memory multiproCESSing. In *ICS* (2003), pp. 285–294.
- [15] GHARACHORLOO, K., GUPTA, A., AND HENNESSY, J. Performance evaluation of memory consistency models for shared-memory multiprocessors. In *ASPLOS'91*.
- [16] HERLIHY, M., AND SHAVIT, N. *The Art of Multiprocessor Programming*. Morgan Kauffman, Feb. 2008.
- [17] KUPERSTEIN, M. Preserving correctness under relaxed memory models. Master's thesis, Technion, 2012.
- [18] KUPERSTEIN, M., VECHEV, M., AND YAHAV, E. Automatic inference of memory fences. In *FMCAD* (2010), pp. 111–119.
- [19] KUPERSTEIN, M., VECHEV, M., AND YAHAV, E. Partial-coherence abstractions for relaxed memory models. In *PLDI '11* (2011), pp. 187–198.
- [20] LAMPORT, L. How to make a multiprocessor computer that correctly executes multiprocess program. *IEEE Trans. Comput.* 28, 9 (1979), 690–691.
- [21] LEE, J., AND PADUA, D. A. Hiding relaxed memory consistency with a compiler. *IEEE Trans. Comput.* 50, 8 (2001), 824–833.
- [22] LINDEN, A., AND WOLPER, P. An automata-based symbolic approach for verifying programs on relaxed memory models. In *SPIN* (2010), pp. 212–226.
- [23] LINDEN, A., AND WOLPER, P. A verification-based approach to memory fence insertion in relaxed memory systems. In *SPIN* (2011), pp. 144–160.

- [24] LIU, F., NEDEV, N., PRISADNIKOV, N., VECHEV, M., AND YAHAV, E. Dynamic synthesis for relaxed memory models. PLDI '12, to appear.
- [25] MICHAEL, M. M. Safe memory reclamation for dynamic lock-free objects using atomic reads and writes. In *PODC* (2002), pp. 21–30.
- [26] MICHAEL, M. M., AND SCOTT, M. L. Correction of a memory management method for lock-free data structures. Tech. rep., 1995.
- [27] MICHAEL, M. M., AND SCOTT, M. L. Simple, fast, and practical non-blocking and blocking concurrent queue algorithms. In *PODC* (1996), pp. 267–275.
- [28] PARK, S., AND DILL, D. L. An executable specification and verifier for relaxed memory order. *IEEE Transactions on Computers* 48 (1999).
- [29] SHASHA, D., AND SNIR, M. Efficient and correct execution of parallel programs that share memory. *ACM Trans. Program. Lang. Syst.* 10, 2 (1988), 282–312.
- [30] SPARC INTERNATIONAL INC. *The SPARC architecture manual (version 9)*. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.
- [31] SURA, Z., WONG, C.-L., FANG, X., LEE, J., MIDKIFF, S. P., AND PADUA, D. A. Automatic implementation of programming language consistency models. *LNCS* 2481 (2005), 172.
- [32] VECHEV, M., AND YAHAV, E. Deriving linearizable fine-grained concurrent objects. In *PLDI* (2008), pp. 125–135.
- [33] VECHEV, M., YAHAV, E., BACON, D. F., AND RINETZKY, N. CGCExplorer: a semi-automated search procedure for provably correct concurrent collectors. In *PLDI* (2007), pp. 456–467.
- [34] VECHEV, M., YAHAV, E., AND YORSH, G. Inferring synchronization under limited observability. In *TACAS* (2009), pp. 139–154.
- [35] VECHEV, M., YAHAV, E., AND YORSH, G. Abstraction-guided synthesis of synchronization. In *POPL '10* (2010).
- [36] YANG, Y., GOPALAKRISHNAN, G., AND LINDSTROM, G. UMM: an operational memory model specification framework with integrated model checking capability. *Concurr. Comput. : Pract. Exper.* 17, 5-6 (2005), 465–487.