
Continuous Code-Quality Assurance with SAFE

Emmanuel Geay Eran Yahav Stephen Fink
IBM T.J. Watson Research Center
{egeay,eyahav,sjfink}@us.ibm.com

http://www.research.ibm.com/safe

ABSTRACT
This paper presents the design of SAFE (Scalable and Flexible Er-
ror Detection), a static analysis tool targeting lightweight program
verification and bug finding for Java. The tool utilizes two types of
analysis: a simple ”structural” checker based on pattern-matching,
and an interprocedural flow-sensitive dataflow solver which inte-
grates typestate checking and alias analysis. We describe how the
tool integrates into a team development platform for analysis of
batch builds, and user interface support built on the Eclipse plat-
form.

1. INTRODUCTION
For many years, program analysis researchers have developed

tools to partially verify program correctness and find potential bugs
and coding problems. While most interesting program verification
problems are formally undecidable, tools employ a variety of analy-
sis techniques that can produce valuable results in practice.

A number of recent static analysis tools employ simple pattern-
matching to find suspicious code patterns. Tools such as PMD [17]
and FindBugs [13] have followed a mantra that “finding bugs is
easy”; simple code scanning can identify many problems in code.
Indeed, experimental results [20] show that simple techniques such
as searching for likely mis-spellings in method names can yield
useful information in real systems. Some tools (e.g.,[17, 5, 16])
provide simple pattern languages whereby a user can customize the
tool’s checking for domain-specific problems.

While pattern matching can find some classes of bugs, researchers
have also focused on deeper properties, such as security vulner-
abilities [4] and API usage problems [18, 22]. These tools rely
on powerful analysis techniques such as typestate verification [21],
model checking [2], and sophisticated interprocedural dataflow and
alias analysis [7, 11]. In many cases, scaling these techniques to
large programs remains an open research topic. Nevertheless, these
advanced tools have also yielded significant value in practical do-
mains.

We describe SAFE (Scalable And Flexible Error detection), a
new IBM Research project which incorporates both shallow and
deep approaches for bug finding and lightweight program verifi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PEPM ’06January 9–10, 2006, Charleston, South Carolina, USA.
Copyright 2006 ACM 1-59593-196-1/06/0001 ...$5.00.

cation. This paper describes the design of the tool, and gives a
high-level overview of the analysis techniques employed.

SAFE is designed to run either in batch mode, as part of a contin-
uous build/integration loop [6], or as an interactive component in an
Eclipse development environment. This paper describes the design
of the user interface and its integration in both usage scenarios.

The rest of this paper is organized as follows. In section 2, we de-
scribe the two main analysis components of SAFE — the structural
and typestate checkers. In section 3 we present the various modes
of SAFE execution. In section 4 we briefly describe some experi-
ences with users. In section 5 we describe related work. Finally, in
section 6, we discuss some future work.

2. ANALYSIS COMPONENTS
SAFE relies on two main analysis components:

• astructural enginebased on (mostly) intraprocedural pattern
matching. This engine tries to match suspicious known code
patterns.

• atypestate checking engineperforming (interprocedural) type-
state checking with varying degrees of cost and precision,
mostly depending on the way in which aliasing is handled.

Each engine allows the user to easily customize rules and properties
based on application-specific constructs.

Structural Engine
The structural engine constructs an XML model of the program,
and uses the model as a basis for evaluating queries defining com-
mon bug-patterns. Many existing bug-finding tools are based on
pattern-matching over the program’s abstract syntax tree (AST)
(e.g., PMD [17]). In contrast, SAFE constructs a model based on
Java bytecode enriched by dataflow analyses such as constant prop-
agation. This allows the user to define bug-patterns that encode
semantic properties that cannot be expressed as AST patterns.

The SAFE user can write custom queries expressed as XPath, or
more generally, XQuery. With these languages, users can write
specifications that refer to application-specific types and names,
without writing any Java code or modifying any SAFE code.

The structural engine currently handles patterns at two levels:
(i) intraprocedural patterns specified over a representation of code
and dataflow for a single procedure, and (ii) patterns specified over
the structure of the program’s class hierarchy and individual classes.

Typestate Checking Engine
Typestate checking [21] is a well-known technique to check a vari-
ety of temporal properties; e.g., that an object is not used before it
is initialized, or that a resource is not used after it has been closed.

uncheckedState

hasNextState

hasNext

error

nextnext

hasNext *

Figure 1: Specification of the property ‘call hasNext() before
calling next() ’ for the type java.util.Iterator .

Typestate checking models each object, at each point during a pro-
gram’s execution, as occupying one of finitely many states. The
operations permitted on an object depend on its state, and each op-
eration may alter the state of the object. Typestate checking tries to
statically determine if the execution of a given program may cause
an operation to be performed on an object in a state where said
operation is forbidden.

In SAFE, the user specifies a typestate property by providing (via
XMI) a deterministic finite state automaton (DFA) defining the per-
mitted sequences of operations for a type. For example, the DFA
of Fig. 1 defines some of the permitted sequences of operations for
the typejava.util.Iterator . In particular, this DFA spec-
ifies the requirement that for anIterator object, a call to the
next() method must be preceded by a call tohasNext() . If
any Iterator object in the program violates this requirement,
the SAFE typestate engine will report a finding.

A key challenge for precise typestate checking concerns the treat-
ment of aliasing. Various flow-insensitive alias analyses have been
shown to scale to large programs [12, 15]. However, in many
cases, typestate checking requires the ability to perform “strong
updates” [3], which requires flow-sensitive treatment of pointers.

We have developed a family of integrated typestate and alias
analysis algorithms of varying cost and precision. These algorithms
track aliases with flow-sensitive and context-sensitive symbolic ac-
cess paths, but only at program points where dataflow information
indicates that pointer manipulations will affect the typestate prop-
erty. In this way, the algorithms focus the expensive alias analysis
to small portions of the program.

The SAFE typestate checker provides astagedanalysis, running
a sequence of integrated alias and typestate checkers applied in or-
der of increasing precision and cost. Each stage checks only state-
ments that previous stages failed to verify, thus reducing work for
the most expensive algorithms.

A detailed description and evaluation of the typestate algorithms
falls beyond the scope of this paper, but will appear in an upcoming
report [9].

3. SAFE MODES
SAFE has been designed to run in a variety of contexts: in a

continuous integration [6] loop, as an Eclipse IDE plugin, as an
ANT [1] task, and as a command-line program. With these various
modes, a SAFE user can run the relatively inexpensive analyses
interactively in the IDE, and the build system can run the deeper
expensive analyses in batch.

3.1 SAFE within CruiseControl
With the current state-of-the-art, aggressive interprocedural analy-

ses can run for hours, and so best suit a background or batch envi-
ronment. Also, in a team development environment, these inter-
procedural analyses may produce the most value checking builds
for integration problems, rather than for intra-module problems in
a single developer’s workbench.

For these reasons, we have integrated SAFE into CruiseCon-
trol [6] (as shown in Fig. 2), an environment forcontinuous inte-
gration [10]. SAFE runs as part of the normal CruiseControl build
loop, and publishes results to an HTML tab in the CruiseControl
build results page. A team using CruiseControl can install SAFE
on the build server with no overhead for individual developers.

3.2 SAFE within Eclipse
While a batch SAFE runner provides a low-overhead means to

introduce SAFE into a project, static analysis can also provide value
for an individual developer’s IDE. With analysis in the IDE, the de-
veloper can analyze code for problemsbeforecommitting to the
source code repository. Additionally, the IDE provides for a richer,
interactive user interface. For these reasons, SAFE supports de-
ployment as a component for the popular Eclipse Java Development
Environment.

Detecting Entry Points for Whole-Program Analysis
SAFE’s “whole-program” interprocedural analyses require a spec-
ification of the program’s entry points, that is, possible starting
points for program execution. While in some cases a program has
a single entry point (itsmain method), many cases require spec-
ification of multiple entry points (e.g., libraries, Eclipse plugins,
incomplete code).

SAFE allows the user to manually specify entry-points through
an XML file. SAFE can alternatively detect entry points automati-
cally. For example, for standard Java projects (projects with a “Java
nature”), SAFE automatically selects allmain methods as can-
didate entry points. Similarly, SAFE provides support to analyze
J2EE programs according to the remote interfaces exported by the
Enterprise Java Beans.

Unlike stand-alone Java programs, Eclipse plugins (projects with
a “plugin nature”) do not contain amain method. The two com-
mon techniques for running code in a plugin are through itsplugin
main classdefinition (with itsstart andstop methods), and by
using a callback mechanism (extension points). SAFE deduces po-
tential plugin project entrypoints by collecting all classes that can
be instantiated by reflection in the extension points of the selected
projects and their dependencies.

Visualization of SAFE Findings
In Eclipse, SAFE provides anAnalysis Resultsview which displays
all analysis findings categorized by rules. Double-clicking on a
finding has two effects: opening a Java editor at the source location
corresponding to the finding, and opening aRule Detailsview. The
rule details view provides additional information about the finding
such as its textual description, an example code fragment, and a
description of suggested corrective actions.

Fig. 3 shows a screenshot of SAFE within Eclipse. In this figure,
the Analysis Resultsview appears at the bottom, where a finding
for the typestate rule “Always callIterator.hasNext() be-
fore calling Iterator.next() ” has been selected. The upper
part of the figure shows the corresponding source line highlighted
in the Java editor. TheRule Detailsview provides additional in-
formation about the finding at the right. Finally, the pop-up dialog
box blocking part of the view shows how analysis configurations
are defined.

SAFE uses the Eclipse platform to provide content for online

Figure 2: SAFE within CruiseControl.

Figure 3: SAFE within Eclipse.

Benchmark Classes Methods Bytecode Time
lines (mm:ss)

PDE 1,128 6,627 3,2261 1:37
RCP 4,144 32,883 1,567,979 5:03
JDT 4,859 41,325 2,446,541 8:11
Platform 14,386 112,195 5,117,868 20:55

Table 1: Structural engine benchmarks for Eclipse projects and
analysis running times.

Rule PDE RCP JDT Platform
Always define hashCode()
when equals() is defined

6 21 37 80

Always define equals()
when hashCode() is defined

0 2 17 5

Avoid calling finalize() ex-
plicitly

0 0 0 1

Avoid calling System.gc() 0 3 3 8
Avoid calling Thread.stop() 0 0 0 1
Avoid instantiating
booleans using new

2 16 5 114

Avoid instantiating empty
strings using new

1 8 11 25

Avoid instantiating strings
using new

0 2 8 26

Avoid using == and != for
String comparisons

6 37 26 154

Avoid using Object.notify() 0 5 1 35
Potential infinite recursion 0 1 4 11
Potential null dereference 0 0 0 1
Suspicious condition over a
constant value

3 54 39 186

Suspicious equal() method
has been defined

1 0 1 0

Total 18 149 152 647

Table 2: Sample structural rules and findings for Eclipse
benchmarks.

help, and an Eclipse update site for easy web-based installation.

3.3 Other modes
In addition to CruiseControl and Eclipse, SAFE also supports

execution as an Ant task or as a stand-alone command-line tool. In
these modes, the user provides the analysis scope and options as
configuration XML files and/or command-line options, and SAFE
produces the analysis results in an XML file.

For these modes, SAFE supplies a web-based UI for explor-
ing the results via a browser, using Extended Style Sheets and
Javascript scripts. Several IBM groups instead read SAFE XML
output directly, for use with other tools.

Finally, in order to use Eclipse-based functionality (such as au-
tomatic detection of entry points) in a batch process, we also sup-
port running SAFE in an Eclipseheadless mode. Technically, in
this mode SAFE becomes an Eclipse Rich Client Platform (RCP
[19]) application, without a UI, but with the underlying eclipse
data-model. To run SAFE in this mode, the user provides a launch
configuration and the location of an Eclipse workspace.

4. EXPERIENCE WITH SAFE
SAFE is being used by a number of early adopter organizations

across the IBM Corporation. One team has integrated SAFE into its

Name Description
Enumeration Call hasNextElement beforenextElement
InputStream Do not read from aclosedInputStream
Iterator Do not callnext without checkinghasNext
KeyStore Always initialize aKeyStore before using it
PrintStream Do not use aclosedPrintStream
PrintWriter Do not use aclosedPrintWriter
Signature Follow initialization phases forSignature s
Socket Do not use aSocket until it is connected
Stack Do notpeek or pop and emptyStack
URLConn Illegal operation when already connected
Vector Do not access elements of an emptyVector

Table 3: Sample typestate properties.

build process; other teams mostly run it manually when required,
either at the command-line or from within Eclipse. We have been
running SAFE via CruiseControl on a number of IBM product code
bases, and reporting bugs back to development teams. Some of the
reported bugs have been confirmed as defects. Additionally, we
use SAFE on our own build servers in IBM Research, continuously
checking several research projects.

In addition to real projects using SAFE, we have also evaluated
the structural engine over4 Eclipse components: Platform, PDE,
RCP and JDT. The sizes of these projects in terms of classes, meth-
ods, and number of bytecode statements, are shown in Table 1. The
findings reported by SAFE for these benchmarks are shown in Ta-
ble 2.

All experiments ran on IBM Intellistation Z pro with two 3.06
GHz Intel Xeon CPUs, and 3.62 GB of RAM running Windows
XP with IBM J2RE 1.4.2.

We manually verified some of the findings reported by SAFE,
and in particular, found a real null pointer exception in the update-
manager code of the Platform component.

The rule “suspicious condition over constant value” returns a
large number of matches. This is mostly due to various debugging
flags that guard code producing output to a tracing facility.

The matches returned by the rule “potential infinite recursion”
are all false alarms. This is due to code that follows a proxy design
pattern and delegates responsibilities to other objects that imple-
ment the same interface. Unfortunately, the current version of the
structural engine is unable to observe that the target object of the
call is different than the calling object.

Table 3 shows some of the typestate properties checked by SAFE.
Another report [9] presents a detailed evaluation of the typestate
checkers; the results show that the typestate checkers verified the
absence of typestate violations for over 95% of the eligible state-
ments, over a suite of19 moderate-sized projects (up to 100,000
lines of code) We are currently working on algorithmic improve-
ments to scale the typetate checker to larger code bases, and also to
analyze libraries in addition to complete programs.

5. RELATED WORK
Due to space limitations, we review here only a few of the most

relevant related projects.
FindBugs [13] is Java bytecode pattern-matching tool with pat-

terns corresponding to error-prone constructs. The functionality
and limitations of FindBugs resemble those of our structural checker.
However, FindBugs operates directly on Java bytecode, where SAFE
operates on an intermediate representation enriched by information
from dataflow analysis. In addition, the SAFE structural engine
allows flexible pattern specification via XPath and XQuery.

A large number of tools operate directly on the program’s AST,
including CodeReview [5], JTest [16], JiveLint [14], and PMD
[17]. Some of these tools checking compliance with various cod-
ing styles. CodeReview and JTest provide refactoring operations to
correct problems, integrated with Eclipse.

ESP [7] is a typestate checker for C programs, utilizing selective
path-sensitivity for scalability. ESP handles aliasing by taking a
two-phased approach in which typestate checking is preceded by a
pointer analysis. In contrast, SAFE supports multiple ways of han-
dling aliasing, including an integrated typestate analysis and alias
analysis. In the future, we plan to extend SAFE to use selective
path-sensitivity in a way similar to ESP.

6. FUTURE WORK
In the near future, we are focusing our efforts on improving the

usability and scalability of SAFE. The structural engine currently
analyzes code bases of several million lines, while we can currently
scale a typical typestate analysis up to a few hundred thousand lines
of code. To improve usability, we will add various features to allow
user to customize the reported findings. We also plan to incorporate
a symbolic analysis for generating counter-examples from SAFE
findings, and to reduce the rate of reported false positives. In addi-
tion, we are investigating the use of specification mining techniques
to automatically generate typestate specifications.

7. REFERENCES
[1] Apache Ant. http://ant.apache.org/.
[2] T. Ball and S. K. Rajamani. The slam project: debugging

system software via static analysis. InPOPL ’02:
Proceedings of the 29th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 1–3, New
York, NY, USA, 2002. ACM Press.

[3] D. Chase, M. Wegman, and F. Zadeck. Analysis of pointers
and structures. InProc. Conf. on Prog. Lang. Design and
Impl., pages 296–310, New York, NY, 1990. ACM Press.

[4] H. Chen and D. Wagner. Mops: an infrastructure for
examining security properties of software. InCCS ’02:
Proceedings of the 9th ACM conference on Computer and
communications security, pages 235–244, New York, NY,
USA, 2002. ACM Press.

[5] CodeReview. http://www-
128.ibm.com/developerworks/rational/library/05/higgins.

[6] CruiseControl. http://cruisecontrol.sourceforge.net.
[7] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive

program verification in polynomial time. InProc. Conf. on
Prog. Lang. Design and Impl., pages 57–68, June 2002.

[8] J. Field, D. Goyal, G. Ramalingam, and E. Yahav. Typestate
verification: Abstraction techniques and complexity results.
In Proc. of SAS’03, volume 2694 ofLNCS, pages 439–462.
Springer, June 2003.

[9] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay.
Typestate checking in the presence of aliasing. in
preparation, 2005.

[10] M. Fowler. Continuous Integration.
http://www.martinfowler.com/articles/continousIntegration.html.

[11] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and
language for building system-specific, static analyses. In
PLDI ’02: Proceedings of the ACM SIGPLAN 2002
Conference on Programming language design and
implementation, pages 69–82, New York, NY, USA, 2002.
ACM Press.

[12] N. Heintze and O. Tardieu. Ultra-fast aliasing analysis using
CLA: A million lines of C code in a second. 36(5):254–263,
May 2001. InConference on Programming Language
Design and Implementation (PLDI).

[13] D. Hovemeyer and W. Pugh. Finding bugs is easy. In
OOPSLA ’04: Companion to the 19th annual ACM
SIGPLAN conference on Object-oriented programming
systems, languages, and applications, pages 132–136, New
York, NY, USA, 2004. ACM Press.

[14] JLint. http://www.sureshotsoftware.com/javalint.
[15] O. Lhot́ak and L. Hendren. Scaling Java points-to analysis

using SPARK. In12th International Conference on Compiler
Construction (CC), volume 2622 ofLNCS, pages 153–169,
Apr. 2003.

[16] Parasoft JTest.
http://www.parasoft.com/jsp/products/home.jsp?product=Jtest.

[17] PMD. http://pmd.sourceforge.net/.
[18] G. Ramalingam, A. Warshavsky, J. Field, D. Goyal, and

M. Sagiv. Deriving specialized program analyses for
certifying component-client conformance. InProc. Conf. on
Prog. Lang. Design and Impl., volume 37, 5, pages 83–94,
June 2002.

[19] RCP. http://www.eclipse.org/rcp.
[20] N. Rutar, C. B. Almazan, and J. S. Foster. A comparison of

bug finding tools for java. InISSRE ’04: Proceedings of the
15th IEEE International Symposium on Software Reliability
Engineering, November 2004.

[21] R. E. Strom and S. Yemini. Typestate: A programming
language concept for enhancing software reliability.IEEE
Trans. Software Eng., 12(1):157–171, 1986.

[22] W. Weimer and G. C. Necula. Finding and preventing
run-time error handling mistakes. InOOPSLA ’04:
Proceedings of the 19th annual ACM SIGPLAN Conference
on Object-oriented programming, systems, languages, and
applications, pages 419–431, New York, NY, USA, 2004.
ACM Press.

Acknowledgements
Many thanks to Steve Gutz for his contributions to the SAFE Eclipse
environment.

