
Practical Concurrent Binary Search Trees
via Logical Ordering

Dana Drachsler
Technion

ddana@cs.technion.ac.il

Martin Vechev
ETH Zurich

martin.vechev@inf.ethz.ch

Eran Yahav
Technion

yahave@cs.technion.ac.il

Abstract
We present practical, concurrent binary search tree (BST) al-
gorithms that explicitly maintain logical ordering informa-
tion in the data structure, permitting clean separation from
its physical tree layout. We capture logical ordering using
intervals, with the property that an item belongs to the tree
if and only if the item is an endpoint of some interval. We
are thus able to construct efficient, synchronization-free and
intuitive lookup operations.

We present (i) a concurrent non-balanced BST with a
lock-free lookup, and (ii) a concurrent AVL tree with a
lock-free lookup that requires no synchronization with any
mutating operations, including balancing operations. Our
algorithms apply on-time deletion; that is, every request for
removal of a node, results in its immediate removal from the
tree. This new feature did not exist in previous concurrent
internal tree algorithms.

We implemented our concurrent BST algorithms and
evaluated them against several state-of-the-art concurrent
tree algorithms. Our experimental results show that our al-
gorithms with lock-free contains and on-time deletion are
practical and often comparable to the state-of-the-art.
Categories and Subject Descriptors D.1.3 [Concurrent
Programming]; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features - Concurrent programming
structures; E.1 [Data Structures]: Trees
Keywords Concurrency, Search Trees

1. Introduction
Concurrent data structures are a fundamental building block
for leveraging modern multi-core processors. Recent years
have seen rising interest in scalable and efficient concurrent

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PPoPP ’14, February 15–19, 2014, Orlando, Florida, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2656-8/14/02. . . $15.00.
http://dx.doi.org/10.1145/2555243.2555269

algorithms for data structures. In this paper, we focus on con-
current algorithms for binary search trees (BST), important
in a variety of applications. A BST data structure supports
the operations insert, remove, and contains with their
standard meaning. Any correct BST algorithm must preserve
two invariants: (i) the BST does not contain duplicate keys,
and (ii) the tree follows the standard BST structural layout.

A key challenge in designing correct and efficient con-
current BST algorithms is to devise a scalable design for the
lookup operation. This operation is invoked by all three op-
erations to check whether a given element exists in the tree.
Because the lookup operation can execute concurrently with
other mutating operations, the physical location of an ele-
ment in the tree might change while the lookup operation is
executing. A particularly tricky case arises when the lookup
operation does not find the element it is looking for. The al-
gorithm then needs to decide whether to continue searching
for the element elsewhere in the tree, or to conclude that it
is not present. It can be difficult to decide which of these
decisions is correct.

To illustrate the difficulty of correctly performing lookups
in a BST while the tree is being mutated by concurrent op-
erations, consider an interleaving of two concurrent opera-
tions. Figure 1(a) shows an initial tree with two threads op-
erating on it. First, T1 performs a contains(7) operation
on the tree, reaches node 9 (one step away from reaching the
target node 7), and is suspended. The resulting state is shown
in Figure 1(b). Then, T2 performs the entire remove(3) op-
eration, which results in swapping nodes 3 and 7, and re-
moving node 3 from the tree. The resulting tree is shown in
Figure 1(c). Finally, the suspended thread T1 is resumed and
fails to find node 7, even though it is in the tree.

To address this challenge, some concurrent trees maintain
all values in the leaves [7, 9, 11, 15], thus never changing
the location of an element. Others provide no support for re-
move operations [4], and yet others use some form of notifi-
cation such as version numbers [8] or node marking [10, 13]
to detect concurrent updates during lookup. While these ap-
proaches differ on the exact details of how they synchronize,
they all base their synchronization on the tree layout.

7

3

9 1

7

3

9 1

T1 7

9 1

T1: 7
not found

(a) (b) (c)

T1

Figure 1: Concurrent lookup with mutating operations for
two threads, T1: contains(7) || T2: remove(3). The
initial tree is shown in (a); the tree after T1 reaches node 9
and before 3 is removed in (b); and the tree after 3 is removed
in (c) (3 is swapped with 7 and removed). Here, T1 fails to
find 7 even though it is in the tree at the time T1 returns false.

In this paper, we present a fundamentally different ap-
proach to constructing concurrent BST algorithms, one
which leads to a simple and intuitive lookup operation
that also enjoys desirable progress guarantees (i.e., lock-
freedom). Below, we informally explain the idea by means
of example. We provide an elaborate description of the algo-
rithms in Section 4.
Key Idea: Leveraging Logical Ordering At the spec-
ification level, a binary search tree implements a set of
elements such that a total order can be established be-
tween them. For instance, consider again the tree of Fig-
ure 1(a). This BST represents the set of integers {1, 3, 7, 9},
where elements can be ordered by the value of their keys:
1 < 3 < 7 < 9. To avoid edge cases, we always add designated
sentinel keys −∞ and∞ to any set, which for our example
yields the set {−∞, 1, 3, 7, 9,∞}.

The logical ordering of elements can be maintained ex-
plicitly in the data structure, and this important property en-
ables us to find the successor and predecessor of a node
without traversing pointers along the tree layout. Because
logical ordering is stable under layout manipulations (such
as balancing), lookup operations can proceed concurrently
with operations that mutate the layout.

Explicitly maintaining ordering information represents a
different space-time-synchronization tradeoff than in other
concurrent BSTs. In particular, we trade off the time for
performing a lookup through traversal of layout pointers
with the space required to explicitly maintain the ordering
information (three pointers per node) and the time required
to update the ordering information when it changes. This
introduces some overhead for each individual operation, but
allows lookup operations to operate without synchronization
over the tree layout.

Lookups using Ordering To see how ordering is lever-
aged, consider again our running example and the tree
of Figure 1(c). This tree represents the set of elements
{−∞, 1, 7, 9,∞}. Previously, contains was looking for
key 7, which it missed due to concurrent interference caused
by the remove(3) operation. However, when the tree is
equipped with ordering, after contains reaches node 9 and
learns that its left child is null, it looks up the predecessor
of 9, finding that 7 < 9 is in the ordered set, meaning that 7 is
in the tree, and thus contains(7) correctly returns true.

It is natural to view the strict total order relation <
maintained by our algorithm as the pairs of elements in its
transitive reduction. For our example, these are the pairs:
(−∞, 1), (1, 7), (7, 9), (9,∞). These pairs can be viewed as
intervals where a key belongs to the set if it is an endpoint of
some interval and does not belong to the set otherwise. Our
algorithm can be viewed as explicitly maintaining these in-
tervals and using them to answer lookup queries and to syn-
chronize operations. That is, in our trees, each node keeps
its successor endpoint and its predecessor endpoint (which
are unique); the synchronization may also be performed on
these endpoints as opposed to only on the tree layout as in
previous algorithms.

Note that the logical ordering is independent of the phys-
ical tree layout, and a number of layouts represent the same
ordered set. The conceptual separation between ordering of
elements and the physical tree layout enables us to design
concurrent algorithms where the balancing of the tree (which
rearranges the physical layout) is independent of, and re-
quires no synchronization with, the lookup queries, which
use ordering information.

Note that in this example, remove changed the physical
layout of the tree, yet this operation need not be synchro-
nized with the lookup query issued by contains.

Main Contributions The contributions of this paper are:

• Novel concurrent BST algorithms (both non-balanced
and AVL), which leverage the idea of logical key ordering
to obtain simple, intuitive, and robust lookup operations
that also enjoy strong progress guarantees. By maintain-
ing logical ordering we can cleanly separate operations
that alter the tree layout (e.g., balancing) from those that
require information about the presence of elements (e.g.,
lookup). Thus, balancing operations and lookup queries
can proceed without synchronization.
• An implementation and evaluation of our algorithms – a

non-balanced tree and an AVL tree. We evaluated our im-
plementation with various loads and compared it to sev-
eral state-of-the-art BSTs from the literature. The experi-
mental results indicate that our trees (providing lock-free
lookups) are practical and often comparable to state-of-
the-art algorithms.

2. Background

A binary search tree (BST) is a data structure that consists of
nodes, each associated with a unique key and having a parent,
a left child and a right child. For every node, nodes in its left
sub-tree have keys smaller than the node’s key, and nodes
in its right sub-tree have keys greater than the node’s key.
A BST supports three operations: insert(k), remove(k)
and contains(k).

The insert(k) operation inserts k to the tree if k is
not present. If k was inserted, the insertion is considered
successful. In a successful insertion, the correct parent is
located and the new node is connected to it as a child.

The remove(k) operation removes k from the tree if
k is present. If k was removed, the removal is considered
successful. Denote the node with key k by Nk. A successful
removal has three possible scenarios:
• Nk is a leaf - remove it by updating Nk’s parent to point

to null.
• Nk has a single child - remove it by updating Nk’s parent

to point to Nk’s child.
• Nk has two children - the node is removed in three steps:

(i) locate Nk’s successor node, denote it by Ns, (ii) re-
move Ns from its location, and (iii) update Ns to appear
in Nk’s location.
Nk’s successor, Ns, is the left-most child of its right sub-
tree, and it is guaranteed to have at most one child.

Removing a Node with Two Children (2C-removal) Be-
cause removing a node with two children involves Nk’s
successor, this type of removal often updates nodes which
are not adjacent, and many pointers may be traversed un-
til Ns is reached. Common implementations thus attempt
to avoid 2C-removal. Some implementations provide exter-
nal trees [7, 9, 11, 15] where the values are kept only at
the leaves, and inner nodes serve only as routing nodes. In-
ner nodes cannot be requested (by the user) to be removed
and thus 2C-removal never occurs. Other implementations
do not support the remove operation [4]. Recent works cope
with this challenge by not physically removing nodes in the
case of 2C-removal [8, 10]. Instead, they mark these nodes as
logically removed, and remove them only when these nodes
have a single child. Avoiding physical 2C-removal can result
in a large number of “zombie” nodes in a tree where a node
has been logically deleted but cannot be removed. This has
implications both for the space consumed by the tree, and
for the extension of search paths. The authors of [13] never
physically remove nodes that have no children. They apply
2C-removal by copying the successor’s key to the removed
node, and removing the successor if it has a child.
AVL Tree Balanced trees provide logarithmic worst-case
time complexity. This guarantee becomes crucial as the tree
grows or when the values for the operations are not picked
uniformly. In balanced trees, the tree maintains a balancing
invariant. In AVL trees [1] it holds that for each node the

difference between the heights of its left sub-tree and its
right sub-tree is less than two. This difference is often called
the balance factor. Applying a mutating operation to the
tree may result in breaking the invariant for multiple nodes.
Upon a violation of the invariant, rotations are applied. To
detect the violation, and to decide which type of rotation is
required, nodes save local information. Traditionally, nodes
keep their balance factor. However, they can keep the heights
of their left and right sub-trees instead. We use the latter
approach since it allows for more concurrency.

Another balanced internal tree is the red-black tree [2].
Pfaff showed that in a sequential setting, there is no clear
winner between the two trees [16]. However, AVL trees
typically have shorter paths than red-black trees.
Relaxed Balanced Tree Maintaining the AVL invariant
in a concurrent setting induces severe bottlenecks. This is
because during rotations, the sub-trees of the violated nodes
must not be updated. Thus, it is beneficial to consider a
relaxed balanced tree, where the rebalance operations are
decoupled from the mutating operations and may be delayed.
Bougé et al. [6] proved that a concurrent tree which applies
the AVL rotations using the local information of the node
and its children achieves a relaxed balanced tree, guaranteed
to be strictly balanced when there are no ongoing mutating
operations. This should be contrasted with approaches such
as [10] that perform rotations in a separate thread and thus
can only guarantee some form of “eventual balance.”

We follow Bougé et al.’s method and achieve a relaxed
balanced tree which is strictly balanced at a quiescent state.

3. Concurrent Trees with Logical Ordering
In this section, we present the principles underlying our con-
current tree algorithms. In Section 3.1, we explain how we
explicitly maintain logical ordering information in the BST.
In Section 3.2, we show how logical ordering enables lock-
free lookup queries. In Section 3.3, we show how it enables
on-time 2C-removal. Finally, in Section 3.4, we provide the
highlights of our synchronization method.

We deliberately present the operations without describ-
ing how they are synchronized. We provide synchronization
details in Section 3.4 and in Section 4. To simplify presen-
tation, we present our tree as implementing a set. However,
our actual implementation and evaluation use a more general
implementation of a map.

3.1 Adding Explicit Predecessors and Successors

We augment the tree to support predecessor and successor
queries in O(1). To this end, we extend each node with pre-
decessor and successor pointers, denoted pred and succ.
These pointers allow us to operate separately on the tree lay-
out and the tree ordering, which is captured by the predeces-
sor and successor relations. Roughly speaking, we imple-
ment the set semantics using the ordering, and achieve the
time complexity using the tree layout.

The challenges introduced by the remove operation are
resolved to local mutations with respect to the tree ordering,
without a need to consult the tree layout. Specifically, the
search for the successor in the case of 2C-removal can now
be resolved by following a single pointer.
Maintaining the Predecessor and Successor We now de-
scribe how pred and succ are maintained. In the following,
we use Nk to denote a node with key k.
Insert In a BST, a new node, N , is inserted as a child of
either its predecessor, p, or its successor, s. Thus, N can
access and set p and s using its parent’s pred and succ

pointers. Then, p’s succ and s’s pred are updated to point to
N . For example, consider the tree in Figure 2(a). On a call to
insert(7), the parent will be N9, which is N7’s successor.
N7’s predecessor is N9’s old predecessor, N3. During the
insert, N3’s succ and N9’s pred are updated to point to N7.
Remove Upon a removal of a node N , N ’s predecessor
and N ’s successor are set to point to each other. This update
occurs regardless of how many children N has. N ’s prede-
cessor and successor are accessed via N ’s pred and succ.
This is illustrated by the tree in Figure 2(b). Upon applying
remove(3), the tree is updated to the tree of Figure 2(c).
The removal of N3 from the tree ordering is done by updat-
ing N1’s succ (i.e., N3’s predecessor) to point to N7 (i.e.,
N3’s successor), and by updating N7’s pred to point to N1.

3.2 Lock-Free Lookup Queries using Logical Ordering

In a sequential BST, whether a given value is present in the
tree can be determined simply by following the child point-
ers until reaching a node with this value, or until reaching
the end of a path in the tree. As shown in Section 1, in a
concurrent setting, such traversal may lead to incorrect re-
sults due to concurrent mutations of the tree. To avoid this
problem, we rely on the following observation: to determine
whether k is present in the tree, it is enough to have two keys,
k1, k2, such that (i) k1 and k2 are in the tree, (ii) for every
k̃ ∈ (k1, k2), k̃ is not in the tree, and (iii) k ∈ [k1, k2].

Using the logical ordering and the above observation, we
can determine whether a key k is in the tree as follows:
• If k was found during traversal, then k is in the tree.
• If k was not found, then we must find two keys, k1 and k2,

that are in the tree and such that k ∈ (k1, k2). The search
for k terminates when it reaches a node of value k̃ that lay
at the end of the scanned path. If there are no concurrent
updates, k̃ is either k’s predecessor or successor; thus,
one of the following holds: (i) k ∈ (pred(k̃), k̃), or
(ii) k ∈ (k̃,succ(k̃)). In the presence of concurrent
updates, k1 and k2 must be found, which will be done
via the pred and succ pointers.
To illustrate this, consider the tree of Figure 2(a). Suppose

that thread T is executing contains(7), and has reached
the end of the path, in which N9 is the last node. Then, T
reads N9’s pred and discovers that N3 is N9’s predecessor.
Thus, T infers that 7 does not appear in the tree.

3

9 1

7

3

9 1

7

9 1

(a) (b) (c)

Figure 2: Lookup queries using intervals.

In contrast, suppose that T is executing contains(7)

on the tree of Figure 2(b), and that T was suspended when it
reached N9. Then, another thread, T ′, applies remove(3),
which results in the tree that appears in Figure 2(c). Next, T
resumes and discovers it has reached a leaf. Then, T checks
N9’s pred, discovers N7, and infers that 7 is in the tree. Note
that T is not allowed to infer that 7 is not in the tree because
7 was present in the tree throughout T ’s traversal.

3.3 Removal using Logical Ordering

In a classic BST, a remove operation might have to scan an
unbounded number of nodes to find the removed node’s suc-
cessor. This is because the search for the successor is done
by searching for the left-most node in the removed node’s
right sub-tree. The height of the sub-tree is not bounded;
thus, the search may scan an unbounded number of nodes.
In concurrent algorithms, this means either blocking for a
longer period or risking possible exposure to more concur-
rent updates. The latter might result in failure to find the key,
even though it is present, and thus the search will incorrectly
return a false result. In contrast, having the succ pointers
allows the remove to find the successor using a single read.

3.4 Synchronization over the Logical Ordering

Our synchronization is based on locks, where each node can
be locked in two separate layouts:
• The tree ordering layout
• The tree physical layout

Each update operation is applied in four steps:
1. Acquire ordering layout locks.
2. Acquire physical layout locks.
3. Update the ordering layout and release ordering locks.
4. Update the physical layout and release physical locks.

Locking the node in the tree’s physical layout prevents
concurrent updates to the node’s physical layout informa-
tion, that is, the node’s children, parent and balance informa-
tion. The synchronization over the physical layout is similar
to previous approaches; see Section 4 for details.

Locking the node in the tree ordering layout prevents
concurrent updates to the intervals. As described in Sec-
tion 1, we capture the logical ordering via a set of intervals:
{(p, s) | Np, Ns ∈ tree ∧ ∀k ∈ (p, s), Nk /∈ tree}. With
each interval (p, s) we associate a lock. The intervals can be
split, upon insertion, or merged, upon removal. Upon split-

class Node<K> {
final K key;
volatile boolean mark;
volatile Node<K> left, right;
volatile Node<K> parent;
volatile int leftHeight, rightHeight;
Lock treeLock;
volatile Node<K> succ, pred;
Lock succLock;

}

Figure 3: Fields of the node data structure.

ting an interval (p, s) to (p, k) and (k, s), we acquire (p, s)’s
lock. Upon merging two intervals (p, k), (k, s) to (p, s), we
acquire (p, k)’s and (k, s)’s locks.

Technically, the intervals are captured via the pred and
succ pointers, and (p, s)’s lock is kept in Np. This lock can
be reached from Ns by accessing Np (via Ns’s pred).

An update of (p, s) to (p, k), (k, s) is applied as follows:
1. (p, s)’s lock is acquired.
2. Nk is created with pred set to Np and succ set to Ns.
3. Np’s succ and Ns’s pred are updated to Nk.

Note that even though (p, s)’s lock is kept in Np, it pre-
vents concurrent updates to Ns’s pred as well.

For example, consider the tree in Figure 2(a). On a call
to insert(7), the interval (3, 9) is locked (via N3), af-
ter which, pred and succ are updated as described in Sec-
tion 3.1. This results in the intervals (3, 7), (7, 9).

An update of (p, k), (k, s) to (p, s) is applied as follows:
1. (p, k)’s and (k, s)’s locks are acquired.
2. Nk is marked as removed (using a designated field). This

also serves as an indication that (k, s) is removed.
3. Np’s succ is set to Ns and Ns’s pred is set to Np.

To illustrate this, consider the tree in Figure 2(b). Upon
applying remove(3), the intervals (1, 3), (3, 7) are locked
(via N1 and N3). Then, N3 is marked as removed, which
indicates that (3, 7) is also removed. Next, pred and succ

are updated as described in Section 3.1, which results in the
interval (1, 7). As an aside, we mention that only after these
updates is the tree updated to the tree of Figure 2(c).

4. The Algorithm
In this section, we present the details of our implementation.
The code is available at github.com/logicalordering/trees.
We first present the basic data structure, and then describe
the operations.

4.1 The Node Data Structure

Figure 3 shows the fields of a Node data structure in our tree.
The key field is immutable; all other fields are mutable. Our
node contains a mark field used to indicate whether the node
was removed from the tree; this field is initially set to false.
It maintains the heights of its sub-trees in leftHeight and
rightHeight such that the AVL invariant can be checked
and maintained. In addition to the fields of a standard BST
node, it contains pointers to the predecessor, pred, and suc-
cessor, succ, of the node. It also contains two locks:

Algorithm 1: search(k)
1 node = root
2 while true do
3 currKey = node.key
4 if currKey == k then return node
5 child = currKey < k ? node.right : node.left
6 if child == null then return node
7 node = child
8 end

• A treeLock: protects the tree’s physical layout fields,
left, right, parent, leftHeight and rightHeight.
• A succLock: protects the logical ordering layout fields,

(i) the succ field, and (ii) the pred field of the node
pointed by succ.
That is, for every node N , N ’s succLock protects the
interval (N,succ(N)).

The Initial Tree The tree is initialized with two nodes,
N−∞ and N∞, with keys−∞ and∞, which are each other’s
predecessor and successor. The root is N∞, and N−∞ is
reachable only via the logical ordering layout (via the pred
pointer).

4.2 The Search(k) and Contains(k) Operations

The search operation, shown in Algorithm 1, is the basic
lookup operation that all other operations use. The search
traverses once down the tree until the desired key is found
or the end of the path is reached. It is oblivious to location
updates caused by removals or rotations; thus, it may stray
from its initial path. The search operation does not acquire
any locks, and does not restart. Part of the beauty of our ap-
proach is the simplicity of this operation and the contains
operation that follows.

The contains operation, which appears in Algorithm 2,
begins by calling search(k). If the returned node has key
k, then contains returns true if the node’s mark field is
false, and false otherwise (as a marked node is logically
removed). If the node has a key different than k, then two
nodes are required to determine whether k is in the tree, Nk1

and Nk2 , that hold k ∈ (k1, k2] and succ(Nk1) = Nk2 . If
k2 = k (i.e., k was found), the decision is made as described
before. If k2 > k, it can be concluded that k is not in the
tree (actually it can be concluded that at some moment after
the contains operation has started, k was not in the tree;
see Section 5 for further details). To obtain Nk1

and Nk2
,

the contains operation uses the node returned by search.
It then traverses using the pred field until reaching the first
node whose key is not greater than k. Once discovered, it
scans nodes using the succ field, until reaching a node with
a key equal to or greater than k. The last iteration of this loop
reads Nk1 ’s succ field and saves Nk2 as required. Note that
contains does not acquire any locks, and does not restart.
Also note that after calling search, it only traverses the
pred and succ fields.

Algorithm 2: contains(k)
1 node = search(k)
2 while node.key > k do node = node.pred
3 while node.key < k do node = node.succ
4 return (node.key == k && !(node.mark))

7

3

9 1

(b) (d)

7

3

9 1

5

(c)

7

3

9 1

5

7

3

9 1

(a)

Figure 4: An example of the insert(5) operation. The
initial tree is shown in (a); in (b) the tree after acquiring
the succLock of 3 (5’s predecessor), and after choosing
and acquiring the treeLock of the parent, 7; the tree after
updating the logical ordering layout in (c); and the tree after
updating the tree’s physical layout in (d).

4.3 The Insert(k) Operation

The insert operation, shown in Algorithm 3, begins by
calling search(k) and then operates on the returned node.
Provided that no changes were applied to the tree from
the beginning of the operation, node is one of the fol-
lowing: (i) A node with key k, (ii) k’s predecessor in
the tree, or (iii) k’s successor in the tree. At this point
k’s predecessor is stored in p, and there is an attempt to
lock p’s succLock. After locking, it needs to be checked
that k ∈ (p’s key,succ(p)’s key] and that the interval is not
marked as removed. The latter is checked by confirming that
p’s mark field is false. If the interval is not removed, then
it is guaranteed also that both p and succ(p) are not logi-
cally removed: p is not removed, because it shares the same
mark field with the interval, and succ(p) is not removed,
because at the end of every operation, intervals that were not
removed do not include removed nodes as edge points.

If the validation succeeds, the insert takes place; other-
wise, it restarts. If succ(p)’s key is greater than k, then this
is a successful insertion, and k is inserted to the tree. Other-
wise, succ(p)’s key is equal to k, and this is an unsuccessful
insertion, in which case the tree remains unchanged.

A successful insertion begins with creating the new node
with key k. Then, the parent is determined and locked via
the chooseParent operation. Then, the update is applied,
first by updating the logical ordering (lines 13–17) and then
by updating the tree’s physical layout (line 18). After that,
balancing is applied, if needed. An example of the insert

operation appears in Figure 4.

Algorithm 3: Insert(k)
1 while true do
2 node = search(k)
3 p = node.key > k ? node.pred : node
4 lock(p.succLock)
5 s = p.succ
6 if k ∈ (p.key,s.key] && !p.mark then
7 if s.key == k then // Unsuccessful insert

8 unlock(p.succLock)
9 return false

10 end
11 newNode = new Node(k) // Successful insert

12 parent = chooseParent(p, s, node)
13 newNode.succ = s
14 newNode.pred = p
15 s.pred = newNode
16 p.succ = newNode
17 unlock(p.succLock)
18 insertToTree(parent, newNode)
19 return true
20 end
21 unlock(p.succLock) // Validation failed, restart

22 end

4

2

1

4

2

2

4 1

(a) (b) (c)

Figure 5: Choosing the correct parent for two concurrent
threads, T1: insert(1) || T2: insert(3). The initial
tree is shown in (a); the tree after T1 inserts 1 and T2
observes that 2 should be 3’s parent in (b); the tree after
rotation and T2’s discovery that 4 should be the parent in (c).

Choosing the Correct Parent Whereas in a sequential
BST, the node that was returned from search is the par-
ent, in a concurrent AVL tree this is not necessarily the case.
Consider the example of Figure 5, where two threads, T1

and T2, execute concurrently insert(1) and insert(3)

to the tree of Figure 5(a). Both threads acquire the required
succLocks: T1 locks −∞’s succLock and T2 locks 2’s
succLock. Next, both threads observe that 2 should be their
parent and T2 is suspended. T1 completes the insertion (Fig-
ure 5(b)), detects that 4 is not balanced and applies a ro-
tation (Figure 5(c)). Then, T2 resumes and observes that 2
cannot be the parent and 4 should be the new parent.

Thus, upon insertion, the correct parent must be chosen
and concurrent rotations to it are prevented by acquiring its
treeLock. This is done via the chooseParent operation
that appears in Algorithm 4. In this operation, at every step,

Algorithm 4: chooseParent(p, s, firstCand)
1 candidate = firstCand == p || firstCand == s? firstCand : p
2 while true do
3 lock(candidate.treeLock)
4 if candidate == p then
5 if candidate.right == null then return candidate
6 unlock(candidate.treeLock)
7 candidate = s
8 else
9 if candidate.left == null then return candidate

10 unlock(candidate.treeLock)
11 candidate = p
12 end
13 end

Algorithm 5: insertToTree(parent, newNode)
1 newNode.parent = parent
2 if parent.key < newNode.key then
3 parent.right = newNode
4 parent.rightHeight = 1
5 else
6 parent.left = newNode
7 parent.leftHeight = 1
8 end
9 rebalance(lockParent(parent), parent)

there is a node that is a candidate for the correct parent.
Then, its treeLock is acquired and if it is validated as the
correct parent, the operation returns it. The candidates for the
correct parent are the new node’s predecessor and successor.
To validate that a candidate is the correct parent, it needs to
be checked that the appropriate child pointer is empty. If the
candidate is the predecessor, the right child should be empty,
and if it is the successor, the left child should be empty.
If the required child pointer is not empty, then the lock
is released, and the other candidate is checked. Typically,
the first candidate is the node that was returned from the
search operation. However, concurrent updates might also
occur before the succLock is acquired. Then, this node is
no longer the predecessor or successor. In this case, we pick
(arbitrarily) the predecessor to be the first candidate.
Updating the Physical Layout The physical update to the
tree, which appears in Algorithm 5, connects the chosen
parent to the new node and sets the height of this sub-tree
to one. Afterwards, the rebalance operation is invoked, to
update the heights of the parent’s ancestors, and to apply
rotations if necessary. This operation requires the parent and
its parent to be locked, and thus the lockParent is called.

The lockParent operation, shown in Algorithm 6, re-
ceives a locked node and locks the node pointed by its
parent field. If after acquiring the lock, this node is the
correct parent and it is not marked as removed, it is returned.
Otherwise, the operation restarts. Note that the node’s parent
may change while it is not locked. This is because in order

Algorithm 6: lockParent(node)
1 while true do
2 p = node.parent
3 lock(p.treeLock)
4 if node.parent == p && !p.mark then return p
5 unlock(p.treeLock)
6 end

Algorithm 7: remove(k)
1 while true do
2 node = search(k)
3 p = node.key > k? node.pred : node
4 lock(p.succLock)
5 s = p.succ
6 if k ∈ (p.key,s.key] && !p.mark then
7 if s.key > k then // Unsuccessful remove

8 unlock(p.succLock)
9 return false

10 end
11 lock(s.succLock) // Successful remove

12 hasTwoChildren = acquireTreeLocks(s)
13 s.mark = true
14 sSucc = s.succ
15 sSucc.pred = p
16 p.succ = sSucc
17 unlock(s.succLock)
18 unlock(p.succLock)
19 removeFromTree(s, hasTwoChildren)
20 return true
21 end
22 unlock(p.succLock) // Validation failed, restart

23 end

to change a node’s parent, it is only necessary to acquire the
treeLocks of its original and new parents, and there is no
need to acquire the node’s treeLock.

4.4 The Remove(k) Operation

The remove operation, shown in Algorithm 7, begins with
a call to search(k) and then operates on the node that
was returned. As in the insert operation, this operation
tries to lock k’s predecessor, denoted p, and applies the
same validation. If validation succeeds, the operation checks
whether this is a successful removal, in which case k will
be removed, or an unsuccessful removal, in which case the
operation will return without changing the tree.

A successful removal to a node, denoted n, is applied
as follows. The first step is to acquire n’s succLock, and
then the required treeLocks. Next, the mark field is set to
true to indicate that this node is logically removed from
the tree. Then, the logical ordering is updated (lines 14–18)
and finally, the tree’s physical layout is updated (line 19).
Here, the two succLocks are required to prevent concurrent
updates to n’s predecessor and successor.

Algorithm 8: acquireTreeLocks(n)
1 lock(n.treeLock)
2 lockParent(n)
3 if n.right == null || n.left == null then // n is a leaf or

4 if n.right != null then // has a single child

5 if !tryLock(n.right.treeLock) then restart
6 else if n.left != null then
7 if !tryLock(n.left.treeLock) then restart
8 end
9 return false

10 else // n has two children

11 s = n.succ
12 if s.parent != n then
13 parent = s.parent
14 if !tryLock(parent.treeLock) then restart
15 if parent != s.parent || parent.mark then restart
16 end
17 if !tryLock(s.treeLock) then restart
18 if s.right != null then
19 if !tryLock(s.right.treeLock) then restart
20 end
21 return true
22 end

Acquiring treeLocks The acquireTreeLocks opera-
tion, which appears in Algorithm 8, acquires all the required
treeLocks for the removal. As discussed before, the re-
moval of a node from the tree’s physical layout is carried
out differently when the node has two children than when
it has less children. Thus, the operation’s tasks are to deter-
mine how many children the node has, and acquire the set of
required treeLocks accordingly. After the treeLocks are
acquired, the number of children that the node has cannot
change due to concurrent updates.

The acquireTreeLocks operation receives a node, n,
acquires the required treeLocks, and returns true if n has
two children and false otherwise. To guarantee the consis-
tency of its response, it is enough to acquire n’s treeLock
(to block concurrent updates to its children by insertions, re-
movals or rotations). However, the removal necessitates the
acquisition of additional nodes’ treeLocks. These nodes
are located lower than n in the tree. As shall be described
in Section 5, the locking order of the treeLocks is from the
lower nodes in the tree to the higher ones. Thus, to acquire
locks on these nodes, and to avoid deadlocks, the locking is
not blocking, and if an attempt to lock fails, current locks
are released and the operation restarts. This means that the
number of children that n has may change. Thus, in each
iteration, after acquiring n’s treeLock, it is necessary to
recheck the number of children n has.

The list of nodes whose treeLocks are acquired in this
operation are:
• n and n’s parent.
• If n has less than two children, n’s child (if it exists).

Algorithm 9: removeFromTree(n, hasTwoChildren)
1 if !hasTwoChildren then // n is a leaf or has a

2 child = n.right == null ? n.left : n.right // single child

3 parent = n.parent
4 updateChild(parent, n, child)
5 else // n has two children

6 s = n.succ
7 child = s.right
8 parent = s.parent
9 updateChild(parent, s, child)

10 copy n’s left, right, leftHeight, rightHeight to s

11 n.left.parent = s
12 if n.right != null then // n.right may be null if

13 n.right.parent = s // s was the right child

14 end
15 updateChild(n.parent, n, s)
16 if parent == n then // rebalance begins from s

17 parent = s
18 else // rebalance begins from lower nodes

19 unlock(s.treeLock)
20 end
21 unlock(n.parent.treeLock)
22 end
23 unlock(n.treeLock)
24 rebalance(parent, child)

Algorithm 10: updateChild(parent, oldCh, newCh)
1 if parent.left == oldCh then
2 parent.left = newCh
3 else
4 parent.right = newCh
5 end
6 if newCh != null then newCh.parent = parent

• If n has two children, s, s’s parent and s’s child (if it
exists), where s is n’s successor.

Updating the Physical Layout The physical removal is
done via the removeFromTree operation, which appears
in Algorithm 9. If the node has at most one child, it is
removed by connecting its parent to its child (which may
be null). This update is applied via the updateChild

operation (Algorithm 10).
A node with two children is removed by relocating n’s

successor, denoted s, to n’s location in the tree. This is done
in two steps: (i) s is detached from its current location, by
updating its parent to point to its child (lines 7–9), (ii) s’s
location is updated to n’s location, by setting s’ tree fields
(i.e., parent, right, left, leftHeight, rightHeight)
to n’s tree fields, and setting n’s parent and children to point
to s (lines 10–15).

During these updates, s is not reachable via the tree layout
pointers. However, concurrent searches cannot miss its key,
which remains reachable via the logical ordering.

(a)

2

1 5

3

6

4

(b)

2

1 5

3

6

4

(c)

2

1 5

3

6

4

(d)

3

1 5

4

6

7

3

9 1

(b) (d)

7

3

9 1

5

(c)

7

3

9 1

5

7

3

9 1

(a)

Figure 6: An example of the remove(2) operation. The
initial tree is shown in (a); in (b) the tree after acquir-
ing succLocks of 1 (2’s predecessor) and 2, and the
treeLocks of 2, 6 (2’s parent), 3 (2’s successor), 5 (3’s
parent) and 4 (3’s child); in (c) the tree after marking 2 as
removed and updating the logical ordering; in (d) the tree
after relocating 3 to 2’s location.

After n was removed, the heights are updated starting
from the location of the removal. If n had less than two
children, then the update begins from n’s parent. Otherwise,
it begins from s’s original parent, or from s if n was its
original parent. The heights are updated via the rebalance
operation, which receives the nodes when they are locked.

An example of the remove operation appears in Figure 6.

4.5 Balancing the Tree

In AVL trees, after every update operation, a process of
recovering the tree to a balanced state begins. The tree is
balanced when all nodes are balanced. A node is balanced if
the difference between the heights of its sub-trees is at most
one. If it is imbalanced, the difference is two. Rotations are
applied to rebalance imbalanced nodes. During the recovery
process, multiple nodes may be examined, and any updates
to these nodes or to their descendants must be blocked. Thus,
a concurrent AVL may result in severe bottlenecks.

To avoid these bottlenecks, we apply a relaxed balancing.
We use Bougé et al.’s algorithm [6] for relaxed balanced
trees that guarantees the tree is balanced in a quiescent
state. In their algorithm, nodes maintain two fields, denoted
leftHeight and rightHeight, and an imbalanced node
has a difference of at least two between the heights of its sub-
trees. The decision of whether to apply a rotation, and if so,
which type should be applied, is based on these fields. These
heights may not reflect the current height of the left and right
sub-trees. Thus, a rotation is not guaranteed to lead the node
to a balanced state, nor is it guaranteed not to worsen the
shape of the tree. However, as shown in [6], applying the
AVL rotations on the basis of these heights leads to a strict
AVL tree in a quiescent state.

Tree balance is validated from the node that was mutated
by the insert or remove and up to the root. The root is
a sentinel and thus it is not rotated. For each node that is

Algorithm 11: rotate(child, n, parent, leftRotation)
1 updateChild(parent, n, child)
2 n.parent = child
3 if leftRotation then
4 updateChild(n, child, child.left)
5 child.left = n
6 n.rightHeight = child.leftHeight
7 child.leftHeight = max(n.leftHeight, n.rightHeight) + 1
8 else Symmetric

scanned, its height is updated before checking whether it
is balanced. If the traversal approached the node from the
left child, then its leftHeight is updated, and otherwise
its rightHeight is updated. If the height was not changed,
and the node is balanced, then this operation did not cause a
change in the height of its ancestors. In particular, the ances-
tors are balanced, and thus, the operation can terminate.

If the examined node is imbalanced, rotation is applied.
Roughly speaking, a rotation switches the parent and child
roles of the node and one of its children. That is, the child
becomes the node’s new parent, and the child’s parent is the
node’s old parent. Switching the node with its left child is
called a right rotation, and switching with the right child is
called a left rotation. The decision of which rotation to apply
is based on the node’s balance factor, which is the difference
between its leftHeight and rightHeight. In some cases,
two consecutive rotations are required, first on the node’s
child and then on the node. The decision of whether to apply
one or two rotations depends on the balance factor of the
node’s child. Algorithm 11 presents the code that applies a
rotation, given a node, its child and its parent.

The rebalance operation (Algorithm 12), receives two
locked nodes, node and its child (which may be null). After
insertion, these nodes are the new node’s grandparent and
parent. After removal, if the removed node had less than
two children, these nodes are its parent and child; otherwise,
these are the parent and child of the node’s successor. The
rebalance begins with updating node’s height on the basis
of child’s height (Algorithm 13). Then, it checks node’s
balance factor. If the height of node has not changed and the
balance factor is valid, the operation terminates. If the height
has changed and the balance factor is valid, the traversal
continues with the node’s parent. Otherwise, if the balance
factor is not valid, the rotation process begins.

The rotation process consists of several steps. First, a
check is conducted to see whether child is the appropriate
child to recover the balance factor. If not, child’s treeLock
is released and child is set to the other child and attempted to
be locked (lines 7–19). As in the acquireTreeLocks oper-
ation, this acquisition is against the locking order, and thus it
is not blocking. If the lock acquisition fails, the restart

operation (Algorithm 14) is called. In this operation, all
treeLocks are released and reacquired. If after reacquir-
ing the lock, node is marked as removed, the operation ter-

Algorithm 12: rebalance(node, child)
1 while node != root do
2 isLeft = (node.left == child)
3 updated = updateHeight(child, node, isLeft)
4 bf = node.leftHeight - node.rightHeight
5 if !updated && |bf| < 2 then return
6 while |bf| ≥ 2 do
7 if (isLeft && bf ≤ −2) || (!isLeft && bf ≥ 2) then
8 if child != null then unlock(child.treeLock)
9 child = isLeft? node.right : node.left

10 isLeft = !isLeft
11 if !tryLock(child.treeLock) then
12 if !restart(node, parent) then return
13 parent = null
14 bf = node.leftHeight - node.rightHeight
15 child = bf ≥ 2? node.left : node.right
16 isLeft = (node.left == child)
17 continue
18 end
19 end
20 chBF = child.leftHeight - child.rightHeight
21 if (isLeft && chBF <0) || (!isLeft && chBF >0) then
22 grandChild = isLeft? child.right : child.left
23 if !tryLock(grandChild.treeLock) then
24 unlock(child.treeLock)
25 if !restart(node, parent) then return
26 <same code as in lines 13–17>
27 end
28 rotate(grandChild, child, node, isLeft)
29 unlock(child.treeLock)
30 child = grandChild
31 end
32 if parent == null then parent = lockParent(node)
33 rotate(child, node, parent, !isLeft)
34 bf = node.leftHeight - node.rightHeight
35 if |bf| ≥ 2 then
36 unlock(parent.treeLock)
37 parent = child
38 child = null
39 isLeft = bf ≥ 2? false: true
40 continue
41 end
42 temp = node; node = child; child = temp
43 isLeft = (node.left == child)
44 bf = node.leftHeight - node.rightHeight
45 end
46 if child != null then unlock(child.treeLock)
47 child = node
48 node = parent != null? parent: lockParent(node)
49 parent = null
50 end

minates. Otherwise, child is set to one of its children, its
treeLock is acquired, and the rebalance restarts.

Algorithm 13: updateHeight(ch, node, isLeft)
1 newH = ch == null? 0: max(ch.leftHeight, ch.rightHeight) + 1
2 oldH = isLeft? node.leftHeight : node.rightHeight
3 if isLeft then
4 node.leftHeight = newH
5 else
6 node.rightHeight = newH
7 end
8 return oldH == newH

Algorithm 14: restart(node, parent)
1 if parent != null then unlock(parent.treeLock)
2 while true do
3 unlock(node.treeLock)
4 lock(node.treeLock)
5 if node.mark then // No need to balance

6 unlock(node.treeLock)
7 return false
8 end
9 bf = node.leftHeight - node.rightHeight

10 child = bf ≥ 2? node.left : node.right
11 if child == null then return true
12 if trylock(child.treeLock) then return true
13 end

A check is then performed to see whether two rotations
are needed. If so, the treeLock of child’s child is acquired
and the rotation is applied (lines 20–31). The acquisition of
this lock is also non-blocking, and if it fails, restart is
called. Next, the rotation to node is applied (lines 32–33).
To this end, its parent’s treeLock is acquired. After that, if
the node is still not balanced, the process begins again (lines
34–41). Otherwise, we check whether its new parent (i.e., its
old child) is balanced (lines 42–44). After both are balanced,
the traversal continues upwards in the tree, with the node’s
old parent (lines 46–49).

Some of the lock releases are omitted from the code
for brevity. We also note that there is an edge-case where
node was not balanced, the restart operation was invoked,
and afterwards node was detected as removed. If node was
removed by relocating its successor, s, to node’s location,
then s is not balanced. However, it is the responsibility
of the thread that removed node to invoke rebalance on
s. This happens in removeFromTree, after returning from
rebalance. We omit this code for simplicity.

4.6 Binary Search Tree without Balancing

From the above description of the AVL tree, one can con-
struct a BST without balancing. The BST is very similar to
the AVL tree we presented, and it can be obtained by remov-
ing the balancing operation and applying minor optimiza-
tions (i.e., acquiring fewer treeLocks).

4.7 Supporting Additional Operations

Our design can be used to support additional operations:
Retrieving the Minimal/Maximal Values Having the
pred and succ fields in the nodes allows us to support
the operations min and max. To access the minimal value,
it is enough to read the succ field of N−∞ and check its
mark field. If the latter is false, then the node’s key can
be returned; otherwise, the operation is restarted. The max

operation is implemented similarly using N∞’s pred field.
Iterating over Tree Elements Iteration requires imple-
mentation of: (i) first(), which returns the minimal node
in the tree, and (ii) next(node), which returns the suc-
cessor of the given node. first() is similar to minimal

with the exception that it returns the node and not its key.
The next(node) operation can be implemented similarly
by reading the succ field from node (instead of N−∞).

5. Correctness
In this section we discuss the correctness of our algorithm.

5.1 Lock Ordering and Deadlock Freedom

We now present the locking order that threads obey, and thus
show that deadlocks cannot occur. There are two types of
locks, succLocks and treeLocks, and we order them such
that the succLock should be acquired first. Between two
succLocks we order acquisition such that the lock of the
node with the smaller key should be acquired first.

Between two treeLocks we order acquisition such that
the lock of the node that appears lower in the tree should
be acquired first. Whenever threads determine that one node
appears lower (or higher) than another node in the tree, it
cannot change due to concurrent operations. This follows
since threads lock nodes that have an ancestor-descendant
relation and determine that a node is lower than another node
only after acquiring one of their treeLocks. The roles of
ancestor-descendant can only be switched via the rotate

operation, which requires both of their treeLocks.
When locking treeLocks against the locking order is

required, threads optimistically attempt to acquire the lock
(without blocking on it), and if they fail, all locks are re-
leased and the operation is restarted. When locking several
treeLocks against the locking order, threads lock from the
higher node to the lower one. That is, threads obey another
locking order. This approach cannot result in a livelock.
Livelock may occur when threads contend without blocking
on the same set of locks and acquire them in a different order.
Here, livelock cannot occur when two threads attempt to ac-
quire locks against the locking order because they obey an-
other locking order. Nor can livelock occur when two threads
attempt to acquire locks, one obeying the locking order and
the other not obeying it, since the first one will block on the
locks until acquiring them.

The BST follows the same lock ordering as the AVL tree,
and uses a subset of its locks; thus, it is also deadlock free.

5.2 Linearizability

To show linearizability, we provide the linearization points
for each operation. The linearization points of unsuccessful
inserts and removes (neither affects the tree) are where they
return false, i.e. in lines 9 of insert and remove.

The linearization point of a successful insert(k) is in
line 16, where p’s succ field is updated to point to the
new node. Any future insert(k) or remove(k) will ob-
serve k once it has acquired the succLock of k’s predeces-
sor, or once it has detected a different node n, acquired its
succLock and observed that k /∈ (n’s key, succ(n)’s key).

The linearization point of a successful remove(k) is in
line 13, where n’s mark field is set to true. Any future
insert(k) or remove(k) will acquire the succLock of
k’s predecessor, and will observe that it has a different suc-
cessor. Any future contains(k) that observes k will find
its mark field set to true.

The linearization point of a successful contains(k) is
when the mark field of the node with value k was observed
to be false. The linearization point of an unsuccessful con-
tains is more delicate. The simple case is when the node is
marked as removed or when k is not in the tree. In this case
the linearization point is when the mark field was observed
as true, or upon observing that node has a bigger key in
line 3. However, it may happen that the nodes read in line 2
were also removed from the tree (but the update was not
completed yet). In this case, it is possible that another con-
current thread inserts k. Since this update was not observed
in line 3, the insertion must have begun after the contains
began. Thus, we linearize the unsuccessful contains just
before the linearization point of the new insert.

5.3 Progress Guarantees

We now provide a sketch of the proof of the contains’
progress guarantees. The contains consists of two phases:
• The traversal along the tree via the right and left fields.
• The traversal along the nodes via the pred and succ fields.

The first phase of the traversal is lock-free. A thread may
stray from its path due to rotations or removals of nodes with
two children. However, in these cases another thread has
made progress (it successfully applied an insert or remove).

The second phase is also lock-free. If there are no concur-
rent updates, after a finite number of steps, the thread will
find an unmarked node which is the predecessor of the key
under search, or a node that precedes the predecessor. Then,
if there are no concurrent updates, after a finite number of
steps, the thread will find the predecessor and successor of
the key under search. This traversal may only be delayed if
the order layout is concurrently updated by another thread.
In that case, the update operation was linearized (before or
when the order layout was updated) and the other thread has
made progress.

50% Contains, 25% Inserts, 25% Removes 70% Contains, 20% Inserts, 10% Removes 100% Contains, 0% Inserts, 0% Removes

K
ey

ra
ng

e:
2
·1

0
6

T
hr

ou
gh

pu
t(

m
ill

io
n

op
s/

se
c)

K
ey

ra
ng

e:
2
·1

0
5

T
hr

ou
gh

pu
t(

m
ill

io
n

op
s/

se
c)

K
ey

ra
ng

e:
2
·1

0
4

T
hr

ou
gh

pu
t(

m
ill

io
n

op
s/

se
c)

Number of Threads Number of Threads Number of Threads

Table 1: Throughput for balanced tree implementations under different workloads on a 4-socket Opteron (64 h/w threads).

6. Evaluation

To evaluate the performance of our algorithms, we ran ex-
periments on an AMD Opteron(tm) Processor 6376 with
128GB RAM and 64 cores: four processors with sixteen
cores each and with hyper-threading support. We used
Ubuntu 12.04 LTS and OpenJDK Runtime version 1.7.0_45
using the 64-bit Server VM (build 24.45-b08, mixed mode).
We compared our algorithms to the following:
• BCCO Tree – The lock-based, relaxed AVL tree by Bron-

son et al. [8]. This is a variation of internal trees, referred
to as partially-external trees.
• Contention-friendly tree – The lock-based, partially-

external, relaxed AVL tree by Crain et al. [10], which
delays rotations and removals and performs them in a
separate maintenance thread.
• Java’s Skip List – The non-blocking skip-list by Doug

Lea, based on the work of Fraser and Harris [12], and
included in the Java standard library.
• Chromatic Tree – The non-blocking, external, relaxed

balance red-black tree, Chromatic6, by Brown et al. [9],
which performs rotations only when the number of vio-
lations on a path is more than 6.

• EFRB-Tree – The non-blocking, external BST by Ellen
et al. [11].

We also consider a variation of our trees, denoted logical
removing, that implements a partially-external tree. In this
variation, a node with two children is marked as logically
removed via a designated flag, and it is not physically re-
moved from the ordering layout or the physical layout. It
will be physically removed only if its number of children re-
duces to one due to another removal or due to rotations. An
insert can revive such a node by flipping this flag to false.
Differentiating Features Two key features distinguish our
algorithms from past work on internal trees. First, our lookup
operation is lock-free. This fault-tolerance property is impor-
tant in large-scale systems where failure to guarantee some
form of fault-tolerance makes reliability difficult to attain.

Second, in contrast to other approaches, our algorithms
perform timely deletion. That is, they free the node upon re-
moval (even when the deleted node is an internal node with
two children), rather than keeping the node and physically
deleting it later. This is useful as it keeps the memory con-
sumption to what is expected by the programmer: a function
of the keys which are currently in the tree. This is particu-

larly important in long-running applications where failure to
remove deleted nodes can slowly lead to longer traversals.

The main performance question we wanted to address
was the cost of these unique features: would the throughput
of our algorithms be comparable to that of existing algo-
rithms which lack this combination?

We focus our evaluation on workloads that make heavy
use of contains operations:
• 100C-0I-0R: 100% contains, 0% inserts, 0% removes.
• 70C-20I-10R: 70% contains, 20% inserts, 10% removes.
• 50C-25I-25R: 50% contains, 25% inserts, 25% removes.

We ran five-second trials, where each thread reported
the number of operations it completed. We report the total
number of operations applied by all threads, that is, the
total throughput. The number of threads is 2i where i varies
between 0-8.

During the trial, each thread randomly chooses a type
of operation with respect to the given distribution and then
randomly chooses the value for that operation from a given
range. The examined range sizes are: 2·104, 2·105 and 2·106.
Before each trial, we prefilled the data structure as follows.
For 100C-0I-0R and 50C-25I-25R, the data structures were
prefilled to a size of 1/2 of the key range. For 70C-20I-10R,
the data structures were prefilled to a size of 2/3 of the key
range (the expected size at steady state). During prefilling,
we ran the same workload as in the timed trials (i.e., same
number of threads and same operations distribution), until
reaching the desired size. We ran every experiment 8 times
and report the arithmetic average. Each batch of 8 trials was
run in its own JVM instance. To avoid HotSpot effects, we
ran a warm-up phase before executing the trials. Table 1
compares balanced data structures, and Table 2 compares
unbalanced data structures.
Throughput Evaluation In Table 1, it can be seen that un-
der a heavy load of mutating operations (first column), and
when the tree is quite small, our algorithms perform some-
what worse than the other trees. Under heavy load, threads
spend more time waiting for locks. Also, since the lookup is
optimistic, threads may progress along some path, and then
due to rotations may find themselves scanning a different
path. More changes result in more threads that stray from
the correct path due to rotations. However, as the tree’s size
increases, even under heavy load of write operations our al-
gorithm is comparable to the other implementations. When
all of the operations are contains operations, our algorithm—
while still providing lock-free contains—outperforms the
state-of-the-art BSTs. In terms of space, the BCCO-tree may
maintain up to 50% “zombie” nodes that have been logi-
cally, but not physically, removed. These nodes can be used
to avoid allocation if a subsequent insert is attempting to in-
sert the same key. This represents a different tradeoff than
our approach, in which some allocations can be avoided by
keeping “zombie” nodes in the tree after removal. The ability
to avoid allocation using zombie nodes decreases as the key

70% Contains, 20% Inserts, 10% Removes 100% Contains, 0% Inserts, 0% Removes

K
ey

ra
ng

e:
2
·1

0
6

T
hr

ou
gh

pu
t(

m
ill

io
n

op
s/

se
c)

K
ey

ra
ng

e:
2
·1

0
5

T
hr

ou
gh

pu
t(

m
ill

io
n

op
s/

se
c)

K
ey

ra
ng

e:
2
·1

0
4

T
hr

ou
gh

pu
t(

m
ill

io
n

op
s/

se
c)

Number of Threads Number of Threads

Table 2: Throughput for different BST implementations.

range increases and the probability for inserting a key that
has been removed decreases. The benefit of saving alloca-
tion is also apparent when comparing our logical removing
variation to our AVL under workloads that include update
operations. In these workloads, the variation performs better
than the AVL.

Table 2 presents the results for 70C-20I-10R and 100C-
0I-0R of the unbalanced trees (50C-25I-25R produces simi-
lar results to 70C-20I-10R). It can be seen that our BST is
often comparable to the EFRB-Tree. When all operations
are contains operations, the comparison is between differ-
ent implementations of lock-free contains for an internal tree
(our tree), a partially-external tree (our variation), and an ex-
ternal tree (EFRB-Tree). When the operation mix includes
update operations, threads may be blocked in both of our
trees (waiting for locks), while in the EFRB-Tree, threads
are never blocked. When the tree size is small, the external
and partially-external trees have an advantage over our tree.
Internal trees may suffer more contention in smaller trees
since threads contend on nodes more frequently (since there
could be up to two times fewer nodes in internal trees than
in external trees). When the tree size is large, however, our
tree is comparable to the EFRB-Tree.

7. Related Work
The literature contains many variants of concurrent trees
that can be roughly classified according to the following
characteristics:
Internal vs. External An internal tree (e.g., [8, 10, 13])
maintains values in inner nodes whereas an external tree

(e.g., [7, 9, 11, 15]) maintains values only at the leaves.
One challenge in internal trees is removal of a node with
two children. Bronson et al. [8] and Crain et al. [10] cope
with this challenge by marking such a node as removed,
and do not physically remove it until the node has a single
child. Howley et al. [13] remove such a node by copying
the value of its successor to the node, and then by removing
the successor if it has a child (otherwise it is only logically
removed).
Pessimistic vs. Optimistic Most concurrent trees in the
literature use optimistic concurrency [14], but it is also possi-
ble to use pessimistic locking protocols [3]. Optimistic trees
are traversed without acquiring any lock, and locks are ac-
quired when the required node is reached. One challenge in
such trees is the validation that no other concurrent opera-
tion has occurred between detecting the required node af-
ter observing some state of the tree and the lock acquisition.
Known algorithms [7, 8, 10, 11, 13] cope with this challenge
by stamping the node with the ongoing operation or with a
new version number.
Balanced vs. Unbalanced Balancing might require addi-
tional synchronization, and the literature contains both un-
balanced [11, 13, 15] and balanced trees with different bal-
ancing mechanisms, e.g., red-black trees [5, 9], and AVL [8,
10]. Concurrent trees are typically relaxed balanced, mean-
ing that the mutating operations are decoupled from the re-
balancing operations. That is, a mutating operation is first
completed and only sometime afterwards the rebalance pro-
cess begins. This process may be delayed, for example,
while waiting to acquire locks. In [8] balance is applied after
every mutating operation, whereas in [10] balance is applied
by a single thread that runs in the background.
BST vs. Threaded BST In a threaded BST, every node
that normally had null in its right child pointer will have a
pointer to the node’s successor, and every node that normally
had null in its left child pointer will have a pointer to the
node’s predecessor. In our approach, every node maintains
this information and it is crucial for nodes that neither of
their children is null. Pfaff [16] mentions the possibility
of adding an in-order list to the sequential tree. This is
done by extending each node to point to its predecessor and
successor. Pfaff claims that it does not improve performance;
no details are provided on the locking discipline used when
this in-order list is added. In contrast, we show that using a
locking that is based on logical-ordering is a sweet spot for
simplifying the algorithm and obtaining performance better
or comparable to state-of-the-art algorithms that use more
complicated mechanisms.

8. Conclusion
We presented two practical concurrent binary search tree al-
gorithms: a non-balanced tree and an AVL tree. The core
idea behind our algorithms is the notion of logical ordering,
which is explicitly maintained in the tree. Separating the log-

ical ordering from the tree layout enables clean separation
between operations which update the tree layout, such as ro-
tations, and those that look for elements. We leveraged this
idea to design an intuitive, simple lookup operation, which
is also lock-free. We have implemented our algorithms and
showed that they are competitive with state-of-the-art bal-
anced BST implementations.

Acknowledgements
We would like to thank Guy Gueta, Faith Ellen, Tim Harris,
and Adam Morrison for their insightful comments.

References
[1] ADELSON-VELSKII, G., AND LANDIS, E. M. An algorithm

for the organization of information. In Proc. of the USSR
Academy of Sciences,146:263-266 (1962).

[2] BAYER, R. Symmetric binary b-trees: Data structure and
maintenance algorithms. Acta Informatica 1, 4 (1972), 290–
306.

[3] BAYER, R., AND SCHKOLNICK, M. Concurrency of opera-
tions on b-trees. Acta Informatica 9, 1 (1977), 1–21.

[4] BENDER, M. A., FINEMAN, J. T., GILBERT, S., AND KUSZ-
MAUL, B. C. Concurrent cache-oblivious b-trees. In SPAA
(2005), pp. 228–237.

[5] BESA, J., AND ETEROVIC, Y. A concurrent red-black tree.
Journal of Parallel and Distributed Computing 73, 4 (2013),
434 – 449.

[6] BOUGÉ, L., GABARRÓ, J., MESSEGUER, X., AND SCHA-
BANEL, N. Height-relaxed avl rebalancing: A unified, fine-
grained approach to concurrent dictionaries, 1998.

[7] BRAGINSKY, A., AND PETRANK, E. A lock-free b+tree. In
SPAA (2012), pp. 58–67.

[8] BRONSON, N. G., CASPER, J., CHAFI, H., AND OLUKO-
TUN, K. A practical concurrent binary search tree. In PPoPP
(2010), pp. 257–268.

[9] BROWN, T., ELLEN, F., AND RUPPERT, E. A general tech-
nique for non-blocking trees. In Proc. 19th ACM Symposium
on Principles and Practice of Parallel Programming (2014).

[10] CRAIN, T., GRAMOLI, V., AND RAYNAL, M. A contention-
friendly binary search tree. In Euro-Par (2013), pp. 229–240.

[11] ELLEN, F., FATOUROU, P., RUPPERT, E., AND VAN
BREUGEL, F. Non-blocking binary search trees. In PODC
(2010), pp. 131–140.

[12] FRASER, K. Practical lock-freedom. Tech. Rep. UCAM-CL-
TR-579, University of Cambridge, Computer Laboratory, Feb.
2004.

[13] HOWLEY, S. V., AND JONES, J. A non-blocking internal bi-
nary search tree. In Proc. 24th ACM Symposium on Paral-
lelism in Algorithms and Architectures (2012), pp. 161–171.

[14] KUNG, H. T., AND ROBINSON, J. T. On optimistic methods
for concurrency control. ACM Trans. Database Syst. 6, 2
(June 1981), 213–226.

[15] NATARAJAN, A., AND MITTAL, N. Fast concurrent lock-
free binary search trees. In Proc. 19th ACM Symposium on
Principles and Practice of Parallel Programming (2014).

[16] PFAFF, B. Performance analysis of BSTs in system software.
In SIGMETRICS (2004), ACM, pp. 410–411.

