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Abstract
The number of programming tutorial videos on the web
increases daily. Video hosting sites such as YouTube host
millions of video lectures, with many programming tutori-
als for various languages and platforms. These videos con-
tain a wealth of valuable information, including code that
may be of interest. However, two main challenges have so
far prevented the effective indexing of programming tutorial
videos: (i) code in tutorials is typically written on-the-fly,
with only parts of the code visible in each frame, and (ii) op-
tical character recognition (OCR) is not precise enough to
produce quality results from videos.

We present a novel approach for extracting code from
videos that is based on: (i) consolidating code across frames,
and (ii) statistical language models for applying corrections
at different levels, allowing us to make corrections by choos-
ing the most likely token, combination of tokens that form a
likely line structure, and combination of lines that lead to
a likely code fragment in a particular language. We imple-
mented our approach in a tool called ACE, and used it to ex-
tract code from 40 Android video tutorials on YouTube. Our
evaluation shows that ACE extracts code with high accuracy,
enabling deep indexing of video tutorials.

Categories and Subject Descriptors K.3.2 [Computers
and Education]: Computer and Information Science Educa-
tion

Keywords Video Tutorials, Statistical Language Models,
Programmer Education

Example isn’t another way to teach, it is the only way
to teach. – Albert Einstein

1. Introduction
Programming tutorial videos teach programming by show-
ing the computer screen as a programmer walks through

pre-written code or writes code on-the-fly. Watching these
is similar to training by pair programming, and provides an
easy way to learn from the experience of others.

The number of programming tutorial videos on the
web increases daily. Video hosting sites such as YouTube
host millions of video lectures, while other sites such as
SlideShare and Coursera offer educational material on a
massive scale. Live streams of programming sessions are
also emerging as a valuable educational resource [1], lead-
ing to the production of even more programming video con-
tent. MacLeod et al. [10] recently investigated the efficiency
of on-line videos as a medium for communicating program
knowledge among developers and showed its advantages
over traditional text-based documentation.
Goal The goal of this work is to enable indexing of pro-
gramming tutorial videos by accurately extracting the code
that appears in them. Accurate extraction makes it possi-
ble to search for a video by understanding its content as a
whole, and to search inside a video, for the code of inter-
est. The ability to search tutorial videos has the potential
to revolutionize programming education, as well as to al-
low programmers to find explanations for specific pieces of
code during the development process. For example, imag-
ine a world where the integrated development environment
(IDE) includes an option to “find usages with tutorial walk-
through,” where a programmer can find explanations for spe-
cific APIs and code pieces. A search can take the program-
mer directly to the relevant part of the tutorial video, thus
effectively creating a “micro-tutorial video” focused around
a particular code or API. Indexing tutorial videos is also de-
sirable for referrals to semantically related content and tar-
geting of ads.

Automatic understanding of general video content is a
challenging problem [6]. In this paper, we target an easier
special case of this problem — where the content is known
to be textual, and is further known to be code in a given
programming language.
Challenges and Existing Approaches Extraction of code ar-
tifacts from videos is a hard problem. There are two chal-
lenges that make extraction and indexing particularly diffi-
cult: (i) code in tutorials is typically written on-the-fly, with
only parts of the code visible in each frame. Understanding



what constitutes a “code fragment” requires reasoning about
the code across multiple frames of the video. (ii) Optical
character recognition (OCR) is not precise enough to pro-
duce quality results from videos [9], especially in the face
of programming-specific settings such as varying font sizes,
colors, and annotations in an integrated development envi-
ronment (IDE).

Although there has been much research on automatic in-
dexing of videos, and on extracting text from videos [8],
most of it has focused on detecting small amounts of text
(e.g., captions, product labels, signs) in a video frame [9].
Many works have also dealt with OCR postprocessing,
where statistical language models [17] have been used to
improve recognition in a document [21, 24], but these do not
extend to videos nor to documents containing programs.

As a result, existing solutions for searching in program-
ming tutorial videos mostly rely on user-provided meta-data.
Our Approach We present a framework for extracting code
from programming tutorial videos. Our approach is based on
two key ideas to effectively extract this code: (i) Leverag-
ing cross-frame information to identify code fragments and
improve extraction accuracy, and (ii) Using statistical lan-
guage models [17] at several levels to capture regularities
found in code and use them to improve the quality of code
extracted from the video. Our approach combines base lan-
guage models (LM) that capture regularities at the level of
the programming language and are used across all videos, to-
gether with video-specific language models that capture reg-
ularities specific to each particular video. We use language
models to enable correction at the token level, line level, and
code fragment level. Our line-level model captures syntac-
tic information about the structure of the line in addition to
tracking token values. To train our base language models,
we use millions of code fragments obtained from GitHub
and other repositories.
Main Contributions The contributions of this paper are:

• A novel approach for indexing programming tutorial
videos by accurately extracting code appearing in the
video. Our approach uses statistical language models
(LM) at several levels: tokens, lines, and fragments, to
capture regularities in the code that are later used to im-
prove the accuracy of the extraction. A unique feature
of our approach is the use of a language model over line-
syntax to capture what constitutes a structurally valid line
of code.
• Our approach leverages the common case of (at least par-

tial) code repetition across multiple frames. By identify-
ing and aggregating similar frames, we can handle the
common setting in which code is written on the fly. By
training a video-specific language model, we can han-
dle cases where certain frames are particularly noisy, and
cases where the text in a frame is partially obstructed
(e.g., pop-ups).

• An implementation of our approach in a tool called ACE

and an experimental evaluation on 40 real-world pro-
gramming tutorial videos. Our evaluation shows that ACE

extracts code with high accuracy.

2. Overview
In this section, we provide an informal overview of our
approach using an example.

Consider a programming tutorial video such as “An-
droid Tutorials 61: Broadcast Receivers” (https://www.
youtube.com/watch?v=b7P6XIsSoog) in HD 720p qual-
ity. Given this video, the goal of our approach is to extract
and index the code that appears in the video, while ignoring
parts of the video that do not contain code. In this simple
example there is a single code fragment that can be fully
observed in a single frame, but we would like to extract code
even when different portions of the code appear in multiple
and different frames across the video.

In addition, we would like to be able to navigate the
video to the point where the writing of a certain snippet
has started, even in the common case where the code is
written on the fly, and not all words of interest appear in
the starting video frame. The ability to navigate to the point
of the video where a certain explanation begins is important
if we want to present a programmer with an explanation of
how a certain functionality is used. The ability to navigate
between different code snippets that may appear in the same
video is important for presenting the programmer with a
semantic table of contents for a video.

In order to index and search a video, we must be able to
accurately identify the code in each frame, and also identify
which frames contain related code. To address these chal-
lenges, ACE first uses tailored video and image segmentation
techniques followed by advanced OCR to extract text from
video frames, and then uses our algorithms to process the
raw frames and extract code. Fig. 1 shows an overview of
our approach. Our approach uses statistical language models
to accurately extract code from the video. A base language
model is first trained on over a million code snippets to cap-
ture regularities in the programming language. This base
model is generic and is used as a baseline across all videos.
To account for information that appears in the video itself,
we train additional video-specific language models that help
correct one frame based on the information in other (related)
frames.

2.1 Extracting Raw Text

The first step in our approach is to extract raw text from the
video. This is done using the following steps.
Video Segmentation To identify the frames of interest out
of tens of thousands frames in a typical video, we first
preprocess each frame using image processing operations to
prepare it for later stages (e.g., image resizing, quantization,
and smoothing). We then use sampling to choose frames,

https://www.youtube.com/watch?v=b7P6XIsSoog
https://www.youtube.com/watch?v=b7P6XIsSoog


Figure 1: The architecture of ACE.

Figure 2: A frame extracted from example tutorial video.

and discard those that do not contain code (based on frame
segmentation).

The example video is 8:09 minutes long, at a frame rate
of 30 frames per second, leading to a total of 14, 670 frames.
After sampling the video uniformly and filtering frames that
do not contain potential code, we keep 50 frames.
Frame Segmentation To identify the region of interest (ROI)
in a frame, we identify the main editing window of an IDE.
Identification is based on segmentation of the image into
hierarchical containers, and finding the smallest container
that seems to cover most of the code in the image. Since the
code displayed in the video is usually written on the fly in
the IDE, completion suggestion popups may appear and hide
part of the editing window with text that is not part of the
code. These suggestions should be ignored. Fig. 2 shows a
single frame extracted from the example video. In this frame
we can identify the main editing window on the right. This
is the window from which we would like to extract code.
The figure also shows a popup that hides part of the editing
window and contains non-code text that will appear in the
OCR result if not treated carefully.
Text Extraction We use OCR techniques to extract the text
from the ROI (main editing window identified in frame seg-
mentation). This text is typically very noisy and the next
phases of our approach are required to turn it into read-
able code. We refer to the text extracted from each frame as
the raw text of the frame. Examples of snippets as extracted
from different frames using OCR are shown in Fig. 3. Our

goal is to extract “the best” code snippet that corresponds
to the extracted text. We use a simple classifier to identify
code written in the target language. The classifier is further
explained in Sec. 6.3.

2.2 Extracting Code from Raw Text Frames

The noisy text extracted via OCR implicitly defines a space
of code fragments: all the fragments that can be constructed
by “cleaning” and combining the extracted text. Our goal
is to find the most likely code fragments that can be con-
structed from the raw text of all frames. Towards that end,
we leverage two high-level ideas.
Cross-frame Information First, we find extracted text buffers
that contain similar text. The idea is to find frames with some
overlap, and use the aggregate information in the frames to
improve the extracted text. We use these similar frames to
train video-specific language models that are used to im-
prove the extracted text in each frame on the basis of the in-
formation in other (related) frames. As we show in the exper-
imental evaluation, even when the video is sampled sparsely,
there is still repetition in the text that appears across frames.
We use this repetition to overcome noise and obstructions
that vary between frames.
Finding Likely Code using Statistical Language Models
We then use three different statistical language models to
find the most likely code fragment that can be extracted from
the set of similar frames. These models are shown in Fig. 1 as
token model, line model, and fragment model. As we explain
later, while the token model captures token values (as is com-
monly done in statistical language models), the line model
captures the syntactic structures present in a line of code, and
the fragment model captures relationships between lines. In
other words, the line model and fragment model capture syn-
tactic information and not lexical information. Furthermore,
the line model captures the common syntactic structure of
a line of code. This is important because OCR works via
line segmentation, and handles every line separately. This
may lead to entire lines that are garbage due to noise (e.g.,
the first line in Fig. 3(b)) and should be discarded, or lines
where errors can be corrected at the line level (e.g., the first
line of Fig. 3(a)), which we explain next.

3. Background and Model
In this section, we provide a high-level formal model of the
problem.

3.1 Statistical Language Models

Given a programming language with an alphabet Σ, a lan-
guage model assigns a probability to each sentence in the
language Σ∗. Given a sentencew1, . . . , wm where eachwi ∈
Σ for 1 ≤ i ≤ m, we use PM (w1, . . . , wm) to denote
the probability of the sentence as assigned by the language
modelM . When the modelM is clear from context, we drop
the subscript and write P (w1, . . . , wm).
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Figure 3: Noisy raw text buffers as extracted from video frames by applying OCR. The string literal “Airplane mode Changed” is shortend
for presentation.
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package com.te.broadcasttutorial;
import android.content.BroadcastReceiver;
public class AirplaneReceiver extends BroadcastReceiver{

@Override
public void onReceive(Context context, Intent intent){

Toast.makeText(context, "Airplane mode Changed", Toast.LENGTH_SHORT).show();
}

}

Figure 4: Code Extracted by ACE.

The probability P (w1, . . . , wm) can be com-
puted using the chain rule, as P (w1, . . . , wm) =
Πm

i=1P (wi|w1, . . . , wi−1). In an n-gram model, the
probability of a sentence is approximated by only con-
sidering a bounded context of length n − 1. That is,
P (w1, . . . , wm) ≈ Πm

i=1P (wi|wi−(n−1), . . . , wi−1). For
example, in a bigram model, the probability of a sentence
is approximated by only considering a bounded context of
length 1, that is, P (w1, . . . , wm) ≈ Πm

i=1P (wi|wi−1).

3.2 Likely Corrections of Programming Tutorial Videos

Given a programming tutorial video V, our goal is to extract
all code fragments appearing in V, and record the frames in
which they (and their parts) appear.
Frames and Raw Text Buffers Formally, we define a video
to be a sequence of frames F1, . . . , FN . Using image pro-
cessing and OCR to extract the text from each frame pro-
duces a sequence of raw texts R1, . . . , RN where each raw
text is a buffer of characters.

Due to video compression, user interaction (pop-ups,
completions, cursor movements, etc.), and OCR artifacts,
the raw text is typically noisy, and is subject to various er-
rors. Formally, we consider token errors, and line errors. In
both cases, the error could be partial (e.g., part of the token
is incorrect, or the entire token is redundant).

It is easy to see that the raw text extracted from a frame
implicitly defines a space of code fragments—all code frag-
ments that can be extracted from the text by applying correc-
tion operations. The challenge is to find the most likely code
that can be constructed from the raw texts of all frames.

Token Variables In a raw text buffer, we tokenize the text
(split it into tokens) according to the lexical rules of the
target programming language. We then treat tokens in the
raw buffer as having an unknown value, and would like to
determine the probability of each token to have a certain
value.

For example, Fig. 5 shows the variables in a single sym-
bolic raw buffer with their values as seen in this specific text
buffer. Variables are numbered by the line number and the
token number in the line. When numbering variables across
frames, we add the frame number k such that vki,j corre-
sponds to the j-th token in line i of the k-th frame. We denote
by rki,j the raw value read at the position from the raw text
buffer. For example, the entry 〈v11,9, asttutorial〉 means that
the 9th token on the 1-st line of the 1-st frame contained the
value asttutorial.

We denote by P (vki,j = w) the probability that the j-th
token in line i of frame k should have the value w. Our goal
is to pick the most likely assignment of tokens for a given
frame. In cases where we have an observed value, we can
cast this problem as P (vki,j = w | a) where a is the actual
observed value.

One way to compute the most likely token assignment
is to pick token values using a base statistical model B for
common phrases in the programming language. For exam-
ple, considering Java, and a trigram model, the sentence
public static void is quite common. The base model
B represents common phrases in the programming language,
and is not specific to the current video being analyzed. As
expected, because the base model is generic, it cannot help
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Figure 5: The symbolic version (where tokens are turned into variables) of the text buffer from Fig. 3(a).

predict values of tokens that are specific to the video itself
(e.g., user class names, method names, variable names, etc.).
However, even a unigram base model can be useful in simple
cases where the observed value is close to a common value.
For example, PB(v11,1 = package|oackage) is very close
to 1.

Another approach is to pick token values that are likely
for the current frame, that is to maximize P (vki,j = w | Fk)
for a given frame Fk. However, a token value that is most
likely in one frame may not be the most likely when consid-
ering all frames. In particular, some frames may contain little
text (for example, when the first lines of the code are being
written on-the-fly), and thus do not provide sufficient con-
text for prediction. Considering a frame together with other
corresponding frames may result in significantly better pre-
diction.
Training a Video-Specific Language Model Given a se-
quence of symbolic raw buffers, our goal is to construct a
set of code snippets by assigning likely values to each to-
ken variable, possibly omitting certain tokes, and possibly
adding others. Towards this end, we construct a language
model M that captures common sentences in the video, and
use the model M (together with the base model B) to pick
likely token assignments for the video. Given the limited
structure of the problem, we proceed by computing the most
likely assignments for each line, and use those to compute
the most likely assignment for the entire code fragment. The
first step in the process is to find correspondence between
token variables of different frames, such that we can collect
the possible values for each token variable across frames.

4. From Video to Language Model

In this section, we describe how to train a video-specific
language model that can be used to correct the text of a
frame based on the text of other (similar) frames. The video-
specific language model is combined with a base model that
captures regularities in the programming language.

4.1 The Challenge

Consider the first line of the buffer in Fig. 3(a). The raw text
of this line is oackage (om.te.hroad(asttutorial;.
How should we correct the text of this line based on the
text of other frames in the video? What is the probability
that the first token is actually the Java keyword package?
What is the probability that the rest of the line is the qualified
package name com.te.broadcasttutorial?

We can approximate the answers to these questions by
constructing a statistical language model that is based on the
text buffers of the video. The standard estimation used in an
n-gram language models is based on frequency counts. That
is,

P (wi|wi−(n−1)−1, . . . , wi−1) =

count(wi−(n−1)−1, . . . , wi−1, wi)

count(wi−(n−1)−1, . . . , wi−1)
.

For example, considering a bigram model,

P (wi|wi−1) =
count(wi−1, wi)

count(wi−1)
,

we can naively treat the buffers of the video as a long
sequence of text, and train a statistical model over this text.
However, different frames of the video may contain similar
text, with different variations. We can leverage this similarity
to obtain a more accurate language model. In particular, if
we can find repeated occurrences of similar text, we can
train the model on the best representative of this text. That
is, rather than treating the buffers as independent pieces of
text, we can use correspondence of positional information to
identify corresponding repeated tokens, and use that to train
the model.

4.2 Finding (Near) Repeated Occurrences

Consider again the first line of the buffer in Fig. 3(a)
oackage (om.te.hroad(asttutorial;, and the first
token oackage. For simplicity, consider a unigram model,
in which we only consider the values of individual tokens.
Our goal is to find other frames that contain similar text, and



use those to find the most likely value for this token. To find
near-repeated occurrences of similar text, we take the fol-
lowing steps:

Step 1 - find corresponding frames: The first step of our
algorithm consists of finding frames that contain similar text.
Because the code in programming tutorials is mostly written
on-the-fly, it could be that certain frames only contain partial
code that cannot be parsed, and later frames in the video
contain a fuller version of the same code. Further, due to
video compression and user interaction (pop-ups etc.), the
ability to extract clean text varies between frames. Our first
step is to therefore find similar frames so we can leverage
repetition between the frames at later stages. For example,
the code fragments in Fig. 3 contain similar text.

Step 2 - find corresponding lines: Once we partition
the video into sets of similar frames, we identify cor-
responding lines that repeat across frames. The goal
is to identify repetition of lines (or partial lines) and
use the aggregate information to improve accuracy. De-
tecting repetition at the line level is natural and also
matches the way OCR extracts the text from the im-
age (which is done via line segmentation). For example,
the lines oackage (om.te.hroad(asttutorial; and
: backage com.te.broadcasttutorial; from Fig. 3
contain similar text and would be considered as correspond-
ing lines.

Step 3 - find possible values for tokens: For every token, we
collect all its possible values based on the raw texts extracted
from all frames.

4.2.1 Finding Corresponding Frames

To leverage repetition across frames, we first need to col-
lect all text buffers that have been extracted from frames that
contain similar potential code. Usually, these are neighbor-
ing frames, though they might sometimes be frames that are
far apart, as is the case for example, when the programmer
jumps between several different code fragments, or when the
code in some frames is hidden by a popup window.

Finding corresponding frames is actually a clustering
problem in which we wish to cluster together frames ac-
cording to the edit distance. To find corresponding frames,
we use the density-based clustering algorithm DBSCAN [4].
Given a set of points and distances between them, DBSCAN
groups points that are in proximity to each other and de-
tects the points that are in low density regions as anomalies.
DBSCAN requires 3 parameters:
• ε is the maximum distance between two points in which

they are considered directly reachable from each other. In
our case we set the value of ε to 0.55.
• minPts is the minimum number of points required to

form a dense region. In our case we minPts = 5, this
was set heuristically after probing several values.
• Distance function. In our case we use an edit-distance

metric normalized by the length of the shorter text. We

normalize the edit distance by the length of the shorter
text since changes to a shorter text are more significant
than changes to a longer one.
Finally, we remove clusters that do not contain enough

samples. In our experiments we set the threshold at 5% of
the total number of frames.

4.2.2 Finding Corresponding Lines

After creating sets of corresponding frames, we wish to
leverage the cross frame information. Our goal is to map
each token variable vki,j to all of its corresponding token
variables vk

′

i′,j′ (for k′ 6= k). Recall that k refers to the frame
number, i refers to the line number within the text buffer as
extracted from frame k, and j refers to the token number
within line i.

The next step in the process of finding corresponding
tokens is to find corresponding lines. Corresponding lines
are lines from different frames that seem to be occurrences
of the same line of code. That is, for each pair of k, i,we wish
to find all of its corresponding pairs k′, i′. The problem of
finding corresponding lines across frames can be viewed as
a problem of Multiple Sequence Alignment (MSA). Finding
the optimal solution for MSA with n sequences is known to
be NP-Complete. Therefore, we use a standard progressive
alignment construction method. A progressive method first
aligns the most similar sequences and then adds successively
less related sequences. Our heuristics for which text buffer to
align next is based on the normalized edit-distance function.
The next text buffer to align is the one with the lower edit
distance to one of the already aligned text buffers.

In order to detect anomalies within the set of aligned lines
(lines that were similar enough to be added to the alignment
but are far apart from the majority of the lines) we use the
DBSCAN algorithm. We apply DBSCAN on each set of
corresponding lines, with lower ε = 0.25 , and choose the
largest cluster as the set of corresponding lines. If the largest
cluster does not contain at least half of the aligned lines, we
do not consider it as a set of corresponding lines since it is
more likely that these lines are the result of noise.

4.2.3 Finding Possible Values for a Token

The first step in finding possible token values “as seen in the
video” is to find corresponding tokens. Given a set of cor-
responding lines, our goal is to find for each token variable
all of its corresponding token variables. Some of the lines
may be partial because of popups or because they have been
captured while the programmer was writing them. But aside
from partial lines, all corresponding lines in a set are similar
to one another.

Because OCR does not duplicate tokens nor change the
order of tokens within a line, we can split and then align cor-
responding lines to find corresponding tokens. We split each
line to tokens using a modified version of the programming
language lexer, modified so that it won’t crash due to OCR
mistakes. For example, after the original lexer identifies the



character " it enters comment lexing mode and expects to
identify another ", but as a result of the OCR process this
character can be either missing or redundant.

After splitting lines to tokens, we align all corresponding
lines. Typically, we deal with dozens of lines in each group
of corresponding lines, and therefore we use an adapted ver-
sion of a progressive multi-sequence alignment algorithm.
First we compute the distances between all lines, and start
by aligning the two lines that are most similar. Then we align
the rest, line by line, to those that are aligned. The next line
to be aligned is the one that is the most similar to any of those
that have already been aligned. Finally, we remove sets that
do not contain enough tokens since these sets are probably
garbage. This technique allows us to compute the frequency
counts required for building a language model.

5. Extracting Code from Video
In this section, we describe how we use the statistical lan-
guage models to extract code fragments from the video. We
use several generic base language models that capture regu-
larities in the programming language, as well as the specific
video language model constructed in Section 4.

5.1 Base Language Model

In addition to token values extracted from the video frames,
we also consider token values from a statistical language
model of the target language. The idea is that even if all
values for a token in the video are noisy (incorrect), we can
use similarity to other common tokens (in the language) in
order to correct it. This is particularly useful for keywords,
common type names, and common package names. Fig. 3
shows two raw text buffers as extracted from the video.
In snippet (a) we can see the raw value oackage, while
in snippet (b) the extracted raw value to the corresponding
token is backage. We create a set of all possible values
as seen in the video, including oackage and backage. Had
these been the only values in the video, the probability of this
token having the (correct) value package would have been
zero (or close to zero after smoothing). Although this is an
extreme (and not likely) example, it demonstrates the value
of combining our video-specific language model with a base
language model. We use a base language for Java, which we
train on over 1-million code snippets. In the unigram base
model, the token package is very common.

5.2 Line Structure Model

In addition to base language models for token values, we use
a language model that captures common line structures. This
model assigns probabilities to line structures based on token
types. In a sense, this model captures frequent line structures
permitted by the grammar of the language. We use PLS(l) to
denote the probability assigned by the line-structure model
to a given line structure l.

For example, our line structure model assigns a higher
probability to the line structure IMPORT ID DOT ID DOT

ID SEMI than to the line structure SUPER LPAREN ID

RPAREN SEMI. That is, a line that performs an import

from a package is more common than a line that calls the
constructor of a superclass with a single parameter.

Our goal is to find the most likely assignment for each to-
ken variable based on all the token variables in the same line,
possibly omitting or adding certain tokens. Hence, we need
to build the most likely line from the sequence of token vari-
ables. We use a statistical language model that captures the
distribution of line structures in the programming language.
We provide details on the training phase of the line structure
model in Section 6.

We choose the most likely assignment for each token by
trying to force structure on the entire line. The result of
this process is an assignment for each token variable in the
line, while a token variable can be removed and new token
variables can be added to the line according to the chosen
line structure. The algorithm used to force a line structure on
a sequence of token variables is described below. For each
line we keep the set of most likely line structures.
Forcing Structure on a Sequence of Token Variables Given
a line structure and a sequence of token variables with their
possible values, our goal is to assign a possible value to
the token variables, while possibly adding and/or removing
token variables. A line structure is a sequence of grammar
symbols.

We need to assign a token variable to each symbol ac-
cording to the language constraints. For example, to the ter-
minal symbol ’(’ we can only assign a token variable with a
possible value of ’(’.

According to these constraints, we choose the assignment
for each token variable. But a token variable can be matched
to more than one symbol; therefore, we choose the assign-
ment that maximizes the number of matched token variables.
Token variables that did not match any of the symbols are
removed, while symbols that did not match any of the token
variables are added.

For obvious reasons, if the added token variables are
not assigned any of the programming language operators
or keywords, the line structure cannot be forced on this
sequence of token variables. While certain token variables
can be assigned based only on the constraints, others —
identifiers for example— can still be assigned more than one
option.

Assignment of values to token variables is based on the
video-specific language model PV , and the base model for
the programming language. We assign values to tokens in a
way that maximizes the following equation for a given line l
containing words w1, . . . , wm:
PLS(l)PV (w1, . . . , wm) ≈ PLS(l)

m∏
i=1

PV (wi | wi−1).

Example Fig. 6 shows possible values for a sequence of to-
kens t1, . . . , t7. We can force these tokens into two possible
line structures from the statistical model:



t1 t2 t3 t4 t5 t6 t7
oackage om . te . asttutorial ;
backage com , , broadcasttutorial
package

Figure 6: Constructing a Line from Possible Values for Tokens

• the line structure PACKAGE ID DOT ID DOT ID SEMI

leading to package t2.t4.t6; with some choice for the
identifiers;
• the line structure ID LPAREN ID COMMA ID COMMA

ID RPAREN SEMI leading to t1(t2, t4, t6); with some
choice for the identifiers.

In this example the first structure requires neither removal
nor addition of tokens and therefore this structure will be the
one we choose to force. The assignment for tokens t1, t3, t5
and t7 was chosen based on the structure constraints, but we
still have to choose the most likely assignment for the rest of
the tokens in the line.

The assignment for t3 is chosen to be the only option te,
but t2 and t6 both have two options to choose from.

We first try to assign values based on a statistical lan-
guage model of token sequences. Using this model assigns
t2 with the value com since it is more likely to be seen in the
programming language. Finally, we assign the value broad-
casttutorial to t6 because it is the value that occurs most
frequently in the video.

It is important to note that the line model captures the
syntactic structures of a line of code. The decision is line
based and not statement based for two reasons: (i) OCR
works at the line level, and garbage lines can appear between
two lines that constitute the same statement, and (ii) the
displayed code may be partial and therefore statements may
be partial as well.

5.3 Fragment Level Model

The result of forcing line structure on each line can be more
than one possible assignment. We choose the most likely
line structure for each line based on a bigram model over
line structures. The result of applying ACE on the example
video is shown in Fig. 4. Note that this code fragment differs
significantly from the examples of text extracted by OCR as
shown in Fig. 3.

Forcing line structure on a sequence of token variables,
results in a set of possible lines. Our goal is to choose,
for each line, its most likely line structure in context. For
example, from the sequence of tokens + @ Override we
can create two line structures:
• + Override
• @ Override,

both of which require the same number of modifications.
Since the number of changes is the same, a naive method

would be to choose the assignment according to its proba-
bility in the line structure model. This naive method does

not consider the context. We would like to choose the most
likely assignment for each line on the basis of not only the
line structure but also of other lines in the same fragment.
To assign to each line its most likely structure in context, we
use a language model over line structures. We provide details
about the training phase in Section 6. We assign structures to
lines in a way that maximizes the overall probability.

6. Implementation
We implemented our approach in a tool called ACE (Auto-
matic Code Extraction). ACE is implemented as a series of
utilities that train statistical language models on a large num-
ber of code samples and extract code written in Java, from
programming tutorial videos that teach how to write code
for the Android platform. ACE is implemented both in Java
and Python and relies on OpenCV [3] for frame extraction
and image processing, on the Tesseract OCR library [18]
for text extraction, on scikit-learn [14] for clustering, and
on ANTLR [13] for parsing and lexing.

6.1 Android Framework

Programming tutorial videos explaining how to write code
for the Android platform are known for their popularity
on tutorial video hosting sites. These videos often show
more than a single programming language, for example,
files written in xml are often used by the programmer to
represent the application’s layout. This fact obligates ACE to
distinguish code written in Java, the target language, from
other programming languages.

6.2 Extracting Text Buffers from a Video

Extraction of text buffers requires several steps:
Video segmentation We extract frames from the video by
uniform sampling. In the future, we plan to employ more
advanced segmentation techniques, but these are orthogonal
to our approach.
Frame segmentation We identify the region of interest
(ROI) by first finding all the contours within the image. We
use Canny edge detection [3] and we apply a standard tool
for finding contours. Then, we choose the smallest counter
that seems to cover most of the code in the image as the ROI.
Finding the main editing window for every frame is compu-
tationally prohibitive and times impossible due to limitations
of image processing techniques. We therefore find the main
editing window in one of the samples frames and use its
position to extract code from all frames.

For each frame we identify pop-ups as contours that con-
tain non-code text (using a simple classifier further described
in Sec. 6.3), and we mask their content in the image to di-
minish their influence on the OCR result.
Text extraction We extract a text buffer from the main edit-
ing window using the Tesseract OCR library. We use OCR
with line-level segmentation, such that the extraction returns
a sequence of lines.



6.3 Identifying Instances of the Target Language

After extracting text buffers from a video, ACE must identify
those that contain potential code written in the target lan-
guage. We wish to identify text buffers that contain potential
code written in Java. A line of code in Java mostly ends with
one of these symbols: ; { }. ACE uses a simple custom made
filter that checks whether the majority of lines in the text
buffer contain at least one of the Java symbols ; { }.

6.4 Language Models: Training Phase

Millions of code samples that use Android libraries were ob-
tained from GitHub and other repositories, and were pro-
cessed into three statistical language models.
Token model. We transform every line of the snippet into a
sequence of tokens using the programming language lexer.
We process the sequences into unigram and bigram models
over tokens.
Line structure model. We transform each code snippet into
its parse tree. We use the leaves of the parse tree and split
them according to the lines in the code snippet. We thus
obtain a set of sequence of leaves per code snippet. We
manipulate the leaves that represent identifiers according to
the programming language conventions. For example, in the
Java programming language, identifiers that start with an
uppercase character are class, interface, and constant names
while variables and method names start with a lowercase
character. A sequence of leaves is our line structure. The
model computes the distribution of line structures in the
programming language.
Bigram over line structure model. We transform each code
snippet into a sequence of line structures as we did for the
line structure model. The model computes the probability to
observe the next line structure given the current one.

7. Evaluation
In this section, we report the results of our experimental
evaluation.

7.1 Methodology

To evaluate our approach, we consider 40 Android pro-
gramming tutorial videos in HD 720p quality taken from
YOUTUBE. We focus on HD quality videos because they
are very popular on video hosting sites, and the number of
such available videos is huge. Even with HD quality, direct
text extraction is insufficient for code indexing (as shown in
Fig. 3). It is important to note that our techniques also ap-
ply to videos of lower (and higher) quality. For SD videos,
the approach is typically accurate enough to pick up key-
words, but not for extracting complete code fragments. Our
techniques for consolidating code across frames, handling
code that is written on the fly, or handling obstructions due
to pop-ups are useful even with perfect extraction from a sin-
gle frame.

We watched each video and manually extracted the code
that appears in it. Transcribing the code from all videos took
several days.
Code in a Video A programming tutorial video may contain
multiple code snippets. Moreover, in many videos, even a
single snippet does not appear as a whole in a single frame.
When extracting the code from a video, we manually merge
all code that belongs to the same file into a single snippet. Of
course, when there are multiple different snippets in a video,
we do not merge them. This manual extraction of code from
the video gives us a “ground truth” to compare to.
Comparing Code vs. Comparing Text Given the manually
extracted “ground truth”, it is not clear how to compare to it.
Should the automatically extracted code be compared textu-
ally, for example, using character-level diff? This measure-
ment misses the fact that we are dealing with code.

We are interested in comparing the code extracted from
the video and not just text. Therefore, we evaluate the quality
of our results by comparing partial parse trees from the
extracted code to the parse tree of the manually extracted
code. The parse tree of the manually extracted code may be
partial as well, since the code snippets in the video may be
partial.

Note that we cannot assume that the extracted code can
be parsed as a whole; even a single line of the extracted code
might not be parsable. However, since we enforce a valid
line structure on each line, we already have a partial parse
tree for each.

Our comparison is therefore based on comparing the par-
tial parse trees obtained from the extracted code, with the
parse tree obtained from the manually extracted code. We
measure both recall and precision of our extraction by com-
paring tokens at the leaf level.
Video Sampling Method We uniformly sample video and
set a minimum number of samples. The fixed sample rate is
1 frame per 5 seconds, and the minimum number of samples
is 200. Therefore we chose the minimum between the fixed
sample rate and a calculated rate that will lead to the minimal
number of samples. This guarantees a minimal number of
samples.

7.2 Results

Table 1 shows the programming tutorial videos we used as
benchmarks, the number of code snippets extracted manu-
ally from the video, and the number of snippets extracted by
ACE. The column #Fr shows the number of extracted frames,
the column D the number of automatically detected snippets,
and the column E the number of additional detected snippets
due to over-splitting (where we failed to merge two snippets
despite them actually being parts of the same program).

The duration of the videos ranges between 1 minute and
30 minutes. The number of snippets in each video is rather
low (mostly 1) and up to 5 snippets. Note that we often count
a single snippet where different frames show different parts



Table 1: Programming tutorial videos and number of extracted
snippets using uniform sampling method. #Fr is the number of
extracted frames that contain potential code, S is the number of
actual snippets, D is the number of detected snippets, and E is the
number of extra snippets due to over-splitting.

Name Duration S #Fr D E
(M:S)

Android Eclipse.learn 1:18 1 170 1 0
30 -Color of TextView 3:56 1 201 1 0
Android Tutorial 23 4:06 1 173 1 0
Android Button 4:46 1 118 1 0
How To: Android 4:55 1 109 1 0
How to stream video 5:22 2 133 1 0
Android Tutorials 62 6:15 3 68 2 0
Android App. Dev. 6:59 1 168 1 1
Android Tutorial 64 7:00 1 54 1 0
Android Tutorial 19 7:28 3 143 3 0
Android Tutorial 29 8:03 1 104 1 0
Android Tutorial 61 8:09 1 50 1 0
Android Tutorial 63 8:45 2 84 2 0
Android Chronometer 9:05 1 164 1 3
How to read file 9:16 1 143 1 1
Android Create Menu 9:28 5 105 1 0
Android Tutorial 7 9:47 2 137 2 0
Android Tutorial 18 9:53 3 92 3 0
Fragment Tutorial 9:54 4 109 2 0
Android Tutorials 10:30 1 130 1 0
Android Tutorial 43 11:19 1 128 1 0
Android Tutorial 38 11:19 2 141 2 0
Android Tutorial 55 11:46 1 120 1 0
Android Tutorial 17 11:55 5 129 2 0
Delete Selected 11:56 1 163 1 1
Android Tutorial 13 12:02 2 154 1 0
Android Web View 12:03 1 98 1 0
Basic ListView Demo 12:54 1 135 1 0
Android Tutorial 48 13:16 1 99 1 0
Android Alert Dialogs 14:07 1 109 1 1
Android Tutorial 22 14:20 2 181 1 0
App in 15 minutes 14:39 1 80 1 0
Android Tutorial 5 15:06 1 124 1 1
File Read 15:19 1 161 1 0
41. Drag and Drop 15:28 1 156 1 1
Android Tutorial 36 17:03 3 134 2 0
Android Tutorial 21 18:00 3 151 2 0
Android Tutorial 68 21:35 2 174 2 0
Android Tutorial 72 25:14 2 260 2 1
Android Pure Java 30:44 1 107 1 0

of the same overall code. This shows the strength of our
approach in the ability to stitch together different parts of
the program that appear throughout different frames of the
video.
Snippets in Each Video Most of the videos we consider
contain a small number of code snippets around which the
tutorial revolves. In most videos, the code is written on the
fly. This means that different frames almost always show
different parts of the code (with some overlaps).

Figure 7: Recall and precision for varying thresholds.

In some videos, such as Android Create Menu, the
author created 5 snippets, but 4 of them contain the exact
same code, with the only difference being the class name of
the containing class. These files are only 3 lines long and
therefore were merged into the main snippet.

In Android 4.0 Tutorials - 22 (for short #22),
there are two snippets, but one of them is only used for refer-
ence, where the author jumps between the main code being
written and the reference snippet, which is only shown for
short periods. With the current parameters only the main
snippet is extracted.

In some videos, certain code fragments are shown for a
very short duration (less than 30 seconds), where the code is
being scrolled through and/or copied. In such cases, we may
not be able to extract the code (with the current extraction
parameters).

Split snippets: The code snippet in 41. Drag and Drop,
Android Tutorial 5, Android Chronometer, Delete
Selected, File Read and Android Alert Dialogs

was split into two separate code snippets, creating one extra
snippet.

Garbage snippets: Android App. Dev. had an extra garbage
code snippet. Android Chronometer had 2 extra garbage
code snippets, resulting in a total of 3 extra snippets.

Merged snippets: In some videos two code fragments were
merged into one; this happens in How to stream video

and Android Create Menu.
Recall and Precision We measure the recall and precision
of our extraction procedure by comparing the parse tree
leaves of the manually extracted code to the extracted tokens
and their grammar symbols. We evaluate the snippets in
the video that ACE detected. Recall stands for the percent
of correct extracted tokens out of the ground truth tokens.
Precision stands for the percent of correct extracted tokens
out of the extracted tokens. Tokens are correctly extracted
tokens if both the grammar symbol and value are correct.
For example, if the manually extracted code is:
public void onReceive(Context context, Intent intent){

with parse tree leaves (ID_l, ID_u representing identi-
fiers starting with a lowercase/uppercase letter respectively):
PUBLIC VOID <ID_l,"onReceive"> LPAREN <ID_u,"Context">
<ID_l,"context"> COMMA <ID_u,"Intent"> <ID_l,"intent">

https://www.youtube.com/watch?v=cHL5QEQc8z0
https://www.youtube.com/watch?v=QjQg8NkHGbw
https://www.youtube.com/watch?v=six59Ou_iyg
https://www.youtube.com/watch?v=d49PBvzEyjE
https://www.youtube.com/watch?v=uRI4PuxDuqg
https://www.youtube.com/watch?v=SiD77g9KfhA
https://www.youtube.com/watch?v=2ckHxjypdNo
https://www.youtube.com/watch?v=eKXnQ83RU3I
https://www.youtube.com/watch?v=V0LmKoGED58
https://www.youtube.com/watch?v=kIDo1VqPp10
https://www.youtube.com/watch?v=hjd-0zNQjzo
https://www.youtube.com/watch?v=b7P6XIsSoog
https://www.youtube.com/watch?v=sAhcSR1tm0M
https://www.youtube.com/watch?v=Ptho2yYZqTc
https://www.youtube.com/watch?v=8K_iPWpOqSo
https://www.youtube.com/watch?v=m-I2XgSlVp0
https://www.youtube.com/watch?v=VbJtqwb2CRs
https://www.youtube.com/watch?v=ovxwCf4vgEM
https://www.youtube.com/watch?v=gwOwL0-d3xU
https://www.youtube.com/watch?v=47_vKw5Att0
https://www.youtube.com/watch?v=K1eN40zcKB4
https://www.youtube.com/watch?v=eWArUlyVi8g
https://www.youtube.com/watch?v=4dJY2ke_fOM
https://www.youtube.com/watch?v=lLx5wqYQIHs
https://www.youtube.com/watch?v=1denogrbAhQ
https://www.youtube.com/watch?v=8NhbKILuqNs
https://www.youtube.com/watch?v=Uc9-JrEy8vw
https://www.youtube.com/watch?v=eAPFgC9URqc
https://www.youtube.com/watch?v=4m7zkXVoWu4
https://www.youtube.com/watch?v=NBXMoMB9-k0
https://www.youtube.com/watch?v=90HZKWx8Ex8
https://www.youtube.com/watch?v=8K_iPWpOqSo
https://www.youtube.com/watch?v=c16ATmOUbnk
https://www.youtube.com/watch?v=V5xQ4tMt-Dg
https://www.youtube.com/watch?v=L-bndS0Z4r8
https://www.youtube.com/watch?v=kYKFmClCQ2A
https://www.youtube.com/watch?v=iZA_TME3uRU
https://www.youtube.com/watch?v=3csKnAkiSzU
https://www.youtube.com/watch?v=ssHrIS4B6YY
https://www.youtube.com/watch?v=P-meEZjUTOQ


Figure 8: Percentage of line structures considered valid as a func-
tion of number of occurrences in the model.

RPAREN LCBR

and the code as automatically extracted by ACE is
public void onReceive(Context context){}

with parse tree leaves:
PUBLIC VOID <ID_l,"onReceive"> LPAREN <ID_u,"Context">
<ID_l,"text"> RPAREN LCBR RCBR

then, we will report that there are 4 missing tokens, and 2
redundant tokens. Hence, the recall for this line is 7/11, and
the precision is 7/9.

Fig. 7 shows the recall and precision with different thresh-
old values for the number of occurrences required for a line
structure to be considered valid in the language model. We
only consider a line structure as valid if it occurs more than
10, 000 times (the extreme points on the right), then we ob-
serve a recall of 66.025 and precision of 80.15. The recall is
low since we try to force wrong line structures on valid lines,
causing tokens to receive the wrong grammar symbol. How-
ever, if we consider any line structure that appears more than
once as valid, we observe a recall of 81.125 and precision
of 80.2. The recall is high because we consider more line
structures as being valid. The precision remains the same
because, as the threshold increases, so does the number of
lines that do not match any line structure. This in turn causes
both valid lines and garbage lines to be considered invalid.

Fig. 8 shows the percentage of different line structures
which are considered valid as a function of the required
number of occurrences in the model. 47% of the lines appear
more than once. Some line structures are very common and
occur tens of thousands of times. Fig. 9 shows the ten most
popular line structures in the model. Since programming for
the Android platform involves the plentiful use of libraries,
second and fourth place in the list are occupied by import
statements. Furthermore, the third, sixth and tenth place are
occupied by inheritance related statements, since Java is an
object oriented language that involves the massive use of
inheritance.
Extraction Times We measure the time required for process-
ing each video, which includes the time it takes to

• extract raw text from the video (this includes video pro-
cessing, image processing, and OCR);
• find corresponding frames;

• find corresponding lines;
• find possible values for tokens;
• force line structure;
• carry out fragment-level correction.

The first phase requires passing over all frames of the
video, sampling them, performing image processing, finding
the main editing window, handling pop-ups, and performing
OCR. On a typical video, the first step takes between 5 to
10 minutes. Our implementation is not optimized, and there
are many opportunities for parallel processing of frames that
could make this process significantly faster.

All other stages of processing take between 10 to 30
minutes, although in cases of extremely noise text it can take
up to a couple of hours to find corresponding tokens. This
is due to the naive alignment algorithm used and its non-
parallel execution.
Importance of Repetition We observe that correction based
on repetition of text between frames is effective. A typi-
cal line that appears in one frame repeats in 3 to 70 other
frames. Since videos typically show the code as it is being
written, there are some lines that only repeat partially be-
tween frames (as the line is being typed). Note that when
a line repeats between frames, it often appears in a com-
pletely different location on the screen, due to scrolling be-
tween frames, additional code being added above it, code
being removed above the line, etc. Our approach is designed
to find corresponding lines between frames to deal with such
cases.
Indexing ACE makes it possible to index programming tu-
torial videos. For each code snippet in a video, ACE detects
the frames that present the code snippet, even if it doesn’t
appear as a whole. As our ground truth we watched 3 videos
and manually extracted the time intervals in which each code
snippet appears. Then we compared the frames ACE detected
for each code snippet with the manually extracted intervals.
The samples ACE took are the elements for this test. The sam-
ples that belong to a code snippet interval are the relevant
samples. Relevant samples recognized byACE as belonging
to the correct code snippet are considered true positives, rel-
evant samples not correctly recognized are considered false
negatives and non-relevant samples detected by ACE as be-
longing to a code snippet interval are considered false posi-
tives. For example, pop-ups can cause a false-negative result
as ACE might fail to recognize a frame with pop-ups as be-
ing part of a code snippet interval. We evaluated ACE over 3
programming tutorial videos, each of which presents a dif-
ferent number of code snippets. Fig. 2 shows the precision
and recall results for each video. Recall equals 1 for each
video, meaning that every sample is recognized by ACE and
matched to the relevant code snippet. Precision is also high.
We thus conclude that ACE indexing is accurate.



Rank Structure Example
1 RBRACE }

2 IMPORT IDl DOT IDl DOT IDu SEMI import android.app.Activity;

3 AT IDu @Override

4 IMPORT IDl DOT IDl DOT IDu DOT IDu SEMI import android.view.View.OnClickListener;

5 PRIVATE IDu IDu SEMI private UUID Id;

6 PUBLIC CLASS IDu EXTENDS IDu LBRACE public class Configue extends Activity {

7 PACKAGE IDl DOT IDl DOT IDl SEMI package com.imps.activities;

8 PUBLIC IDu IDl LPAREN RPAREN LBRACE public UUID getId(){

9 PACKAGE IDl DOT IDl DOT IDl DOT IDl SEMI package android.speech.tts.location;

10 SUPER DOT IDl LPAREN IDl RPAREN SEMI super.setAltitude(altitude);

Figure 9: Top ten line structures.

Name #Snippets #RS #TP Precision Recall
Android Tutorial 55 1 115 97 0.84 1
Android Tutorial 68 2 176 163 0.93 1
Android Tutorial 19 3 149 143 0.96 1

Table 2: Recall and precision of ACE indexing. #RS is the number
of relevant samples and #TP is the number of true positive samples.

Standalone OCR indexing inefficiency We evaluated whether
videos could be indexed by simply applying OCR on sam-
pled frames. Though code snippets contain dozens of unique
tokens, applying OCR on sampled frames results in thou-
sands of unique tokens. This proves that stand-alone OCR
indexing is inefficient, with less than 1% precision.

8. Related Work
In this section, we survey closely related work.
OCR Post-Processing There has been a lot of work on
OCR post-processing. OCR technology itself is not precise
enough to produce quality results when extracting code from
videos [9], especially in programming-specific settings such
as code that is being written on-the-fly, varying font-sizes,
colors, pop-ups, and annotations in an integrated develop-
ment environment (IDE).

Tong and Evans [21] post-process OCR results using a
correction system that is based on statistical language mod-
eling. They use letter n-grams to correct a given word and
word-bigrams to correct a given sentence. Zhuang et al. [24]
post-process OCR results using n-grams and latent seman-
tic analysis language models to obtain both syntactic and
semantic information. Taghva et al. [19] remove “garbage
strings” from the OCR text using generalized rules that can
identify those strings.

Our approach can be viewed as an adaptation of OCR
postprocessing that can: (i) leverage cross-frame informa-
tion instead of working on a single document, and (ii) use
statistical models of a programming language, instead of a
natural language, and in particular, the common grammati-
cal structure for a line of code.
Extracting Textual Content from Videos Merler and Kender
[11] index presentation videos using the text in the displayed
slides. They extract the text directly from the video and use
textual changes to segment the video into semantic shots.

They apply image processing techniques to deal with low
image quality and do not use OCR post-processing.

Yang et al. [23] index lecture videos by first segmenting
them using slide structure analysis. They use OCR to extract
text from each frame, use spell checker to find correct ex-
tracted words, and then choose the extracted text containing
the most correct words. If two or more extracted texts have
the same number of correct words, they choose the one with
the lower word count, and if the texts contain the same num-
ber of words, they combine all correct words as the index.

These approaches target the setting of a slide-based lec-
ture, in which slide transitions typically lead to completely
different text being displayed. Further, they rely on proper-
ties of natural language (e.g., a spell checker in [23]) to per-
form error correction.

Hua et al. [7] use the concept of multiple frame integra-
tion to improve text recognition. They join blocks from mul-
tiple frames to create a clearer frame, and send it to the OCR
engine for recognition. Our approach also uses the concept
of multiple frame integration to improve extraction. While
Hua et al. improve text extraction by creating a clearer frame
as OCR input, our approach improves code extractions by
merging the OCR results. Our approach further enables the
merging of OCR results that contain different parts of the
same code snippet.
Error Correction in Parsers Our approach is also related to
automatic error correction in parsing [2, 20]. However, due
to garbage lines, the direct application of such techniques
seems to be rather challenging. In contrast to these tech-
niques, our approach relies on statistical models that perform
correction at the token level, line level, and fragment level.
Statistical Language Model for Programming Language
Hindle et al. [5] suggest that code can be usefully modeled
by statistical language models, and developed a code com-
pletion engine for Java using a trigram model that suggests
a next token.

Raychev et al. [16] build a statistical language model over
sequences of method calls created by applying static analysis
on a large codebase. This enables effective code completion
in the form of call sequences across multiple objects. In
contrast to statistical models that capture call sequences, we
use three different levels of models: one for tokens, one over

https://www.youtube.com/watch?v=4dJY2ke_fOM
https://www.youtube.com/watch?v=3csKnAkiSzU
https://www.youtube.com/watch?v=kIDo1VqPp10


syntax elements, capturing line structure, and one model
that captures regularities between line structures to represent
common structures of code fragments.

Tu et al. [22] show that many of the regularities in human-
written software are local. This observation is in line with
our experience and is one of the reasons that our simple
statistical models are sufficient for correcting code from
programming tutorial videos.

Nguyen et al. [12] use a statistical language model en-
riched with semantic information. This allows them to cap-
ture regularities beyond what can be captured via pure lex-
ical tokens. Our line-structure model is similar in nature to
their enriched statistical model, but also captures what con-
stitutes a valid line in the program. The focus on how code
breaks into lines is critical in the OCR setting, where seg-
mentation is line-based and entire lines may end up being
garbage due to noise.
Indexing Tutorial Videos Recently, Ponzanelli et al. [15] de-
veloped CodeTube, a Web-based recommender that supports
video tutorials for software engineering. They extract text
from tutorial videos using OCR and identify frames as be-
longing to the same code snippet by using an island parser
to locate a common Java construct in the frames. When the
parser fails due to noise, they use edit distance and image
similarity techniques. Our experience indicates that OCR
over frames of programming tutorial videos may produce
some useful matches, but overall yields very low precision.
Therefore, in contrast to directly applying OCR (that can
also be used for indexing), our approach performs accurate
extraction by using cross-frame information and statistical
language models.

9. Limitations
During our experiments, we observed some limitations of
our method, which we now describe.

Finding the main window: We rely on standard image pro-
cessing techniques to discover the main editing window
within an image. While these techniques are sufficient for
most videos, others, especially low quality videos, make it
difficult to find contours. Our method relies on the fact that
the number of potential code tokens in a single line is sig-
nificantly larger than the number of redundant tokens added
due to noise. In an IDE, there are several areas with no-
ticeable amount of text, for example the Package Explorer
View that contains names of files used in the project. Text
in these areas is usually small and multi-colored; applying
OCR on these areas will yield disproportionately noisy re-
sults as compared to applying OCR only on the main editing
window.

Unique fonts: While our method can handle splitting token
errors and character modifications within a token, it cannot
handle cases in which two or more identifier tokens are con-
sistently merged into one. Since our method forbids adding
an identifier token to a sequence of tokens in order to force a

certain structure, we cannot construct the appropriate struc-
ture when tokens are merged. For example, in some fonts the
character ’(’ is transformed to the character ’C’ when apply-
ing OCR. A modified version of the programming language
lexer, which we use to split lines to tokens, applied on an
OCR result from a video using this font will merge three to-
kens to one (e.g., A(B→ACB). In order to extract code from
these videos using ACE, the OCR tool should be trained on
the particular font.

Video quality: When extracting code from low quality
videos, standard image processing techniques struggle to
find the main editing window and the standard OCR tool
merges tokens and produces more noise than our method
can handle.

Glances at code: When the author jumps from one code
fragment to another without significant pauses, we cannot
differentiate between frames that contain code from ex-
tremely noisy frames. Our method relies on the repetitive-
ness of code in a tutorial video and therefore treats singular
code frames as noise.

10. Conclusion
We believe that video demonstrations and lectures are a
rapidly growing and important driver of programming ed-
ucation. In fact, the ability to extract and index this infor-
mation could already provide tremendous value to program-
mers by directing them to relevant and timely sources. This
work is a first modest step in the attempt to better leverage
this wealth of information.

We presented an approach for extracting code from
videos and indexing programming tutorial videos. We show
that precise extraction requires more than direct applica-
tion of OCR, and can be made possible by integrating tech-
niques from image processing, parsing, and statistical lan-
guage models (trained on “big code”).

Our technique extracts code directly from the video, and
is based on the following ideas: (i) consolidating code across
frames to improve accuracy of extraction, (ii) a combination
of statistical language models for applying corrections at dif-
ferent levels, allowing us to perform corrections by choos-
ing the most likely token, combination of tokens that form a
likely line structure, and combination of lines that lead to a
likely code fragment in the language.

We have implemented our approach in a tool called ACE,
and used it to extract code from 40 Android video tutorials
on YouTube. Our experimental evaluation shows that ACE

extracts code with high precision, enabling deep indexing
of video tutorials.
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