
QVM: An Efficient Runtime for Detecting Defects
in Deployed Systems

Matthew Arnold
IBM Research

Martin Vechev
IBM Research

Eran Yahav
IBM Research

Abstract
Coping with software defects that occur in the post-deployment
stage is a challenging problem: bugs may occur only when
the system uses a specific configuration and only under cer-
tain usage scenarios. Nevertheless, halting production sys-
tems until the bug is tracked and fixed is often impossible.
Thus, developers have to try to reproduce the bug in labora-
tory conditions. Often the reproduction of the bug consists
of the lion share of the debugging effort.

In this paper we suggest an approach to address the afore-
mentioned problem by using a specialized runtime environ-
ment (QVM, for Quality Virtual Machine). QVM efficiently
detects defects by continuously monitoring the execution of
the application in a production setting. QVM enables the ef-
ficient checking of violations of user-specified correctness
properties, e.g., typestate safety properties, Java assertions,
and heap properties pertaining to ownership.

QVM is markedly different from existing techniques for
continuous monitoring by using a novel overhead manager
which enforces a user-specified overhead budget for quality
checks. Existing tools for error detection in the field usually
disrupt the operation of the deployed system. QVM, on the
other hand, provides a balanced trade off between the cost
of the monitoring process and the maintenance of sufficient
accuracy for detecting defects. Specifically, the overhead
cost of using QVM instead of a standard JVM, is low enough
to be acceptable in production environments.

We implemented QVM on top of IBM’s J9 Java Virtual
Machine and used it to detect and fix various errors in real-
world applications.

Categories and Subject Descriptors D.2.5 [Testing and
Debugging]
General Terms Algorithms, Reliability
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1. Introduction
Despite increasing efforts and success in identifying and
fixing software defects early in the development life cycle,
some defects inevitably make their way into production. The
wide variety of deployment configurations and the diversity
of usage scenarios is almost a certain guarantee that any
large system will exhibit defects after it has been deployed.

Detecting and diagnosing defects in a production environ-
ment remains a significant challenge. Failures in such envi-
ronments might occur with low frequency and be virtually
impossible to reproduce. For example, a defect might occur
due to a specific concurrent interleaving, a specific lengthy
user interaction, or a slow resource leak that gradually de-
grades system performance leading to an eventual crash.

Existing tools for diagnosing defects “in the wild” are
limited and usually incur an unacceptable overhead that sig-
nificantly disrupts the operation of the deployed system. On
the other hand, reproducing the failure in a test environment
(if at all possible) may require considerable time and effort.

One way to detect rarely occurring defects is to contin-
uously monitor a system for violations of specified correct-
ness properties. For example, this can be achieved by using
global property monitors and local assertions. However, the
typical cost of these techniques prevents programmers from
widely using them in production environments.

This work describes a runtime environment that is able
to detect and help diagnose defects in deployed systems.
Towards this end, we present the Quality Virtual Machine
(QVM), a runtime environment that uses the technology and
infrastructure available in a virtual machine to improve soft-
ware quality. QVM provides an interface that allows soft-
ware monitoring clients to be executed with a controlled
overhead. Based on this interface, we present three such
clients that continuously monitor application correctness
by using a combination of simple global property moni-
tors (typestate properties) and assertions. In addition, QVM
automatically collects debug information which enables ef-
fective defect diagnosis.

We implemented QVM on top of IBM’s J9 Java Virtual
Machine. We used a number of large-scale real-world appli-



cations with QVM and found defects in many of them. We
explain the design rationale behind QVM in Section 3.1.

1.1 Main Contributions
The contributions of this paper include:

• QVM: a runtime environment targeted towards defect
detection and diagnosis in production systems.

• A novel overhead manager that enforces an overhead
budget on client analyses, while maintaining sufficient
accuracy for detecting defects.

• We introduce property-guided sampling and in particular
object-centric sampling, to collect sampled profiles while
preserving correctness of the analysis.

• A lightweight interface that helps separate analysis clients
from the details of the underlying VM, and transparently
manages overhead of these clients.

• We use this infrastructure to implement three representa-
tive analysis clients: (i) tracking simple temporal safety
properties and providing debug information; (ii) check-
ing standard Java assertions; (iii) checking expressive
heap queries pertaining to object ownership.

• We implemented QVM on top of IBM’s production Java
Virtual Machine (J9). We used QVM as our standard
day to day virtual machine, running a wide range of
applications without a noticeable slowdown. We show
that QVM can be used to effectively detect defects in
such applications, and help diagnose them. In addition,
we evaluate the overhead on the standard SPECjvm98
and Dacapo benchmarks.

1.2 Overview
In this section we provide a brief informal overview of QVM
components and our experimental evaluation.

Overhead Manager QVM allows the user to specify an
overhead that is considered acceptable for the current moni-
toring environment. The maximum acceptable overhead may
be 5%-10% in a live deployed system, yet 100% overhead
(factor of 2 slowdown) may be considered acceptable in a
testing environment. Given an overhead budget, the QVM
strives to collect as much useful information as possible
from the executing program while staying within the speci-
fied budget.

QVM Interface (QVMI) A performance-aware profiling/-
monitoring interface that allows client analyses to remain
decoupled from the VM, while maintaining efficiency. The
design goal of this component is to enable development of
powerful, yet efficient dynamic analyses. Technically, the
overhead manager and the QVMI work together to provide
clients with a transparent adaptive overhead management.

Analysis Clients Using the QVM platform, we implement
three analysis clients as follows.

Typestate Properties: This analysis client enables the
dynamic checking of typestate properties. Dynamic check-
ing of typestate properties, as well as generalized multiple-
object typestate, has been addressed before in Tracematches
[3] and MOP [12]. We use the typestate client to demon-
strate three contributions of our platform: (i) adaptive over-
head management; (ii) collection of timing information for
typestate transitions; (iii) collection of additional detailed
debug information with low overhead.

Local Assertions: QVM allows efficient sampling of user
assertions by intercepting standard Java assertions and man-
aging their execution through the overhead manager.

Heap Probes and Operations: QVM enables the dy-
namic checking of various global heap properties such as
object-sharing, ownership, thread-ownership and reachabil-
ity. These properties are useful for both debugging and pro-
gram understanding purposes.

Experimental Evaluation To evaluate the usability of
QVM in finding defects and diagnosing them, we focused
on typestate properties that correspond to resource leaks. For
that purpose, we set QVM as the default JVM used in our en-
vironment and used it to perform all of our daily tasks while
recording its error reports. To further exercise QVM, we
used a wide range of applications on a regular basis. Some of
the applications considered are an instant-messenger (goim),
newsfeed readers (feednread, rssowl), file management utili-
ties (virgoftp, jcommander), large IBM internal applications,
etc. For all of these applications, the overhead incurred by
running them on top of QVM was unnoticeable to the user.

In some of our experiments (e.g., Azureus, virgoftp,
goim), we investigated each report manually, diagnosed the
causes of the errors, and implemented fixes. For some ap-
plications, our defect reports were confirmed by the devel-
opment team, and our fixes were incorporated into the code-
base.

To evaluate the usability of heap and local assertions, we
have added such assertions to a small number of applications
and evaluate their effectiveness. The overhead of QVM is
not noticeable by the user while using interactive applica-
tions, so we use the SPECjvm98 and Dacapo benchmarks to
perform evaluate the overhead manager’s effectiveness.

2. Motivating Example
Azureus [8] is an open-source implementation of the Bit-
Torrent protocol. It supports several modes of user inter-
action, all implemented using the Standard Widget Toolkit
(SWT) [18]. Azureus is the #1 downloaded Java program
from SourceForge, and has more than 160 million down-
loads to date. Azureus plays the role of both a client and a
server for P2P file sharing, and is therefore a relatively long-
running application.

Finding Bugs We run Azureus with QVM, monitoring
various correctness properties, including possible SWT re-
source leaks and IOStream leaks. Azureus runs on QVM



QVM ERROR:[Resource_not_disposed] object [0x98837030]
of class [org/eclipse/swt/graphics/Image]
allocated at site ID 2742 in method
[com/aelitis/azureus/.../ListView.handleResize(Z)V]
died in state [UNDISPOSED]
with last QVM method [org/.../Image.isDisposed()Z]

Figure 1. A sample QVM error report for Azureus.

with no apparent slowdown. Over the course of few hours,
we check the QVM logs and observe that some errors were
reported.

Fig. 1 shows an example of an error reported by QVM
while running Azureus. This is the actual error report as pro-
duced by QVM where some package names have been ab-
breviated. By itself, this error report provides useful infor-
mation about the property being violated. In this case, the
reported Image object has not been properly disposed be-
fore it became unreachable. Failure to properly dispose such
SWT resources leads to leakage of OS-level resources and
may gradually hinder performance and even lead to a system
crash. The error report of Fig. 1 provides the basic informa-
tion necessary to track down the error: the method in which
the object was allocated, the object’s last state, and the last
method invoked on the object.

Diagnosing the Cause The QVM error report above no-
tifies the user that there is an error, but understanding the
cause of the error and introducing a fix is still nontrivial. The
programmer needs to track the flow of the object through
the program to identify why dispose was not called. To as-
sist the programmer in this task, QVM provides additional,
more detailed, debug information in the form of a typestate
history. A typestate history for an object shows all the meth-
ods that have been invoked with that object as a receiver,
over the course of the object’s lifetime — from allocation
to collection. For every method invocation, the invocation
history collects the contexts in which it was invoked. (We
provide a more elaborate description of the typestate history
in Section 5.1.)

To maintain a low runtime overhead, a typestate history
is only collected for some of the tracked objects. Whenever
an allocation site is identified as allocating a number of ob-
jects that violate a property, QVM starts recording typestate
histories for a sample of objects allocated at that site. This
object-centric sampling is one of the features that makes it
possible to collect detailed debug information with low over-
head.

Fig. 2 shows an example of a typestate history for an
object allocated at the same site as the object reported in
Fig. 1. The typestate history abstracts the history of methods
invoked on the object. Technically, the typestate history is
a directed graph with labeled nodes and labeled edges. A
node in the graph represents the state of the object after a
specific method has been invoked on it. There is a single
node in the graph for each method invoked on the object

initial

Image.<init>(Device;Rectangle;)V

Image.init(Device;II)V

1 : Image.init(Device;II)V

2 : Image.<init>(Device;Rectangle;)V 
 3 : ListView.handleResize(Z)V 

 4 : ...

Image.internal_
 new_GC(GCData;)I

1 : Image.internal_new_GC(GCData;)I

2 :GC.<init>(Drawable;I)V 
 3 : GC.<init>(Drawable;)V 

 4 : ListView.handleResize(Z)V

Image.internal_
 dispose_GC(IGCData;)V

1 : Image.internal_dispose_GC(IGCData;)V 

2 : GC.dispose()V 
 3 : ListView.handleResize(Z)V 

 4: ...

Image.isDisposed()Z

1 : Image.isDisposed()Z 

2 : GC.drawImage(Image;IIIIIIII)V 
 3 : ListView$canvasPaintListener

 .doPaint(Event;)V 
 4: ...

OD

1 : Image.<init>(Device;Rectangle;)V

2 : ListView.handleResize(Z)V 
 3 : ListView$14.run()V 

 4 : ...

Figure 2. Sample typestate history for a single instance of
Image that was reported as non-disposed in Fig. 1. The fig-
ure only shows a single sample stack trace for every method
invoked on the object.

(summarizing all invocations of that method). A node in the
graph is labeled by the name of the invoked method, and
by a set of (bounded) contexts — representing the contexts
in which the method was invoked. An edge between nodes
m1 and m2 in the graph represents the fact that the method
corresponding to m2 has been invoked immediately after the
method corresponding to m1 has been invoked. Note that
this directed edge only denotes the order in time between
the two methods. It does not say that m2 is called from m1.

Next, we show how we used the debug informa-
tion provided by QVM in order to find the cause of
an error. In the example of Fig. 2, there are 5 meth-
ods that have been invoked on the tracked object. First,
the object is initialized by invoking the <init> and
init methods. Then, a graphical context (GC) is cre-
ated around the image (internal new GC) and disposed
(internal dispose GC). Finally, isDisposed is invoked
over the image. The method Image.dispose() that is re-
quired for properly disposing the image is never invoked.



c l a s s Lis tView ex tends . . . {
p r i v a t e Image imgView = n u l l ; / / . . .
p r o t e c t e d void h a n d l e R e s i z e ( boolean bForce ) { / / . . .

i f ( imgView == n u l l | | bForce ) {
imgView = new Image ( l i s t C a n v a s . g e t D i s p l a y ( ) , c l i e n t A r e a ) ;
l a s t B o u n d s = new R e c t a n g l e ( 0 , 0 , 0 , 0 ) ;
bNeedsRef re sh = t rue ;

} e l s e {
/ / . . .
}
/ / . . .
}
}

Figure 3. Azureus code fragment leaking SWT Image ob-
jects.

In this simple example, there is only one context in which
each method has been invoked. The context is shown inside a
rectangle next to its corresponding graph node. Considering
the contexts in which the methods in this example were
invoked, we can see that most of the operations on the
tracked object are performed through the handleResize

method in which it was allocated. The only exception is the
call to isDisposed() which originates in a paint event of
the list view.

We therefore focus our attention on the handleResize

method in azureus.ui.swt.views.list.ListView.
The typestate history serves as a guide to the execution in
which the property was violated. Following the sequence of
calls in the debug information we further focus attention to
the code excerpt shown in Fig. 3.

The problem in this method represents a common source
of leaks: a new image is stored into the field imgView with-
out properly disposing the previous image that was stored in
the field. In this example, handleResize mixes the case of
imgView == null (no previous image is known for taking
previous bounds) with the case of forced resize (bForce ==

true). As a result, there are cases in which a new Image

is created without properly disposing the previous Image

stored in imgView.
The number of Image objects leaked as a result of this

bug directly depends on user interaction. Since this leak is
associated with a resize event, it may not occur in high-
frequency. However, the cumulative effect of a large number
of small leaks may be fatal. In Section 7.1, we discuss addi-
tional problems found on Azureus by QVM, and show that
some of these occur very frequently and result in significant
resource leaks.

Developing a Fix Now that we have diagnosed the bug as
being caused by not disposing the old Image object stored
in imgView, the question is how do we introduce a fix. What
we would like to do is to invoke dispose on the object stored
in imgView before we stored the newly allocated image into
the field. Unfortunately, we do not know what is the source
of the Image stored in imgView, and in particular, whether
this image is shared with other GUI components. In SWT,
it is common for resources such as images, fonts, and colors

p r o t e c t e d void h a n d l e R e s i z e ( boolean bForce ) { / / . . .
i f ( imgView == n u l l | | bForce ) {
assert ( ! QVM.isShared ( imgView ) ) ;
i f ( imgView != n u l l && ! imgView . i s D i s p o s e d ( ) )
imgView . d i s p o s e ( ) ;

imgView = new Image ( l i s t C a n v a s . g e t D i s p l a y ( ) , c l i e n t A r e a ) ;
l a s t B o u n d s = new R e c t a n g l e ( 0 , 0 , 0 , 0 ) ;
bNeedsRef re sh = t rue ;
} e l s e {

/ / . . .
}
/ / . . .
}

Figure 4. A fix to the Image leak in handleResize of
Fig. 3

to be shared between multiple GUI components. The con-
vention is that whoever allocates the resource is responsi-
ble for its safe disposal. When we reach the point of allo-
cating a new Image and storing it into imgView, we don’t
know whether the previous value of imgView was allocated
in this method. Furthermore, we don’t know whether other
GUI components are still using the image.

At this point, we leverage QVM’s heap assertions and
check that the object pointed-to by imgView is not shared
(i.e., does not have any references other than imgView

pointing to it). We introduce disposal code preceded by
an assertion that makes sure that we are not disposing a
shared resource. (The disposal of a shared resource might
end up crashing the application at a later point when the
user takes an action that uses the resource.) The modified
handleResize method is show in Fig. 4.

We now run the fixed version of this method with QVM
for a few weeks, and observe that the previously reported
leak does not occur. Our assertion also makes sure that
the disposal of the Image does not affect any other GUI
component.

We reported this leak and its fix, as well as other prob-
lems mentioned in Section 7, to the Azureus development
team. The problems were confirmed as real bugs, and our
suggested fixes were incorporated into the project’s code-
base.

3. QVM Platform
In this section we describe the QVM platform. First, we pro-
vide some background and design rationale, then we briefly
describe the overall QVM architecture and its main compo-
nents. Finally, in Section 3.3, we describe the QVM interface
(QVMI).

3.1 Design Rationale: Modifying a VM
Today’s production-grade virtual machines employ sophisti-
cated techniques and optimizations to achieve maximal ap-
plication performance. In contrast, there is little support for
application correctness in a production environment besides
checking low-level properties such as absence of null deref-
erences and array index bounds. While rich in functionality,



current debug and monitoring interfaces (e.g., JVMTI) are
also not applicable as they incur a slowdown that is unac-
ceptable in production mode.

The goal of this work is to extend a production-grade
virtual machine to provide software-quality services while
maintaining competitive performance. We would like a so-
lution to provide:

(I) high performance and low overhead

(II) maximal separation of analysis clients from the details
of the underlying VM

There is an apparent tension between requirement (I)
and (II). We resolve this tension by providing a generic
interface (QVMI) that manages functionality common to
all analysis clients, but in addition, we allow clients to cut
through abstraction layers and use other VM services when
appropriate.

However, our technique still requires VM modifications,
and modifying a production-grade virtual machine is a non-
trivial task. A virtual machine is a large, complex system.
Moreover, implementing the quality services inside a spe-
cific VM makes them non-portable and ties users of the sys-
tem to the specific VM version. In contrast, using pure byte-
code instrumentation at the language level or a standard pro-
filing interface such as JVMTI [29] is portable across virtual
machines.

Despite these disadvantages, there are a number of ad-
vantages in having at least part of an analysis reside within
production VM, as we describe below.

VM only information Having access to the runtime allows
the client analyses to utilize information that is not readily
available at the language level. For example, analyses can
use free bits in object headers, directly examine the heap,
quickly access structures like thread local storage, re-use
existing VM code (such as garbage collection heap traversal
logic) to perform a slightly different functionality. Analyses
can utilize low-level profile data and infrastructure, such as
hardware performance monitors (HPM) and fine-granularity
timing (for example, see overhead monitor in Section 4).

Performance Having access to the dynamic optimizer
(JIT) ensures that the critical code paths are well optimized.
The JIT can also use advanced optimization techniques for
fast and slow paths (thin guards [5], code patching [37], full
duplication [4], etc.). The system can also make use of pro-
file data already collected by the VM to optimize and tune a
dynamic analysis.

Dynamic updating By using advanced techniques such as
code patching and on-stack replacement (OSR) [20], VMs
can support efficient dynamic updating of instrumentation
during an application run.

Deployment The deployment process becomes trivial be-
cause the required features become as ubiquitous as the VM.

Figure 5. Overall architecture of QVM.

There is no need to “install” an analysis (recompile the pro-
gram source to add instrumentation, etc) which is partic-
ularly difficult for large production application that might
make heavy use of custom class loaders. Our analysis can be
run by simply enabling a command line flag on the VM.

In the next section, we provide an overview of the QVM
architecture and show how we hide the complexity of the un-
derlying VM from most analysis clients by using the generic
QVMI interface.

3.2 QVM Architecture
Fig. 5 shows the overall architecture of QVM. At a high
level, the QVM extends the VM execution engine with three
main components:

1. QVM Interface (QVMI): A performance-aware profil-
ing/monitoring interface that allows client analyses to re-
main decoupled from the VM, while maintaining effi-
ciency. The design goal of this component is to enable
quick and easy development of powerful, yet efficient dy-
namic analyses. QVMI is described in Section 3.3.

2. Overhead Manager (OHM): The overhead control sys-
tem enables users to bound the overhead incurred by
QVM clients. The system does fine-grained monitoring
of the time spent in the clients and adapts the sampling to
stay near or below overhead bounds. OHM is described
in Section 4.

3. QVM Clients: A flexible set of clients that leverage
QVMI. In this paper we describe three example clients
that enable checking of a variety of correctness properties
with controlled overhead. Clients are discussed in Sec-
tion 5.

In this architecture, the overhead manager and the QVMI
work together to provide clients with a transparent adaptive
overhead management. The clients use QVMI without the



need to be aware of overhead management mechanisms (but
with the ability to partially control it when desired).

The OHM uses the information collected by QVMI to
adjust the sample rate such that the overhead matches the
desired overhead specified by the user.

3.3 QVMI: The QVM Interface
Various profiling interfaces such as JVMTI make it easy to
write monitoring clients. The client specifies the events of in-
terest, and these events are provided by the interface. Clients
are kept separate from the internal VM implementation that
collects the events. Similarly, although our profiling clients
are packaged as part of the VM, keeping a clear abstrac-
tion interface between the core VM details and the profil-
ing clients is important for software engineering reasons, for
both maintenance and ease of adding additional clients in the
future.

The primary limitation with existing and general profil-
ing interfaces is performance. For example the granularity at
which events are requested is too coarse. With existing in-
terfaces such as JVMTI, if a client wants to receive method
callbacks for some subset of the method invocations, it must
register to receive callbacks for all method invocations, and
filter out the unnecessary callbacks on the client side of the
interface. This introduces significant overhead that is com-
pletely unnecessary if the analysis needs only a subset of the
methods.

Filtering on the VM side To address this problem, the
QVM interface is designed such that an efficient implemen-
tation is possible. The key difference from existing profiling
interfaces is that it is structured with the goal of allowing as
much filtering as possible to occur on the VM side of the
interface. For example, if an analysis client needs method
callbacks, it must specify what methods callbacks are neces-
sary. This allows the remainder of the program to run at full
speed. Similarly, the client may request method callbacks
only for a subset of the objects in the program. The VM can
use its suite of dynamic optimization techniques to achieve
an efficient implementation of the sampled profile.

Table 1 shows a partial list of the operations supported
by QVMI. Clients that register with QVMI have to support a
similar set of operations (as described below). In addition to
the operations listed in Table 1, QVMI has similar callbacks
for field read and writes, exceptions being thrown, and other
events supported by standard interfaces such as JVMTI.

In the table, we separate operations of different stages
of the execution by double horizontal lines. The manner in
which these operations are used is illustrated below.

On VM initialization Upon startup of the virtual machine,
the clients have to register themselves with QVMI to receive
callbacks by calling registerClient.

On method compilation During the compilation of a
method, the VM queries the QVM agents to determine

whether the code being compiled needs any form of in-
strumentation. This insures that maximal filtering occurs;
instrumentation is not inserted on any program statements if
it is not required by at least one client.

This querying is done by invoking QVMI operations such
as isTrackedAlloc and isTrackedCallSite, which
query all of the registered QVM clients to obtain a
TrackLevel, which determines what level of instrumen-
tation is needed. For example, for our typestate client, the
compiler prompts QVMI to check whether allocation or
method call sites in the code should be tracked. Further de-
tails on how the typestate client is implemented via QVMI
is discussed in Section 6.2.

During execution Depending on the tracking-level, the
VM fires events for tracked sites by invoking operations such
as allocEvent and invocationEvent. When an object
is collected by the garbage collector, QVMI is notified by
calling objectDeath.

3.4 Property-guided sampling
One of the major features provided by QVMI is the ability
to perform property-guided sampling. Sampling is a key
mechanism QVM uses to reduce analysis overhead, but for
many analyses using naive random sampling would render
the analysis completely useless because the analysis relies
on certain relationship between events.

For example, if a dynamic analysis detects files that are
opened but not closed, and tracking of method invocations
were sampled randomly, QVM would report false positives
any time file open was sampled, but file close was not. To
address this problem, QVM performs property-guided sam-
pling, ensuring that the sampled profile maintains sufficient
properties to make the dynamic analysis meaningful.

Object-centric sampling QVM supports a novel feature
called object-centric sampling. This technique allows an
analysis to sample at the object instance level; an object
can be marked as tracked and the analysis can receive all
profile events for this object, while receiving no events for
untracked objects. This allows overhead reduction via sam-
pling, without destroying the profile properties needed for
the dynamic analysis to produce meaningful results.

We refer to the points in the execution at which sampling
decisions are made (ie, whether an object is tracked, whether
an assertion is executed) as origins.

Allocation sites are origins in our implementation of
object-centric sampling. The decision of whether an object
is tracked is made at allocation time; if sampled, a bit is set
in the object header to mark the object as tracked. A short in-
lined code sequence checks this tracked bit on calls to QVM
methods to determine whether a callback is needed.



Method Description
void registerClient(Client c) Registers a client to receive callbacks
TrackLevel isTrackedAlloc(AllocSite as) should the specified allocation site be tracked
CallTrackLevel isTrackedCallSite(CallSite cs) should the specified call site be tracked
boolean shouldExecute(Site s) should this site fire an event (based on sampling info)
void allocEvent(AllocSite as) tracked allocation event
void invocationEvent(CallSite as) tracked invocation event
void objectDeath(Object o) object death event

Table 1. A Partial list of the operations supported by QVMI.

3.5 Extensions
Our current interface is not intended to be complete, but is
sufficient to cover a broad range of clients, including those
included in this paper. The clients we currently implemented
are built as part of the VM, but the interface could also be
exposed to enable external clients. A full spec that could be
published as a performance-aware alternate to the JVMTI is
left for future work.

4. Overhead Manager
Traditional dynamic analyses typically operate under the
model that the user defines an analysis, then evaluates it to
determine whether the overhead is acceptable. The instru-
mentation that is used to implement the analysis is fixed,
and the overhead incurred is a function of the program that
is executed.

The QVM Overhead Manager, or OHM, reverses this
mentality by allowing the user to specify an overhead that
is considered acceptable for the current monitoring environ-
ment. The maximum acceptable overhead may be 5%-10%
in a live deployed system, yet 100% overhead (factor of 2
slowdown) may be considered acceptable in a testing envi-
ronment.

Thus, the acceptable overhead is one of the inputs to
QVM. Given an overhead budget, the QVM strives to collect
as much useful information as possible from the executing
program while staying within the specified budget. If the
maximum overhead specified is too low, QVM may not
report any useful information. This is obviously not the
desired outcome, but in many cases it is more desirable than
losing control of the overhead and having a performance
crisis as a result.

There are three components to the overhead manager,
each of which are discussed in the sections that follow.

1. Monitoring: measures the overhead imposed by the QVM
clients

2. Sampling strategy: a strategy for sampling each origin
(e.g. allocation site or an assertion site) to ensure the
system stays within the overhead budget

3. Controller: adjusts the sampling strategies for each origin
based on the measured overhead

4.1 Monitoring
The overhead monitor uses fine granularity timers on entry
and exit to all QVMI calls to record the time spent in QVM
clients and in the QVMI itself. The time is maintained sep-
arately for each origin (see Section 3.4) so that the sample
rate of each origin can be adjusted independently.

Timer accuracy The most important step in managing
overhead is having the ability to measure overhead accu-
rately. The overhead controller cannot be expected to make
reasonable decisions if it is being given incorrect timing data
as input.

Measuring overhead for coarse grained events (such as
garbage collection time) is relatively easy; a number of sys-
tem timing routines can be used to obtain reasonable results.
However, timing short, frequently executed regions is more
difficult and requires having a timer that is both accurate and
efficient.

Using an inefficient timer mechanism has two serious
problems: 1) it can cause significant overhead if called fre-
quently (which can be the case with some QVM clients), and
2) the error can be significant when timing short regions and
these timing errors will accumulate.

To address these problems, our OHM implementation
uses inline assembly to read the cycle counter using the In-
tel’s RDTSC (Read Time Stamp Counter) instruction. This
mechanism results in very fast and accurate time stamping
on entry and exit of the QVMI. Our initial implementation
used the system call gettimeofday() and it created sig-
nificant inaccuracies, as described in Section 7.

Measuring total application time The timers measure
time spent performing QVM tasks. To compute overhead
relative to the non-QVM application, the OHM must also
measure the total execution time. Using wall clock time,
rather than process time, would be grossly incorrect for two
reasons. First, interactive applications would create signifi-
cant error because idle time would be counted as application
time. Second, wall clock would be wrong for multi-threaded
applications running on multi-processor machines. QVM
time is measured and accumulated from all running threads,
thus the total time must be the sum of the time spent execut-
ing on all processors.



For these reasons, we compute total time by using the
getrusage() Linux system call to obtain the total time
used by the JVM process. This solves the problems associ-
ated with using wall clock time discussed above and works
well in practice for most applications. However, it is still not
a fully robust solution when QVM activity is not evenly dis-
tributed across the application threads.

For example, consider an application with 2 threads run-
ning for 1-second each in parallel on a 2-processor machine;
getrusage() will report 2 seconds of total execution
time. Assume that QVM was given a 10% overhand budget,
which translates to 0.2 seconds allocated to QVM. If all of
the QVM callback activity takes place in one of the two ap-
plication threads, one thread will run for 1.2 seconds while
the other runs for 1 second. Although the total CPU time is
increased by 10% a user of the program would observe the
program terminating after 1.2 seconds, a 20% increase.

The most robust solution to this problem is to perform
overhead tracking at the thread-level. If overhead budgets are
tracked and enforced per-thread, total overhead as perceived
by the user will always be within budget as well. A similar
approach of using per-thread metrics has been employed by
real time systems to track time spent performing system
services [6]. We leave an implementation of this approach
within QVM as part of future work.

Base overhead Even when accurately measuring the time
spent in the QVM clients, there are still two potential sources
of errors: 1) checking overhead, and 2) indirect effects.

The main sources of checking overhead is the inlined
filtering. For example:

• virtual method calls (or inlined method bodies) for meth-
ods relevant to QVM clients filter samples by checking a
bit in the object header.

• origin sites (i.e. allocation sites) check their sampling
strategy (described in Section 4.2) to decide whether the
allocated object is tracked.

These checks are short inlined code sequences and con-
tribute very little to overall overhead (see Section 7); how-
ever, for very aggressive instrumentation, such as instru-
menting all calls in the program, the base overhead can po-
tentially become significant.

Although not easy to measure online while the applica-
tion is executing, base overhead can be estimated by observ-
ing the frequencies of the checks, and using a model of per-
formance to estimate the overhead. Using a model is less
desirable than direct measurement, but can still be used as a
way of avoiding large performance surprises for aggressive
clients. Our implementation does not yet perform this mod-
eling to avoid large base overhead, and it is left as part of
future work.

The second source of base overhead is indirect effects
on performance, such as cache pollution, or optimization
in the JIT that are hindered by the presence of instrumenta-

tion. These sources of overhead are very difficult to measure
without having two separate versions of the code and using
techniques such as performance auditor [25] to identify the
performance differences.

4.2 Sampling strategy
The QVMI maintains separate overhead statistics for each
origin (see Section 3.4), allowing the OHM to increase or
decrease the sample rate independently for each origin. Hav-
ing origin-specific sample rates enables significant advan-
tages for the client analysis. Maintaining a single sample rate
would be sufficient for managing total overhead, but would
be likely to miss origins in infrequently executed code. With
origin-specific sampling, the controller can reduce overhead
by scaling back hot origin sites, but continues to exhaustively
track objects from cold sites, thus allowing the client analy-
sis to see a broader view of the program execution. As shown
in Section 7, this sampling strategy results in increased error
coverage for a given overhead budget.

Our implementation achieves sampling by maintaining
a sampleCounter and a sampleCounterReset for each
origin. At runtime, the checking code at each origin site
decrements and checks sampleCounter; if it is less than
zero, the origin is selected to be tracked and the counter is
reinitialized by the value in sampleCounterReset.

The sampleCounterReset for each origin is adjusted
by the Overhead Controller to change the sample frequency
for that origin, thus reducing or increasing its overhead.

Emergency shutdown Object-centric sampling is most ef-
fective for managing overhead when there are a large num-
ber of objects contributing to total overhead. If the majority
of execution is dominated by method calls on a single, long-
lived object, tracking this object will result in large overhead.

To avoid severe performance degradation when a hot,
long lived object is tracked, the QVM supports the notion of
an emergency shutdown. On each QVMI callback for alloca-
tions and invocations, the system checks a flag to determine
whether an emergency shutdown is needed. If so, it disables
the monitoring bit in the object header such that the object
will no longer be sampled. The client analysis may now need
to discard this object, as the method callbacks are not com-
plete. However, this mechanism allows the system to ensure
that overhead can be controlled.

4.3 Overhead Controller
The job of the Overhead Controller is to periodically check
the QVM overhead, and adjust the sampling frequencies
accordingly. If the overhead is above the budget, sample
frequencies are reduced; if the overhead is below budget, the
frequencies are increased.

To avoid oscillation and large spikes in overhead, the con-
troller monitors not only total overhead, but recent overhead.
Recent overhead is computed via exponential decay; a sec-
ond copy of application time and QVM time are maintained,



and multiplied by a decay factor each time the controller
wakes up. This gives more weight to recent timings, effec-
tively measuring the overhead over a previous window of
execution.

The primary focus of the controller is keeping the over-
head below the overhead budget. Maximizing the client ex-
ecuting time within that budget is also a goal, but it is sec-
ondary. Thus the controller reduces sample frequencies if ei-
ther the total overhead or recent overhead exceed their bud-
gets.

If the overhead deviates too high above the budget, the
controller enacts the emergency shutdown to stop profiling
in the current set of objects, and starts tracking new objects
once the overhead is within budget.

Origin-specific adjustment The QVMI maintains separate
overhead statistics for each origin (see Section 4.2), allow-
ing the OHM to increase or decrease the sample rate inde-
pendently for each origin. These origin-specific adjustments
are made as follows.

The controller decides on sample rates for each ori-
gin by maintaining a second overhead threshold, called
originOverheadBudget. The sample rate of each origin
is adapted to stay below this overhead budget. If the over-
head for an origin is below originOverheadBudget, the
sample rate is increase (or left alone if the origin is already
exhaustively tracked).

When the controller sees that total overhead is too high,
it reduces the originOverheadBudget, thus effectively
reducing the sample frequency only for origins that exceed
this overhead threshold. The originOverheadBudget is
always less than or equal to the total overhead budget, but
may be significantly lower if there are a large number of
origins.

This approach is similar to [22] which uses inverse sam-
pling to avoid missing memory leaks in cold code.

5. QVM Clients
In this section, we describe three clients built on top of the
QVM platform. We have implemented a number of clients in
order to cover a range of user properties: ranging from local
assertions to continuous monitoring using temporal safety
properties.

5.1 Typestate
In this section, we show how QVM is used to dynamically
check typestate properties.

Typestate [36] is a framework for specifying a class of
temporal safety properties. Typestates can encode correct us-
age rules for many common libraries and application pro-
gramming interfaces (APIs). For example, typestate can ex-
press the property that a Java program should dispose a na-
tive resource before its Java object becomes unreachable and
is collected by the garbage collector.

initial undisposed

else
disposed

 dispose* | 

 release*

err

object death

*

*

Figure 6. A typestate property tracking proper disposal of
SWT resources. Names of tracked types are not shown.

Dynamic checking of typestate properties, as well as gen-
eralized multiple-object typestate (also known as “first-order
properties” [34, 38]), have been addressed before in Trace-
matches [3] and MOP [12]. We use the typestate client to
demonstrate three contributions of our platform: (i) adap-
tive overhead management; (ii) timed typestate transitions;
(iii) collection of additional detailed debug information with
low overhead.

Using the QVM platform to implement dynamic types-
tate checking also provides us with an advantage in getting
object-death callbacks directly from the garbage collector
and not relying on a finalizer method to be called. This guar-
antees that object-death events are fired in a timely manner
(which is not guaranteed to happen when using finalizers)
and allows us to measure resource-drag (see below) more
precisely.

QVM uses a simple input language to let the user specify
a finite-state automaton that represents the typestate prop-
erty, and the types to which it applies. We refer to a type
that appears in at least one typestate property as a tracked
type. Once the tracked type is specified, our implementation
instruments every object of this tracked type with additional
information that maps the object to its typestate. During ex-
ecution, QVM updates the typestate of each tracked object,
and when an object reaches its error state, QVM records an
error report (as the one shown in Fig. 1) in a designated log
file.

EXAMPLE 5.1. Fig. 6 shows a typestate property (repre-
sented as a finite state automaton) that identifies when an
SWT resource has not been disposed prior to its garbage
collection, thus possibly leaking native resources such as
GDI handles. The tracked types are not shown in the figure,
as this property applies to a large number of types (e.g.,
org/eclipse/swt/widgets/Widget). Since all states
other than the designated error state are accepting, we sim-
plify notation by not using a special notation for accepting
states. We label edges of the finite-state automaton with reg-
ular expressions that define when the transition is taken. For
example, the transition from undisposed to disposed occurs
when invoking a method whose name begins with dispose
or release. We use else to denote a transition that is fired
when no other transition from the state can be matched (note
that the automaton is deterministic).
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 3 : IR.loadImage(Display;...)Image

Figure 7. An example typestate history for a leaking Image in Azureus. For brevity, we only show sample contexts and omit
the context for isDisposed.

In Section 7.1 we report experimental results for such
properties.

For every typestate property, QVM tracks the number of
times it has been violated. When the number of violations
passes a specified threshold, QVM starts recording addi-
tional debugging information in the form of a typestate his-
tory.

As mentioned in Section 2, a typestate history of an object
o is an abstraction of the sequence of method invocations
performed during execution with o as a receiver. We use the
name typestate history because we summarize the sequence
of method invocations as an annotated DFA, similar to a
typestate property.

Intuitively, a state in the typestate history represents the
state of the object after a specific method has been invoked
on it. A state in the history is labeled with a set of (bounded)
contexts — representing the contexts in which the method
has been invoked. A transition between states m1 and m2 in
the history represents the fact that the method correspond-
ing to m2 has been invoked immediately after the method
corresponding to m1 has been invoked.

A typestate history therefore provides information about
the way a single object that violates the property was used
in the program. This helps the programmer to diagnose the
cause of the reported violation.

EXAMPLE 5.2. Fig. 7 shows an example typestate his-
tory produced by QVM. This provides an account of

the behavior of a single object that violates the prop-
erty. In the figure, we have abbreviated the type name
BufferedGraphicTableItem1 to BGT1, and the type
name ImageRepository to IR. In figures of typestate his-
tories we do not show method signatures on the edges be-
cause the label of an edge is always identical to the label of
its target state.

Unlike the simple typestate history of Fig. 2, the typestate
history of Fig. 7 contains cycles and multiple invocations
of methods. The label on a transition edge represents the
number of times this transition occurred in the execution and
the last time when it occurred. For example, the transition
from the state in which createMask is the last method
invoked on the object to the state in which isDisposed

is the last method invoked on the object occurs 64 times
in the execution summarized by the history of Fig. 7. The
last time in which the transition occurred is 52, where time
is measured as the number of allocations performed by the
program. In the figures, we show the time counter divided by
1024.

Resource Drag and Lag Since QVM tracks the last time
each transition took place, it can be used to identify when
a resource is not released in a timely manner (known as re-
source drag). In such cases it is sometimes possible to im-
prove performance by releasing the resource earlier. Simi-
larly, since QVM also tracks calls to constructors and object-
death events, it can be used to identify when an object is al-



ca n v a s . a d d D i s p o s e L i s t e n e r ( new D i s p o s e L i s t e n e r ( ) {
@Override
p u b l i c vo id w i d g e t D i s p o s e d ( D i s p o s e E v e n t a rg0 ) {

i f ( img != n u l l && ! img . i s D i s p o s e d ( ) ) {
assert ( QVM.isObjectOwned ( img ) ) ;
img . d i s p o s e ( ) ;
}
}
} ) ;

Figure 8. Using QVM to check that an SWT resource is not
shared before attempting to dispose it.

located too early (memory lag) or kept reachable for a longer
time than necessary (memory drag).

Extensions Our current implementation supports single-
object typestate properties. In the future, we plan to inves-
tigate how our VM extensions can be combined with tech-
niques for handling multiple object typestates such as Trace-
matches [3] and MOP [12].

In some cases, static analysis (e.g., [19, 10]) can be used
to verify that a typestate property is never violated, or that
some transitions of a typestate property never occur in a
program. These static approaches can be used to reduce
the runtime overhead by eliminating some of the dynamic
checks. However, in practice, the static approaches usually
do not scale to the systems targeted by QVM.

5.2 Local Assertions
To allow adjustment of overhead, we allow Java assertions
to be sampled. This means that during execution, we may
sometime choose not to evaluate an assertion.

5.3 Heap Probes
QVM enables the dynamic checking of various global heap
properties such as object-sharing, heap-ownership, thread-
ownership and reachability. These properties are useful for
both debugging and program understanding purposes.

QVM provides a library that exports a set of methods, one
for each heap property. We refer to these library methods as
heap probes. The programmer can invoke heap probes from
her program in order to inspect the shape of the heap at a
program point. The library uses various components of the
underlying runtime in order to obtain an answer. Our list
of currently supported probes is shown in Table 2. In the
table, We use TC(o) to denote the set of all objects that
are transitively reachable from o. Technically, o can refer to
either an object or a thread.

Similarly to non-heap probes, our heap-probes can be
sampled by the overhead manager to allow adjustment of
overhead, and can therefore evaluate to one of three possible
values: true, false, and unknown. The return value of a heap-
probe can be used in a standard Java assertion. When a heap
probe is used inside an assertion we refer to it as a heap
assertion.

EXAMPLE 5.3. Disposal of SWT resources is based on two
principles: (i) the object which allocated the resource is re-
sponsible for its disposal; (ii) disposing a parent object dis-
poses its children. These principles work well for many cases
as a large number of the allocated resources are set to form
immutable containment tree that guarantees proper (albeit
not timely) disposal. However, the treatment of shared re-
sources such as Color, Fonts, and Images, is more compli-
cated and error prone.

For shared resources, finding the proper disposal point
in the program may be rather challenging. In particular, the
disposal may be based on programmer knowledge of the last
use of the shared resource in the application.

Fig. 8 shows how a QVM assertion can be used to check
that a resource is not shared by others, before it is being
disposed. The code fragment shown here corresponds to a
common idiom for disposing a resource by a dispose lis-
tener. This particular code fragment is taken from a fix we
introduced for the Azureus benchmark as described in Sec-
tion 7.1.

5.3.1 Discussion and Extensions
When assertions are not sampled, our approach is also ap-
plicable for reducing verification efforts by adding runtime
checks of heap properties. For example, establishing that
parts of the heap are disjoint may allow us to employ more
efficient verification techniques that abstract each part sepa-
rately.

The heap operations supported by QVM could be ex-
tended to provide a comprehensive runtime support for own-
ership (e.g., the release and capture operations of [32]).

6. Implementation
In this section we provide the implementation details of
object-centric sampling, as well as QVM clients of Sec-
tion 5.

6.1 Object-Centric Sampling
There are two key components to the efficient implementa-
tion of object-centric sampling. First is the ability to obtain a
single free bit in the object header, to enable efficient check-
ing of whether an object is tracked.

Once identified as a tracked object, QVM clients need
the ability to associate analysis data with an object. We
implemented this in QVM by creating an OBJECTINFO for
every tracked object. This ObjectInfo is then passed to the
client on all object-related callbacks so the client can lookup
or store data associated with the object (such as DFA state,
etc).

The mapping from object to ObjectInfo is performed via a
hashtable lookup. On allocation of an object, the correspond-
ing ObjectInfo is created and inserted into the hashtable; on
object death, they are removed. QVMI callbacks that require
access to the ObjectInfo obtain it by doing a hash lookup.



Probe Name Description
isHeap(Object o) Returns true if object o is pointed to by a heap object, false otherwise
isShared(Object o) Returns true if object o is pointed to by two or more heap objects, false otherwise
isObjectOwned(Object o1, Object o2) Returns true if o1 dominates o2, false otherwise
isObjectOwned(Object o) Returns true if the object pointed to by this dominates o, false otherwise
isThreadOwned(Thread ta, Object o) Returns true if ta dominates o, false otherwise
isThreadOwned(Object o) Returns true if the current thread dominates o, false otherwise
isUniqueOwner(Object root) Returns true if root dominates all objects in TC(root), false otherwise
isReachable(Object src, Object dst) Returns true if object dst is reachable from object src, false otherwise

Table 2. QVM heap probes. We use TC(o) to denote the set of all objects that are transitively reachable from o.

An alternate implementation would be to reserve a word
in the object header to point to the object’s ObjectInfo. While
this provides faster lookup, it is not necessarily the supe-
rior design because it reduces locality by increasing object
size, and this overhead is regardless of the sample rate. A
hashtable lookup is significantly slower, but the hashtable
lookup is performed only for sampled objects; the inlined
fast path only checks the tracked bit in the object header. So
although the hashtable implementation is slower for tracked
objects, it allows a lower base overhead that converged upon
when the sample rate is reduced. Because the goal of QVM
is to target low-overhead scenarios, the hashtable design was
chosen.

6.2 Typestate Client
Upon VM startup, the typestate module loads all of the user
supplied properties, parses and stores that information in its
own internal data structures. The typestate module then reg-
isters itself with the runtime via the QVMI.registerClient
call.

On method compilation, the QVMI interface is called by
the JIT via the isTrackedAlloc and isTrackedCallSite
functions to determine whether instrumentation is needed for
allocations and calls. These functions return a value of type
TrackLevel. This type can take on one of three totally or-
dered values: NEVER (the minimal value), SOMETIMES and
ALWAYS (the maximal value). All of the registered QVM
clients are queried and the return result is computed by tak-
ing the maximal value from all of the client responses to
ensure that sufficient instrumentation is inserted.

QVM then adjusts the instrumentation based on the track-
ing level. If the tracking-level is ALWAYS or SOMETIMES,
QVM instruments the code with a callback to report the
event that occurred. In the case of SOMETIMES, QVM inserts
inlined logic to decide (during execution) whether the call-
back gets invoked, If the tracking-level is NEVER, no code
instrumentation is performed by QVM for the site.

For allocations sites marked with track level SOME-
TIMES, the inlined sampling logic consults the sampling
strategy for that origin (see Section 4.2). If selected for sam-
pling, the typestate allocation handler is called via the QVMI
allocEvent call. The handler creates its internal QVM

tracking structure for the allocated object, and marks the ob-
ject as tracked by setting a bit in the object header. Note that
there could be multiple tracking structures per-object (e.g.
the object is part of multiple typestate properties).

For method invocations tagged with SOMETIMES, the in-
lined code sequence checks whether the receiver is a tracked
object by checking the tracked bit in the header. This check
is executed even for inlined methods to ensure that callbacks
are not optimized away by the JIT. If the object’s tracked
bit is set, QVMI’s invocationEvent is invoked which
then calls the typestate invocation handler. The handler is
passed the receiver object, that object’s OBJECTINFO, and
the method that was invoked. This handler updates the track-
ing structure for each DFA the object participates in.

In our implementation for typestate, we have used the
object-centric tracking and sampling capabilities provided
by QVMI (Section 3.4) and have inlined check of whether
the object is tracked. This keeps overhead low by ensuring
that QVMI is invoked only for tracked (sampled) objects.
There are many other such property specific optimizations
that can be made. For example, if we know that the tracked
object is in an error state that will not be exited, QVM does
not need to invoke any other callbacks on this object.

On Object Death We have instrumented the garbage col-
lector to provide precise death events. Whenever an object
is detected to be unreachable during the sweep phase of
the collector, the collector calls the QVMI’s objectDeath
function. That function leads to calling the typestate mod-
ule’s handler for death events, where all object tracking in-
formation is freed (if the object is tracked), ensuring no
memory leakage. If the object is found to be in a non-
accepting state, an error is reported.

6.2.1 Collecting Typestate Histories
In typestate histories, we use a notion of “time” to record
when events occurred. We measure the time as the num-
ber of allocations performed by the program. To provide a
scalable and efficient implementation of global clock, each
thread maintains a local allocation counter, and these are
aggregated to a single global (approximate) time every 10
millisec. The precision of the aggregate global clock can be
adjusted by the user by changing the frequency of aggrega-



tion operations (at the cost of a performance hit when using
higher frequency).

6.2.2 Discussion
Although the typestate module is written as part of the VM,
it is completely isolated from the VM via the QVMI in-
terface; this interface can be used to easily write clients to
check properties other than typestate. By having access to
an unused bit in the object header bits, QVM is able to effi-
ciently perform object-centric sampling without needing to
store additional words in the object. Moreover, the ability to
precisely intercept object death events frees us from having
to rely on technique such as finalizers and weak references.

6.3 Heap Probes
In our platform, the underlying memory subsystem already
provides a stop the world mark and sweep, parallel garbage
collector, where the number of parallel marker threads is pa-
rameterized by the number of cores in the system. This mem-
ory system is highly tuned for performance and provides rich
synchronization functionality for controlling the application
and collector threads. Interestingly, such a setup, although
complex, contains many of the basic components necessary
to perform our probe evaluation. Hence, we implement our
heap probes by re-using and adjusting at key places much of
this existing machinery. Next we describe in more detail our
heap probe evaluation system.

Operation On system startup, a set of evaluation threads
Tm is created by the virtual machine, where |Tm| is the
number of cores. After creation, each thread tm ∈ Tm im-
mediately blocks. Upon probe invocation, the system un-
blocks all evaluation threads and each tm starts executing
the probe in question. At the abstract level, the basic exist-
ing graph traversal components are shown in Fig. 9. Each
component is parameterized by the evaluator thread tm. The
function trace() performs the transitive closure from the set
tm.pending. The only addition we made to the standard par-
allel tracing phase is the callback trace-step, which is fired
whenever a new reference is encountered. Each probe is free
to specialize this function. The set Ta denotes the set of
application threads ta in the system at the time a probe is
invoked. The function mark-thread() processes the contents
of each application thread stack but does not trace from it.
The function mark-object() marks the object if it is not al-
ready marked atomically. If it is not marked, it stores the
children of the object in the pending set of each evaluator
thread. Since this is a local operation, it is done without syn-
chronization. The function barrier() essentially waits for all
evaluation threads tm to reach it and then releases them. To
avoid clutter, we assume that all sets are initialized to ∅ be-
fore invoking the probe.

Probe is-shared Fig. 10 shows how the components of
a parallel garbage collector are used to implement the probe
is-shared() for a tracked object trackedo. For this probe,

trace(tm)
while (tm.pending 6= ∅)

remove s from tm.pending
for each o ∈ {v | (s, v) ∈ E}

trace-step(s, o)
mark-object(tm, o)

mark-object(tm, o)
atomic

if (o 6∈ Marked)
Marked ← Marked ∪ {o}

else
return

tm.pending ← tm.pending ∪ {o}

mark-thread(tm, ta)
for each o ∈ roots(ta)

mark-object(tm, o)

mark-threads(tm, T )
for each ta ∈ T

mark-thread(tm, ta)

Figure 9. Basic Components

is-shared(tm, trackedo)
tm.sources = ∅
mark-threads(tm, Ta)
trace(tm)
lock(allsources)
allsources ← allsources ∪ tm.sources
result ← |allsources| > 1
unlock(allsources)
barrier()

trace-step(s, t)
if (trackedo = t)

tm.sources = tm.sources ∪ {s}

Figure 10. Shared from heap

a special case needs to be addressed in order to compute a
sound result of the probe when heap traversal is done in par-
allel (such a case does not exist in the sequential traversal).
The special case is the following: it is possible that with par-
allel evaluator threads, two or more parallel evaluators tm
reach object o only once. In that case, we need to make sure
to combine the results of all of the evaluator threads. Note
that in the case where a single evaluator reaches two or more
source objects pointing to o, the probe will return true with-
out needing to inspect what other threads have reached.

One solution is to synchronize the evaluator threads on
every trace-step() (e.g. by using a compare-and-swap
instruction for example). However, on many processor ar-
chitectures this would have a negative effect on performance.
To avoid this, each parallel thread records the set of sources



pointing to o that it encounters in trace-step(). Note that this
is a local operation and requires no synchronization. Upon
termination of its tracing phase each tm updates a global
set allsources under a lock. If there is more than one ob-
ject in that shared set, we return true, otherwise we return
false. For clarity of presentation we have omitted some im-
plementation details from the figures. For example, in the
implementation, both local and global (i.e. allsources) sets
of sources are of size two and we stop recording sources
once that size is reached for the local set in trace-step().
Next, before agreeing on a global value of result and return-
ing, the threads again synchronize via a call to barrier(). We
have also omitted key portions of the runtime system such as
load-balancing, a key technique in parallel collectors. Such
techniques are completely orthogonal to our implementation
and can be added without affecting the code for the probe
evaluation.

6.3.1 Optimizations
We are currently working on various optimizations to our
system including evaluating multiple probes in parallel, con-
current evaluation of probes and heuristic optimizations via
write barriers with techniques similar to those described in
[33]. Such an optimized implementation of heap probes and
its evaluation remains a topic of future work.

7. Experimental Evaluation
In this section we experimentally evaluate QVM.

7.1 Typestate Monitoring
7.1.1 Methodology
In our experiments we focused on typestate properties that
correspond to resource leaks. We monitor leaks of SWT re-
sources and of IO streams. In these experiments the goal was
to see if we can detect typestate violations that occur over an
extended period of time. It is likely that massive leaks would
have been detected and fixed in the testing phase, and there-
fore what we expect to find in these experiments is mostly
a small number of leaks that accumulate over time. For that
purpose, we used a range of applications on a regular basis
to perform our daily tasks.

Some of the applications considered are an instant-
messenger (goim), newsfeed readers (feednread, rssowl),
file management utilities (virgoftp, jcommander), large IBM
internal applications, etc. For all of these applications our
strategy was to simply run them over QVM and record the
reported errors. In some of our experiments we investigated
each report manually, diagnosed the causes of the errors, and
implement fixes. This was an important exercise for evaluat-
ing and refining the debug information we collect (e.g., the
typestate history).

Application SWT IOStreams High Fixed
Resources Frequency

azureus 11 0 4 5
etrader 17 0 2 0
feednread 1 7 0 0
goim 3 0 1 3
ibm app 1 0 0 0 0
ibm app 2 3 2 0 0
jcommander 9 0 0 0
juploader 0 1 0 0
nomadpim 2 0 0 0
rssowl 8 3 0 0
tvbrowser 0 5 0 0
tvla 0 4 0 0
virgoftp 6 0 0 6
Total 60 22 7 14

Table 3. Sources of typestate violations in our application
For every application, we indicate the number of sources that
are executed in a high-frequency (corresponding to critical
leaks).

7.1.2 Applications and Results
Table 3 summarizes the number of sources of typestate vio-
lations found in our applications. Rather than counting the
number of objects that violate the property, we count the
allocation sites in which such objects were allocated. This
is a more objective measure of the number of bugs in the
program than the number of objects exhibiting the violation
which usually depends on the duration of program execu-
tion. In order to measure the significance of a violation, we
record whether it occurs frequently in the program execu-
tion. In some of our experiments we took the effort to inves-
tigate the errors and come up with appropriate fixes. Column
fixed in the table reports the number of fixes we have intro-
duced and tested.

Azureus Azureus [8] is a Java implementation of the Bit-
Torrent protocol. It supports several modes of user interac-
tion, all implemented using SWT. Azureus is the #1 down-
loaded Java program from SourceForge, and has more than
160 million downloads to date. Using QVM we were able
to detect 11 sources of resource leaks in this application. We
fixed 5 of these and reported them to the Azureus develop-
ment team. The reports were confirmed by the development
team, and the fixes were incorporated into the codebase.

At least 4 of the reports correspond to leaks that were
occurring rather frequently. One particularly high-frequency
case was a method Utils.getFontHeightFromPX(...)

that was allocating a Font object in order to compute font
height and was not properly disposing the Font object upon
its return. This method is frequently called and resulted with
thousands of leaking fonts even for short executions. This
method was very likely created by copying another method
in the class that has similar functionality but returns the
Font object. Among our other fixes, we fixed the frequently
leaking method getFontHeightFromPX(...) and our fix
was incorporated into the Azureus codebase.



Another fix in Azureus required the addition of a dispose
listener that properly disposes of an Image object. This leak
was not very frequent, but it would leak an image whenever
a certain panel would be displayed (image is created in the
VivaldiPanel.refreshContacts(...) method).

Eclipse Trader eclipseTrader is an SWT application that
provides a framework for building an online stock trad-
ing system. eclipseTrader uses a frequently-updating UI to
present streams of stock information, and as a result may
be particulary sensitive to resource leaks. Using QVM, we
detected 17 sources of resource leaks.

Our count of violation sources represents a lower bound
on the number of places that have to be modified for in-
troducing a fix. This is in part due to the fact that we are
counting the number of allocation sites and not the alloca-
tion sites in context. When a common method (such as a
factory method) is used to create objects that violate a prop-
erty in many contexts, we only count this as a single vio-
lation. Specifically, for eclipseTrader, there are several allo-
cation sites that are used in different contexts. For example,
the method Settings.getColor(Color) returns a new
Color object, and is used in a large number of contexts that
fail to properly dispose the color. We count this method as
a single violation source that occurs with high frequency
(there are tens of thousands leaking objects that are allo-
cated in this method in a typical execution of eclipsetrader).
In general, counting the number of violation sources has to
be done carefully as the sources are not necessarily indepen-
dent. For example. a whole sub-tree of components may leak
due to a single missing dispose operation on the parent of the
tree.

Feed’N Read feednread is an open source newsfeed reader.
In this news reader, the SWT resources are mostly properly
managed. There are some resources that are not disposed
before the program exits, but these are resources that are
supposed to be live throughout program execution by design.
Although QVM reports these as violations, we do not count
them here as violation sources because this seems to be
acceptable treatment of such resources (resources will be
returned to the OS anyway when the application terminates).
feednread seems to have some minor problems in properly
closing IO streams when managing archived feeds.

GOIM GOIM [1] is an Instant Messaging client based on
the open source Jabber/XMPP protocol. We used GOIM run-
ning on QVM to communicate between team members for
a few days. Over the course of our evaluation, we detected
3 sources of leaks and introduced fixes to all of them. We
tested our fixed version of GOIM and confirmed that all pre-
viously reported leaks have been resolved.

The fixes we introduced in GOIM were rather involved
as we had to add new disposal code in places where no such
code existed. Our fixes therefore involved introducing new

dispose methods as well as making sure that calls to these
methods are propagated properly.

IBM Applications We used QVM to run a development
version of a large scale IBM product on a daily basis for
a period of a few weeks. For this application, no problems
were reported by QVM. This is not surprising as the devel-
opment team is putting a lot of emphasis on preventing the
kind of leaks we are tracking.

We used QVM to run a development version of another
smaller IBM tool that makes heavy use of SWT. For this
application, we found 5 source of violations. The leaks are
associated with user actions like opening a new file.

JCommander JCommander is a multi-platform file man-
ager. For this application we found 9 sources of violations.

JUploader JUploader is a small application that uploads
images to Flickr. Its UI is very basic and only involves
a few SWT resources. For this application we found a
single source of leaks causing the rather frequent leak of
EventOutputStream objects.

Nomad PIM Nomad PIM is a personal information man-
ager. It has a rather involved SWT interface. For nomad we
found 2 sources of violations.

RSS Owl RSSOwl is an RSS newsreader. Running RSSOwl
on QVM, we find 8 sources of SWT leaks and 3 sources of
IO Streams leaks.

TV Browser TV Browser is na electronic program guide.
For this application we found 5 sources of leaking streams.

TVLA TVLA [26] is a parametric program analysis frame-
work. Running TVLA with QVM we find two input streams
that are not closed by the parser processing input files, and
two streams that are not closed when producing the analysis
output. These are very low frequency leaks that only create
one leaking object per execution of the analysis engine.

VirgoFtp VirgoFTP is a multi-platform, graphical FTP
client written in Java using SWT. For this application QVM
reported 6 sources of leaks. We introduced fixes to all of
these leaks, and tested that the fixed version resolves them.

One source of a low-frequency leak in VirgoFTP is a
typical pattern that repeats across many SWT applications.
Changing the color/font preferences in an application often
causes the leak of the previous colors/fonts used. These kind
of leaks occur in such a low frequency that programmers
are very likely choosing to ignore disposal of resources in
this case. Fixing this simple problem in VirgoFTP was rather
complicated because the code was completely non-prepared
for handling these leaks. In order to fix these leaks we had to
employ a rather significant refactoring of the code.



7.1.3 Overhead Evaluation
Methodology For overhead measurements we use the
SPECjvm98 and Dacapo benchmark suites.1 The bench-
marks were configured to run for roughly one minute to
create a reasonable usage scenario, and total time was mea-
sured. 20 runs of each benchmark were used to reduce noise.

We created a set of representative typestate properties that
incur a significant overhead. We instrumented classes such
as Java Collections, Enumerations, Vectors, and Streams.

Results Figure 11 reports the overhead of the typestate
monitoring client when applied to our benchmarks suite with
a range of overhead budgets (5%, 10%, and 20%). The right-
most bar for each benchmark shows the overhead when the
typestate client is applied exhaustively, ie, without sampling.
The leftmost bar shows the base overhead (as described in
which represents the base checking overhead that is incurred
when no sampling takes place (see Section 4.1).

The overhead incurred when checking these typestate
properties exhaustively is high (up to 10x slowdown, with 7
of the benchmarks over 2x slowdown). Heavyweight prop-
erties that introduce frequent callbacks were selected inten-
tionally to allow us to evaluate the effectiveness of the sam-
pling infrastructure.

The base overhead (leftmost bar) is low, at most 2.5%.
Having the base overhead be low is critical, as this is the
overhead that is the lowest overhead that can be achieved
when sampling is disabled.

The middle three bars show overhead incurred when
QVM was run with a specific overhead budget. Although
there is some fluctuation in the overhead achieved, it is gen-
erally quite close to the requested budget. Achieving ac-
curacy at this level is quite challenging because the whole
process takes place online and within a single execution of
the benchmark. These results demonstrate not only the over-
head monitor’s ability to measure the overhead introduced,
but the overhead controller’s ability to keep the overhead
close to the desired budget.

Figure 12 shows an example of the overhead manager
adapting the overhead of the typestate client online for
the javac benchmark and a 10% overhead budget. The x-
axis shows time in seconds, and the y-axis shows percent
overhead, as measured online by the QVM overhead mon-
itor. The spike around 0.5 seconds occurs because there is
some lag before the overhead monitor can react and reduce
the sample rates. However, once the controller throttles the
tagged objects at the hot allocation sites the overhead con-
verges on the desired budget of 10%.

The goal of QVM is not just to have low overhead, but
to collect as much useful information as possible within the
overhead budget. The sampling strategy employed by the
overhead manager (see Section 4.2) strives to distribute the

1 Jython and xalan were excluded from the study because they do not
run properly on the developmental version of the VM used for this work
(independent of the QVM modifications).

Figure 12. Overhead over time

Figure 13. Allocation Site Coverage: Percentage of alloca-
tion sites (of tracked types) that allocate at least one tracked
object.

samples across the allocation sites in the program, to help
find bugs that may occur in cold code. Figure 13 compares
the coverage of allocations sites achieved with 5% budget
when using origin-specific sampling, as well as global sam-
pling, where all sites are sampled equally. Origin-specific
sampling enables nearly 100% coverage for all benchmarks,
while global sampling misses a significant percentage of the
allocation sites for at least half of the benchmarks.

QVM is using sampling to reduce overhead so there is no
expectation that all objects will be tracked, however in many
cases the sampling mechanism allows the dynamic number
of tracked objects to be significantly higher than one might
anticipate. Table 4 reports the percent of objects allocated
(of the tracked types) that are sampled to be tracked by the
typestate monitor.

Consider the program javac. Previously in Figure 11 we
saw that our example set of typestate properties introduces



Figure 11. Overhead with budget

Overhead Budget
Benchmark 1% 2% 5% 10% 20% 50% 100%
db 100 100 100 100 100 100 100
mpegaudio 98 100 100 100 100 100 100
jess 63 76 85 87 95 100 100
jack 22 37 45 52 71 100 100
javac 0.4 1 4 9 31 41 49
compress 100 100 100 100 100 100 100
mtrt 39 46 66 83 90 93 94
antlr 13 19 34 68 67 92 98
eclipse 4 7 12 28 44 66 67
luindex 5 51 79 97 99 99 100
hsqldb 7 13 16 30 43 31 75
chart 40 64 85 88 93 94 97
fop 47 70 42 66 100 100 100
bloat 100 100 100 100 100 100 100
pmd 81 99 99 99 99 100 100

Table 4. Object Coverage: Percent of allocated objects (of
tracked types) that are selected by QVM for typestate moni-
toring.

overhead of around 970% when checked exhaustively. How-
ever, Table 4 shows that with an overhead budget of 100%
slowdown (more than a factor of 9 less than the exhaustive
slowdown) 49% of the objects allocated (of tracked types)
were still selected for tracking. This can be explained when
a relatively small number of objects contribute significantly
to the overhead; once sampling at these sites is throttled, the
number of remaining allocations that can be tracked within
the overhead budget may be large.

Some benchmarks (db, compress, bloat) report 100% for
all overhead budgets because their exhaustive overhead for
the typestate properties we selected is below 1% (see Fig-
ure 11).

7.1.4 Discussion
Wrapper Streams For a large number of applications
QVM reports violations of stream types that do not hold
real resources but violate the contract of the InputStream
and OutputStream API specification. An example that
is widely reported by QVM is the LEDataInputStream

from the package swt.internal.image. This stream is a
wrapper around an InputStream and is often not closed
because closing the wrapper closes the underlying Input-
Stream. In many cases, the underlying stream outlives the
wrapper stream and is therefore closed directly without ever
invoking close() on the wrapper stream.

In addition, streams such as ByteArrayInputStream

and ByteArrayOutputStream are simply wrappers around
a byte array. Invoking close on such streams has no effect
(although it is required by the streams API in principle), and
programmers therefore avoid this redundant method call.

We do not consider these to be real violations and do not
include them in our QVM reports.

Library Objects vs. Application Objects Our initial speci-
fication for SWT resources was not the one shown in Fig. 6.
Our initial specification required that dispose() be in-
voked on every SWT Widget, as this is the public method
that an application code can invoke to dispose a resource.
However, in SWT, widgets are arranged into an ownership
structure in which a widget may have a parent that is respon-
sible for its disposal. When the parent is disposed, it dis-
poses all of its children, but instead of invoking the (public)
method dispose to do so, it directly calls the (protected)
internal method release. We therefore had to refine our
specification to be aware of the internal library implementa-



tion and the fact that an SWT widget could be also released
by an invocation of release that originates in library code.

Additional refinement of the specification is required to
avoid objects that are allocated in the library for internal
library use, and their lifetime is not managed (and should
not be managed) by the application. For example, Font
objects allocated by the static method Font.gtk new() are
managed by the library.

7.2 Assertions and Heap Probes
Evaluating local assertions and heap probes on realistic
benchmarks is a nontrivial task, as it requires that we de-
vise meaningful assertions for each benchmark. Currently,
we evaluated assertions and heap probes on a number of
synthetic benchmarks and demonstrated that the overhead
manager works as expected for these benchmarks. Since
these are synthetic benchmarks, the measured numbers are
rather arbitrary and we therefore do not report them here.

We have also evaluated heap probes in a single bench-
mark — SPECJbb2005. For this benchmark, heap probes
were inserted on fairly frequently executed instructions, thus
when run exhaustively caused significant slowdowns (on the
order of 100x). However, when running the system with an
overhead budget of 10%, the overhead manager success-
fully achieved an overhead of 10.5% by sampling the heap
probes. Furthermore, with 10% overhead, QVM provided
100% coverage of the probe sites.

8. Related Work
Aspects and Monitoring Dynamic tools such as Trace-
matches [3], and MOP [12] are able to detect violation of
typestate properties, and in particular detect resource leaks.
For example, in [12], JavaMOP was used to successfully de-
tect a number of resource leaks in Eclipse. These tools ex-
tend aspect-oriented programming with the ability to specify
declarative patterns against the history of the program, rather
than against single events as in traditional aspects. Optimiz-
ing the performance of code generated from these declara-
tive specifications is a challenging task and is currently an
active area of research. In [7], the authors concentrate on dy-
namic optimizations that only consider the specified declara-
tive pattern and not the program on which it is applied. Such
optimizations include avoidance of memory leaks and bet-
ter representation of the typestate automata. Alternatively,
in [10], the authors take the program into account and per-
form static optimizations, e.g., removing unnecessary instru-
mentation points from the program. Unfortunately, despite
these optimizations, there are cases where the overhead is
still unacceptable for some properties. In [9], the authors
propose two techniques: spatial and temporal partitioning.
In the first optimization, assuming multiple users of the ap-
plication, the instrumentation points are partitioned into sets
optimizing the per-user overhead. However, it is still possi-
ble to partition the points in a way that some set has a hot

point. The second optimization spawns a monitoring thread
which can switch the instrumentation on and off at various
times. The intervals defining when the point should be on or
off are predetermined off-line and given to the thread as pa-
rameter. It seems that our approach of automatically adjust-
ing the overhead online for a particular set of control sites
will be beneficial to the second optimization.

Sampling for Scalable Monitoring Previous work has fo-
cused on low overhead techniques for sampling instrumenta-
tion [4] and collecting such profiles in bursts [14]. However
these techniques turn sampling on and off based on time or
code execution frequency, and do not support a technique
such as our object-centric sampling.

In the cooperative bug isolation (CBI) project [27], the
overhead of monitoring program execution is mitigated by
using sparse random sampling and collecting information
from a large number of users exercising the code. Collabora-
tive techniques could be combined into QVM to collect ap-
plication errors from a wider group of users. We believe that
the ubiquity of QVM provides a natural channel for wider
adoption of CBI-based techniques.

Typestate Verification and Static Leak Detection A num-
ber of sound static tools target detection or prevention of
memory and resource leaks [23, 15, 16, 21, 19, 35]. Some
tools specifically target detection of SWT resource leaks
[28], and others target automatic generation of resource
management code [17]. In principle, most of these ap-
proaches are capable of detecting cases where an object
is leaked or double disposed. In practice, however, these
approaches do not scale to industrial-sized applications, and
produce a large percentage of false alarms. In addition, some
of these approaches either require additional (potentially
cumbersome) annotations or restrict the class of programs
that may be written, e.g. by restricting aliasing [15, 21].

Heap Properties Mitchell [30] provides concise and in-
formative summaries of real world heap graphs arising in
production applications. The summaries are done offline and
follow a set of useful heuristical patterns for summarizing
graphs. In contrast, our goal is to check various user spec-
ified heap properties online. Subsequent work by Mitchell
and Sevitsky [31] study offline heap snapshots with the goal
of finding inefficiencies in memory usage enforced by a par-
ticular program design.

Chilimbi et. al. [13] provide a two-stage framework suit-
able for testing, where in the first stage a set of likely heap
invariants based on node degree are computed at a small
number of program points. Then the instrumented program
is executed and checked against these invariants and a bug is
reported if a deviation is observed.

Various works have relied on the garbage collector to find
memory leaks. Jump et al. [24] use the collector to help in
suggesting potential leaks. Bond et al. [11] studies efficient
leak detection for Java. Similarly to us, they make use of



available bits in the object header and the adaptive profiling
techniques from [22] applied on object use sites, in order to
reduce the space and time overheads. We see these advances
as potential QVM clients, which could manage the overall
overhead for them. In a recent paper by Aftandilian et al. [2],
the authors suggest the idea of piggybacking on an existing
garbage collector in order to check various heap properties.
They propose two of the assertions we consider here, namely
isShared and isObjectOwned, but have not implemented
these assertions and hence have not had the chance to study
the wide class of applications we have in order to see where
and how the assertions are practically used.

9. Future Work
The overhead manager stands at the basis of QVM. Our
current implementation uses simple strategies that work well
in practice, but do not guarantee any sort of optimality or
enforce provable bounds. In the future, we plan to investigate
how techniques from control theory can be used to provide
a robust theoretical foundation for the overhead manager.

While our preliminary experience with heap assertions
is promising, a thorough evaluation of these assertions is
required on two aspects: (i) the appeal of heap assertions to
programmers; (ii) the performance impact of heap assertions
written in practice. We plan to address these questions in
future work.
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