
Abstract Semantic Differencing for Numerical Programs

Nimrod Partush and Eran Yahav

Technion, Israel

Abstract. We address the problem of computing semantic differences between
a program and a patched version of the program. Our goal is to obtain a precise
characterization of the difference between program versions, or establish their
equivalence when no difference exists.
We focus on computing semantic differences in numerical programs where the
values of variables have no a-priori bounds, and use abstract interpretation to
compute an over-approximation of program differences. Computing differences
and establishing equivalence under abstraction requires abstracting relationships
between variables in the two programs. Towards that end, we first construct a
correlating program in which these relationships can be tracked, and then use
a correlating abstract domain to compute a sound approximation of these rela-
tionships. To better establish equivalence between correlated variables and pre-
cisely capture differences, our domain has to represent non-convex information
using a partially-disjunctive abstract domain. To balance precision and cost of
this representation, our domain over-approximates numerical information while
preserving equivalence between correlated variables by dynamically partitioning
the disjunctive state according to equivalence criteria.
We have implemented our approach in a tool called DIZY, and applied it to a
number of real-world examples, including programs from the GNU core utilities,
Mozilla Firefox and the Linux Kernel. Our evaluation shows that DIZY often
manages to establish equivalence, describes precise approximation of semantic
differences when difference exists, and reports only a few false differences.

1 Introduction

Understanding the semantic difference between two versions of a program is invaluable
in the process of software development. A developer applying a patch is often interested
in answering questions like: (i) did the patch add/remove the desired functionality?
(ii) does the patch introduce other, unexpected, behaviors? (iii) which regression tests
should be run? Answering these questions manually is difficult and time consuming.

Semantic differencing has received much attention in classical work (e.g., [11, 12,
10]) and has recently seen growing interest for various applications ranging from testing
concurrent programs [5], understanding software upgrades [15], to automatic genera-
tion of security exploits [3].
Problem Definition We define the problem of semantic differencing as follows: Given
a pair of programs (P, P ′) that agree on the number and type of input and output vari-
ables, for every execution π of P that originates from an input i and a corresponding
execution π′ of P ′ that originates from the same input i our goal is: (i) Check whether
π and π′ have the same output i.e. are output-equivalent, and (ii) In case of difference
in output variables, provide a description of the difference.

Existing Techniques Existing techniques mostly offer solutions based on under approx-
imation, the most prominent of which is regression testing which provides limited assur-
ance of behavior equivalence while consuming significant time and compute resources.
Other approaches for computing semantics differences [22, 24] rely on symbolic execu-
tion techniques, may miss differences, and are generally unable to prove equivalence.
Previous work for equivalence checking [9] rely on unsound bounded model checking
techniques to prove (input-output) equivalence of two closely related numerical pro-
grams, under certain conditions (see Section 8 for more details).

Our Approach We present an approach based on abstract interpretation [7] for pro-
ducing a sound representation of changed program behaviors and proving equivalence
between a program and a patched version of the program. Our method focuses on ab-
stracting relationships between variables in both versions allowing us to achieve a pre-
cise description of the difference and prove equivalence. Our solution is sound in the
sense that it computes an over approximation of the difference between the two ver-
sions, therefore guaranteeing equivalence when no difference is found.

We focus on output equivalence in the final state. This is sufficient as mid-execution
output can be modeled as added variables in the final state. This limitation also means
that we assume all program executions to be finite (i.e. equivalence/difference holds if
indeed both executions terminate). Note that the definition limits program difference
to the final state which alleviates the need for matching the different stages of (P, P ′).
Finding equivalence/difference in earlier stages of the program requires program match-
ing (we first need to find a suitable location in both programs for checking for equiv-
alence, otherwise it has no meaning). The problem of program matching is orthogonal
and can be addressed via various techniques ranging in complexity and precision - from
syntactic diff [13] to execution indexing [29] and others. In this work we employ a sim-
ple matching strategy to achieve better precision as described in Section 6. We found
this technique to be sufficient for our experiments.

To answer the question of semantic differencing for infinite-state programs, we em-
ploy abstract interpretation. Though the notion of difference is well defined in the con-
crete case, defining and soundly computing it under abstraction is challenging:

– Differencing requires correlation of different program executions. The abstraction
must be able to capture and compare only the input-equivalent executions, and
avoid comparing ones that are not input-equivalent.

– Equivalence of abstract output values does not entail concrete value equivalence.

To address these challenges, we introduce two new concepts: (i) correlating pro-
gram - a single program P ./ P ′ that captures the behaviors of both P and P ′ in a way
that facilitates abstract interpretation; (ii) correlating abstract domain - a domain for
tracking relationships between variables in P and variables in P ′ using P ./ P ′.

Correlating Program We create a single program which captures the behavior of both
the original program and its patched version. A correlating program P ./ P ′ contains
both programs flow and data, however program flow is arranged so to reflect a (simple)
matching between the stages of the two programs. This matching is key for precision as
otherwise we will not be able to maintain equivalence throughout the entire run of the
program, particularly in the face of loops.

Correlating Abstraction Abstracting relationships allows us to maintain focus on differ-
ences while over-approximating (whenever necessary for scalability) equivalent behav-
iors. We abstract variables of both programs together, starting off by assuming equality
over all matched variables (variable matching is discussed in Section 4). Thus we can
reflect relationships without necessarily knowing the actual value of variables. We focus
on numerical programs and use numerical domains such as Octagon [18] and Polyhe-
dra [8] to capture the relationship between variables. Our current implementation does
not track pointer equivalences, but such equivalences can be tracked by a using a cor-
relating shape analysis domain [1]. To maintain equivalence as much as possible, our
domain was designed to represent non-convex information (e.g. so we will not imme-
diately lose equivalence taking a condition of the form x 6= 0 into account). We use
a powerset domain of convex sub-states. Our domain uses a partitioning strategy that
abstracts together states that have the same set of equivalent variables, thus avoiding
exponential blowup (as explained in Section 5). This strategy helps us preserve equiv-
alence even across widening. Therefore our domain may over-approximate numerical
information as long as equivalence between correlated variables is preserved.

1.1 Main Contributions

The main contributions of this paper are as follows:

– We present a novel approach for computing abstract semantic difference between
a program P and a patched version of the program P ′. We focus on numerical
programs where the values of variables have no a-priori bounds.

– We reduce the problem of analyzing the two programs P, P ′ to the problem of
analyzing a single correlating program P ./ P ′ that captures the behavior of P
and P ′.

– We present a correlating abstract domain that captures an over-approximation of
the difference between P and P’ by tracking relationships between variables in
P ./ P ′. The domain applies a partitioning strategy for scaling the analysis while
maintaining precision in equivalence.

– We have implemented our approach in a tool based on the LLVM compiler infras-
tructure and the APRON numerical abstract domain library, and applied it to several
real-world programs. Our evaluation shows that the tool often manages to establish
equivalence, reports useful approximation of semantic differences when differences
exists, and reports only a few false differences.

2 Overview

In this section, we provide an informal overview of our approach using a simple il-
lustrating example. In Section 7 we show how our approach is applied to real-world
programs. Consider the two versions of a program for computing sign in Fig. 1, in-
spired by an example from [25]. For these programs, we would like to establish that the
output of sign and sign′ differs only in the case where x = 0 and that the difference is
sgn = 1 6= sgn′ = 0.

int sign(int x) {
int sgn;
if (x < 0)
sgn = -1

else
sgn = 1

return sgn
}

int sign’(int x’) {
int sgn’;
if (x’ < 0)
sgn’ = -1

else
sgn’ = 1

if (x’==0)
sgn’ = 0

return sgn’
}

int sign(int x) {
int x’ = x;
guard g1 = (x < 0);
guard g1’ = (x’ < 0);
int sgn;
int sgn’ = sgn;
if (g1) sgn = -1;
if (g1’) sgn’ = -1;
if (!g1) sgn = 1;
if (!g1’) sgn’ = 1;
guard g2’ = (x’ == 0);
if (g2’) sgn’ = 0;

}

sign sign′ sign ./ sign′

Fig. 1: Two simple implementations of the sign operation and their correlating program.

Separate Analysis is Unsound As a first naïve attempt to achieve this, one could try
to analyze each version of the program separately and compare the (abstract) results.
However, this is clearly unsound, as equivalence under abstraction does not entail con-
crete equivalence. For example, using an interval domain [8] would yield that in both
programs the result ranges in the same interval [−1, 1], missing the fact that sign never
returns the value 0 where sign′ does.

Establishing Equivalence under Abstraction To establish equivalence under abstrac-
tion, we need to abstract relationships between the values of variables in sign and
sign′. Specifically, we need to track the relationship between the values of sgn and
sgn’. This requires a joint representation in which these relationships can be tracked.

As our approach dictates the joint analysis of two programs for maintaining vari-
able relationships, we need to determine an order in which the different stages of the
programs are analyzed. One solution would be to analyze the programs sequentially.
However, such an analysis will be forced to retain full path sensitivity, withholding
over-approximation, since abstracting together paths will result in a non-restorable loss
of equivalence. For example, analyzing sign first will result in an abstract state where
σ = sgn 7→ [−1, 1]. As we continue on towards sign′, we could never restore in σ the
fact that sgn’ is equal to sgn for all paths except where x is zero.

Intuitively, establishing equivalence using the sequential compositionP ;P ′ requires
full path sensitivity, leading to an inherently non-scalable solution. Further, in the pres-
ence of loops and widening, applying widening separately to the loops of P and to those
of P ′ does not allow maintaining variable relationships under abstraction.

Correlating Program To address these challenges, we construct a correlating program
P ./ P ′ where operations of P and P ′ are interleaved to achieve correlation throughout
the analysis. Fig. 1 shows the correlating program sign ./ sign′. The programs were
transformed to a guarded command language form to allow for interleaving. A key
feature of the correlating program for closely related program versions is the ability
to keep matched instructions, that appear in both versions, closely interleaved. This
allows the analysis to better maintain relationships as the program executions are better
aligned. Using the correlating program, we can directly track the relationship between
sgn in sign and its corresponding variable sgn’ in sign′.

We note that the set of tracked relationships is determined by a matching of P
and P ′ variables denoted V C and defined in Section 4. We match variables in the two
versions using variable names as we found that these do not vary greatly over patches.
However, this matching can also be provided by the user.

We describe the specifics of creating P ./ P ′ in Section 6 and only briefly note that
the interleaving is chosen according to a syntactic diff process over a guarded command
language version of the programs.
Correlating Abstract Domain We introduce a correlating abstract domain that tracks
relationships between corresponding variables in P and P ′ using the correlating pro-
gram P ./ P ′. Unfortunately, any domain with convex constraints will fail to capture
the precise relationship between variables in many cases. For example, using the poly-
hedra abstract domain [8] to analyze the sign example from Fig. 1, the relationship
between the sgn and sgn’ variables in the correlating program would be lost, leaving
only the trivial 〈1 ≥ sgn ≥ −1, 1 ≥ sgn′ ≥ −1〉 constraint. Although the result
soundly reports a difference (as we do not explicitly know that ≡sgn), we still know
nothing about the difference between the programs.

An obvious, but prohibitively expensive, solution to the problem is to use disjunc-
tive completion, moving to a powerset domain where the abstract state is a set of convex
objects (e.g., set of polyhedra). A state in such domain is a set of convex abstract repre-
sentations (e.g., polyhedra [8] or octagon [18]). For example, analyzing sign ./ sign′
using a powerset domain would yield:

σ1 = {x = x′ < 0, sgn = sgn′ 7→ −1}, σ2 = {x = x′ 7→ 0, sgn 7→ 1, sgn′ 7→ 0}
σ3 = {x = x′ > 0, sgn = sgn′ 7→ 1}

However, using such domain would significantly limit the applicability of the approach.
The desirable solution is a partially disjunctive domain, where only certain disjunctions
are kept separate during analysis. The challenge in our setting is in keeping the partition
fine enough such that equivalence could be preserved, without reaching exponential
blowup. This is accomplished by applying partitioning.
Partitioning As the goal of this work is to distinguish equivalent from dissimilar be-
haviors, using equivalence as criteria for merging paths is apt. The partitioning will
abstract together paths that hold equivalence for the same set of variables, allowing for
a maximum of 2|V C| disjunctions in the abstract state.

For example partitioning the above-mentioned result of analyzing sign ./ sign′

according to our criteria would abstract behaviors σ1 and σ3 together, as they hold
equivalence for sgn. The merge would abstract away data regarding x and represent
sgn as the [−1, 1] interval, losing precision but gaining reduction in state size. This loss
of precision is acceptable as it is complemented by the offending state σ2.

σ1 = {x = x′, sgn = sgn′ 7→ [−1, 1]}, σ2 = {x′ = 0, sgn 7→ 1, sgn′ 7→ −1}

To reduce state size, we must perform partitioning dynamically during analysis. This
cannot be achieved using a sequential composition P ;P ′. Intuitively, this is because an
operation in P has to “wait” for its equivalent operation to occur in P ′. To overcome
this, our correlating program P ./ P ′ interleaves P and P ′ commands, and informs
the analysis when programs have reached a point where correlation may be established
by annotating P ./ P ′ with special markers called correlation points denoted CP and
defined also in Section 6.

int sum(int arr[], unsigned len) {
int result = 0;
for (unsigned i = 1; i < len; i+=2)

result += arr[i];
return result;
}

int sum’(int arr[], unsigned len) {
int result = 0;
unsigned i = 0;
while (i + 1 < len) {
i++;
result += arr[i];
i++;

}
return result;

}

Fig. 2: Two equivalent versions of a looping program for partial array summation.

Widening Although we achieved a reduction in state size using partitioning, we have
yet to account for programs with loops. Handling loops is where most previous ap-
proaches fall short [9, 16, 22, 24]. To overcome this, we define a widening operator for
our domain, based on the convex sub-domain widening operator (e.g., interval, octagon,
polyhedra). The main challenge here, as our state is a set of convex objects belonging to
the sub-domain, is finding an optimal pairwise matching between objects for a precise
widened result. Ideally, we would like to pair objects that adhere to the same “looping
path” meaning we would like to match a path πi’s abstraction with a path πi+1 that
results from taking another step in the loop. This requires encoding path information
along with the sub-state abstraction. This information is acquired by keeping guard
values explicitly, as they appear in our correlating program, inside the state. As guard
values (true or false) reflect branch outcomes, they can be used to match sub-states
that advanced on the loop by matching their guard values.

We note that the correlating program is crucial to maintaining equivalence over
loops. To demonstrate this we perform the simple exercise of checking equivalence of
a small looping program with itself. Consider the array summation program in Fig. 2.
Equivalence for these two small programs cannot be established soundly by approaches
based on under approximation. To emphasize the importance of the correlating pro-
gram, we will first show the result of an analysis of sum; sum′ which will be:

σ1 = {len = len′ ≤ 1, result = result′ 7→ 0}, σ2 = {len = len′ > 1}

This loss of equivalence occurred due to the inability to precisely track the relationship
of result and result’ over sum; sum′. As we widened the first loop to converge, all
paths passing through that loop were merged together, losing the ability to be "matched"
with the second loop waiting further down the road. Performing the same analysis on
sum ./ sum′ instead as seen in Fig. 3, allows maintaining equivalence, as the loops are
interleaved to allow establishing ≡result as a loop invariant. This invariant survives the
widening process to prove equivalence at the end as the result would be: σ1 = {≡result}.
We note that we implicitly assume equivalence in array content for sum and sum′.

3 Preliminaries

We use the following standard concrete semantics definitions for a program:

– V ar, V al, Loc denote the set of program variable identifiers, variable values and
program locations respectively. Program locations are also denoted lab for label.
The labels begin and end mark the start and exit locations of the program.

int sum(int arr[], unsigned len) {
unsigned len’ = len;
int arr’[] = arr;
int result = 0;
int result’ = 0;
{
unsigned i = 1;
unsigned i’ = 0;

l: guard g = (i < len);
l’: guard g’ = (i’ + 1 < len’);

if (g’) i’++;
if (g) result += arr[i];
if (g’) result’ += arr’[i’];
if (g’) i’++;
if (g) i+=2;
if (g) goto l;
if (g’) goto l’;

}
}

Fig. 3: sum ./ sum′

– A concrete program state σ is a tuple (loc, values) ∈ Σ mapping the set of program
variables to their concrete value at a certain program location loc. The set of all
possible states of a program P is denoted ΣP .

– We describe an imperative program P , as a tuple (V al, V ar,→, Σ0) where →:
ΣP ×ΣP is a transition relation and Σ0 is a set of initial states of the program.

– A program trace π ∈ Σ∗P , is a sequence of states 〈σ0, σ1, ...〉 describing a single
execution of the program. The set of all possible traces for a program is denoted
[[P]]. We also define last : Σ∗P → ΣP which returns the last state in a trace.

We note that our formal semantics need not deal with errors states therefore we
ignore crash states of the programs, as well as inter-procedural programs since our work
deals with function calls by either assuming output-equivalence (for functions that were
proven to be equivalent) or by inlining them (this work excludes recursion).

4 Concrete Semantics

In this section, we define the notion of concrete difference between programs, based on
a standard concrete semantics.

4.1 Concrete State Differencing

Comparing two programs P and P ′ under concrete semantics means comparing their
traces, but only those that originates from the same input. Towards that end, we first
define the difference between two concrete states.

Intuitively, given two concrete states, the difference between them is the set of vari-
ables (and their values) where the two states map corresponding variables to different
values. As variable names may differ between programs, we parameterize the definition
with a mapping that establishes a correspondence between variables in P and P ′. Thus
concrete state differencing is restricted to comparing values of corresponding variables.

Definition 1 (Variable Correspondence). A variable correspondence V C ⊆ V ar ×
V ar′, is a partial mapping between two sets of program variables. The V C mapping
can be taken as input from the user however, our evaluation indicates that is sufficient
to use a name-based mapping for a program and a patched version:

V CEQ , {(v, v′)|v ∈ V ar ∧ v′ ∈ V ar′ ∧ name(v) = name(v′)}

Definition 2 (Concrete State Delta). Given two concrete states σ ∈ ΣP , σ′ ∈ ΣP ′ ,
and a correspondence V C, the concrete state delta is defined as:

4S(σ, σ′) , {(v, val)|(v, v′) ∈ V C ∧ σ(v) = val 6= σ′(v′)}

Informally, 4S means the “part of the state σ where corresponding variables do not
agree on values (with respect to σ′)”. Note that 4S is not symmetric. In fact, the
direction in which 4S is used has meaning in the context of a program P and a
patched version of it P ′. We define 4−S = 4S(σ, σ′) which means the values of the
state that was "removed" in P ′ and 4+

S = 4S(σ′, σ) which stands for the values
"added" in P ′. When there is no observable difference between the states we get that
4+
S (σ, σ

′) = 4−S (σ, σ′) = ∅, and say that the states are equivalent denoted σ ≡ σ′.

Example 1 Consider two concrete states σ = (x 7→ 1, y 7→ 2, z 7→ 3) and σ′ = (x′ 7→
0, y′ 7→ 2, w′ 7→ 4) and using V CEQ then4−S = {(x 7→ 1)} since x and x’ match and
do not agree on value, y and y’ agree (thus are not in delta) and z’ is not in V CEQ.
Similarly,4+

S = {(x′ 7→ 0)}.

We now use our notion of concrete state difference to define the difference between
concrete program traces.

Definition 3 (Trace Delta). Given two traces π ∈ [[P]] and π′ ∈ [[P ′]] that originate
from equivalent input states, we define the trace delta as simply the difference between
the traces final states. Formally:4T (π, π′) = {4S(last(σ), last(σ′))}

The definition adheres to our problem definition in Section 1, where we defined
program difference as difference between matched variables in the terminating state.
Since 4T (π, π′) is based on state difference, we define 4+

T and 4−T similarly to their
underlying states difference operations.

Now, we will move past the concrete semantics towards abstract semantics. This
is required as it is unfeasible to describe difference based on traces. Before doing so,
we must adjust our concrete semantics since a concrete semantics based on individual
traces will not allow us to correlate traces that originate from the same input. This is the
first formal indication of how a separate abstraction, that considers each of the programs
by itself, cannot succeed.

4.2 Concrete Correlating Semantics

We define the correlating state and trace which bind the executions of both programs,
P and P ′, together and define the notion of delta in this setting. This allows us to define
the correlating abstract semantics which is key for successful differencing.

Definition 4 (Correlating Concrete State). A correlating concrete state σ./ : V ar ∪
V ar′ → V al is a unified concrete state, mapping variables from both programs (P, P ′)
to their values.

Definition 5 (Correlating Concrete Trace). A correlating trace π./, is a sequence of
correlating states ..., σ./i , ... describing an execution of P ./ P ′.

Note that an attribute of the correlating programs (as defined in Section 6) is that it
restricts to traces that originate from equivalent input states i.e., σ./0 ≡ σ′./0 .

We must remember however, that the number of traces to be compared is potentially
unbounded which means that the delta we compute may be unbounded too. Therefore
we must use an abstraction over the concrete semantics that will allow us to represent
executions in a bounded way.

5 Abstract Correlating Semantics

In this section, we introduce our correlating abstract domain which allows bounded
representation of correlating program state while maintaining equivalence between cor-
related variables.

5.1 Abstract Correlating State

We represent variable information using standard relational abstract domains. As our
analysis is path sensitive, we allow for a set of abstract sub-states, each adhering to a
certain path in the product program. This abstraction is similar to the trace partitioning
domain as described in [25].

Our power-set domain records precise state information but does not scale due to
exponential blowup. As a first means of reducing state size, we define a special join op-
eration that dynamically partitions the abstract state according to the set of equivalences
maintained in each sub-state and joins all sub-states in the same partition together (us-
ing the sub-domain join operation). This join criteria allows separation of equivalence
preserving paths thus achieving better precision. Second, to allow a feasible bound ab-
straction for programs with infinite number of paths, we define a widening operator
which utilizes the sub-domain’s widening operator but cleverly chooses which sub-
states are to be widened, according to path information encoded in state. We start off by
abstracting the correlating trace semantics in Sec. 4.2.

In the following, we assume an abstract relational domain (D],vD) equipped with
operations uD, tD and∇D, for representing sets of concrete states in ΣP./P ′ . We sep-
arate the set of program variables into original program variables denoted V ar (which
also include a special added variable for return value, if such exists) and the added guard
variables denotedGuard that are used for storing conditional values alone (Guard also
include a special added guard for return flag). We assume the abstract values in D]

are constraints over the variables and guards (we denote D]
Guard for sub-domain ab-

straction of guards and D]
V ar for original variables), and do not go into further details

regarding the particular abstract domain as it is a parameter of the analysis. We also

assume that the sub-domain D] allows for a sound over-approximation of the concrete
semantics (given a sound interpretation of program operations). In our experiments, we
use the polyhedra abstract domain [8] and the octagon abstract domain [18].

Definition 6 (Correlating Abstract State). A correlating abstract program state σ] ∈
Lab → 2D

]
Guard×D

]
V ar , is a mapping from a correlating program label l./ to a set of

pairs (ctx, data), where ctx ∈ D]
Guard is the execution context i.e. an abstraction of

guards values via the relational numerical domain and data ∈ D]
V ar is an abstraction

of the variables.

We separate abstractions over guard variables added by the transformation to Guarded
command language (GCL) format (see Section 6) from original program variables as
there need not be any relationships between guard and regular variables.

5.2 Abstract Correlating Semantics

[[v := e]]] l./ 7→ {〈ctx, [[v := e]]]
D](data)〉|〈ctx, data〉 ∈ S}

[[g := e]]] l./ 7→ {〈[[g := true]]]
D](ctx), [[e]]

]

D](data)〉|〈ctx, data〉) ∈ S}

∪{〈[[g := false]]]
D](ctx), [[¬e]]

]

D](data)〉|〈ctx, data〉 ∈ S}

[[if (g) {s0} else {s1}]]] l./ 7→ {〈[[g = true]]]
D](ctx), [[s0]]

]

D](data)〉|〈ctx, data〉) ∈ S}

∪{〈[[g = false]]]
D](ctx), [[s1]]

]

D](data)〉|〈ctx, data〉 ∈ S}

[[goto lab]]] σ]

Table 1: Abstract transformers

Tab. 1 describes the abstract transformers. The table shows the effect of each state-
ment on a given abstract state σ] = l./ 7→ S. The abstract transformers are defined
using the abstract transformers of the underlying abstract domain D]. We assume that
any program P can be transformed such that it only contains the operations described
in Tab. 1 (this is achieved by the GCL format). We also assume that for [[g := e]]]

operations, e is a logical operation with boolean value.
Next, we define the abstraction function α : 2Σ

∗
P./P ′ → 2D

]×D]

that abstracts
together a set of concrete correlating traces T . As in our domain traces are abstracted
together if they share the exact same path, we first define an operation path : Σ∗P./P ′ →
Lab∗ which returns a sequence of labels for a trace’s states i.e. what is the path taken
by that trace. We also allow applying path on a set of traces to denote the set of paths
resulting by applying the function of each of the traces. Finally we define the trace
abstraction as follows:

α(T) , {tpath(π)=pβ(last(π))|p ∈ path(T)}

where β(σ) = 〈βD](σ|Guard), βD](σ|V ar)〉 i.e. applying the abstraction function of
the abstract sub-domain βD] on parts of the concrete state applying toGuards (denoted

σ|Guard) and V ars (denoted σ|V ar) separately. Our abstraction partitions trace prefixes
π by path and abstracts together the concrete states reached by the prefix - last(π), using
the sub-domain.

Every path in the correlating program will be represented by a single sub-state of
the sub-domain. As a result, all trace prefixes that follow the same path to l./ will be
abstracted into a single sub-state of the underlying domain. This abstraction fits seman-
tics differencing well, as inputs that follow the same path display the same behavior
and will usually either keep or break equivalence together, allowing us to separate them
from other behaviors (it is possible for a path to display both behaviors as in Fig. 4 and
we will discuss how we are able to manipulate the abstract state and separate equivalent
behaviors from ones that offend equivalence). Another issue to be addressed is the fact
that our state is still potentially unbounded as the number of paths in the program may
be exponential and even infinite (due to loops).

int f(int x) {
return x;

}

int f’(int x) {
return 2*x;

}

Fig. 4: Single path differentiation candidates

5.3 Dynamic Partitioning

Performing analysis with the powerset domain does not scale as the number of paths
in the correlated program may be exponential (we defer the case of unbound paths to
widening of loops). We must allow for reduction of state σ] = l./ 7→ S with acceptable
loss of precision. This reduction via partitioning can be achieved by joining the abstract
sub-states in S (using the standard join of the sub-domain). However this can only be
accomplished after first deciding which of the sub-states should be joined and then
choosing the program locations for the partitioning to occur. To choose a strategy, we
start by taking a closer look at the final state of the fully disjunctive analysis of Fig. 1:

σ](end) = [〈(g1,¬g2′,≡g1), (x > 0, sgn = 1,≡x,sgn)〉,
〈(¬g1,¬g2′,≡g1), (x < 0, sgn = −1,≡x,sgn)〉,
〈(¬g1, g2′,≡g1), (x = 0, sgn = 0, sgn′ = 1,≡x)〉]

One may observe that were we to join the two sub-states that maintain equivalence
on {x, sgn, g1}, it would result in an acceptable loss of precision (losing the x related
constraints). This is achieved by partitioning sub-states according to the set of variables
which they preserve equivalence for. This bounds the state size at 2|V C|, where V C
is the set of correlating variables we wish to track. As mentioned, another key factor
in preserving equivalence and maintaining precision is the program location at which
the partitioning occurs. The first possibility, which is somewhat symmetric to the first
proposed partitioning strategy, is to partition at every join point i.e. after every branch
converges. Let use examine sign ./ sign′ state after processing the first guarded in-
struction if (g1) sgn = -1; (we ignored g2′ effect at this point for brevity):

σ] = [〈(g1,≡g1), (x ≥ 0,≡x,sgn)〉, 〈(g1,≡g1), (x < 0, sgn′ = −1,≡x)〉]

This suggests that partitioning at join points will perform badly in many scenarios,
specifically here as we will lose all data regarding sgn. However if we could delay
the partitioning to a point where the two programs “converge” (after the following if

(g1’) sgn’ = -1; line), we will get a more precise temporary result which preserves
equivalence. To accomplish this, we define special program locations we name corre-
lating points which present places where programs have likely converged. These are a
sub-product of the correlating program construction process described in Section 6.

unsigned max = ...;
int sum’’(int arr[], unsigned len) {

int result = 0;
if (len > max)

return -1;
for (unsigned i = 1; i < len; i+=2)

result += arr[i];
return result;

}

unsigned max’ = ...;
int sum(int arr[], unsigned len) {
unsigned len’ = len;
int arr’[] = arr;
int result = 0;
int result’ = 0;
guard r’ = (len’ > max’);
if (r’) retval’ = -1;
if (r’) r’ = 0;
{
unsigned i = 1;
unsigned i’ = 1;

l: guard g = (i < len);
l’: guard g’ = 0;

if (r’) g’ = (i’ < len’);
if (g) result += arr[i];
if (r’) if (g’) result’ += arr’[i’];
if (g) i+=2;
if (r’) if (g’) i’+=2;
if (g) goto l;
if (r’) if (g’) goto l’;

}
}

Fig. 5: Patched sum” and correlating sum ./ sum”

5.4 Widening

In order for our analysis to handle loops we require a means for reaching a fixed point.
As our analysis iterates over a loop, sub-states may be added or transformed continu-
ously, never converging. We therefore need to define a widening operator for our new
domain. We have the widening operator of our sub-domain at our disposal, but we
are faced with the question of how to lift this operator, i.e., which pairs of sub-states
〈ctx, data〉 from σ] should be widened with which. This problem has been addressed
in the path in other settings [2], and our approach can be viewed as a specialized form
of lifting that is tailored for tracking equivalences. A first viable strategy is to perform
an overall join operation on all pairs which will result in a single pair of sub-states
and then simply apply the widening to this sub-state using the sub-domain’s ∇ opera-
tor. If we examine applying this strategy to sum ./ sum′ from Fig. 3, we get that it
will successfully arrive at a fixed point that also maintains equivalence as all sub-states
maintain equivalence at loop back-edges. Now let us try to apply the strategy to the
more complex sum ./ sum′′ of Fig. 5. First we mention that as sum′ introduces a
return statement under the len > max condition, the example shows an extra r′ guard
and retval′ variable for representing a return (this exists in all GCL programs but we

omitted it so far for brevity). While analyzing, once we pass that first conditional, our
state is split to reflect the return effect:

σ] = [d1 = 〈(¬r′), (len ≤ max, result = 0,≡len,result)〉,
d2 = 〈(r′), (len > max, retval′ = −1, result = 0,≡len,result)〉]

As we further advance into the loop, d1 will maintain equivalence but d2 will continue
to update the part of the state regarding untagged variables (since r′ is false), specif-
ically it will change result continuously, preventing the analysis from reaching fixed
point. We would require widening here but using the naive strategy of a complete join
will result in aggressive loss of precision, specifically losing all information regarding
result. The problem originates from the fact that prior to widening, we joined sub-
states which adhere to two different loop behaviors: one where both sum and sum′
loop together (that originated from len < max) and the other where sum′ has exited
but sum continues to loop (len ≥ max). Ideally, we would like to match these two
behaviors and widen them accordingly. We devised a widening strategy that allows us
to do this as it basically matches sub-states that adhere to the same behavior, or loop-
paths. This strategy dictates using guards for the matching. If two sub-states agree on
their set of guards, it means they represent the same loop path and can be widened as the
latter originated from the former (widening operates on subsequent iterations). In our
example, using this strategy will allow the correct matching of states after consequent
k, k + 1 loop iterations:

σ]
k = [d1 = 〈(¬r′, g,≡g), (len ≤ max, i = 2k + 1,≡i,len,result)〉,

d2 = 〈(r′,¬g, g′), (len > max, retval′ = −1, result′ = 0, i′ = 2k + 1, i = 1,≡len)〉]

And:

σ]
k+1 = [d1 = 〈(¬r′, g,≡g), (len ≤ max, i = 2k + 3,≡i,len,result)〉,

d2 = 〈(r′,¬g, g′), (len > max, retval′ = −1, result′ = 0, i′ = 2k + 3, i = 1,≡len)〉]

As we can identify the states predecessors by simply matching the guards. d1 will be
widened for a precise description of the difference shown as 〈len = len′ > max′, retval′ =

−1, retval = >〉.

5.5 Differencing for Abstract Correlating States

Given an abstract state in our correlating domain, we want to determine whether equiv-
alence is kept and if so under which conditions it is kept (for partial equivalence) or
determine there is difference and characterize it. As our state may hold several pairs of
sub-states, each holding different equivalence data, we can provide a verbose answer
regarding whether equivalence holds. We partition our sub-states according to the set
of variables they hold equivalence for and report the state for each equivalence parti-
tion class. Since we instrument our correlating program to preserve initial input values,
for some of these states we will also be able to report input constraints thus informing
the user of the input ranges that maintain equivalence. When equivalence could not be
proved, we report the offending states and apply a differencing algorithm for extracting
of the delta. Fig. 4 shows an example of where our analysis is unable to prove equiv-
alence, although part of the state does maintain equivalence (specifically for x = 0).
This is due to the abstraction being too coarse. We describe an algorithm that given a

sub-state d ∈ D], computes the differentiating part of the sub-state (where correlated
variables disagree on values) by splitting it into parts according to equivalence. This
is done by treating the relational constraints in our domain as geometrical objects and
formulating delta based on that.

Definition 7 (Correlating Abstract State Delta). Given a sub-state d and a corre-
spondence V C, the correlating state delta4A(d), computes abstract state differentia-
tion over d. The result is an abstract state v d approximating all concrete values for
variables correlated by V C, that differ between P and P ′. Formally, the delta is simply
the abstraction of the concrete trace deltas:

4A(d)+ , α(∪path4+
T),4A(d)

− , α(∪path4−T)

where deltas are grouped together by path and then abstracted.

The algorithm for the extraction of delta from a correlating state, is as follows:

1. d≡ is a state abstracting the concrete states shared by the original and patched
program. Obtained by computing: d≡ , d|V=V ′ ≡ d u

∧
{v = v′|(v, v′) ∈ V C}.

2. d≡ is the negated state i.e.D]\d≡ and it is computed by negating d≡ (as mentioned
before, all logical operations, including negation, are defined on our representation
of an abstract state).

3. Eventually:4A(d) , dud≡ abstracts all states inP×P ′ where correlated variables
values do not match.

4. 4A(d)+ = 4A(d)|V ′ is a projection of the differentiation to display values of P ′

alone i.e. "added values".
5. 4A(d)− = 4A(d)|V is a projection of the differentiation to display values of P

alone i.e. "removed values".

Example 2 Applying the algorithm on Fig. 4’s P and P ′ where d = {retval′ =
2retval} will result in the following:

1. d≡ = 〈retval′ = 0, retval = 0〉.
2. d≡ = [〈retval′ > 0〉, 〈retval′ < 0〉, 〈retval > 0〉, 〈retval < 0〉]
3. 4A(d) = [〈retval′ = 2retval, retval′ > 0〉, 〈retval′ = 2retval, retval′ <

0〉, 〈retval′ = 2retval, retval > 0〉, 〈retval′ = 2retval, retval < 0〉]
4. 4A(d)+ = [〈retval′ > 0〉, 〈retval′ < 0〉]
5. 4A(d)− = [〈retval > 0〉, 〈retval < 0〉]

We note that as a sub-state is basically a conjunction of constraints, negating it by
splitting to constraints and negating each individually reflects correctly the effect of
negating a conjunction as we are left with a disjunction of negations, as seen in step 2.
We also see that displaying the result in the form of projections is ill-advised as in some
states differentiation data is represented by relationships on correlated variables alone,
thus projecting will lose all data and we will be left with a less informative result. A
geometrical representation of4A calculation can be seen in Fig. 7 in Appendix A.

From this point forward any mention of “delta” (denoted4) refers to the correlating
abstract state delta (4A). We claim that4 is a correct abstraction for the concrete state
delta which allows for a scalable representation of difference we aim to capture.

6 Correlating Program

In this section, we describe how to construct a correlating program P ./ P ′. The process
attempts to find an interleaving of programs for a more precise differentiation. The
construction also instruments P ./ P ′ with the required correlation points CP which
define the locations for our partitioning. We also allow a user defined selection of CP .

6.1 Construction of P ./ P ′

The idea of a correlating program is similar to that of self-composition [27], but the way
in which statements in the correlating program are combined is designed to keep the
steps of the two programs close to each other. Analysis of the correlating program can
then recover equivalence between values of correlated variables even when equivalence
is temporarily violated by an update in one version, as the corresponding update in the
other version follows shortly thereafter.

The correlating program is an optimized reduction over P × P ′ where not all pairs
of (σ], σ′]) are considered, but only pairs in a controlled execution, where correlating
instructions in P and P ′ execute adjacently. This allows for superior precision.

The input for the correlation process are two C programs (P, P ′). The first step in-
volves transforming both programs to a normalized guarded instruction form (PG, P

′
G).

Next, a vector of imperative commands I (and I ′ respectively) is extracted from each
program for the purposes of performing the syntactic diff. An imperative command in
our GCL format is defined to be either one of v := e | goto l | f(...) as they
effectively change the program state (variable values, excluding guards) and control.
Function calls are either inlined, in case equivalence could not be proven for them, or
left as is, in case they are equivalent or are external system calls. Continuing the con-
struction process, a syntactical diff [13] is computed over the vectors (I, I ′). One of
the inputs to the diff process is V C as it is needed to identify correlated variables and
the diff comparison will regard commands differing by variable names which are corre-
lated by V C as equal. The result of the last step will be a vector I4 specifying for each
command in I, I ′ whether it is an added command in P ′ (for I ′) marked +, a deleted
command from P (for I) marked −, or a command existing in both versions marked
=. This diff determines the order in which the commands will be interleaved in the re-
sulting P ./ P ′ as we will iterate over the result vector I4 and use it to construct the
correlating program. We remind that since I, I ′ contain only the imperative commands,
we cannot use it directly as P ./ P ′. Instead we will use the imperative commands
as markers, specifying which chunk of program from PG or P ′G should be taken next
and put in the result. The construction goes as follows: iterate over I4 and for every
command c (c′) labeled lc (lc′):

– read PG (P ′G) up to label lc (lc′) including into block Bc (B′c)
– for B′c, tag all variables in the block.
– emit the block to the output.
– delete Bc (B′c) from PG (P ′G).

The construction is now complete. We only add that at the start of the process, we
strip P ′G of its prototype and add declarations for the tagged input variables, initializing

them to the untagged version (thus assuring P ./ P ′ will only co-execute traces that
originate from the same input for P and P ′). As mentioned, CP is also a product of the
construction, and it’s defined using = commands: after two = commands are emitted to
the output, we add an instrumentation line, telling the analysis of the correlation point.
One final observation regarding the correlating program is that it is a legitimate program
that can be run to achieve the effect of running both versions. We plan to leverage this
ability to use dynamic analysis and testing techniques such as fuzzing [21] and directed
automated testing [4] on the correlating program in our future work.

7 Evaluation

We evaluated DIZY on a number of real world programs where the patches affect numer-
ical variables. As benchmarks, we used several programs from the GNU core utilities,
as well as a few handpicked patches from the Linux kernel and the Mozilla Firefox web
browser. We also include results for illustrative examples used throughout the paper.

7.1 Prototype Implementation

We implemented a correlating compiler named CCC which creates correlating programs
from any two C programs. We also implemented a differencing analysis for analyzing
correlated programs. Both tools are based on LLVM and CLANG compiler infrastruc-
ture. We analyze C code directly since it is more structured, has type information and
keeps a low number of variables, as opposed to intermediate representation. We also
benefit from our delta being computed over original variables. As mentioned in Sec-
tion 6, we normalize the input programs before correlating them. This also allows for
a simpler analysis. Our analysis is intra-procedural and we handle function calls by ei-
ther modularly proving their equivalence and assuming it once encountered or, in case
equivalence could not be proved, by inlining. Calls to external system functions do not
change local state in our examples and thus were ignored. We used the APRON abstract
numerical domain library and conducted our experiments using several domains includ-
ing Interval, Octagon [18] and Polyhedra [8]. All of our experiments were conducted
running on a Intel(R) Core-i7(TM) processor with 4GB.

7.2 Results

Tab. 2 summarizes the results of our analysis. The columns indicate the benchmark
name, lines of code for the analyzed program, the number of lines added and removed
by the patch, whether it required widening, and the result of each benchmark run along-
side its run time in minutes. We included three different setting in the results: with
and without partitioning and with an Interval, Octagon [18] and Polyhedra [8] abstract
domains. Generally, the results are ordered in increasing order of precision from left
to right. Results marked with Xpresented abstract states with acceptable precision i.e.,
mostly variables that indeed differ between variables were reported, and the description
of the difference was useful for producing actual values for the differencing variables.

Table 2: Experimental Results
Name #LOC #P Widen Interval Octagon Polyhedra

Part No Part Part No Part Part No Part
remove 16 4 N 7(0) 7(0) X(0:03) X(0:03) X(0:01) X(0:01)
copy 44 2 N 7(0:33) 7(0:33) X(0:23) X(3:11) X(0:07) X(0:47)
fmt 42 5 Y 7(0:16) 7(13:20) 7(3:13) TO X(0:22) X(1:46)
md5sum 40 3 Y X(0:04) X(0:15) X(5:24) TO X(1:38) X(5:52)
pr 100 10 Y 7(2:35) TO TO TO X(18:49) TO
savewd 86 1 N TO TO X(2:53) X(12:37) X(0:46) X(2:08)
seq 23 15 Y 7(0:25) 7(2:04) 7(12:21) TO 7(3:24) 7(8:12)
addr 77 1 N 7(0:14) 7(0:46) X(20:00) TO X(6:46) TO
nsGDDN 47 11 N 7(0:02) 7(0:21) 7(0:24) 7(1:56) X(0:11) X(0:35)
sign 8 2 N 7(0) X(0) X(0) X(0) X(0) X(0)
sum 7 5 Y 7(0:03) 7(0:10) 7(0:12) 7(0:33) X(0:04) X(0:14)
nested 10 1 Y 7(1:02) TO 7(0:35) 7(1:37) X(0:12) X(0:30)

As precision increases, the resulting delta was more precise and contained more nu-
merical information describing the difference. Results marked with 7 produced false
positives, reporting equivalent variables as different or providing too abstract of a de-
scription of the difference (i.e., >). Results marked in TO represent runs that were
stopped after 20 minutes. In either case, the results maintained soundness (equivalence
was never reported falsely).

Runs without partitioning presented the most precise results with the most detailed
abstract states describing the differencing paths. However this setting could not be ap-
plied towards all benchmarks since it leads to state explosion as shown by larger bench-
marks that timed out. Applying partitioning allowed us to scale the analysis while main-
taining precision. Results from runs that included partitioning described difference with
less detail since some numerical data was abstracted away.

As expected, the Interval domain usually produced the fastest, least accurate results,
while maintaining soundness as difference was reported for the appropriate variables
but numerical data was almost completely abstracted away. In some case, like in the
copy benchmark, Interval performed worse than Octagon and Polyhedra (in run time)
for runs with partitioning. This is due to the Interval domain’s limited ability to cap-
ture variable relationships which led to the partitioning algorithm failing in grouping
together the different sub-states (as the equivalences they kept varied greatly). This re-
sulted in a close to 2|V C| number of equivalence groups.

Surprisingly, runs using the Octagon domain presented poor performance (run time),
even compared to the more expensive Polyhedra domain, with less precision. This is due
to the Octagon domain being less successful in capturing equivalences as it is built upon
linear inequalities. This meant that more constraints were needed to represent variable
equality, resulting in bigger states and a slower analysis.

The addr and nsGDDN benchmarks taken from the net/sunrpc/addr.c module
in the Linux kernel SUNRPC implementation v2.6.32-rc6 and Firefox 3.6 security ad-
visory CVE-2010-1196 (adapted to C from C++) respectively. The results produced by
DIZY can be directly used towards exploiting known security flaws mentioned in advi-

sories from which these patches originate, as the resulting abstract state describes the
difference between versions which is exactly the range of exploitable values.

bool bsd_split_3 (char *s, size_t s_len,...) {
int i = s_len;
i--;

+ if (s_len == 0) return false;
while (i && s[i] != ’)’) {
i--;

}
...

}

Fig. 6: Original and patched version of coreutils md5sum.c’s bsd_split_3 procedure

In the md5sum benchmark, all paths in the programs contain loops and only some
of them maintain equivalence. Fig. 6 shows part of the benchmark that was patched
to disallow 0-length inputs (patch line is marked with ‘+’). The main challenge in this
example, is separating the path where s_len is 0, which results in the loop index i
ranging within negative values (producing an array access out of bounds fault), from
the rest of the behaviors that maintain equivalence, throughout the widening process
which is required for the analysis to reach a fixed point. As the partitioning maintains
equivalence, the path where s_len = s_len′ 7→ 0, ret 7→ false, ret′ 7→ true will not
be abstracted together with all other paths (that maintain equivalence). The offending
path will be widened separately, precisely reporting difference in the final program state
for the particular value.

The seq benchmark presented poor results, reporting difference on all variables
although the semantic difference is small. This is due to the patch introducing a consid-
erable amount of structural syntactic change to the code. We added the nested bench-
mark to demonstrate results for a simple nested loop program correlated with itself.

8 Related Work

Our work has been mainly inspired by recent work identifying program differencing as
having vast security implications [3, 26] as well as advancements made in the field of
under-approximations of program equivalence [9, 16, 22, 24].

The problem of program differencing is fundamental [10] and early work mainly fo-
cused on computing syntactical difference [13]. These solutions are an important step-
ping stone and we used syntactical diff as a means to achieve interleaving of programs
in our correlating program. Another possibility for creating this program is to rely on
the editing sequence that creates the new version from the original program [11].

We rely on classic methods of abstract interpretation [7] for presenting an over
approximating solution for semantic differencing and equivalence. To achieve this we
devised a static analysis over a correlating program. The idea of a correlating program
is similar to that of self-composition [27] except that we compose two different pro-
grams in a interleaving designed to maintain a close correlation between them. The

use of a correlating construct for differencing is novel as previous methods mainly use
sequential composition [9, 22, 24], disregarding possible program correlation.

We base our analysis on numerical abstractions [8, 18] that allow us to reason about
variables of different programs. The abstraction is further refined in a way similar to
trace partitioning [25] with an equivalence-based partitioning criteria.

Jackson and Ladd [14] proposed a tool for computing data dependencies between
input and output variables and comparing these dependencies along versions of a pro-
gram for discovering difference. This method may falsely report difference as semantic
difference may occur even if data dependencies have not changed. Furthermore, data
dependencies offer little insight as to the meaning of difference i.e. input and output
values. Nevertheless, this was an important first step in employing program analysis as
a means for semantic differencing.

Several works on the problem of equivalence of combinatorial circuits [17, 19, 6]
made important contributions in establishing the problem of equivalence as feasible,
producing practical solutions for hardware verification.

Symbolic execution methods [22, 24] offer practical equivalence verification tech-
niques for loop and recursion free programs with small state space. These works com-
plement each other in regards to reporting difference as one [22] presents an over ap-
proximating description of difference and the other [24] presents an under approxi-
mating description including concrete inputs for test cases demonstrating difference in
behavior. An interesting question is how could these methods be combined iteratively
to achieve better precision. Also, this work can be used to complement our work in
cases where equivalence could not be proven and the description of difference can be
leveraged for the extraction of concrete input that leads to offending states.

Bounded model checking based work [9] presents the notion of partial equivalence
which allows checking for equivalence under specific conditions, supplied by the user
but are bound by loops. They employ a technique based on theorem provers for prov-
ing an equivalence formula which embeds program logic (in SSA form) alongside the
requirement for input and output equivalence and user provided constraints.

[1] introduced a correlating heap semantics for verifying linearizability of concur-
rent programs. In their work, a correlating heap semantics is used to establish corre-
spondence between a concurrent program and a sequential version of the program at
specific linearization points.

In previous work regarding translation validation [23, 20, 30], in order to establish
equivalence for a (looping) code fragment being translated or optimized by a compiler,
a simulation relation between the basic blocks of the translated code is found. This
method is limited in the context of semantic differencing as, for instance, a simulation
relation for examples such as Fig. 2 cannot be automatically established (it needs to
be crafted manually as this is not one of the classic transformations). However, the
correlating program method we propose is generic enough to establish equivalence for
many cases, without requiring special tailoring.

9 Conclusions

We presented an abstract interpretation approach for program equivalence and differ-
encing. We defined a correlating program construct, that allows reasoning over both
programs and establishing of equivalence. We defined a correlating abstract domain,
that allows us to maintain variable relationships. This partially disjunctive domain al-
lows to differentiate equivalent from differencing paths and we introduce a dynamic
partitioning strategy to abstract together paths according to equivalence criteria and
avoid exponential blowup. We also defined a widening operator for the disjunctive do-
main, which over approximates looping paths and is able to maintain equivalences for
programs with unbound loops. We showed that this approach is feasible and can be
applied successfully to challenging real world patches.

References

1. AMIT, D., RINETZKY, N., REPS, T., SAGIV, M., AND YAHAV, E. Comparison under
abstraction for verifying linearizability. In CAV’07.

2. BAGNARA, R., HILL, P. M., AND ZAFFANELLA, E. Widening operators for powerset
domains. Int. J. Softw. Tools Technol. Transf. 8, 4 (2006), 449–466.

3. BRUMLEY, D., POOSANKAM, P., SONG, D., AND ZHENG, J. Automatic patch-based ex-
ploit generation is possible: Techniques and implications. In S&P’08, pp. 143–157.

4. CADAR, C., DUNBAR, D., AND ENGLER, D. R. Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In OSDI (2008), pp. 209–224.

5. CHAKI, S., GURFINKEL, A., AND STRICHMAN, O. Regression verification for multi-
threaded programs. In VMCAI’12.

6. CLARKE, E. M., AND KROENING, D. Hardware verification using ansi-c programs as a
reference. In ASP-DAC (2003), pp. 308–311.

7. COUSOT, P., AND COUSOT, R. Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixed points. In POPL (1977).

8. COUSOT, P., AND HALBWACHS, N. Automatic discovery of linear restraints among vari-
ables of a program. In POPL’78, pp. 84–97.

9. GODLIN, B., AND STRICHMAN, O. Regression verification. In DAC (2009), pp. 466–471.
10. HOARE, C. A. R. An axiomatic basis for computer programming. Commun. ACM 12, 10

(1969), 576–580.
11. HORWITZ, S. Identifying the semantic and textual differences between two versions of a

program. In PLDI ’90 (1990), pp. 234–245.
12. HORWITZ, S., PRINS, J., AND REPS, T. Integrating noninterfering versions of programs.

ACM Trans. Program. Lang. Syst. 11, 3.
13. HUNT, J. W., AND MCILROY, M. D. An algorithm for differential file comparison. Tech.

rep., Bell Laboratories, 1975.
14. JACKSON, D., AND LADD, D. A. Semantic diff: A tool for summarizing the effects of

modifications. In ICSM (1994), pp. 243–252.
15. JIN, W., ORSO, A., AND XIE, T. BERT: a tool for behavioral regression testing. In FSE’10

(2010), ACM, pp. 361–362.
16. KAWAGUCHI, M., LAHIRI, S. K., AND REBELO, H. Conditional equivalence. Tech. rep.,

MSR, 2010.
17. KUEHLMANN, A., AND KROHM, F. Equivalence checking using cuts and heaps. In DAC

(1997), pp. 263–268.
18. MINÉ, A. The octagon abstract domain. Higher Order Symbol. Comput. 19 (2006), 31–100.

19. MISHCHENKO, A., CHATTERJEE, S., BRAYTON, R. K., AND EÉN, N. Improvements to
combinational equivalence checking. In ICCAD (2006), pp. 836–843.

20. NECULA, G. C. Translation validation for an optimizing compiler. pp. 83–95.
21. NETHERCOTE, N., AND SEWARD, J. Valgrind: A framework for heavyweight dynamic

binary instrumentation. In PLDI’07.
22. PERSON, S., DWYER, M. B., ELBAUM, S. G., AND PASAREANU, C. S. Differential sym-

bolic execution. In FSE’08.
23. PNUELI, A., SIEGEL, M., AND SINGERMAN, F. Translation validation. In TACAS’98.
24. RAMOS, D., AND ENGLER, D. Practical, low-effort equivalence verification of real code.

In CAV’11.
25. RIVAL, X., AND MAUBORGNE, L. The trace partitioning abstract domain. ACM Trans.

Program. Lang. Syst. 29, 5 (Aug. 2007).
26. SONG, Y., ZHANG, Y., AND SUN, Y. Automatic vulnerability locating in binary patches.

In CIS’09.
27. TERAUCHI, T., AND AIKEN, A. Secure information flow as a safety problem. In SAS’05,

Springer-Verlag, pp. 352–367.
28. VERDOOLAEGE, S., JANSSENS, G., AND BRUYNOOGHE, M. Equivalence checking of

static affine programs using widening to handle recurrences. In Proceedings of the 21st
International Conference on Computer Aided Verification (2009), CAV ’09, pp. 599–613.

29. XIN, B., SUMNER, W. N., AND ZHANG, X. Efficient program execution indexing. In
Proceedings of the 2008 ACM SIGPLAN conference on Programming language design and
implementation (2008), PLDI ’08, pp. 238–248.

30. ZUCK, L., PNUELI, A., FANG, Y., GOLDBERG, B., AND HU, Y. Translation and run-time
validation of optimized code. Electr. Notes Theor. Comput. Sci. 70, 4 (2002).

A Appendix

d  V=V'
d

(d V=V‘)

+

1 2

4,5 3

Fig. 7: Delta computation geometrical representation.

