
Code Completion with Statistical Language Models

Veselin Raychev
ETH Zürich

veselin.raychev@inf.ethz.ch

Martin Vechev
ETH Zürich

martin.vechev@inf.ethz.ch

Eran Yahav
Technion

yahave@cs.technion.ac.il

Abstract
We address the problem of synthesizing code completions for pro-
grams using APIs. Given a program with holes, we synthesize com-
pletions for holes with the most likely sequences of method calls.

Our main idea is to reduce the problem of code completion to
a natural-language processing problem of predicting probabilities
of sentences. We design a simple and scalable static analysis that
extracts sequences of method calls from a large codebase, and
index these into a statistical language model. We then employ
the language model to find the highest ranked sentences, and use
them to synthesize a code completion. Our approach is able to
synthesize sequences of calls across multiple objects together with
their arguments.

Experiments show that our approach is fast and effective. Virtu-
ally all computed completions typecheck, and the desired comple-
tion appears in the top 3 results in 90% of the cases.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Statistical methods; I.2.2
[Artificial Intelligence]: Automatic Programming—Program syn-
thesis

1. Introduction
To accomplish many common tasks, programmers increasingly rely
on the rich functionality provided by numerous libraries and frame-
works. Unfortunately, a typical API can involve hundreds of classes
with dozens of methods each, and often requires specific sequences
of operations to be invoked to perform a single task [9, 38, 39].
Even experienced programmers might spend hours trying to under-
stand how to use a simple API [23]. To address this challenge, re-
cent years have seen increasing interest in code search, recommen-
dation and completion systems [7, 15, 19, 23, 25–27, 29, 35, 43].

Despite significant progress, existing techniques cannot synthe-
size usable code beyond simple sequences required for instantiation
of library objects. No existing technique can synthesize code of the
complexity found in real tutorials and code examples. In fact, most
existing approaches to code completion target completion based on
shallow semantic information, and cannot capture the temporal in-
formation required for synthesizing correct code using a library.
Some specification-mining techniques do capture rich temporal in-
formation (see Sec. 8), but do not attempt to synthesize usable code.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLDI ’14, June 09–11, 2014, Edinburgh, United Kingdom.
Copyright c© 2014 ACM 978-1-4503-2784-8/14/06. . . $15.00.
http://dx.doi.org/10.1145/2594291.2594321

Our Approach: Synthesis with Statistical Language Models Sta-
tistical language models have been successfully used to model
regularities in natural languages and applied to problems such as
speech recognition, optical character recognition, and others [28].

Our main idea is to reduce the problem of code completion to
a natural-language processing problem of predicting probabilities
of sentences: we use regularities found in sequences of method
invocations to predict and synthesize a likely method invocation
sequence for code completion.
Big Data, Small Programs To construct the statistical language
model, we use static analysis to extract a large number of histories
of API method calls from a massive number of code snippets ob-
tained from GitHub and other repositories. The extracted histories
are used as training sentences for the statistical language model.
We show that the quality of the synthesized completion depends on
the aliasing information used during the history extraction phase.
Our synthesizer represents a powerful combination of statistical
language models with program analysis techniques.

The synthesizer takes as input a partial program with holes and
outputs a program where all of the holes are filled in with (se-
quences of) method invocations. Computing the “small program”
required for code completion, is based on the language model con-
structed from “big data”. Specifically, we employ the language
model to find the highest ranked sentences, and use them to syn-
thesize a code completion.

Our synthesizer can: (i) discover sequences of invocations
across multiple types, (ii) complete both invocations and arguments
of invocations, (iii) complete multiple holes as well as each hole
with a sequence of invocations, and (iv) infer fused completions
which do not exist in the training set.
Contributions The main contributions of this paper are:

• A new approach to code completion for programs using APIs.
Our approach reduces the problem of code completion to a
natural-language processing problem of predicting probabilities
of sentences.
• A scalable static analysis that extracts sequences of method

calls from large codebases, and indexes them into statistical lan-
guage models such as N-gram and Recurrent Neural Networks.
• A synthesis procedure that takes as input a partial program with

holes and leverages probabilities learned in the language model
to discover code completions for the holes. Our approach is able
to synthesize sequences of calls across multiple objects together
with their arguments.
• An implementation of our approach in a tool called SLANG

and an experimental evaluation on a number of real world
programming scenarios expressed with partial programs. Our
results show that SLANG is fast and effective. Virtually all
completions synthesized by SLANG typecheck, and the desired
completion appears in the top 3 results in more than 90% of the
cases.

https://github.com/

Training Phase Query Phase

Training
dataset

Sentences

Abstraction

Train LM

Statistical Language Model

Partial program
with holes

Sentences
with holes

Abstraction

Candidate
sentences

Completion

LM lookup

CombineConstraints

Figure 1. The architecture of SLANG.

2. Overview
The overall flow of SLANG is shown in Fig. 1. During the training
phase, we use program analysis to extract sequences of API calls
from the entire code base. Then, a statistical language model is
trained on this extracted data. In this work we use the N-gram
model, Recurrent Neural Networks and a combination of these
two. The result of the training phase is a probability associated
with each of the extracted sequences of method invocations. To
interact with SLANG, the programmer provides a partial program
with holes. Our program analysis extracts the sequences from this
partial program, and uses the statistical language model to compute
a set of candidate completion sequences. The final completion for
all the holes is selected based on the highest probability and on
whether the completion satisfies the constraints posed by each hole.

The effectiveness of SLANG is due to a careful combination of
statistical models with program analysis. In particular, we use a
form of alias and history analysis to extract relatively precise se-
quences of method invocations from the code base, which are then
used to train the language model. Training on sequences extracted
without performing program analysis produces poor results and
fails to produce completions (let alone desired ones) for many ex-
amples. Our combination of program analysis and language models
makes the difference between not obtaining any solution at all ver-
sus obtaining the desired solution at the top of the list.

Example To illustrate our approach, consider a representative
Android example shown in Fig. 2. The Android MediaRecorder
API is known to be quite involved. The official documentation for
this API includes a state-machine with 7 different states1, corre-
sponding to internal states of the media recorder.

Consider a programmer trying to work with the MediaRecorder
API and interested in combining this API with other APIs from
classes such as Camera and SurfaceHolder. The programmer
may have partial knowledge about MediaRecorder, for instance,
she may know that she needs to set an audio and video source as
well as the exact API calls and parameters for doing so. However,
she may still be missing some of the details.

Using SLANG, a programmer can write the partial program
of Fig. 2(a), and rely on the synthesizer to complete the missing
details. The partial program uses the statement “?” to denote a
“hole”, missing code to be completed by the synthesizer. The pro-
gram of Fig. 2(a) has four different holes, marked with comments
(H1)-(H4). Each hole is a query to the synthesizer asking it to infer
a sequence of method invocations using (some of) the variables that
are in scope. The hole can be constrained to only use certain vari-
ables by specifying a set of variable names. In this example, holes
(H1)-(H2) are not bound to specific variables, while (H3)-(H4) are
limited to only infer invocations that use the variable rec (either

1 see http://goo.gl/PZRic

void exampleMediaRecorder() throws IOException {
Camera camera = Camera.open();
camera.setDisplayOrientation(90);
? // (H1)

SurfaceHolder holder = getHolder();
holder.addCallback(this);
holder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
MediaRecorder rec = new MediaRecorder();
? // (H2)

rec.setAudioSource(MediaRecorder.AudioSource.MIC);
rec.setVideoSource(MediaRecorder.VideoSource.DEFAULT);
rec.setOutputFormat(MediaRecorder.OutputFormat.MPEG_4);
? {rec} // (H3)

rec.setOutputFile("file.mp4");
rec.setPreviewDisplay(holder.getSurface());
rec.setOrientationHint(90);
rec.prepare();
? {rec} // (H4)

}
(a)

void exampleMediaRecorder() throws IOException {
Camera camera = Camera.open();
camera.setDisplayOrientation(90);
camera.unlock();
SurfaceHolder holder = getHolder();
holder.addCallback(this);
holder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
rec = new MediaRecorder();
rec.setCamera(camera);
rec.setAudioSource(MediaRecorder.AudioSource.MIC);
rec.setVideoSource(MediaRecorder.VideoSource.DEFAULT);
rec.setOutputFormat(MediaRecorder.OutputFormat.MPEG_4);
rec.setAudioEncoder(1);
rec.setVideoEncoder(3);
rec.setOutputFile("file.mp4");
rec.setPreviewDisplay(holder.getSurface());
rec.setOrientationHint(90);
rec.prepare();
rec.start();
}

(b)

Figure 2. (a) A partial program using MediaRecorder and other
APIs, and (b) its completion as synthesized by SLANG.

passed in as an argument or as the receiver). In Section 5, we de-
scribe other forms of queries that can relay additional information
to the synthesizer. Given the partial program of Fig. 2(a), SLANG
automatically synthesizes completions for the holes using the most
likely sequences of method invocations, shown in bold in Fig. 2(b).
Key Aspects This example highlights four key aspects of SLANG:

• Completion across multiple types: the completion of (H1)
as camera.unlock() is an invocation on an object of type
Camera, the completions for (H2-H4) are invocations on an ob-
ject of type MediaRecorder. Further, the completion of (H2)
as rec.setCamera(camera) uses parameter of type Camera
in a completed invocation for MediaRecorder.
• Completion of parameters: the completion of (H3) us-

ing the two invocations rec.setAudioEncoder(1) and
rec.setVideoEncoder(3) includes not only the invocations,
but also the required parameters.
• Holes as sequences: The completion of (H3) uses a sequence

of two invocations to complete a single hole. In general, our
approach can generate a sequence of invocations to complete a
hole (up to some specified length).
• New fused completions: Our system can infer fused sequences

that did not exist before. Neither of the sequences for Camera
or MediaRecorder were in the training set, yet SLANG suc-
cessfully synthesized an invocation that involves both of these
in order to complete the hole (H2).

http://goo.gl/PZRic

3. Model
In this section, we provide basic definitions of an event and a
sequence of events (history) that we use in the rest of the paper.
In Section 3.1, we provide a simple instrumented semantics for
tracking sequences of events over objects. Because there is no a
priori bound on the number of dynamically allocated objects, and
no a priori bound on the length of a history, the concrete semantics
is generally non computable. In Section 3.2, we present an abstract
semantics that provides a bounded representation for histories, and
tracks a bounded set of bounded histories for each (abstract) object.

3.1 Concrete Semantics
We define an instrumented concrete semantics that tracks the con-
crete sequence of events for each concrete object. We refer to the
concrete sequence of events as the concrete history of the concrete
object. We start with a standard concrete semantics for an impera-
tive object-oriented language, defining a program state and evalua-
tion of an expression in a program state.
Objects and Program State Restricting attention to reference
types, the semantic domains are defined as follows:

L\ ∈ P(objects\)
v\ ∈ Val = objects\ ∪ {null}
ρ\ ∈ Env = VarIds→ Val
π\ ∈ Heap = objects\ × FieldIds→ Val
state\ = 〈L\, ρ\, π\〉 ∈ States = P(objects\)× Env× Heap

where objects\ is an unbounded set of dynamically allocated ob-
jects, VarIds is a set of local variable identifiers, and FieldIds is a
set of field identifiers. A program state tracks the setL\ of allocated
objects, an environment ρ\ mapping local variables to (reference)
values, and a heap π\ mapping fields of allocated objects to values.
Instrumented Semantics: Events and Histories In our instru-
mented semantics, each concrete object is mapped to a “concrete
history” that records the sequence of events that has occurred for
that object. That is, we employ a form of per-object cartesian ab-
straction. An event for an object o corresponds to an invocation of
an API method involving the object o: o can either be the receiver
object (this), the return value returned by the API invocation, or
one of the arguments to the method invocation.

More formally, an event is a pair 〈m(t1, . . . , tk), p〉, of a
method signature m(t1, . . . , tk), and a position argument p denot-
ing the position of the object o in the invocation of m. The position
p can be 0 denoting this, or a value denoting one of the positions
1, . . . , k. We also use a designated position value ret to denote the
case where o is a new object returned from the invocation of m. To
simplify presentation, we assume that an object appears in at most
one position of a given method invocation, and that methods are not
invoked with a null argument. Our implementation deals with the
more general case where an object can appear in multiple positions
(by replacing the position argument p to be a set of positions), and
correctly handles invocations with null arguments.

Given an API A with methods m1, . . . ,mn, we use ΣA to
denote the set of all events over the API. When the API is clear
from context, we omit the subscript A. We define the notion of
a concrete history for an API simply as a sequence of events
Σ∗. We denote the empty concrete history by ε and denote the
set of all concrete histories by H. The instrumented semantics is
obtained by augmenting every concrete state 〈L\, ρ\, π\〉 with an
additional mapping that maps each allocated object to its concrete
history, that is his\ : L\ ⇀ H. Given a state 〈L\, ρ\, π\, his\〉,
the semantics generates a new state 〈L\′, ρ\

′
, π\′, his\

′〉 when
evaluating each statement. We assume a standard interpretation for

statements updating L\, ρ\, and π\. The his\ component changes
on object allocations and method invocations:

• Object Allocation: The statement x = new T() allocates a
fresh object onew ∈ objects\ \ L\ initialized with the empty-
sequence history his\

′
(onew) = ε.

• Method Invocation: For an invocation x0.m (x1, . . . , xn) of
a method with signature m(t1, . . . , tn), the history of every
object o = ρ\(xi) (where 0 ≤ i ≤ n) is extended with an
event e = 〈m(t1, . . . , tn), i〉, that is: his\

′
(o) = his\(o) · e,

adding an event to the history to reflect the invocation of m. If
the invocation of m returns an object r, its history his\(r) is
extended with 〈m(t1, . . . , tn), ret〉.

3.2 Abstract Semantics
The instrumented concrete semantics is generally non-computable
as there are no a priori bounds on the number of dynamically
allocated objects, or on the length of histories. We now present an
abstract semantics that provides a bounded representation.
Heap Abstraction We use a flow-insensitive Steensgaard style [33]
points-to analysis to partition the objects\ set into a bounded set of
abstract objects called objects.
History Abstraction Our goal is to extract a set of sentences that
can be given as input to language models (see Section 4). Towards
that end, we bound the number of loop iterations in our analysis to
guarantee that collected histories are of bounded length. We define
the notion of an abstract history as a set of concrete histories of
bounded length, namely an abstract history h ⊆ H. That is, while a
concrete history describes a unique sequence of events, an abstract
history represents potentially many concrete histories capturing the
different control flows through the program.
Abstract State The tuple 〈L, ρ, π, his〉 denotes an instrumented
abstract program state consisting of the set of allocated abstract
objects, the local variables which point to abstract objects, the
abstract heap and the abstract history for each abstract object. The
definition of the first three components is computed in a standard
way. We next discuss the definition of his which is now lifted to
abstract objects and abstract histories as follows: his : L ⇀ P(H).
Abstract Semantics of his The abstract semantics for updating
his follow the structure of the concrete semantics except that it is
lifted to deal with abstract objects, and abstract histories.

• Object Allocation: The statement x = new T() results in an
abstract object anew ∈ objects with a set containing a new
empty history: his(anew) ∪ = {ε}.
• Method Invocation: For an invocation x0.m (x1, . . . , xn) of a

method with signature m(t1, . . . , tn), the abstract history of
every abstract object o = ρ(xi) (0 ≤ i ≤ n) is extended with
e = 〈m(t1, . . . , tn), i〉, that is, his′(o) = {h · e | h ∈ his(o)},
adding an event to each concrete history of the abstract history.
If the invocation returns an object r, the abstract history his(r)
is extended with 〈m(t1, . . . , tn), ret〉.

Joins Whenever a join of the control-flow occurs, the new history
for each abstract object is computed by combining the histories for
that abstract object arriving from each of the branches (by applying
union to the corresponding sets). As long as the domain of abstract
histories is bounded, the analysis is guaranteed to terminate. How-
ever, in practice, it can suffer from an exponential blowup due to
branching control flow. To mitigate potential exponential blowup,
we limit the number of collected histories by some threshold. Once
that threshold has been met, we randomly evict older histories to
make room for new ones. In our experiments, we used the thresh-
old 16 which was sufficient for 99.5% of the analyzed methods.

4. Statistical Language Models
Statistical language models have been used to model the regulari-
ties in natural languages and improve the performance of problems
such as speech recognition, statistical machine translation, optical
character recognition, and others [28]. In this work, we use reg-
ularities found in sequences of method invocations to predict and
synthesize a likely method invocation sequence in the context of
code completion. In this section, we first define the necessary sta-
tistical language modeling background, and then show how these
can be leveraged for synthesis of code completions.

Statistical language models are based on the concepts of words
and sentences, where each sentence is an ordered sequence of
words. Every word w is taken from a setD also called a dictionary.
A language is informally defined as all sentences that are used
in some particular domain. The goal of a language model is to
build a probabilistic distribution over all possible sentences in a
language. This is, given a sentence s, the language model estimates
its probability Pr(s). For a sentence s = w1 · w2 · ... · wm, many
language modeling approaches estimate its probability as follows:

Pr(s) =

m∏
i=1

Pr(wi | hi−1)

where we refer to the sequence hi = w1 · w2 · ... · wi as a
history. That is, the probability of a sentence can be calculated
by generating it word by word using conditional probabilities on
the already generated words. Furthermore, language models are
usually constructed on a finite amount of training data that is used
to estimate the actual probabilities of sentences. Because not all
possible sentences in the language or their prefixes will be in the
training data (also referred to as the problem of sparse data [28]),
the model uses other statistical techniques to estimate probabilities.

4.1 N-gram language models
In order to deal with the sparseness of the data, an N-gram data
model estimates the probability of a sentence by modeling a lan-
guage as a Markov source of order n− 1:

Pr(s) =

m∏
i=1

Pr(wi | wi−n+1 · ... · wi−1)

That is, the probability of the next word wi depends only on
the previous n − 1 words. In our work we use the trigram lan-
guage model where the probability of a word depends on a pair of
previous words. That is, for the trigram language model, we have
Pr(s) =

∏m
i=1 Pr(wi | wi−2 · wi−1). Such probabilities are es-

timated by counting the number of occurrences of trigrams and bi-
grams in the training data.

Smoothing Even for small n, these models can still suffer from
the problem of data sparseness. For example, some n-grams may
only occur once or not at all in the training data and yet their prob-
abilities must be estimated. To mitigate this problem, practical n-
gram language models use counts for n-grams, (n− 1)-grams and
for all lengths down to unigrams. Further, they smooth the prob-
ability by using models of lower length [20, 21] when sparseness
problems in estimating sentence probabilities occur. In our work,
we use Witten-Bell smoothing [40], which is applicable even when
we remove rare words from the training data.

4.2 Recurrent Neural Networks (RNNs)
In recent years, the increased availability of computational re-
sources for training led to wider adoption of neural networks for
predicting probabilities of sentences [22]. These approaches are
conceptually interesting in the fact that they do not capture only
regularities between a word and a fixed number of predecessor

wi

input: vi

context: ci−1

context: ci

ci - hidden layer

output: yi

yiwi+1
= Pr(wi+1 | hi)

Figure 3. A scheme of a recurrent neural network (RNN). The
input is a word vector for the i-th word in a sentence, the output
is probabilities for different possible words at position i+ 1.

words, but may also capture longer distance relations between
words. Initially proposed by Elman [13], recurrent neural networks
(RNNs) predict probabilities of the (i+1)-st word according to the
scheme in Fig. 3.

In the schema, vi and yi are vectors of |D| real numbers, where
D is the dictionary such that every possible word x ∈ D has a
corresponding index in vi and yi (referred as vix and yix). Let ci

(for every i) be a vector of p real numbers. The number p is also
called the size of the hidden layer and the entire network is referred
to as RNN-p. RNN uses two functions f and g and estimates
word probabilities iteratively on a sentence s = w1 · ... · wm by
performing the following actions for every word wi ∈ s : i) set all
positions of vi to zeros, except position viwi

to one. ii) Compute
ci = f(vi, ci−1) and yi = g(ci). Then the vector yi is used as an
estimator of the probabilities for the next word wi+1:

Pr(wi+1 | w1 · ... · wi) ≈ yiwi+1

During training, the functions f and g are learned from data
to minimize the error rate of the estimates yi (details are in [22]).
What is essential for RNNs however is that they can capture long
distance regularities in the language via the hidden layer ci. The
values in ci act as an internal state of an automaton and at every
step i, the previous internal state ci−1 is used for computing ci.

In SLANG, we use RNNME-p – a faster variant of RNN with
a hidden layer size of p that combines RNN-p with a class-based
maximum entropy model [24].
Combination models Due to the different natures of the models
based on n-grams and RNNs, it is possible that averaging the prob-
ability of two models performs better than each model individually.
Indeed, in our experiments in Section 7, our combined language
model between a 3-gram and a RNNME-40 language model ranks
the correct completion as a first result in more cases that the two
base models individually.

4.3 Sentence Completion with Language Models
In addition to computing probabilities for single sentences, we can
leverage a language model to complete missing holes in a sentence
(with the most likely completions). As a simple example, consider
the following natural language sentence with a missing word:

The quick brown ? jumped

If the word ? is replaced with an actual natural language word
from the dictionary of wordsD, a statistical language model is use-
ful as a scoring function of the most probable completion. However,
certain language models are also useful to suggest very likely com-
pletions of the holes. For example, a bigram model keeps all pairs
of sequential words that are present in the training data. In our ex-
ample, these could be the pairs 〈brown, fox〉, 〈brown, dog〉, etc.
Then, if the word preceding the hole is a (e.g., a = brown), we can

suggest filling the hole only with words x, such that 〈a, x〉 are bi-
grams in the training data. This procedure significantly reduces the
set of words that are candidate completions of the sentence holes
by producing candidates which a language model may score high.

In this work, we use such a bigram model to generate candidate
sentences and later use another language model such as N-gram
and RNN to assign probabilities to these sentences.

4.4 Training on Program Data
In this work we propose an approach which connects statistical lan-
guage models with features extracted via program analysis. In par-
ticular, in Section 3, we presented a history abstraction that maps
every (abstract) object to a set of histories (i.e., sentences). These
sentences can be automatically extracted via program analysis and
then fed to a statical language model which can train on this data.

Our abstraction nicely matches the two worlds of program anal-
ysis and language models: an event in the semantics corresponds
to a language word and a history sequence h ∈ H corresponds to
a language sentence. To train a language model on a large set of
programs, we: (i) use program analysis to extract the abstract ob-
jects and their corresponding (history) sequences; and (ii) discard
the abstract objects, treat the extracted histories as sentences in the
language, and train a statistical language model over this data.

5. Synthesis
So far we discussed the training phase of our system. We next dis-
cuss how code completion works. The synthesizer takes as input
a partial program (augmented with holes) and outputs a program
where the holes are filled with (sequences of) method invocations.
To enable programmers to use our approach and specify partial pro-
grams, we introduce the following construct for specifying holes:

? lvars:l:u

where lvars ∈ P(V arIds) is a set of (reference) local variables
and l and u are natural numbers which constrain the length of the
sequence from below and from above. All of these are optional pa-
rameters which are provided as a convenience to the programmer
in case she would like to constrain the possible completions. In-
formally, this construct directs the synthesizer to search for a valid
replacement of ? lvars:l:u with a sequence of method invoca-
tions where lvars participates in each invocation and where the
length of the sequence is between l and u. For example, the hole
? directs the synthesizer to look for the most likely sequence of
method invocations of any length. A more restrictive hole would
be ?{x} which instructs the synthesizer to find sequences where
variable x participates in the method invocation: either a method
on x was invoked or x is passed in as an argument to some other
method. That is, in the sequence, for each of the method invoca-
tions, the variable x should participate in some form. The meaning
of a query such as ?{x,y}:1:1 is that the suggested sequence must
consist of exactly 1 method invocation where both x and y partici-
pate in that invocation.

Code Completion: Step-by-Step We now present the procedure
which takes as input a partial program that may contain multiple
holes and infers the most likely completions for the holes. To avoid
clutter, we describe the case where all of the holes require l and u
to be equal to 1, that is, all holes have the shape: ?lvars:1:1. This
means that every hole has to be replaced with exactly one method
invocation (there could be multiple variables constraining the hole).
We can translate holes of the more general shape ?lvars:l:u to
u − l + 1 separate queries: for every i ∈ [l, u], perform a query
with i sequentially placed holes where each hole has the shape
?lvars:1:1.

SmsManager smsMgr = SmsManager.getDefault();
int length = message.length();
if (length > MAX_SMS_MESSAGE_LENGTH) {
ArrayList<String> msgList =

smsMgr.divideMsg(message);
? {smsMgr, msgList} // (H1)

} else {
? {smsMgr, message} // (H2)

}
(a)

SmsManager smsMgr = SmsManager.getDefault();
int length = message.length();
if (length > MAX_SMS_MESSAGE_LENGTH) {
ArrayList<String> msgList =

smsMgr.divideMsg(message);
smsMgr.sendMultipartTextMessage(...msgList...);

} else {
smsMgr.sendTextMessage(...message...);

}
(b)

Figure 4. (a) A partial program built from an example on Stack-
Overflow [3], and (b) its completion as automatically synthesized
by SLANG (the full list of parameters is omitted for clarity).

Before we explain the steps of our algorithm, let us introduce
some necessary notation. Recall that a concrete history is a se-
quence of events where each event (see Section 3.1) represents a
method invocation. However, with partial programs, we now have
hole statements which are to be replaced with sequences of events.
Therefore, we define a set of histories with holes H◦ = (Σ ∪G)∗

where G represents all possible holes.
Next, we explain our algorithm and illustrate each step on the

example in Fig. 4. Here, we have a partial program Fig. 4(a), for
which SLANG must synthesize the completion in Fig. 4(b). That
is, the tool must infer that if the message was divided into parts,
the most likely method to call is sendMultipartTextMessage, while
otherwise it is sendTextMessage. The first and the second hole are
assigned unique identifiers H1 and H2 respectively.
Step 1: Extract abstract histories with holes Given a partial pro-
gram, for each abstract object, we automatically extract its abstract
histories with holes (as described in Section 3.2, except that we now
also have holes appearing in abstract histories). The output of this
step is a function hispt : L ⇀ P(H◦). For our running example,
the output of this step will be a map hispt defined as follows:

smsMgr 7→ {〈getDefault, ret〉 · 〈H2〉 ,
〈getDefault, ret〉 · 〈divideMsg, 0〉 · 〈H1〉}

message 7→ {〈length, 0〉 , 〈length, 0〉 · 〈H2〉}

msgList 7→ {〈divideMsg, ret〉 · 〈H1〉}

Step 2: Compute candidate completions We next compute
the set of candidate completions for all of the abstract histories
obtained from Step 1. For our example, this set of partial his-
tories is shown in the first column of Fig. 5. To aid the subse-
quent completion, we slightly overload the notation for holes and
to each hole, we also add the abstract object for which the par-
tial abstract history was built. For instance, if SLANG suggests
〈sendTextMessage, 0〉 for replacing 〈H2, smsMgr〉, then smsMgr
will be placed at position 0, essentially denoting the invocation
smsMgr.sendTextMessage(...).

For each partial abstract history, we compute a sorted list of
possible histories without holes. The way we do that is via a two-
step approach. In the first step, we use the bigram model in order
to suggest candidate completions to the holes and obtain histories
without holes (as discussed in Section 4.3). Then, in the second

Partial History Id Candidate Completions Pr

〈getDefault, ret〉 · 〈H2,smsMgr〉 11 〈getDefault, ret〉 · 〈sendTextMessage, 0〉 0.0073
12 〈getDefault, ret〉 · 〈sendMultipartTextMessage, 0〉 0.0010

〈getDefault, ret〉 · 〈divideMsg, 0〉 · 〈H1,smsMgr〉 21 〈getDefault, ret〉 · 〈divideMsg, 0〉 · 〈sendMultipartTextMessage, 0〉 0.0033
22 〈getDefault, ret〉 · 〈divideMsg, 0〉 · 〈sendTextMessage, 0〉 0.0016

〈length, 0〉 · 〈H2,message〉
31 〈length, 0〉 · 〈length, 0〉 0.0132
32 〈length, 0〉 · 〈split, 0〉 0.0080
33 〈length, 0〉 · 〈sendTextMessage, 3〉 0.0017
34 〈length, 0〉 · 〈sendMultipartTextMessage, 1〉 0.0001

〈divideMsg, ret〉 · 〈H1,msgList〉 41 〈divideMsg, ret〉 · 〈sendMultipartTextMessage, 3〉 0.0821

Figure 5. The partial sequences extracted from the program in Fig. 4 and their candidate completions (with probabilities).

step, we use an N-gram language model or an RNN model to rank
these completed candidate histories.

Finally, we end up with a map candidates : H◦ ⇀ H∗ where
for a partial abstract history, the list candidates(h) is sorted by the
probability of the sequence (history without holes). That is, more
likely sequences appear ahead of less likely sequences. For our
example, the candidate completions together with the probability
of each sequence are shown in the last two columns of Fig. 5.
Step 3: Compute an Optimum and Consistent Solution Finally,
in this step we compute the map completion : H◦ ⇀ H. That is,
for each partial abstract history h ∈ H◦, we need to select a history
from candidates(h) which completes h. However, even though
the list candidates(h) is sorted by probability, we may not always
pick the first sequence in that list. The reason we cannot always
pick the first sequence is because we need to make a global deci-
sion for all suggested completions, rather than a local per-history
choice. In our algorithm, we iterate over the map candidates (over
the sorted lists in candidates), following the sorted priority order
and build a map completion for each abstract history. In particular,
the completion which we return satisfies two criteria:

• Global optimality: Let T = hispt(L) denote all partial abstract
histories. Then, the returned completion should maximize the
score: ∑

h∈T (Pr(completion(h)))

|T |
• Consistency: A proposed completion should also be consis-

tent: we make sure that the completion satisfies certain con-
straints imposed by the programming language and by the con-
straints of the hole. First, if a hole appears multiple times (e.g.,
due to loop unrolling), then we make sure that the hole is al-
ways filled in with the same completion in every history of
completion’s range (to yield a syntactically valid program).
Second, if we have a hole of type ?{x,y,...}:1:1 which in-
volves more than one variable (which do not alias), we make
sure that the variables x, y,..., appear as parameters at different
positions in the corresponding suggestion.

Since our completion algorithm starts with the highest scoring
completion and exhaustively generates candidates in reverse score
order until a consistent completion is obtained, our procedure is
guaranteed to always find the best scoring completion. Finally,
given a completion, we extract the methods found for each hole
and suggest those to the developer.

Completions for our example Back to our example, if we choose
the completions 11, 21, 31, and 41 in Fig. 5, we get the high-
est probability according to the Global optimality equation above.
However the combination of these sentences is inconsistent be-
cause completion 11 suggests that we fill the hole H2 with method
sendTextMessage while 31 suggests that we use sendTextMessage.
This is clearly impossible when the hole is of size one. Thus, we

continue to generate candidate completions in the order of their
probabilities until we find the first consistent completion – using
sentences 11, 21, 33, and 41. According to this choice of sentences,
H1 is filled with sendMultiPartTextMessage, and H2 is filled with
sendTextMessage. This is the completion returned to the developer,
also shown in Fig. 4 (b).

6. Implementation
We implemented SLANG as a series of utilities that train statistical
language models on massive codebases and perform completions
on partial programs with holes. SLANG is implemented in Java and
C++ and depends on a Java compiler for compiling the code, the
Soot [36] framework for obtaining an intermediate representation
(we work with Jimple) useful for program analysis, SRILM [34] for
n-gram language models, and RNNLM [34] for recurrent neural
networks. We have designed SLANG to be scalable and efficient:
it can handle most queries in few seconds. Next, we discuss the
implementation of the different components of SLANG.

6.1 Program Analysis: Heap and Sequences
We aimed at a simple, fast and scalable program analysis that can
quickly process massive amounts of data. To abstract the heap, we
implemented an intra-procedural Steensgaard-style alias analysis
[33] due to its near linear time complexity and the fact that it can
process classes and methods independently. At the start of every
method, we assume that all reference arguments in the method
do not alias. Generally, an assumption of this (or similar) kind is
required, because at both training time and query time we do not
have the entire context in which the method will execute. Further,
for our problem of suggesting code completions, we are not limited
to only consider over-approximations.

In our implementation of the history abstraction, we bound the
number of loop iterations L in order to avoid exponential blowup
in space and time (in the number of generated sequences). Further,
we do not consider extracted sequences with more than K words
(invocations) per abstract object. We can easily vary both L andK,
though in our experiments we set those to 2 and 16 respectively.

6.2 Language Models: preprocessing
Once the sentences (histories) from the training data are obtained
via the program analysis, we index them into a language model.
As with natural languages, sentences include some commonly oc-
curring words, but there is a heavy long tail of very rare words.
However, the rarely occurring words are of little value for our code
completion problem. The reason is that these words are likely to
represent events that are specific to only a few projects in our in-
dex. Thus, we have added a preprocessing step that replaces words
that occur less than a certain number of times in the training corpus
with placeholder unknown words. This replacement has no observ-
able effect on the availability of results other than for very rare API

calls. However, it enables us to obtain compact n-gram language
models and a small dictionary is essential for RNNs [10].

Once the preprocessing step is complete, SLANG invokes a lan-
guage modeling system in order to generate an N-gram language
model or an RNN-model of the training data and in addition also
builds a bigram model of the training data in order to create candi-
date completions as described in Section 4.3. These two steps are
independent and can be performed in any order.

6.3 Query Processing
To perform a query in SLANG, the user provides a partial program
with holes which are to be filled-in by the tool. Given a query,
SLANG discovers a mapping from holes to (sequences of) method
invocations. The completions include method names, as well as
non-constant parameters given to the method call. That is, SLANG
can infer both method invocations as well as the reference argu-
ments passed to the invocation. To also infer constants, we train a
simple, but effective model that given a method call and a parame-
ter position, returns the most likely constant to pass as a parameter.
Constant model We estimate the probability of a constant value
as a parameter of a method m by counting the number of times
each constant was given as a parameter to m in the training data
and dividing it by the total number of calls to m in the training
data. This simple model assumes that the constant values are in-
dependent of the context of the method or other parameters, yet
the approach is fast, feasible and enables our completion to include
complete method invocations.

7. Evaluation
In this section we discuss an experimental evaluation of SLANG.
Our main objective was to study how effective the combination
of a statistical language model with a history abstraction is for
code completion purposes. Towards that, we collected 3, 090, 194
Android methods and used them as training data. We obtained
Android source code from various source repositories, and then
compiled these sources using a specially modified version of the
partial compiler [12], extended to handle more cases.

7.1 Training Parameters
To evaluate the effect of various parameters on the quality of code
completion, we experimented with three knobs: the size of the
data set, the precision of the program analysis abstraction, and the
different choices for the language models.

For the size of the training data set, we considered three choices.
The first data set includes the entire codebase we have collected.
The second (smaller) data set contains 10% of the files of the
codebase. The third (smallest) data set contains 1% of the files.
For the program analysis abstraction, we experimented with both
options: enabling or disabling the alias analysis. Finally, we ex-
perimented with the following options for training the statistical
language model: (i) A 3-gram language model with Witten-Bell
smoothing, (ii) A RNNME-40 recurrent neural network language
model, (iii) A combination of the previous two language models.

7.2 Training phase
We ran our experiments on a standard desktop workstation with
a 3.5GHz Core i7 2600K processor, 16GB RAM, a solid state
drive storage, and running 64-bit Ubuntu 12.04 with OpenJDK 1.7.
Our system takes the Jimple input data and produces a language
model as an output. Our system can parallelize some steps of the
computation by performing the analysis on multiple cores, however
we report runtimes only using a single thread.

Running times of our training phase are summarized in Table 1.
First, we provide the time to extract the abstract histories (i.e.,

Phase Running time on dataset
1% 10% all data

training without alias analysis
Sequence extraction 4.682s 54.187s 9m 3s
3-gram language model construction 0.352s 2.366s 10.187s
RNNME-40 model construction 5m 46s 0h 53m 5h 31m
training with alias analysis
Sequence extraction 3.556s 34.846s 5m 34s
3-gram language model construction 0.442s 3.239s 13.510s
RNNME-40 model construction 8m 42s 2h 16m 9h 34m

Table 1. Training phase running times.

Data statistics Dataset
1% 10% all data

training without alias analysis
Sequences (file size as text) 7.2MiB 46.5MiB 597.4MB
Number of generated sentences 74979 759434 6989349
Number of generated words 188668 1864402 16430269
Average words per sentence 2.5163 2.4549 2.3508
3-gram language model file size 11.1MiB 50.9MiB 72.2MiB
RNNME-40 language model file size 19.3MiB 41.8MiB 29.7MiB
training with alias analysis
Sequences (file size as text) 9.3MiB 89.1MiB 761MiB
Number of generated sentences 81477 805578 7435307
Number of generated words 241004 2358302 20751368
Average words per sentence 2.9579 2.9275 2.7909
3-gram language model file size 14.6MiB 69.6MiB 108.1MiB
RNNME-40 language model file size 22.2MiB 51.1MiB 36.0MiB

Table 2. Data size statistics.

sequences) from the training data. Next, we provide running times
for constructing each of the corresponding language models. We
provide two pairs of numbers - without heap abstraction (assuming
that no two pointers alias), and with a Steensgaard style alias
analysis. In all cases, the training phase processes more than 5000
methods per second on average and the main slowdown occurs
when we train the neural network. In our experiments, performing
the alias analysis did not significantly affect the training time.

Table 2 provides statistics for the precomputation phase. As
seen, by using alias analysis, the data size of the produced sentences
increases by around 20%, and average sentence length increases
by around 0.45 words. Importantly, the alias analysis enables ex-
traction of more precise histories. All of this reduces noise in the
training data and helps the language model learn longer and more
precise event sequences from the training data.

In terms of language models, the RNNME-40 language model
is significantly slower to train than the 3-gram model (the reason is
that the time complexity per processed word in 3-gram is constant,
while in RNN, it is linear to the size of the dictionary), but on the
other hand the RNN index with all the data is smaller in size.

7.3 Code Completion
We designed three different kinds of code completion tasks for
evaluating our system:

1. Single object single-method completion: this task is character-
ized by a single hole of type ?{x}:1:1 placed at the end of
a method, meaning that given a local reference variable x, the
task of the synthesizer is to discover exactly one method invo-
cation which uses x. That is, the tool predicts the next method
call to be performed involving x.

2. General completion: this task is characterized by multiple holes
and includes examples like Fig. 2 and Fig. 4.

3. Random completion: this task completes methods from large
programs where one or more holes were introduced at random.

Column (1) (2) (3) (4) (5) (6) (7) (8) (9)
Analysis No alias analysis With alias analysis With alias analysis
Language model type 3-gram 3-gram RNNME-40 RNNME-40 + 3-gram
Training dataset 1% 10% all data 1% 10% all data all data all data
Task 1 (20 examples)
Desired completion in top 16 11 16 18 12 18 20 20 20
Desired completion in top 3 10 12 16 11 15 18 18 18
Desired completion at position 1 7 8 12 7 10 15 14 15
Task 2 (14 examples)
Desired completion in top 16 3 5 7 10 10 13 13 13
Desired completion in top 3 3 4 6 8 8 13 12 13
Desired completion at position 1 3 3 5 6 6 11 11 12
Task 3 (50 random examples)
Desired completion in top 16 13 27 36 21 43 48 48 48
Desired completion in top 3 13 23 32 18 34 44 40 45
Desired completion at position 1 13 16 25 14 25 31 27 31

Table 4. Accuracy of SLANG on the test datasets depending on the amount of training data, the analysis and the language model.

Id Description Source
1 Registering a event listener to read the accelerometer [3]
2 Add an account [3]
3 Take a picture with the camera [3]
4 Disable the lock screen [3]
5 Get Battery Level [3]
6 Get free memory card space [3]
7 Get the name of the currently running task [3]
8 Get the ringer volume [3]
9 Get the SSID of the current WiFi network [3]
10 Read GPS location [3]
11 Record a video using MediaRecorder [3]
12 Create a notification [3]
13 Set display brightness [4]
14 Change the current wallpaper [1]
15 Display the onscreen keyboard [3]
16 Register an SMS receiver [3]
17 Send SMS [3]
18 Load a sound resource to play in SoundPool [6]
19 Display a web page in a WebView control [2]
20 Toggle WiFi enabled/disabled [5]

Table 3. Description on the examples from task 1 on which we
perform prediction.

The first task is similar to functionality provided by many IDEs
where when dot is pressed, the IDE displays a complete list of all
methods associated with the object on the left of the dot. In our
case however, we only display a partial list of methods for which
we have confidence given the training data.
Evaluation data To evaluate task 1, we came up with 20 tasks
that a programmer may want to accomplish. Solving these tasks
requires usage of various Android API’s. We then inspected some
of the popular solutions available on the Web, typically provided in
the form of a code snippet. We summarized this set of examples in
Table 3. To evaluate task 2, we selected 14 code snippets from task
1 where we believed it makes sense to extend the snippet to contain
more than one hole and with more complex constraints. For both
tasks, we introduced holes in the code snippets accordingly. We
made sure to not include the evaluation data into the training data
in order to avoid statistical problems such as overfitting.

For task 3, we took code from open source projects and ran-
domly introduced holes in 50 methods with objects interacting with
multiple Android APIs. For 23 of the random tests, multiple holes
need to be completed. We ensured that the projects we evaluate on
were not included in the training data.
Experiments We studied how the different knobs in our system
affect the quality of code completion. We considered three accuracy

metrics, based on the number of examples for which the: (i) desired
method invocation is found in the list of results (we limit the size of
the list to 16), (ii) desired method invocation was found in the top
3 results, and (iii) desired method invocation was ranked first in the
suggested candidates list.

We evaluated a number of parameter choices and summarized
the results in Table 4. Columns 2-7 contain the effect of the abstrac-
tion and the training data size. The system trained on the complete
dataset with alias analysis is able to predict all examples in our first
task, and the correct completion is in the first 3 results for 90% of
the examples. Without alias analysis and with decrease of the train-
ing data, the accuracy significantly decreases and we can roughly
quantify that using a better program analysis component has the
same effect as adding an order of magnitude more data.

For our second task, one example could not be solved even by
our best system, because SLANG was unable to collect sufficient
information for the Notification.Builder class during training.
The reason for this is that developers may use the class via a
chain of calls builder.setSmallIcon(_).setAutoCancel(_) that
make it difficult for an intra-procedural analysis to discover calls
on the same object. We believe that adding a more advanced (inter-
procedural) analysis could lead to further improvements of SLANG.

Two tests from the random tests task could not be solved by
our best system. We believe one of them is due to a limitation of
the partial compiler that prevented us to collect data for a class at
training time, while the other is a completion that scores below the
top 16 results.
Language model types Columns 7, 8 and 9 of Table 4 summarize
the effect of the language models (we compare the models with the
full data size and with alias analysis). As discussed in Section 4, n-
gram and RNN differ significantly in the way they express histories
of sequences. While n-gram discover regularities between the last
n− 1 method calls, RNN is capable of discovering longer distance
relations.

In our experiments, the two models differ in how they ranked
the completions for some tests: while RNNME-40 was better in
examples with long distance relations similar to the one in Fig. 2,
it occasionally misses some short distance relations. On the other
hand, the 3-gram language model consistently found all short dis-
tance relations. Both, RNNME-40 and the 3-gram model, were out-
performed by a combined model that averages their probabilities.
Type checking accuracy To evaluate how many completions
typechecked, we took our best combined system and manually
inspected all of the 1032 possible completions that SLANG returned
(for all of our examples). In this experiment, we found only 5

completions which did not typecheck and they were always among
the worst ranked completions for the examples. We believe one of
the reasons for such outlier completions to appear in the results is
imprecision of the alias analysis at training time, which leads to
impossible sequences in the model. To guarantee no type errors,
we plan to implement a typechecker on the results of SLANG that
discards the bad solutions.
Constant model Our constant model worked reasonably well. Out
of the 41 constants that needed to be inferred in the first two tasks,
25 were produced by SLANG as the first result and 3 as the second
result. However, we believe that prediction of certain constants can
be difficult: e.g., guessing URLs, passwords, etc.
Performance Our query time performance was dominated by
the time necessary to load the language model files. For our best
system which combines the two language models, we observed
average time per example of 2.78 seconds. To allow for interactive
completions within an IDE, we plan to load language models only
once at startup.
Summary We have shown that SLANG is effective in completing
partial programs with holes. Our experiments show that using alias
analysis is important and has the effect of an order of magnitude
more training data. Combining language models has positive effect
on the ranking of the completions in our tests and with our best
system, we return the correct completion as a first result in 58 out
of 84 test cases.

8. Related work
The work of Hindle et al. [17] outlines a vision which suggests
that techniques from natural language processing (e.g., n-gram lan-
guage model) may be useful in various programming tasks such
as code completion, code search, property computation, etc. We
wholeheartedly agree with the authors that this is a direction worth
studying in depth. Their paper also presents a simple code comple-
tion scheme built on top of Eclipse which uses an n-gram language
model to predict the next tokens, and compares the advantages and
disadvantages of this scheme versus the traditional code comple-
tion already provided by Eclipse.

Our work investigates the potential of these high-level ideas in
greater depth. We study the effectiveness of several language mod-
els (i.e., n-gram and recurrent neural networks) in the context of a
specific application: predicting the sequence of API calls. Further,
we show that language models alone are sub-optimal for consis-
tently producing quality sequences of completions and show how to
combine these ideas with classic programming languages concepts
such as alias analysis. This combination significantly improves the
quality of the result. We believe that such combinations of statis-
tical methods with programming language techniques hold a great
promise and are worth further exploration.
Code completion and Synthesis The last few years have seen a
renewed interest in various synthesis techniques which promise to
simplify various software development tasks. Many of these tech-
niques deal with some form of program “completion”, typically by
combining a predefined set of building blocks (e.g., expressions
of some kind). For a broader survey in recent program synthe-
sis techniques, see Gulwani [14]. Below, we briefly discuss the
approaches that deal with completion of general user-level code.
Prospector [23] is an approach which automatically discovers a se-
quence of API calls that transform an object of a given input type
into an object of a given output type. PARSEWeb [35] also sug-
gests a sequence of API calls but this time the search for the se-
quence is guided by the source code available on the Web, thus
helping to eliminate many otherwise undesirable sequences. More
recent work [15, 16, 26] focuses on code completion by (stati-

cally) synthesizing expressions of a given type at a particular pro-
gram point (these works examine the program context around that
point). To find the most likely expressions desired by the program-
mer, these approaches also rely on ranking algorithms to handle the
large numbers of potential candidates. As opposed to these (static)
approaches, MatchMaker [42] synthesizes code based on observed
API usage in dynamic executions of real-world programs.
Code Search and Specification Mining There has been a lot of
work on dynamic specification mining (e.g., [8, 11, 41]), most of it
for extracting various forms of temporal specifications. As always
with dynamic analyses, the barrier to wide application of these ap-
proaches is the ability to execute code samples, and to obtain work-
loads that provide reasonable coverage. However, when they are
applicable, our approach can benefit from such dynamic methods
as an additional source of sentences provided to the learning phase.

MAPO [43] uses static analysis to extract common API usage
patterns. MAPO employs a simple static analysis followed by an
algorithm for finding common sequences, which are later used for
recommending code snippets to users. In contrast, our goal is to
synthesize code completions, and we do so directly based on prob-
ability of sequences. The Strathcona [18] code recommendation
system matches the structure of the code under development to the
code in the examples. The query in this case is implicit and consists
of the prefix of the currently written code. The search is performed
over a sample repository (e.g., the existing project). Temporal infor-
mation such as the order of method invocations is not considered.

Recently, [25] presented a typestate-based code search tech-
nique that is able to perform limited code completion. Their ap-
proach is based on an inherently expensive and limited abstract rep-
resentation of automata. For instance, on 1% of the training data,
it took [25] about 3 hours to complete (our system takes 5 seconds
with a 3-gram model and 9 minutes with RNN). Further, SLANG
can complete parameters of method calls whereas [25] can only
produce completions of method names. Upon manual inspection of
the resulting automata mined by [25], 10 of the 20 examples in our
set 1 were not even accepted by their automata, let alone ranked.

Technically, a key shortcoming of these clustering approaches
is their limited ability to generalize to sequences that did not exist
in the training data.
Synthesis with Partial Programs The concept of a partial pro-
gram has proven effective in various synthesis contexts. Partial pro-
grams allow users to naturally express the parts about the program
that they know, while leaving parts they are not sure about, empty.
The synthesizer then automatically figures out how to complete the
holes in a way that some property of the resulting program holds.
Examples where partial programs are used heavily include the
sketching approach [30] to program synthesis. In this line of work,
the partial program is referred to as a “sketch”, where typically, the
programmer specifies a space of possible expressions which can be
used to fill in the holes. The synthesizer then searches for comple-
tions that satisfy a given property. Partial programs, or templates,
have also been effectively used for synthesis of various problems
including classic sequential algorithms [32], bit-ciphers [31], and
concurrent algorithms [37].

In our work, we also leverage partial programs as we believe
they are an effective mechanism for capturing programmer’s in-
tent. However, fundamentally, unlike all of these works, we learn
the candidate completions of a hole in the partial program by exam-
ining and leveraging the vast amount of data available on the Web
(in our case, in the form of API usage). In the future, we believe that
it will be fruitful to combine these two approaches: for instance, by
leveraging the power of SMT solvers to infer fine-grained numer-
ical expressions with our approach which can predict likely API
completions and their parameters.

9. Conclusion
In this paper we presented a new approach to code completion
based on a novel combination of program analysis with statistical
language models, and implemented that approach in a tool called
SLANG. Given a massive codebase, using program analysis, SLANG
first extracts abstract histories from the data. Then, these histories
are fed to a language model such as an n-gram model or recurrent
neural network model, which treats the histories as sentences in a
natural language and learns probabilities for each sentence.

The way a developer interacts with our system is via partial pro-
grams with holes. The developer produces a partial program leav-
ing unknowns which are to be completed by the synthesizer. The
synthesizer then completes the holes with suggested sequences of
method invocations computed based on the probabilities of the lan-
guage model. Our system can synthesize complete method invoca-
tion sequences, including the arguments for each invocation.

Our experimental results indicate that the approach is fast and
effective: on a set of real-world programming scenarios expressed
with partial programs, virtually all of the completions suggested by
SLANG typecheck and in 90% of the cases the desired completion
appears in the top 3 candidates.

Acknowledgements
We thank the anonymous reviewers for their helpful suggestions
which made the paper better. We also thank Codota for providing
the code snippets on which we trained the statistical models. Fi-
nally, we thank David F. Bacon for suggesting the idea of code
completion in the statistical context.

References
[1] Android-er. http://android-er.blogspot.ch/2011/03/set-wallpaper-

using-wallpapermanager.html.

[2] Android how-to’s. https://sites.google.com/site/androidhowto/how-to-
1/display-a-web-page.

[3] Stack overflow. http://www.stackoverflow.com/.

[4] Tutorial for android. http://www.tutorialforandroid.com/2009/01/changing-
screen-brightness.html.

[5] Tutorial for android. http://www.tutorialforandroid.com/2009/10/turn-
off-turn-on-wifi-in-android-using.html.

[6] Vogella tutorials. http://www.vogella.com/articles/AndroidMedia/article.html.

[7] ALNUSAIR, A., ZHAO, T., AND BODDEN, E. Effective API naviga-
tion and reuse. In IRI (aug. 2010), pp. 7 –12.

[8] AMMONS, G., BODÍK, R., AND LARUS, J. R. Mining specifications.
In POPL ’02 (2002).

[9] BECKMAN, N., KIM, D., AND ALDRICH, J. An empirical study of
object protocols in the wild. In ECOOP’11.

[10] BENGIO, Y., DUCHARME, R., VINCENT, P., AND JANVIN, C. A
neural probabilistic language model. J. Mach. Learn. Res. 3 (Mar.
2003), 1137–1155.

[11] COOK, J. E., AND WOLF, A. L. Discovering models of software
processes from event-based data. ACM Trans. Softw. Eng. Methodol.
7, 3 (1998), 215–249.

[12] DAGENAIS, B., AND HENDREN, L. J. Enabling static analysis for
partial Java programs. In OOPSLA’08, pp. 313–328.

[13] ELMAN, J. L. Finding structure in time. Cognitive Science 14, 2
(1990), 179–211.

[14] GULWANI, S. Dimensions in program synthesis. In symp. on Princi-
ples and practice of declarative programming (2010), PPDP ’10.

[15] GVERO, T., KUNCAK, V., KURAJ, I., AND PISKAC, R. Complete
completion using types and weights. In PLDI ’13 (2013).

[16] GVERO, T., KUNCAK, V., AND PISKAC, R. Interactive synthesis of
code snippets. In CAV’11, vol. 6806 of LNCS. 2011.

[17] HINDLE, A., BARR, E. T., SU, Z., GABEL, M., AND DEVANBU, P.
On the naturalness of software. In ICSE 2012 (2012).

[18] HOLMES, R., AND MURPHY, G. C. Using structural context to
recommend source code examples. In ICSE ’05.

[19] HOLMES, R., WALKER, R. J., AND MURPHY, G. C. Strathcona
example recommendation tool. In FSE’05, pp. 237–240.

[20] KATZ, S. M. Estimation of probabilities from sparse data for the
language model component of a speech recognizer. In IEEE Trans. on
Acoustics, Speech and Singal processing (March 1987), vol. ASSP-35.

[21] KNESER, R., AND NEY, H. Improved backing-off for m-gram lan-
guage modeling. In Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (May 1995), vol. I.

[22] KOMBRINK, S., MIKOLOV, T., KARAFIÁT, M., AND BURGET, L.
Recurrent neural network based language modeling in meeting recog-
nition. In INTERSPEECH (2011), pp. 2877–2880.

[23] MANDELIN, D., XU, L., BODÍK, R., AND KIMELMAN, D. Jungloid
mining: Helping to navigate the api jungle. In PLDI ’05 (2005).

[24] MIKOLOV, T., DEORAS, A., POVEY, D., BURGET, L., AND CER-
NOCKY, J. Strategies for training large scale neural network language
models. In ASRU 2011 (2011), IEEE Signal Processing Society.

[25] MISHNE, A., SHOHAM, S., AND YAHAV, E. Typestate-based seman-
tic code search over partial programs. In OOPSLA ’12 (2012).

[26] PERELMAN, D., GULWANI, S., BALL, T., AND GROSSMAN, D.
Type-directed completion of partial expressions. In PLDI (2012).

[27] REISS, S. P. Semantics-based code search. In ICSE’09.
[28] ROSENFELD, R. Two decades of statistical language modeling: Where

do we go from here. In Proceedings of the IEEE (2000), p. 2000.
[29] SHOHAM, S., YAHAV, E., FINK, S., AND PISTOIA, M. Static specifi-

cation mining using automata-based abstractions. In ISSTA ’07 (2007).
[30] SOLAR-LEZAMA, A. The sketching approach to program synthesis.

In APLAS ’09 (2009).
[31] SOLAR-LEZAMA, A., TANCAU, L., BODÍK, R., SESHIA, S. A., AND

SARASWAT, V. A. Combinatorial sketching for finite programs. In
ASPLOS (2006), pp. 404–415.

[32] SRIVASTAVA, S., GULWANI, S., AND FOSTER, J. S. From program
verification to program synthesis. In POPL ’10 (2010).

[33] STEENSGAARD, B. Points-to analysis in almost linear time. In Pro-
ceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages (1996), POPL ’96, pp. 32–41.

[34] STOLCKE, A. SRILM-an Extensible Language Modeling Toolkit.
International Conference on Spoken Language Processing (2002).

[35] THUMMALAPENTA, S., AND XIE, T. Parseweb: a programmer assis-
tant for reusing open source code on the web. In ASE ’07 (2007).

[36] VALLÉE-RAI, R., ET AL. Soot - a Java Optimization Framework. In
Proceedings of CASCON 1999 (1999), pp. 125–135.

[37] VECHEV, M., AND YAHAV, E. Deriving linearizable fine-grained
concurrent objects. In PLDI ’08 (2008).

[38] WASYLKOWSKI, A., AND ZELLER, A. Mining temporal specifica-
tions from object usage. In Autom. Softw. Eng. (2011), vol. 18.

[39] WEIMER, W., AND NECULA, G. Mining temporal specifications for
error detection. In TACAS’05, vol. 3440 of LNCS. 2005, pp. 461–476.

[40] WITTEN, I. H., AND BELL, T. C. The zero-frequency problem: Esti-
mating the probabilities of novel events in adaptive text compression.
IEEE Transactions on Information Theory 37, 4 (1991), 1085–1094.

[41] YANG, J., EVANS, D., BHARDWAJ, D., BHAT, T., AND DAS, M.
Perracotta: mining temporal API rules from imperfect traces. In ICSE
’06, pp. 282–291.

[42] YESSENOV, K., XU, Z., AND SOLAR-LEZAMA, A. Data-driven
synthesis for object-oriented frameworks. In OOPSLA ’11 (2011).

[43] ZHONG, H., XIE, T., ZHANG, L., PEI, J., AND MEI, H. MAPO:
Mining and recommending API usage patterns. In ECOOP’09.

http://www.codota.com

	Introduction
	Overview
	Model
	Concrete Semantics
	Abstract Semantics

	Statistical Language Models
	N-gram language models
	Recurrent Neural Networks (RNNs)
	Sentence Completion with Language Models
	Training on Program Data

	Synthesis
	Implementation
	Program Analysis: Heap and Sequences
	Language Models: preprocessing
	Query Processing

	Evaluation
	Training Parameters
	Training phase
	Code Completion

	Related work
	Conclusion

