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Abstract. One of the major productivity hurdles for parallel programming is
non-determinism — a parallel program may yield different results on different
executions with the same input, depending on the order in which operations are
interleaved. A major source of non-determinism is data races, and checking for
the absence of data races is an important candidate for runtime verification. Past
work on data race detection includes different techniques for different program-
ming models such as SPMD, fork-join, and monitors. However, the runtime over-
heads incurred by past techniques are still prohibitively large (often a slowdown
of 10X or larger) for use in mainstream software development.

In this paper, we present a tool called TASKCHECKER that performs efficient run-
time verification of the data race freedom property for async-finish task-parallel
programs. The async and finish constructs are at the core of languages such as
X10 and HJ, and generalize the spawn-sync constructs used in Cilk and the task-
parallel constructs in OpenMP 3.0. Unlike programs written with traditional fork
and join constructs, async-finish programs are guaranteed to be deadlock-free.
Our tool is based on runtime verification and is sound for a given input: if a
potential data race exists for that input, the tool will report it. Further, the tool uses
arange of static optimizations to reduce the overhead of the dynamic analysis.
We have evaluated TASKCHECKER on a suite of 12 benchmarks. Our experimen-
tal results indicate that our approach has a very reasonable overhead in practice,
incurring an average slowdown of 3.05x compared to a serial execution in the
optimized case.

1 Introduction

Designing and implementing correct and efficient parallel programs is a notoriously
difficult task, and yet, with the proliferation of multi-core processors, parallel program-
ming will need to play a central role in mainstream software development. One of the
main difficulties in parallel programming is that a programmer is often required to ex-
plicitly reason about the interleavings of operations in their program. The vast number
of interleavings makes this task difficult even for small programs, and intractable for
sizeable applications.

Unstructured and low-level frameworks such as Java threads allow the program-
mer to express rich and complicated patterns of parallelism, but also make it easy to



get things wrong. We believe that the arguments made by Dijkstra in favor of struc-
tured programming (and against the goto statement) [6] are just as relevant for parallel
programming:

. our intellectual powers are rather geared to master static relations and
[...] our powers to visualize processes evolving in time are relatively poorly
developed. For that reason we should do [. . .] our utmost to shorten the con-
ceptual gap between the static program and the dynamic process, to make the
correspondence between the program (spread out in text space) and the process
(spread out in time) as trivial as possible.

Structured Parallelism Structured parallelism makes it easier to determine the context
in which an operation is executed and to identify other operations that can execute in
parallel with it. This simplifies manual and automatic reasoning about the program,
enabling the programmer to produce a program that is more robust and often more
efficient.

Realizing these benefits, significant efforts have been made towards structuring par-
allel computations, starting with constructs such as cobegin-coend and monitors. Re-
cently, additional support for fork-join task parallelism has been added in the form of
libraries [9, ?] to existing programming environments and languages such as Java and
.NET. Although fork-join parallel frameworks allow for a more disciplined style of par-
allel programming, they are still fairly unstructured. For instance, it is easy to obtain
computations that deadlock by having two tasks join on each other.

Parallel languages such as Cilk [2], X10 [5], and Habanero Java (HJ) [13] provide
simple, yet powerful high level concurrency constructs that restrict traditional fork-
join parallelism yet are sufficiently expressive for a wide range of problems. The key
restriction in these languages is centered around the flexibility of choosing which tasks
a given task can join to. The async-finish computations that we consider generalize
the more restricted spawn-sync computations of Cilk, and similarly, have the desired
property of being deadlock-free [11] (unlike unrestricted fork-join computations).

Data Race Detection To simplify reasoning about parallel programs, it is desirable to
reduce the number of interleavings that a programmer has to consider [10, 4]. One way
to achieve that is to require parallel programs to be deterministic. A major source of
non-determinism is data races, which is why we focus on data race detection in this
paper. In the absence of data races, all parallel programs with async and finish constructs
are guaranteed to be deterministic. If isolated (atomic) constructs are included, then
the programmer only needs to worry about reorderings of isolated blocks to establish
determinism, and no other interleaving.

We present an efficient dynamic analysis tool that checks determinism of async-
finish style parallel computations. These constructs form the core of the larger X10, HJ
and Cilk parallel languages. Using async, finish and atomic, one can express a wide
range of useful and interesting parallel computations (both regular and irregular) such
as factorizations and graph computations.

Our analysis is a generalization of the traditional Feng and Leiserson’s SP-bags
algorithm [7] which was designed for checking determinism of spawn-sync Cilk pro-
grams. The reason why the original algorithm cannot be applied directly to async-finish



style of programming is that this model allows for a superset of the executions allowed
by the traditional spawn-sync Cilk programs. As with SP-bags, our analysis of programs
with async-finish parallelism is sound for a given input: if a determinism violation ex-
ists for that input, regardless of the way parallel tasks interleave, our tool will report
that violation.

Main Contributions To the best of our knowledge, this is the first detailed study of the
problem of determinism checking for async-finish task parallel programs as embodied
in the X10 and HJ languages. The main contributions of this paper are:

— A dynamic analysis algorithm for efficiently checking determinism of structured
async-finish parallel programs. Our algorithm generalizes the classical SP-bags al-
gorithm designed for the more restricted spawn-sync Cilk model.

— An implementation of our dynamic analysis in a tool named TASKCHECKER.

— Novel compiler optimizations to reduce the overhead incurred by the dynamic anal-
ysis algorithm. We show that our analysis reduces the overhead by 1.59x on aver-
age for the benchmarks used in our evaluation.

— An evaluation of TASKCHECKER on a suite of 12 benchmarks written in the HJ
programming language!. We show that for these benchmarks, TASKCHECKER is
able to check determinism with an average (geometric mean) slowdown of 4.86 x
in the absence of compiler optimizations, and 3.05x with compiler optimizations,
compared to a sequential execution.

2 Background

In this paper we present our approach to data race detection for an abstract language
AFPL, Async Finish Parallel Language. We first present our language AFPL and infor-
mally describe its semantics. To motivate the generalization of the traditional SP-bags
algorithm to our setting, we illustrate where our language allows for more computa-
tions than those expressible with the spawn-sync constructs in the Cilk programming
language.

2.1 Syntax

Fig. 1 shows the relevant part of the language syntax for AFPL, that is, the portion that
deals with parallelism. The language allows nesting of finish and async statements.
That is, any statement can appear inside these two constructs. However, the language
restricts the kind of statements that can appear inside atomic sections: no synchroniza-
tion statements inside the atomic sections are allowed. To reflect that, and to avoid no-
tational clutter by listing the usual statements of an imperative programming language
such as assignments, reads, procedure calls, loops and conditionals, we use the shortcut
parametric macro ST (to stand for standard statements). ST'(s) will generate the set of
usual statements and for any statement, it will replace its sub-statement, if necessary,
with s. That is, one of the several statements in the set for ST'(s) will be the conditional
if(b) s else s, while for ST'(r), it will be if(b) r else r.

! These benchmarks also conform with version 1.5 of the X10 language.



While languages such as X/0 and HJ allow for more expressive synchronization
mechanisms such as conditional atomic sections, clocks or phasers, the core of these
languages is based around the constructs shown in Fig. 1. We note that a similar lan-
guage, called Featherweight X10 (FX10) has been recently considered in [11]. FX10
considers a more restricted calculus (e.g. it has one large one-dimensional array for the
global store) and does not support atomic sections. Our data race detection algorithm is
largely independent of the sequential constructs in the language. That is, the sequential
portion of the language can be based on the sequential portions of C, C++ or Java.

2.2 Language Semantics

Next, we briefly discuss the relevant semantics of the concurrency constructs. For for-
mal semantics of the async and finish constructs, see FX10 [11].

Initially, the program begins execution with the main task. When an async { s }
statement is executed by task A, a new child task, B, is created. The new task B can
now proceed with executing statement s in parallel with its parent task A. For example,
consider the AFPL code shown in Fig. 2. Suppose the main task starts executing this
piece of code. The async statement in line 7 creates a new child task, which will now
execute the block of code in lines 7-14 in parallel with the main task. When a finish { s }
statement is executed by task A, it means that task A must block and wait at the end of
this statement until all descendant tasks created by A in s (including their recursively
created children tasks), have terminated. That is, finish can be used to create a join
point for all descendant tasks dynamically created inside its scope. In the example in
Fig. 2, the finish in line 15 would wait for the tasks created by asyncs in lines 16 and
17 to complete. The statement atomic { s } means that that the statement s is executed
atomically with respect to other atomic task. As mentioned earlier, an atomic section
cannot contain any synchronization constructs.

Program : P ::= main { finish { s } }
Statement : s ::= finish { s }
| async{s}
| atomic { r }
| ST(s)
| 558
Restricted r ::= ST(r)
Statement | rsr

)

Fig. 1. The syntax of synchronization statements for AFPL.

2.3 Cilk vs. AFPL

Our data race detection algorithm, ESP-bags, presented in later sections, is an adapta-
tion of the SP-bags algorithm [7] developed for the Cilk programming language. Un-
fortunately, their algorithm cannot be applied directly to our language and needs to be
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T1 - Main

final int[] A, B;

—» continue edge

ADO] = 10;

----+ asyncedge
finish { ——————— + join edge
for (int i=0; i<size; i++ ) {
final int ind = i;
async {

B[ind] 4= ind;
Foo q = new Foo();
for (int j=0; j<ind; j++) {
q.x += 1;
Blind] = A[j] + ind;
} // for
} 7/ async
finish {
async {
async {
Blind] = Alind];
} /7 async
B[ind+1] = A[ind+1] + 5;
Y} /7 async
} /7 finish
} 77 for
} /7 finish

Fig. 2. An example AFPL program and its computation graph.

extended. The reason is that our language supports a more relaxed concurrency model
than the spawn-sync Cilk computations. The key semantic relaxation lays in the way
a task is allowed to join with other tasks. In Cilk, at any given (join) point of the task
execution, the task can join with all of its descendant tasks (including all recursive de-
scendant tasks) created in between the start of the task and the join point. The join is
accomplished by executing the statement sync. The sync statement in Cilk can be di-
rectly translated to a standard finish block, where the start of the finish block is the start
of the procedure and the end of the finish block is the label of the sync statement. For
instance, we can trivially translate the following Cilk program:

spawn f1();sync;spawn f2(); sync; s1;
into the following AFPL program:
finish { finish { async f1(); };async f2(); }; s1;

That is, each spawn statement is replaced by an async statement and each sync statement
is replaced with a finish block, where the scope of the finish ranges from the start of the
task to the label of the corresponding sync.

In contrast, in AFPL, it is possible for a task to join to some and not all of its
descendant tasks. The way these descendant tasks are specified at the language level is
with the finish construct: upon encountering the end of a finish block, the task waits
until all of the descendant tasks created inside the finish scope have completed.



The computation graph in Fig. 2 illustrates the differences between Cilk and AFPL.
Each horizontal sequence of circles denotes a task. Here we have four sequences for
four tasks. Each circle in the graph represents a program label and an edge represents
the execution of a statement at that label. Note how at a join point, the main task need
not wait for all tasks which it created (via async), to complete. That is, at label 22, it
only waits for T3 and T4 and not for T2. Such computations, where at a join point, a task
need not wait for all of its descendants, are not allowed by the traditional spawn-sync
semantics used in Cilk.

Further, another restriction in Cilk is that every task must execute a sync statement
upon its return. That is, a task cannot terminate unless all of its descendants have ter-
minated. In contrast, in AFPL, a task can outlive its parents, i.e., a task can complete
even while its children are still alive. For instance, in the example of Fig. 2, in Cilk, T3
would need to wait until T4 has terminated. That is, the edge from node 19 to 22 would
change to an edge from 19 to 21. As we can see, this need not be the case in AFPL: task
T3 can terminate before task T4 has finished.

More generally, the class of computations generated by the spawn-sync constructs
is said to be fully-strict 3], while the computations generated by our language are called
terminally-strict [1]. The set of terminally-strict computations subsumes the set of fully-
strict computations.

All of these relaxations mean that it is not possible to directly convert a AFPL pro-
gram into the spawn-sync semantics of Cilk, which in turn implies that we cannot use
its SP-bags algorithm immediately and we need to somehow generalize that algorithm
to our setting. We show how that is accomplished in the next section.

3 Algorithm

In this section, we briefly survey the existing SP-bags algorithm used for spawn-sync
computations. Then, we present our extension of that algorithm for detecting data races
in AFPL programs.

The original SP-bags algorithm was presented for the spawn-sync computation of
Cilk. As mentioned earlier, we can always translate spawn-sync computations into
async-finish computations. Therefore, we present the operations of the original SP-bags
algorithm in terms of async and finish, rather than spawn and sync constructs. By hav-
ing the original algorithm and our extension of it in the same language, we can clearly
see exactly what the extension is.

3.1 SP-bags

The basic idea behind the SP-bags algorithm is to attach two bags, S and P, to each
task. Each bag contains task id’s. Although the program being tested for data races is a
parallel program, the SP-bags algorithm is a serial algorithm that performs a sequential
depth-first execution of the program on a single processor.

The SP-bags algorithm requires executing the program in a sequential depth-first
manner. Note that a sequential depth-first execution of the program on a single processor
satisfies the synchronization semantics of the program. Further, each memory location
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is instrumented to contain two additional fields: a reader task id and a writer task id.
As described below, these fields are updated during the depth-first execution of the
program. During this depth-first execution, every time a shared memory location is
accessed by a task, using the S and P bags, the algorithm checks whether that task can
interfere with the task that is recorded in the reader and/or writer fields. Next, we show
when and how the S and P bags are updated.

Async A 1S4 {A}L Py 0
Task A returns to Task B : Pg < Pg US4 UP4, Sqa <0, Py 0
EndFinish Fina Task B : Sg + S U Pg, Pg < ()

When a task A is created, its S bag is updated to contain itself and its P bag is reset.
When a task A returns to a task B in the depth-first execution, then both of its bags, S
and P, are moved to the P bag of its parent, B, and its bags are reset. When a join point
is encountered in a task, then the P bag of that task is moved to its S bag. Note how in
the last rule, the identifier of the finish, F', is actually not used in the update of the S
and P bags.

The meaning of the S and P bags is as follows. When a statement E that belongs to
a task A is being executed, the S-bag of task A will hold all of the descendant tasks of A
that always precede E in any execution of the program. The S-bag of A will also include
A itself since any statement G in A that executes before E in the sequential depth first
execution will always precede E in any execution of the program. The P-bag of A holds
all descendant tasks of A that may execute in parallel with E.

At any point during the depth-first execution of the program, a task id will always
belong to at most one bag. That is, given the S and P bags of all of the tasks, the contents
of all these bags are actually disjoint. Therefore, all of these bags are maintained using a
disjoint-set data structure. The disjoint-set data structure maintains the entire collection
of task id’s with support for operations like MakeSet, Union, and Find-Set. Tarjan [15]
proved that any m of these operations on n bags take a total of O(ma(m,n)) time.

In addition to the above steps, during the depth-first execution of a program, the
SP-bags algorithm requires that action is taken on every read and write of a shared
variable. Figure 3 shows the required instrumentation for read and write operations.
For each operation on a shared memory location L, we only need to check those fields
of L that could conflict with the current operation.

Read location L by Task t:
If L.writer is in a P—bag then Data Race;
If L.reader is in a S—bag then L.reader = t;

Write location L by Task t:
If L.writer is in a P—bag or L.reader is in a P—bag
then Data Race;
L. writer = t;

Fig. 3. Instrumentation on shared memory access. Applies both to SP-bags and ESP-bags



3.2 ESP-bags

Next, we present our extensions to the SP-bags algorithm. Recall that the key difference
between AFPL and spawn-sync lays in the flexibility of selecting which of its descen-
dent tasks a parent task can join to. In particular, with spawn-sync, once we translate the
program to AFPL, we clearly see that the scope of any finish block begins at the start of
a task, while in AFPL, a finish block can begin at any point in the task. Therefore, it is
natural that these relaxations in the treatment of finish blocks will trigger extensions to
the checking algorithm. Next, we present these extensions. The extensions to SP-bags
are highlighted in bold.

Async A - fork anew task A : Sa < {A}, Pa < 0

Task A returns to Parent B : Pg +— PpUSA UP4, Sa— 0, Py 0
StartFinish F :Pp 0

EndFinishFinaTask B :Sp < Sg U Pp, Pr < ()

The key extension lays in attaching P bags, not only to tasks, but also to identifiers
of finish blocks. At the start of a finish block F, the bag Pr is reset. Then, when a
finish block ends in a task, the contents of its P bag are moved to the S bag of that task.
Further, when during the depth-first execution a task returns to its parent, say B, B may
be both a task or a finish scope. The actual operations on the S and P bags in that case
are identical to SP-bags.

The need for this extension comes from the fact that at the end of a finish block,
only the tasks created inside the finish block are guaranteed to complete and therefore
will precede the tasks that follow the finish block. Therefore, only the tasks created
inside the finish block need to be added to the S-bag of the parent task when the finish
completes and those tasks created before the finish block began need to stay in the P-bag
of the parent task.

This extension generalizes the SP-bags presented earlier. This means that the algo-
rithm can be applied directly to spawn-sync programs as well by first translating then
to async-finish as shown earlier, and the applying the algorithm. Of course, if we know
that the finish blocks have a particular structure, and we know that translated spawn-
sync programs do, then we can safely optimize away the P bag for the finish id’s and
directly update the bag of the parent task (as done in the original SP-bags algorithm).

3.3 Discussion

In summary, the ESP-bags algorithm works by updating the reader and writer fields of
a shared memory location whenever that memory location is read or written by a task.
On each such read/write operation, the algorithm also checks to see if the previously
recorded task in these fields (if any) can conflict with the current task, using the S and
the P bags of the current task. We now show an example of how the algorithm works
for the AFPL code in Fig. 2. Suppose that the main task, 77, starts executing that code.
We refer to the finish in line 4 by F} and the first instance of the finish in line 15 by F5.
Also, we refer to the first instance of the tasks generated by the asyncs in lines 7, 16,
and 17 by T5, T3, and T respectively.



Table 1. ESP-bags Example

PC i Fy Ty Fy T3 Ty  B[O]
S S P P S S Writer
1 {T1} - - - - - -
4 {T1} 0 - - - - -
7 {T1} 0 {Ty} - - - -
8 {T1} 0 {T3} - - - - Ty
14 {T1} {T2} 0 - - - - Ty
15 {Ty1} {T2} 0 [ - - - Ty
16 {T1} {T2} 0 0 0 {r3} - T
17 {T1} {T2} 0 0 0 {T3} {T4} T3
18 {71} {T3} 0 0 0 {T3} {T4} T4
19 {Ty} {T2} 0 0 {Ty} {T3} 0 Ty
21 {T1} {T2} 0 {Ty T3} 0 0 0 Ty
2 {T1.T4. T3} {To} 0 [ ] 0 0 Ty

Table 1 shows how the S and P bags of the tasks (73, 15, T3, and Ty) and the P
bags of the finishes (£ and F5) are modified by the algorithm as the code in Fig. 2
is executed. Each row shows the status of these S and P bags after the execution of a
particular statement in the code. The PC refers to the statement number (from Fig. 2)
that is executed. This table only shows the status corresponding to the first iteration of
the for loop in line 5. The table also tracks the contents of the writer field of the memory
location B[0]. The P bags of the tasks 77, T5, and T} are omitted here since they remain
empty through the first iteration of the for loop.

In the first three steps in the table, the S and P bags of T, F1, and T5 are initialized
appropriately. When the statement in line 8 is executed, the writer field of B[0] is set
to the current task, 75. Then, on completion of 75 in line 14, the contents of its S and
P bags are moved to the P bag of F;. When the write to B/0] in line 18 (in Task 7})
is executed, the algorithm finds the task in its writer field, 75, in a P bag (P bag of
F1). Hence this is reported as a data race. Further, when T, completes in line 19, the
contents of its S and P bags are moved to the P bag of its parent 73. Similarly, when
T35 completes in line 21, the contents of its S and P bags are moved to the P bag of its
parent F5. When the finish F5 completes in line 22, the contents of its P bag are moved
to the S bag of its parent 77 .

4 Handling Atomic Blocks

In this section, we briefly describe an extension to the ESP-bags algorithm to accom-
modate handling of atomic sections. Atomic sections are useful since they allow the
programmer to write deterministic parallel programs in which multiple tasks interact
and update shared memory locations.

The extension to handle atomic sections includes checking that atomic and non-
atomic access that may execute in parallel do not interfere. For this, we extend ESP-bags
as follows: two additional fields are added to every memory location, atomicReader,
and atomicWriter. These fields are used to hold the task that performs an atomic read or
write on the location. We need to handle reads and writes from afomic blocks differently
as compared to non-atomic operations. Fig. 4 shows the steps needed to be performed
during each of the operations: read, write, atomic-read, and atomic-write. Note that we
also need to modify the actions taken on a read and write to a memory location because
they may result in a conflict with an atomic operation. As before, for each operation on
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Atomic Read of location L by Task t:
If L.writer is in a P—bag then Data Race;
If L.atomicReader is in a S—bag then L.atomicReader = t;

Atomic Write of location L by Task t:
If L.writer is in a P—bag or L.reader is in a P—bag
then Data Race;
If L.atomicWriter is in a S—bag then L.atomicWriter = t;

Read location L by Task t:
If L.writer is in a P—bag or L.atomicWriter is in a P—bag
then Data Race;
If L.reader is in a S—bag then L.reader = t;

Write location L by Task t:
If L.writer is in a P—bag or L.reader is in a P—bag
or L.atomicWriter is in a P—bag or L.atomicReader is in a P—bag
then Data Race;
L. writer = t;

Fig. 4. ESP-bags algorithm for AFPL, with support for atromic blocks

a shared memory location, we only need to check those fields of the location that could
conflict with the current operation.

5 Evaluation

Table 2. List of Benchmarks Evaluated

[Source [Benchmark[Description
Series Fourier coefficient analysis
LUFact LU Factorisation

JGF (Section 2)|SOR Successive over-relaxation
Crypt IDEA encryption
Sparse Sparse Matrix multiplication
MolDyn Molecular Dynamics simulation

JGF (Section 3)|MonteCarlo | Monte Carlo simulation
RayTracer |3D Ray Tracer
Fannkuch [Indexed-access to tiny integer-sequence

Shootout Fasta Generate and write random DNA sequences
Mandelbrot | Generate Mandelbrot set portable bitmap file
EC2 Matmul sMatrix Multiplication (two 1000*1000 double matrix)

We report the performance results of our experiments on a 16-way (quad-socket,
quad-core per socket) Intel Xeon 2.4GHz system with 30 GB memory, running Red
Hat Linux (RHEL 5). The JVM used is the Sun Hotspot JDK 1.6. We applied the ESP-
bags algorithm to a set of 8 JGF benchmarks shown in Table 2. We report the results for
different input sizes of these benchmarks since our algorithm is guaranteed to be sound
for a given input. We also evaluated our algorithm on 3 Shootout benchmarks and 1
EC2 challenge benchmark. All the benchmarks used were written in HJ using only the
AFPL constructs.



Results of ESP-bags algorithm Table 3 shows the results of applying the ESP-bags
algorithm on our benchmarks. This table gives the original time taken for each bench-
mark, i.e., the time taken to execute the benchmark without any instrumentation. It also
shows the slowdown of the benchmark when instrumented for the ESP-bags algorithm
with and without the optimizations described in Section A. The outcome of the ESP-
bags algorithm is also included in the table, which clearly shows there are no determi-
nacy races in any of the benchmarks for any input size. Hence all the benchmarks are
deterministic for the inputs considered. Note that though RayTracer has some atomic
conflicts, it is deterministic since all the atomic blocks in it were tagged to indicate that
they commute.

Table 3. Slowdown of ESP-bags Algorithm

Benchmark Number  Time ESP-bags Result
of (s) Slowdown
asyncs w/o opts w/ opts

Crypt - C 1.3e7 1524 7.63  7.29 No Data Races
LUFact - C 1.6e6  15.19 12.45 10.08 No Data Races
MolDyn - A 5.1e5 45.88 10.57 393 No Data Races
MonteCarlo - B 3.0e5 19.55 1.99 1.57 No Data Races
RayTracer-B  5.0e2  38.85 11.89  9.48 No Data Races
(Atomic conflict)

Series - C 1.0e6 1395.81 1.01 1.00 No Data Races
SOR-C 2.0e5 3.03 1499  9.05 No Data Races
Sparse - C 6.4el  13.59 12,79  2.73  No Data Races
Fannkuch 1.0e6 7.71 1.49 1.38  No Data Races
Fasta  4.0e0 1.39 3.88 3.73  No Data Races
Mandelbrot 1.6el 11.89 1.02 1.02  No Data Races
Matmul 1.0e3  19.59 6.43 1.16  No Data Races

Geo Mean 486  3.05

ESP-bags slowdown On an average, the slowdown of the benchmarks with the ESP-
bags algorithm is 8.44x without optimization. When all the static optimizations are
applied, the average slowdown drops to 5.29x. The slowdown of all the benchmarks
except LUFact is less than 10x. In fact it is the smaller sizes A and B of LUFact that
have higher slowdown. Since the actual execution times in these cases are very small,
0.26s and 1.76s, the overheads are exaggerated.

The slowdown for benchmarks like MolDyn, MonteCarlo and Sparse are less than
5x. There is no slowdown in the case of Series because most of the code uses stack
variables. In HJ none of the stack variables can be shared across tasks and hence we do
not instrument any access to these variables. On the other hand, the slowdown for SOR
and RayTracer benchmarks are around 9x.

Performance of Optimizations We now discuss the effects of the optimizations cumula-
tively on the benchmarks. Note that these optimizations only eliminate instrumentations
corresponding to the read and write of share memory locations. Hence they do have any
effect on the size of the memory used by the benchmarks. As is evident from the table,



some of the benchmarks like SOR, Sparse, MolDyn, and Matmul benefit a lot from the
optimizations, with a maximum reduction in slowdown of about 78% for Sparse. On
the other hand, for other benchmarks the reduction is relatively less. The optimizations
does not reduce the slowdown much for Crypt and LUFact because in these benchmarks
very few instrumentations are eliminated as a result of the optimizations. In the case of
MonteCarlo and RayTracer, though a good number of instrumentations are eliminated,
a significant fraction of them still remain and hence there is not much performance im-
provement in these benchmarks due to optimizations. On an average, there is a 37%
reduction in the slowdown of the benchmarks due these optimizations.
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Fig. 5. Breakdown of static optimizations

Breakdown of the Optimizations We now describe the effects of each of the static opti-
mizations separately on the performance of the benchmarks. Figure 5 shows the break
up of the effects of each of the static optimizations, that includes read-only check elim-
ination, escape analysis to remove redundant instrumentations, loop invariant code mo-
tion, and read-write check elimination. The graph also shows the slowdown without any
optimization and with the whole set of optimizations enabled. Note that the optimization
described in Section A.l1, that identifies instructions within parallel constructs so that
only those instructions need to be instrumented, is applied to all the versions included
here, including the unoptimized version. This is because we consider that optimization
as a basic step without which there could be unnecessary instrumentations.

The read-only check elimination performs much better than the other optimizations
for most of the benchmarks, like MolDyn, SOR, and SparseMatmult. This is because
in these benchmarks the parallel regions include reads to many arrays which are writ-
ten only in the sequential regions of the code. Hence, this optimization eliminates the
instrumentation for all these reads. It contributes the most to the overall performance



improvement in the full optimized version. The read-write optimization works well in
the case of SOR, but does not have much effect on other benchmarks. The Loop invari-
ant code motion helps improve the performance of Montecarlo the most and the Escape
analysis does not seem to help any of these benchmarks to a great extent.

Note that the performance of these four static optimizations do not directly add up
to the performance of the fully optimized code. This is because some of these opti-
mizations creates more chances for other optimizations. Hence their combined effect is
much more than their sum. For example, the loop invariant code motion creates more
chances for the Read-only and Read-Write optimization. So, when these two optimiza-
tions are performed after loop invariant code motion their effect would be more than
that is shown here.

Finally, we only evaluated the performance of these optimizations on the set of
benchmarks shown here. For a different set of benchmarks, their effects could be dif-
ferent. But we believe that these static optimizations, when applied in combination, are
in general good enough to improve the performance of most of the benchmarks.

6 Related Work

The original Cilk paper [7] introduces SP-bags for spawn-sync computations. We ex-
tend that algorithm to the more general setting of async-finish computations. We also
handle atomic sections and detect data races between atomic and non-atomic accesses.
Moreover, we outline and implement a range of static optimizations to reduce instru-
mentation costs.

A recent work on detecting data races by Flanagan et al. [8] (FastTrack) reduces the
overhead of using vector clocks during data race detection. Their technique focuses on
the more general setting of fork-join programs. The major problem with using vector
clocks for race detection is that the space required for vector clocks is linear in the
number of threads in the program and hence any vector clock operation also takes time
linear in the number of threads. In a program containing millions of tasks that can run in
parallel it is not feasible to use vector clocks to detect data races (if we directly extend
vector clocks to tasks). Though FastTrack reduces this space (and hence the time for any
vector clock operation) to a constant by using epochs instead of vector clocks, it needs
vector clocks whenever a memory location has shared read accesses. Even one such
instance would make it infeasible for programs with millions of parallel tasks. On the
other hand, our approach requires only a constant space for every memory location and
a time proportional to the inverse ackermann function. Also, FastTrack just checks for
data races in a particular execution of a program, whereas our approach can guarantee
the non-existence of data races for all possible schedules of a given input. The price we
have to pay for this soundness guarantee is that we have to execute the given program
sequentially. But given that this needs to be done only during the development stage we
feel our approach is of value.

Sadowski et al. [14] proposes a technique for checking determinism by using inter-
ference checks based on happens before relations. This involves detecting conflicting
races in threads that can run in parallel. Though they can guarantee the non-existence
of races in all possible schedules of a given input, the fact that they use vector clocks



makes these infeasible in a program with millions of tasks that can run in parallel. Again
the downside of our approach is that we have to run the program sequentially whereas
they can run the program in parallel.

The static optimizations that we use to eliminate the redundant instrumentations
and hence reduce the overhead is similar to the compile-time analyses proposed by
John Mellor-Crummey [12]. His work uses a dependence graph that contains edges
for all data dependences to eliminate instrumentations for variable references that are
not part of these data dependences. This technique is applicable for loop carried data
dependences across parallel loops and also for data dependences across parallel blocks
of code. In our approach, we concentrate on the instrumentations within a particular
task and try to eliminate redundant instrumentations for memory locations which are
guaranteed to have already been instrumented in that task.

7 Conclusion

In this paper we proposed a dynamic analysis algorithm, ESP-bags, for efficiently
checking determinism of structured async-finish parallel programs. The algorithm is
sound for a given input: if a deterministic violation exists, it will be reported. Our algo-
rithm generalizes the SP-bags algorithm developed for the more restricted spawn-sync
Cilk model.

We have implemented our algorithm in a tool called TASKCHECKER. Further, TASKCHECKER
is augmented with static compiler optimizations that reduce the incurred overhead by
1.51x on average. Evaluation of TASKCHECKER on a suite of 12 benchmarks shows
that the dynamic analysis introduces an average slowdown of 5.58 x without compiler
optimizations, and 3.68x with compiler optimizations, making the tool suitable for
practical use.
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A Optimizations

The ESP-bags algorithm is implemented as a Java library. Recall that the ESP-bags
algorithm requires that action is taken on every read and write to a shared memory
location. It is during these actions that the algorithm checks if the current task can race
with the task recorded in the reader or writer fields of the memory location. To test
a given program for determinism using the ESP-bags algorithm, we need a compiler
transformation pass that instruments read and write operations on a heap location or
an array in the program with appropriate calls to the library. A naive way to perform
this is to instrument every access to every shared memory location. But some of these
instrumentations may be redundant, i.e., all determinacy races that can be detected when
these are present can also be detected after they have been removed. This is because
some read and write operations are guaranteed to never affect the deterministic behavior
of the program and hence such operations need not be instrumented.

As mentioned earlier, the ESP-bags algorithm also keeps track of the finish, async,
atomic blocks in the program. Hence, it requires instrumentations for the start and end



of every such block in the program. But these instrumentations are all necessary to
maintain the parallelism structure at runtime in the ESP-bags algorithm.

In this section, we describe the static analyses that we used to reduce the instru-
mentation and hence improve the runtime performance of the instrumented program.
We also include an example that depicts how each of these static analyses is used to
eliminate instrumentations. Fig. 6 shows a part of the example program in Fig. 2 (lines
15 - 22 deleted) written in AFPL with all its read and write operations instrumented
(DJCRead and DJCWrite are library calls). Suppose that the main task is always guar-
anteed to start executing this portion of the program. This will be used as the baseline to
depict these optimizations. Note that the instrumentations that are needed for the finish
and async blocks are not shown in this example.

A.1 Main Task Check Elimination in Sequential Code Regions

A parallel program will always start and end with sequential code regions and will
contain alternating parallel and sequential code regions in the middle. It is trivial to
show that no read or write operation in the sequential code regions of the program can
affect the deterministic behavior of the program. Hence, there is no need to instrument
the operations in such sequential code regions. In an AFPL program, the sequential
code regions are the regions of the program that are executed by the main task. Thus, in
an AFPL program, there is no need to instrument the read and write operations in the
main task. Fig. 7 shows the result of eliminating the instrumentations in the main task
of the program in Fig. 6. The program in Fig. 6 contains a write to a heap location p.x
in line 4 which will be executed by the main task. Hence the corresponding call to the
library in line 3 can be eliminated.

A.2 Read-only Check Elimination in Parallel Code Regions

The input program may have shared memory locations that are written by the sequential
regions of the program and only read within parallel regions of the program. Such read
operations within parallel regions of the program need not be instrumented because
parallel tasks reading from the same memory location will never lead to a conflict. To
perform this optimization, the compiler implements an inter-procedural side-effect anal-
ysis to detect potential write operations to shared memory locations within the parallel
regions of the given program. If there is no possible write to a shared memory location
M 1in the parallel regions of the program, that clearly shows that all accesses to M in
the parallel regions must be read-only and hence the instrumentations corresponding to
these reads can be eliminated. (The checks for the writes in the sequential regions, if
any, will be eliminated by the rule in Section A.1).

The result of applying this optimization on the program in Fig. 7 is shown in Fig. 8.
There is no write to array A within the parallel regions of the program in figure Fig. 7.
Hence the instrumentation in line 8 corresponding to the read of A in line 11 can be
removed.



A.3 Escape Analysis

The input program may include many parallel tasks. A determinacy race occurs in the
program only when two or more tasks access a shared memory location and at least one
of them is a write. Suppose an object is created inside a task and it never escapes that
task, then no other task can access this object and hence it cannot lead to a determi-
nacy race. To ensure the task-local attribute, the compiler performs an inter-procedural
analysis that identifies if an object is shared among tasks. This also requires an alias
analysis to ensure that no alias of the object escapes the task. Thus, if an object O is
proven to not escape a task, then the instrumentations corresponding to all accesses to
O can be eliminated.

The object ¢ in the program in Fig. 8 is created in line 11 within a task and it
never escapes this task. Thus no access to ¢ can lead to a determinacy race. Hence, the
instrumentations in line 14 and 16 corresponding to access to g are eliminated and the
resulting program is shown in Fig. 9.

A.4 Loop Invariant Check Motion

Recall that the instrumentation corresponding to a memory access to M will first check
if the task that previously accessed M conflicts with the current task and also update
the information that the current task now accessed M. If there are multiple accesses of
the same type (read or write) to M by a task, then it is sufficient to instrument one such
access because other instrumentations will only add to the overhead by unnecessarily
repeating the steps. Suppose the input program accesses a shared memory location M
unconditionally inside a loop, the instrumentation corresponding to this access to M
can be moved outside the loop to prevent multiple calls to the instrumented function for
M.

In summary, given a memory access M that is performed unconditionally on every
iteration of a sequential loop, the instrumentation for M can be hoisted out of the loop
by using classical loop-invariant code motion. This transformation includes the inser-
tion of a zero-trip test to ensure that the loop-invariant check is performed only when
the loop executes for one or more iterations.

In Fig. 9, the program contains a read of p.x in line 13 that is inside a sequential
loop. Since the same memory location is accessed in every iteration of the loop, the
instrumentation for this access is moved out of the loop as shown in Fig. 10. Note the
test for the non-zero trip count in line 12 guarding this instrumentation outside the loop.

A.5 Read/Write Check Elimination

In the previous optimization we showed that it is sufficient to instrument one access to
a memory location M if there are multiple accesses of the same type to M by a task.
In this optimization, we claim that if there are two accesses M7 and M, to the same
memory location in a task, then we can use the following rules to eliminate one of them.
It works on the basic idea that the instrumentation for a write subsumes that for a read
in the algorithm presented in this paper. An intuitive argument for this is that, if a read
to a memory location M in a task 7 causes a determinacy race, then a write to M in 7
will definitely cause a determinacy race.



1. If My dominates Ms and M5 is a read operation, then the instrumentation for My
can be eliminated (since M, is either a read or write operation).

2. If M5 postdominates M7 and M is a read operation, then the check for M can be
eliminated (since M5 is either a read or write operation). This rule tends to be ap-
plicable in fewer situations than the previous rule in practice, because computation
of postdominance includes the possibility of exceptional control flow.

Consider the program in Fig. 10. There is an instrumentation for the write to p.x in
line 9 and an instrumentation corresponding to the read of the same memory location
in line 13. Since the instrumentation in line 9 dominates the one in line 13 and latter is
not a write, the latter can be eliminated.
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final int[] A, B; |
DICWrite (A, 0); §
A[0] = 10; 2
finish {
for (int i=0; i<size; i++ ) { 5
final int ind = i; g
async { g
DICRead (B, ind);
DJCWrite (B, ind); 19
Blind] += ind; 0
Foo q = new Foo(); ié
for (int j=0; j<ind; j++) { 13
DIJCRead(q, x); 14
DJCWrite(q, x); 1
q.x += 1; 5
DICRead (A, j); }6
DJCWrite (B, j); 1;
Blind] = A[j] + ind; 19
} 1 20
} 21
} 22
Fig. 6. An example AFPL program with all
read and write operations instrumented. Time
=17.13 s (Uninstrumented Time = 0.56 s)
final int[] A, B;
1
A[0] = 10; 2
finish { 3
for (int i=0; i<size; i++ ) { 4
final int ind = i; 5
async { 6
DJCRead (B, ind); 7
DICWrite (B, ind); 8
B[ind] += ind; 9
Foo q = new Foo(); 10
for (int j=0; j<ind; j++) { 11
DICRead(q, x); 12
DJICWrite(q, x); 13
q.x += 1; 14
DIJCWrite (B, j); 15
Blind] = A[j] + ind; 16
} 17
} 18
} 19
}
Fig. 8. After applying the read-only check op-
timization on the program in Fig. 7. Time =
13.35s
final int[] A, B;
A[0] = 10; ;
finish { 3
for (int i=0; i<size; i++ ) { 2
final int ind = i; 5
async { 6
DJCRead (B, ind); 7
DJCWrite (B, ind); 8
Blind] += ind; 9
Foo q = new Foo(); 10
if (ind > 0) 1
DJCWrite (B, j); 12
for (int j=0; j<ind; j++) { 13
q.x += 1; l;l
Blind] = A[j] + ind; 15
16
) ¥ 17
}

Fig.10. After applying the loop invariant
check elimination optimization on the pro-
gram in Fig. 9. Time = 1.24 s

final int[] A, B;
A[0] = 10;
finish {
for (int i=0; i<size; i++ ) {
final int ind = i;
async {
DJCRead (B, ind);
DJCWrite (B, ind);
Blind] += ind;
Foo q = new Foo();
for (int j=0; j<ind; j++) {
DJCRead(q, x);
DICWrite(q, x);
q.x += 1;
DIJCRead (A, j);
DICWrite (B, j);
Blind] = A[j] + ind;
}
}
}
}

Fig. 7. After applying the main task check elim-
ination optimization on the program in Fig. 6.
Time =17.12 s

final int[] A, B;
A[0] = 10;
finish {
for (int i=0; i<size; i++ ) {
final int ind = i;
async {
DJCRead (B, ind);
DJCWrite (B, ind);
Blind] += ind;
Foo q = new Foo();
for (int j=0; j<ind; j++) {
q.x += 1;
DICWrite (B, j);
Blind] = A[j] + ind;

Fig. 9. After applying the escape analysis and
check elimination optimization on the program
in Fig. 8. Time = 6.78 s

final int[] A, B;
A[0] = 10;
finish {
for (int i=0; i<size; i++ ) {
final int ind = i;
async {
DJCWrite (B, ind);
Blind] += ind;
Foo q = new Foo();
for (int j=0; j<ind; j++) {
q.x += 1;
Blind] = A[j] + ind;
}
}
}
}

Fig.11. After applying the read/write check
elimination optimization on the program
in Fig. 10. Time = 0.83 s



