
The CLOSER: Automating Resource Management in Java

Isil Dillig Thomas Dillig
Computer Science Department

Stanford University
{isil, tdillig}@cs.stanford.edu

Eran Yahav Satish Chandra
IBM T.J. Watson Research Center, USA
{eyahav, satishchandra}@us.ibm.com

Abstract
While automatic garbage collection has relieved programmers from
manual memory management in Java-like languages, managing re-
sources remains a considerable burden and a source of performance
problems. In this paper, we present a novel technique for automatic
resource management based on static approximation of resource
lifetimes. Our source-to-source transformation tool, CLOSER, au-
tomatically transforms program code to guarantee that resources
are properly disposed and handles arbitrary resource usage pat-
terns. CLOSER generates code for directly disposing any resource
whose lifetime can be statically determined; when this is not pos-
sible, CLOSER inserts conditional disposal code based on interest-
reference counts that identify when the resource can be safely dis-
posed. The programmer is only required to identify which types
should be treated as resources, and what method to invoke to dis-
pose each such resource. We have successfully applied CLOSER on
a moderate-sized graphics application that requires complex rea-
soning for resource management.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.3.4 [Programming Lan-
guages]: Memory management (garbage collection)

General Terms Languages, Reliability, Verification

Keywords Resource Management, Interest Reachability, Logical
Liveness, Higher-level Resource, Resource Interest Graph

1. Introduction
While automatic memory management via garbage collection has
enjoyed considerable success in many widely-used programming
languages, such as Java and C#, there are a number of situations
where a programmer still needs to pay attention to timely resource
reclamation. Consider the code in Figure 1, where the underlined
code segments deal solely with resource deallocation. For example,
should the programmer forget to call socket.close() at lines
13 and 30—which apparently serve no functional purpose in the
application logic—there would be a leak of a socket resource in the
system. While the application-level socket object can be reclaimed
by the garbage collector when the encapsulating BufferPrinter

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ISMM’08, June 7–8, 2008, Tucson, Arizona, USA.
Copyright c© 2008 ACM 978-1-60558-134-7/08/06. . . $5.00.

1 class BufferPrinter {
2 private Buffer buf;
3 private BufferListener listener;
4 private Socket socket;
5

6 public BufferPrinter(Buffer buf) {
7 this.buf = buf;
8 this.listener = new BufferListener(this);
9 buf.addListener(listener);

10 }
11

12 public void setSocket(Socket s) {
13 if (socket!=null) socket.close();

14 this.socket = s;
15 if (!socket.isConnected())
16 socket.connect(...);
17 }
18

19 // Invoked by listener when buf is full. Writes buffer
20 // to socket (if present) and prints buffer on screen.
21 public void bufferFull() {
22 if (socket!=null)
23 socket.getOutputStream().write(buf.getContents());
24 Font font = new Font(...);
25 Util.displayMessage(buf.getContents(), font);
26 font.dispose();

27 }
28

29 public void dispose() {
30 if (socket!=null) socket.close();

31 buf.removeListener(listener);

32 }
33 }

Figure 1. Example illustrating resource usage patterns.

object becomes unreachable, the associated system-level resource is
not reclaimed until an explicit call to close() or at the end of the
application. Conceptually, a call to close() removes the system-
level socket from a “sockets in use” set. Omitting close() could
cause a long-running application that repeatedly opens sockets
to fail due to resource exhaustion. Graphics applications written
using, for example, Eclipse SWT need to manage limited system
resources such as fonts and colors in much the same way. For
example, in Figure 1, the dispose call at line 26 is necessary to
ensure that no font objects are leaked in the program.

The problem of timely resource reclamation is not limited just to
finite system-level resources. It occurs whenever an object that no
longer serves a useful role cannot be garbage collected because of
a reference from another longer-lived object. For instance, in Fig-
ure 1, the BufferListener object illustrates such an application

_in_use_sockets

…

socket

root

listener

observed
cache

…item

(a) (b) (c)
rootroot

observer

Figure 2. Logical lifetimes vs. Reachability. (a) Socket example.
(b) listener example. (c) hashtable example. Dotted lines show
the portion whose logical lifetime is over. Dashed links must be
removed to enable garbage collection of the logically dead portion.

specific resource. In this code, a Buffer object referred to by buf
is being observed by a BufferPrinter instance, which creates a
link from the buffer to a listener at line 9. The programmer is ex-
pected to explicitly remove the listener from buf when the lifetime
of this instance of BufferPrinter is over; otherwise the listener
object will not be garbage collected as long as buf is live. Without
the unlinking call at line 31, not only would the listener be dragged
along through the lifetime of the buffer, but also the instance of
BufferPrinter since the listener has a reference to it. (This is the
well-known lapsed listener problem.) A similar performance prob-
lem in long-running Java applications occurs when an object placed
in a global cache is not removed after its useful lifetime is over. The
cache then drags along this useless object, potentially for the entire
duration that the application is running.

Figure 2 shows a pattern common to all the above examples.
In each case, the object in question is reachable starting from
a root, which would prevent a reachability-based approach from
reclaiming the object. In each case, an explicit release operation is
required to remove a certain link to make the object unreachable,
and thus exposed to reclamation. (In case of sockets, removing
a system-level socket from the “in use” set is the equivalent of
reclamation.) However, to make such a release call requires the
knowledge that the object is not live in a logical sense: that the
relevant behavior of the application is unaffected if the otherwise
reachable object is reclaimed. For example, the count of items
held by a hash table that implements a cache could change after
the removal of an item, but typically a programmer would not
consider that a change in relevant program behavior. In the sequel,
by “resource”, we mean an object of a kind that requires an explicit
release in the manner described above; we call such release calls
“dispose” calls.

1.1 Limitations of existing approaches
Manual Management Asking programmers to place resource re-
lease operations in their code brings back some of the problems of
manual memory management. Bugs in placement of resource man-
agement operations are rampant: either because of releasing a re-
source too early, or perhaps more insidious, due to missing release
operations along exceptional or less frequently executed paths, re-
sulting in performance degradation. Furthermore, since reasoning
about object lifetimes is hard, programmers often adhere to ad hoc
design patterns, such as an “owner disposes” protocol often found
in graphics libraries. This results in a large number of resources
in the program because any object that can transitively reference a
primitive graphics object is now also treated as a resource. Con-
sequently, manual resource management code can unnecessarily
complicate program logic and distracts the programmer from her
main objective. The bug tracking system for Eclipse [2] shows nu-

merous cases of resource leaks in Eclipse’s GUI classes, most of
which are due to programmer’s confusion over dispose logic.

Finalization In Java, finalization invokes clean-up code when the
garbage collector determines the memory associated with a re-
source to be unreachable; one could, for example, write a final-
izer for socket to call the close() method. However, this strategy
suffers from several drawbacks. First, in current JVM implemen-
tations, finalizers may not be run until memory is low; but the ap-
plication may have run out of critical non-memory resources, such
as sockets, long before finalizers are run. Second, finalizers are, by
design, run asynchronously with respect to the application, mak-
ing them unsuitable for managing resources when the disposal of a
resource affects application semantics. This situation is very com-
mon in GUI code, where, for example, disposing of a widget also
removes it from a visible display.

Language-based Solutions Java allows programmers to declare
certain links as weak references, which are not considered reacha-
bility links by the garbage collector. For example, the link from a
cache to its constituent items might be implemented as a weak ref-
erence. While it works well for caches, where a premature disposal
of resource is not detrimental to application semantics, weak refer-
ences are clearly not a solution to every situation. In C#, a using
statement provides a scoped resource allocation construct to guar-
antee automatic resource disposal outside its scope [4]. This works
well for situations in which resources are used only in local scope,
but it is not a general solution to the problem of timely disposal.

1.2 Overview of our approach
Our approach is to automatically insert resource release calls in
an application, allowing programmers to only allocate resources
and not worry about releasing them. Our code transformation tool,
CLOSER, would, for example, synthesize all of the code underlined
in Figure 1; the only information required from a programmer is
which types to consider resources along with the corresponding
dispose calls. For the program in Figure 1, the programmer only
needs to annotate that the connect method of Socket requires a
corresponding call to close, that invoking addListener requires
a corresponding call to removeListener, and so on.

CLOSER is based on a static analysis of logical lifetimes of re-
sources. It first identifies which objects other than those already
declared as being of a resource type behave like “higher-level” re-
sources. These higher-level resources contain references to other
resources, and therefore require clean-up operations at the end of
their lifetime. For instance, in Figure 1, CLOSER would infer that
BufferPrinter is a higher-level resource; it would then synthe-
size a dispose method for it and invoke this dispose method at ap-
propriate points for every instance of a BufferPrinter class.

For tracking resource lifetimes, our analysis uses a new kind
of flow- and context-sensitive points-to graph, the resource inter-
est graph. The resource interest graph identifies memory locations
that must, may, or must-not correspond to resources. In tracking re-
source lifetimes, it takes into account when inter-object references
do or do not imply a logical interest. Based on sharing and lifetime
information obtained from the resource interest graph, the analysis
infers strong static dispose, weak static dispose, or dynamic dispose
as one of the correct dispose strategies and fulfills this responsibil-
ity by inserting any necessary dispose operations into the program.

A prerequisite for statically disposing a resource is to identify
a unique handle, called a solicitor that is responsible for disposing
the resource. Sometimes it is not possible to determine a unique so-
licitor, primarily because resources may be shared, but also because
of imprecisions in the static analysis. Real sharing of resources is
especially common in GUI code, where the last reference to a re-
source is defined by some external input, such as a user click. For

example, in SWT applications, two windows may share a font ob-
ject, and the font has to be disposed when the last window is closed
by the user. In such cases, a programmer manually managing re-
sources typically resorts to an ad hoc reference-counting scheme.
In such cases of sharing, our technique automatically inserts code
for dynamic reference counting, allowing it to work correctly for
arbitrary resource usage patterns.

To illustrate these concepts, we briefly explain how CLOSER
identifies correct dispose strategies for resources used in Figure 1:

Font: First, CLOSER infers that the font resource created in
bufferFull() is not shared and identifies the variable font as its
solicitor. Further, since the font object does not escape its allocating
method, CLOSER infers the last use point of font in bufferFull
as the correct static dispose point. Finally, since font is known to
be a resource, CLOSER can perform a strong (unconditional) static
dispose.

Socket: CLOSER first analyzes all call sites of setSocket to de-
termine whether the input socket is shared. Assuming it is not,
it determines that socket can be (conditionally) statically dis-
posed through its encapsulating BufferPrinter object. Further,
CLOSER identifies two points where the close method must be
invoked: (1) before the overwrite to this.socket in setSocket
because the resource interest graph reveals that the old target of
socket becomes unreachable at this program point, and (2) in
the synthesized dispose method. The conditional dispose is needed
because the setSocket method might not have been called.

Listener: This case is similar to the dispose strategy for the
socket. The main difference is that CLOSER needs to take into
account the concept of non-interest (see Section 2) to infer that
listener is not shared.

1.3 Advantages and Limitations of our approach
Our approach has the following advantages: (1) Disposal of re-
sources is synchronous to the application, allowing the technique
to work correctly even if disposal of a resource affects visible pro-
gram behavior. (This is in contrast with finalizers.) (2) Our tech-
nique is not limited to a fixed class of system-specific resources.
Any application-specific type can be declared to be a resource, as
long as it obeys certain restrictions. (3) The technique does not re-
quire customizing the JVM and is therefore completely portable.
(4) Unlike new language constructs that limit sharing patterns, our
solution works correctly with arbitrary sharing patterns.

Among the main limitations are: (1) We require programmers
to add certain information to be able to deal with cycles in object
reference graphs (see Section 4). (2) We require a model of the rele-
vant points-to behavior of methods unavailable for analysis as well
as that of dynamically-loaded classes (see Section 8). (3) In this
work, we do not attempt to reason about concurrency; our approach
suffers from the same problems as other automated synchronous
approaches when concurrency is allowed. (See, for example, [10]
for a detailed discussion.) (4) We inherit the limitations inherent in
path-insensitive flow analysis and the heap abstraction we use; it is
possible to do better on both counts at an additional cost.

1.4 Contributions
In this paper, we make the following key contributions:

• We propose a new technique for fully automatic resource man-
agement based on source code transformation. Our technique is
both powerful enough to allow for arbitrary resource usage pat-
terns and is extensible enough to allow user-defined resources.
• We present a precise static analysis of logical lifetimes of re-

sources. Resource disposal strategy computed based on our

static analysis turns out to be very similar to manually writ-
ten code, showing that the analysis automates the reasoning of
resource lifetime very effectively.
• We implement our technique as a feature in Eclipse Java IDE

and present a case study on a moderate-sized SWT graphics
application. We show that our technique is powerful enough to
automate resource management on an application that uses a
large number of resources and that requires complex reasoning
for correct resource management.

2. Basic Concepts
In this section, we introduce some useful basic concepts.

2.1 Object Liveness and Interest
The lifetime of a resource starts with allocation, followed by a
series of uses of the resource, and ends with a reclamation.

DEFINITION 1. (Liveness) An object is live up to and including
its unique last use (field access or method invocation), and is dead
thereafter.

An ideal resource management strategy would perform a dis-
pose operation immediately after the last use of a resource. How-
ever, it is hard to identify last use precisely either statically or dy-
namically. The technique often used instead is to approximate last
use by the point in time when an object becomes unreachable in an
object reference graph.

DEFINITION 2. (Object Reference Graph) An object reference
graph is a graph representing the heap snapshot at a given instant
in the execution of a Java program. Vertices of the graph represent
objects and labeled edges represent fields: the edge o1

f→ o2
represents the fact that o1.f points to o2. The graph contains a
distinct root vertex that represents entry points into the heap.

Examples of object reference graphs appear in Figure 2.
At the time an object becomes unreachable in the object ref-

erence graph, its last use has definitely been performed, although
it could have been performed sooner. Indeed, many memory man-
agement strategies, both dynamic (garbage collection) and static
(e.g., [21]), use reachability information to approximate last use.
Unfortunately, as is clear from the examples in Figure 2, unreacha-
bility in an object reference graph can be a poor solution for timely
resource reclamation; we would like to reclaim a resource soon af-
ter its logical last use.

DEFINITION 3. (Logical Last Use) The logical last use of an ob-
ject is the unique use such that the programmer deems any succeed-
ing uses prior to reclamation as semantically unimportant.

For example, in Figure 2(b), after the observer (BufferPrinter)
is dead, any access from the observed (Buffer) to the listener is
semantically unimportant and does not constitute a logical use.
The judgment of whether an access constitutes a logical use has
to be made by the programmer because the notion of logical use
depends on program semantics. We cannot approximate logical
last use based on the traditional notion of reachability. In order to
approximate logical last use better, we introduce a modified form
of reachability called interest reachability. We distinguish between
two kinds of edges in an object reference graph: interest and non-
interest edges. Intuitively, a non-interest edge from an object o1
to an object o2 means that the behavior of o1 is not dependent
on the presence or the state of o2, but the edge is there to serve
some other purpose. For example, in a cache implemented as a hash
table, a link from the hash table to an item in the table is a non-
interest edge; any access to that item by the hash table is logically

insignificant as far as last use is concerned. The notion of non-
interest is application-specific and specified by the programmer.

DEFINITION 4. (Interest Reachability) An object o is interest-
reachable if there exists a path in the object reference graph from
the root to o consisting only of interest edges.

Just as reachability is used as an approximation to liveness,
interest reachability can be used as an approximation to logical
liveness. Consider Figure 2 again. The dashed edges in the figure
are non-interest links; hence the resources shown in Figure 2 are
not interest reachable (or not logically live). However, unless the
non-interest edges are removed, the objects are not exposed for
reclamation. The purpose of our analysis is to identify all non-
interest edges that prevent timely reclamation and insert operations
to break such redundant links.

The notion of interest in our model is categorical rather than
temporal; a link between any two objects is either an interest or a
non-interest link but cannot transition from one to the other. Non-
interest links may not transition to interest links because it would
otherwise not be safe to dispose an interest-unreachable resource
when it is still reachable through non-interest links. Similarly, in-
terest links cannot transition to non-interest links due to difficulties
with the semantics of reference counting. However, loss of interest
can still be indirectly expressed by setting a field to null.

Specifying Non-Interest In our system, every inter-object refer-
ence is considered to be an interest edge unless annotated otherwise
by the programmer. Non-interest is declared using annotations on
instance variables. For example,

class Buffer {
@NonInterest
BufferListener listener;

}

declares that any instance of class Buffer has a non-interest link
to its listener field. In our system, classes inherit non-interest
annotations from their supertypes. In the sequel, when we mention
last use, we mean logical last use, unless said otherwise.

2.2 Resources
We now give a precise definition of a resource and discuss how to
annotate resources in CLOSER.

DEFINITION 5. (Resource) A resource r is an instance of any type
whose specification requires that if a method m is called with r as
the receiver or a parameter, then a matching method m′ is called
after the (logical) last use of r. Methods m and m′ establish and
tear down a non-interest link to the resource respectively.

Since calling method m′ fulfills an obligation incurred by call-
ing m, we refer to m as an obligating method and to m′ as the ful-
filling method. According to Definition 5, a Socket is a resource
because calling the connect method obligates a corresponding call
to close after the socket’s last use. Definition 5 does not require
that the obligating and fulfilling methods be defined in the class
type of the resource. For example, although BufferListener
from Figure 1 is considered a resource, the addListener and
removeListener methods are defined by the Buffer class.

Specifying Resources CLOSER allows programmers to define
application-specific resources using simple annotations on obligat-
ing methods. For example, the annotation

@Obligation(obligates = “removeListener”, resource = “1”)
public void addListener(BufferListener l)

declares that calling addListener incurs an obligation to call
removeListener, and that the first parameter (i.e., the listener)
becomes a resource as a result of calling addListener. The special

parameter 0 declares the this pointer, which is the receiver object
of a method to be the resource. We refer to any resource declared
explicitly by the programmer as a primitive resource. We write
Obligation(C,m1) = 〈m2, i〉 to denote that method m1 of class
C is obligating, that m2 is the corresponding fulfilling method,
and that the i’th argument to m1 is the resource. The notation
Obligation(C,m1) = ∅ indicates that method m1 is not obligating.
Classes inherit obligations from their parent types and we require
that overridden methods do not declare additional obligations.

3. The Resource Interest Graph
To allow static analysis of resource lifetimes, we introduce a varia-
tion of a local points-to graph, called a resource interest graph.

DEFINITION 6. (Resource Interest Graph) A resource interest
graph, or RIG, for a method m at a given program point is a tuple
〈V,E, σV , σE〉 where V denotes a finite set of abstract memory
locations used in m and E denotes a set of directed edges between
these memory locations labeled with a field selector f. σV is a
mapping from memory locations to a value from {0, 1,>}, where 0
indicates that memory location l is not a resource, 1 indicates that
l must be a resource, and > indicates that l may be a resource. σE
is a mapping from edges to {true, false}, where false indicates a
non-interest edge and true indicates an interest edge.

The computation of RIG proceeds by intra and interprocedu-
ral propagation of the following information: (1) Π, an environ-
ment mapping program variables to a set of abstract locations,
Location, (2) Γ, an environment with signature Location ×
Field → Location, defining nodes V and edges E of the RIG,
(3)A, which maps each abstract location to a variable (α1, α2, . . .)
ranging over values {0, 1,>}, and (4) C, a set of global constraints
between variables in A. The constraints appearing in C are con-
junctions of two kinds of atomic constraints: α = c, where c is a
constant, or α1 w α2.

The first six rules of Figure 3 describe the intraprocedural anal-
ysis for a subset of the Java language with typing judgments of the
form Γ,Π, A, C ` s : Γ′,Π′, A′, C′, with unprimed and primed
symbols representing the state before and after the statement. (Fig-
ure 3 omits while statements since loops can be treated as tail-
recursive functions.) Intraprocedural propagation tracks the envi-
ronments Π and Γ in the expected way, using rules of flow-sensitive
points-to analysis. At control-flow join points, the four pieces of
information are merged, with C from the two paths conjoined. Al-
location of an object creates a corresponding new variable α in A.
If this abstract location is already known to be a resource, α is
set to 1 and to 0 otherwise. (For this reason, the RIG computation
goes through a fix point as more resource types are discovered; we
will have more to say about this later.) Finally, when an obligating
method is encountered, if parameter i of the call is a resource, then
a fresh variable α in A is set to 1 if the corresponding actual pa-
rameter maps to a unique abstract location, and > otherwise. The
body of the obligating method is also analyzed for side-effects us-
ing interprocedural propagation just like ordinary methods.

Interprocedural analysis (the last two rules of Figure 3) is
summary-based. For each method, we compute a points-to sum-
mary, and additionally, a method resource summary (MRS), which
defines constraints C between variables occurring in A at the entry
of the method and A′ at the exit. The purpose of MRS is to help
ensure consistency among the variables in A that correspond to the
same abstract location but in different local points-to graphs. Com-
putation of method summaries is presented in the case METHOD
DEFINITION in Figure 3. We use the notation C ↓ E to yield the
strongest necessary condition for C ranging only over the variables
inE. We define Πarg∗ to be the set of memory locations transitively

reachable from the arguments and return value so that the summary
of a method only refers to memory locations that either have a
valid mapping in the calling context or that are freshly allocated.
In the METHOD CALL rule, the notation `τi m(~C ~v) : Γτi,m

means that the points-to summary associated with method m of
class τi is Γτi,m. The points-to summary is a partition of the exit
points-to graph Γexit of m containing only those locations transi-
tively reachable from the arguments and return value. Since the
points-to summary of the callee is defined in terms of the abstract
memory locations in the callee’s local heap, we define an operation
Projm(l) which maps location l used in the caller’s local heap to
the corresponding memory location l′ in the local heap of calleem.
Analogously, the operation Proj−1

m (l) maps a location in the local
heap of the callee to an abstract location in the calling context. Note
that locations allocated by the callee do not have a previous map-
ping; hence Proj−1

m (l) = l for fresh allocations. We also extend
the projection and inverse projection operations to the points-to
summary in the expected way. The points-to graph after the call
is obtained by composing the points-to graph before the call with
the points-to summary, Γ ◦ Proj−1(Γm). The meaning of Γ1 ◦ Γ2

is that locations referred to by Γ2 are assigned the edges given by
Γ2, except for summary nodes (nodes representing a set of concrete
memory locations), which also preserve outgoing edges given by
Γ1, and any location l ∈ (Γ2\Γ1) preserves its old targets.

In Rule METHOD DEFINITION, MRS’s of callee methods are
used to enforce consistency constraints between the σV values
of memory locations named differently in different local heaps
but that correspond to the same concrete memory location. For
example, the constraint αi w α′i enforces that the σV value of a
location at the entry point of the callee is consistent with the σV
value of the corresponding location at any call site. The constraint
α′′′i w α′′i is similar, but enforces such consistency constraints
between callee locations at the exit point and the corresponding
locations in the calling context.

The environment Γ computed as above gives V and E of the
RIG. A least solution to C determines the mapping σV . (These
constraints can be easily solved, e.g., in the dataflow framework,
hence we omit a lengthy description of how to solve the constraints.
See Example 1 for a simple illustration.) The rules in Figure 3 omit
σE since the notion of interest is type-based and σE(l1 × f → l2)
can be determined directly from the static type of l1.

EXAMPLE 1. Consider the following two call sites of the setSocket
method from Figure 1:

public void foo(BufferPrinter bf) {
Socket s = new Socket(); // αfoo,s = 0
s.bind(...);
s.connect(...); // α′foo,s = 1

bp.setSocket(s); // αsetSocket,s w α′foo,s
}
public void bar(BufferPrinter bf) {

Socket s = new Socket(); // αbar,s = 0
s.bind(...);

bp.setSocket(s); // αsetSocket,s w αbar,s

}
The α variables in environment A and the constraints C generated
by each statement are shown as comments in the above code frag-
ment. The least solution forαsetSocket,s is>, which expresses that the
argument of setSocket may or may not correspond to a resource.

4. Higher-Level Resources
When a class τ has a field that points to a resource, estimating the
liveness of that resource can be difficult, because any method in
τ ’s public interface can be called as long as an instance oτ is live.
But if oτ uniquely encapsulates the resource, the lifetime of oτ is

GET FIELD
Π ` v2 : {l1, .., ln}

l′i =


fresh Γ(li, f) = ∅
Γ(li, f) otherwise

Π′ = Π[v1 ←
S
i l
′
i]

Γ,Π, A, C ` v1 = v2.f : Γ,Π′, A, C

PUT FIELD
Π ` v1 : {l1, .., ln}
Γ′ = Γ[(li, f)← Π(v2)]

Γ,Π, A, C ` v1.f = v2 : Γ′,Π, A, C

ASSIGN
Π′ = Π[v1 ← Π(v2)]

Γ,Π, A, C ` v1 = v2 : Γ,Π′, A, C

ALLOC
Π′ = Π[v ← l] (l fresh)
A′ = A[l← αl] (αl fresh)

C′ = C ∧


αl = 1 T ’s constructor obligating
αl = 0 otherwise

Γ,Π, A, C ` v = new T () : Γ,Π′, A′, C′

IF STATEMENT
Γ,Π, A, C ` s1 : Γ′,Π′, A′, C′

Γ,Π, A, C ` s2 : Γ′′,Π′′, A′′, C′′

Γ,Π, A, C ` if(∗) then s1 else s2 :
Γ′ ∪ Γ′′,Π′ ∪Π′′,
A′ ∪A′′, C′ ∧ C′′

OBLIGATING METHOD CALL
Type(v) = τ
Obligation(τ,m) = 〈m′, i〉
Π ` vi : {l1, ..., ln}
A′ = A[li ← αi] (αi fresh)

C′ = C ∧


αi = 1 if n = 1
αi = > otherwise

Γ,Π, A, C ` v.m(~v) : Γ,Π, A′, C′

METHOD DEFINITION
MRS(τ,m) = [A,A′;C]
Π = {vi ← li} (li fresh)
∅,Π, A, true ` s : Γ′,Π′, A′, C′

C ≤ (C′ ↓ {A ∪A′})
Γ ⊆ (Γ′ ↓ Π∗arg)

`τ m(~T ~v){~T ~y; s} : Γ

METHOD CALL
Π ` v2 : {l1, ..., ln} Type(li) = τi `τi m(~v) : Γτi,m

Γ′ = Γ ◦ Proj−1(
S
i Γτi,m)

MRS(m) =
F
i MRS(τi,m) = [Am, Am

′
;Cm]

Am ` lm,i : αi A ` Proj−1(lm,i) : α′i
Am′ ` lm′,i : α′′i
A′ = A[Proj−1(lm′,i)← α′′′i] (α′′′i fresh)
C′ = C ∧ (αi w α′i) ∧ (α′′′i w α′′) ∧ Cm

Γ,Π, A, C ` v2.m(~v) : Γ′,Π, A′, C′

Figure 3. Inference Rules Defining the Resource Interest Graph

an upper bound to the resource’s lifetime. In fact, a very common
resource management policy in object-oriented programming is to
implement a dispose method for such a class, and invoke the
dispose method at the end of the lifetime of oτ , similar to the use of
destructors in C++. The dispose method in turn disposes its nested
resources, possibly triggering cascading disposes.

Since class τ now requires calling a dispose method, we call τ a
higher-level resource. Given a set of primitive resources annotated

A

CB

D

socket buf

this font

σV(D) = 1

σV(A) = 1

σV(B) = T σV(C) = 0

Figure 4. RIG at the program point in bufferFull() just before
font.dispose()

by the user, our analysis infers the set of all transitive higher-
level resources and synthesizes dispose methods for each such
higher-level resource. For any given class τ , we say that the dispose
responsibility for τ (DR(τ)) is a set of fieldsf1, . . . , fn such that τ
is responsible for disposing each fi.

DEFINITION 7. (Higher-level Resource) Any instance of class τ
for which DR(τ) 6= ∅ is called a higher-level resource. Allocating
an object of type τ obligates a call to dispose.

Given an RIG defined in Section 3, we can determine dispose
responsibilities for each class τ according to the following rule:

(l1 × f → l2) ∈ E σE(l1 × f → l2) = true
σV (l2) w 1 Type(l1) = τ

f ∈ DR(τ)

The above rule says that if there is an interest edge labeled with
field selector f from location l1 with static type τ to another
location l2 which may be a resource (i.e., σV (l2) w 1), we add
f to the set of potential dispose responsibilities of τ . Since the
ALLOC rule in Figure 3 depends on whether τ is inferred to be a
resource, the RIG construction and higher-level resource inference
are mutually dependent and must co-fixpoint.

EXAMPLE 2. Figure 4 shows the RIG for the program point in the
method bufferFull() in our running example, just before the
statement font.dispose(). σV (B) = > as a result of solving the
constraints C globally, which takes into account calling contexts of
setSocket() (see Example 1). σV (C) = 0 because Buffer is
not a resource. The pointer analysis adds fields only lazily, so the
listener field is not shown. BufferPrinter is a higher-level
resource, hence σV (A) = 1. This fact is determined based on the
rule above, as it concludes that socket ∈ DR(BufferPrinter).
The local variable font points to a resource, thus σV (D) = 1. This
is because the constructor of Font is an obligating method, and the
resource unconditionally flows to this program point.

Obviously, the notion of higher-level resources is only meaning-
ful when a partial order on resource types can be defined. However,
for a cyclic RIG, it is possible that f : τ2 ∈ DR(τ1) ∧ f ′ : τ1 ∈
DR(τ2) (i.e., τ1 is responsible for disposing τ2 and vice versa).
This situation arises in two cases: (1) in unbounded data structures,
and (2) in the case of back pointers (e.g., see Figure 2b). For this
reason, it is necessary to impose some restriction on the kinds of
cycles that may arise in the RIG. For unbounded data structures,
we require that they be implemented through the Java collection
interface, allowing us to reason about the entire data structure as a
whole rather than individually about its constituent parts. This re-
striction also allows us to easily traverse unbounded data structures
using the Iterator interface. For back pointers, we require that
the programmer define a partial order on dispose responsibilities
by annotating appropriate edges as non-interest edges. For exam-

ple, in the case of listeners, the cycle can be broken by annotating
the edge from the listener to the observer as a non-interest edge.

5. Solicitor Inference
Given a resource r used in the program, there are three possible
ways in which r may be disposed:

• Strong static dispose, which requires no dynamic checks and
disposes the resource directly by calling the fulfilling method.
• Weak (conditional) static dispose, which checks whether the

object actually became a resource at runtime.
• Dynamic dispose, which requires that we keep an interest edge

count to the resource at run-time.

A prerequisite for disposing a resource statically, either through
strong or weak dispose, is to identify a solicitor for it. The solicitor
of a resource r is a referent to r which has the unique responsibility
to dispose r. The solicitor has to obey the following requirements:

1. If o is a solicitor of resource r, there may not be another object
o′ which also disposes r.

2. If o is a solicitor of r, o is guaranteed to dispose r for all
possible execution traces.

Clearly, determination of a solicitor requires analysis of relative
lifetimes of the resource as well as the various referents to it.
Note that when a resource r is truly shared, it is not possible to
find a solicitor for r that obeys the above requirements. If r is a
truly shared resource, then the object disposing r necessarily varies
across different execution traces, violating (2) above.

In this section, we present a technique for inferring a solicitor
for each resource, if one exists. Our technique first infers a solicitor
candidate for a given resource r (written SC(r)) at every program
point using the reachability information encoded in the local RIG.
Then, given a set of inferred solicitor candidates, we perform a
simple dataflow analysis to determine the actual solicitor.

We define a path P as a triple 〈l, f1 ◦ . . . ◦ fn,May/Must〉
consisting of a memory location l, a sequence π of field labels
f1 ◦ . . . ◦ fn, and an element of the set {May,Must}. A must path
indicates that the path has a unique target, while a may path can
have multiple targets. For every location r such that σV (r) w 1
(i.e., a possible resource), we compute a set of paths Paths(r) that
reach resource r. The set Paths(r) describes all memory locations
that transitively reference r at a given program point. This can be
computed from the RIG according to the rules given in Figure 5.
In addition, we add a default path PAR = 〈AR, ε,Must〉 because
the activation record has a reference to every resource used in a
method. We use P (or Pi) to mean any path other than PAR.

To compute SC(r) at a given program point, we exhaustively
apply the following simplification rules to Paths(r):

1. Let P1 = 〈l1, π1, 〉 ∈ Paths(r) and let P2 = 〈l2, π2, 〉 ∈
Paths(r) such that π2 is a proper suffix of π1. If 〈l1, π′, 〉 ∈
Paths(l2), we unify P1 and P2 and choose P1 as the equiva-
lence class representative. (The idea is that the existence of the
longer path implies the existence of the shorter path.)

2. Let PMust = 〈l, π,Must〉 ∈ Paths(r) and PMay = 〈l, π,May〉 ∈
Paths(r). We unify PMust and PMay and choose PMust as the
equivalence class representative. (The existence of a must path
to the resource implies the existence of a may path.)

3. Let P = 〈l, π,Must〉 ∈ Paths(r). We unify PAR with P and
choose P as the equivalence class representative. (Whenever
there is a must-path to the resource through a higher level
resource, any local handles to the resource delegate dispose
responsibility to the higher level resource.)

〈r, ∅,May〉 ∈ Paths(r)
∃li. li ∈ Γ(l, f1) ∧ σE(l × f1 → li) = true ∧ 〈li, S,May〉 ∈ Paths(r)

〈l, f1 ◦ S,May〉 ∈ Paths(r)

〈r, ∅,Must〉 ∈ Paths(r)
∀li. li ∈ Γ(l, f1) ∧ σE(l × f1 → li) = true ∧ 〈li, S,Must〉 ∈ Paths(r)

〈l, f1 ◦ S,Must〉 ∈ Paths(r)

Figure 5. Inductive rules for computing Paths(r)

dynamic

delegate

strong

weak

Figure 6. Partial order for DS(r)

After applying the above simplification rules to Paths(r) com-
puted for program point p, if the cardinality of the resulting set is
greater than 1, we conclude there is no solicitor for r and write
SCp(r) = ⊥. Intuitively, if the resulting set contains two paths
P1 and P2, there must be at least two independent higher-level re-
sources initiating the chain of calls leading to the disposal of re-
source r. Hence, we conclude there is no unique solicitor for r. If
the resulting set contains some path P as well PAR, then the re-
source only conditionally escapes to a higher-level resource. This
implies that in some execution traces, the dispose responsibility for
the resource belongs to the activation record, while in other cases,
the dispose responsibility belongs to the object to which r escapes,
again requiring dynamic reference counting in our approach. On
the other hand, if the set obtained after applying the simplifica-
tion rules is a singleton {〈l, π,Must〉}, we conclude SCp(r) = l.π.
Note that neither the singleton {〈l, π,May〉} nor ∅ may be the out-
come of applying the simplification rules to the original Paths(r).

The next step in our technique is to infer the actual solicitor
from the set of solicitor candidates inferred at each program point.
Intuitively, we need to ensure that the inferred solicitor candidates
“agree” for different program points. The only apparent exception
to this consistency requirement occurs when the inferred solicitor
is the AR at one program point ρ1 and some other object l.π at
another program point ρ2, and ρ2 is a control flow successor of ρ1.
This apparent inconsistency can be resolved through a transfer of
dispose responsibility from the AR to the higher-level resource.

EXAMPLE 3. Consider the following statement in our running ex-
ample:

this.listener = new BufferListener(this);

The allocated BufferListener initially has AR as its solicitor,
but when it is assigned to the field this.listener, the current
instance this becomes the solicitor.

Note that the only possible transfer of dispose responsibility is from
the AR to a higher level resource. Dispose responsibility can never
be transferred from one higher-level resource to another or from a
higher-level resource to the AR because in our model higher-level
resources are always deemed responsible for disposing of their
nested resources.

To determine the actual solicitor for a given resource, we per-
form a simple forward data flow analysis defined by the following
transfer function and join operator:

Sout(r) =

8<: SC(r) t Sin(r)
SC(r) 6= AR ∨
(SC(r) = AR ∧ Used(r))

Sin(r) SC(r) = AR ∧ ¬Used(r)

where SC(r) indicates the inferred solicitor candidate at the current
program point, Used(r) means resource r is read or written to by
the current statement, and the join operator is defined as l1.S1 t
l2.S2 = ⊥ if l1 6= l2 or S1 6= S2, and l1.S1 otherwise. The
inferred solicitor for a resource r is then given by Sout(r) for the
exit point of the method. In the above rule, notice the importance
of the predicate Used(r): For r to be statically disposed, all local
handles to r must be dead after any interest links from a higher-
level resource to r are broken.

EXAMPLE 4. Consider the bufferFull method from Figure 1.
The analysis infers AR and this as the solicitors for the font and
socket objects respectively.

6. Fulfilling Dispose Responsibilities
In the previous section, we discussed how to infer solicitors for
every abstract memory location that may correspond to a resource.
However, since our goal is ultimately to insert correct dispose
management calls into source code, we need to formalize how
the dispose strategy for each abstract memory location translates
to the correct dispose strategy for variables in program text. In
this section, we discuss how to assign a dispose strategy to each
program variable using the concept of solicitors from Section 5. We
write DS(v) ∈ {dynamic, delegate, strong, weak} to mean that
the dispose strategy for variable v is one of (1) dynamic, that is to
dynamically dispose the referent of v using reference counting, (2)
delegate, that is to leave the disposal of v’s referent to some other
variable, (3) strong, that is to statically dispose v’s referent using
v.dispose(), and (4) weak, that is to statically but conditionally
dispose v’s referent using a Manager class.

While every program variable references exactly one concrete
memory location at run-time, the static points-to information de-
fines a mapping from every variable v to a set of possible abstract
memory locations that v may point to. Hence, in order to deter-
mine the correct dispose strategy for v, we first compute DS(v, l)
which yields the correct dispose strategy for v assuming it points to
location l. We can then compute the dispose strategy for v as:

DS(v) =
G
i

DS(v, li)

for every location li in v’s points-to set. The join operator used
above is defined according to the partial order in Figure 6.

To compute DS(v, li), we assume that the result of every fresh
memory allocation is assigned to a freshly declared variable. We
write Handle(l) = v to indicate that variable v captures the result
of allocating l. We also assume that the handle is not overwritten
so that it can be used for disposing l. Without these assumptions,
we may need to generate additional temporary variables used ex-
clusively for the purpose of disposing the resource. (The imple-
mentation does not make these assumptions.) We can then compute
DS(v, li) as follows:

DS(v, l) =

8>>>>><>>>>>:

dynamic Solicitor(l) = ⊥ ∧ σV (l) w 1
strong Solicitor(l) = AR ∧ Handle(l) = v

∧ σV (l) = 1
weak Solicitor(l) = AR ∧ Handle(l) = v

∧ σV (l) = >
delegate otherwise

7. Synthesis of Dispose Methods
In this section, we discuss how to synthesize dispose methods for
higher-level resources and how to dispose fields that are overwritten
in methods of a class. Determining the right dispose strategy for a
field is a non-modular property because it requires reasoning about
every instance of the class. We write I(τ) to denote any instance of

type τ and DS(τ, f) to denote the correct dispose strategy for field
f . We compute DS(τ, f) as follows:

DS(τ, f) =

8>>><>>>:
dynamic ∃I(τ). Solicitor(I(τ)) = ⊥

∧ f ∈ DR(τ)

weak ∀I(τ). Solicitor(I(τ)) 6= ⊥
∧ f ∈ DR(τ)

A resource field f of class τ is dynamically disposed if there
is any instance o of τ such that o.f does not have a unique solic-
itor. In contrast to local variables, fields can neither be delegated
nor strongly statically disposed. Fields may not be delegated be-
cause higher level resources are always responsible for the dis-
posal of their nested resources unless annotated explicitly as non-
interest links by the programmer. We choose never to strongly dis-
pose fields since they are often manipulated through setters, and
correct disposal of the resource often requires checking whether
the setter method was called. For example, in Figure 1, we may not
unconditionally dispose the socket because the setSocket method
of BufferPrinter may not have been called. Although it may be
possible to unconditionally dispose fields in some cases (e.g., if the
field is allocated in the constructor and does not escape), our im-
plementation only weakly disposes instance variables. 1

EXAMPLE 5. Consider the following use of the BufferPrinter
class from Figure 1:

Logger log = new Logger();
BufferPrinter bp = new BufferPrinter(log.getBuffer());
log.setPrinter(bp);

Suppose setPrinter establishes an interest link from the Logger
object l to the BufferPrinter object b. CLOSER infers that
Logger is a higher-level resource, that the solicitor for l is the
activation record, and that l can be strongly disposed using handle
log. The strong dispose call log.dispose inserted by CLOSER
disposes b, which in turn disposes the native font and socket re-
sources and the application-level BufferListener. The dispose
strategy for variable bp is delegate, since the solicitor for the
memory location referenced by bp is already disposed through l.

8. Implementation
We have built a prototype implementation of the resource manage-
ment technique proposed in this paper as an Eclipse plug-in. To
use our system, the user annotates resources and non-interest links
using the standard Java 1.5 annotation syntax. During software de-
velopment, the programmer may omit any resource management
code and later invoke our plug-in to insert dispose code. If de-
sired, the programmer can inspect and change the automatically
resource managed code; this does not require any extra knowledge
because all the instrumentation is in standard Java code. From a
software engineering point of view, allowing the programmer to
inspect changes to the source code is desirable because she can un-
derstand and, if required optimize, the instrumented code without
running the application. In contrast to dynamic “black-box” tech-
niques, such as modifications to the JVM, CLOSER appears trans-
parent to the programmer, allowing her to interact directly with
modifications to the source code.

Static Analysis Implementation The underlying static analysis
of CLOSER is built on the IBM T.J. Watson Libraries for Analy-
sis (WALA) which provides the basic functionality for performing

1 In contrast to variables, when a field is overwritten with itself (e.g., for
some statement this.f = f, the old and new f’s alias one another), the
overwritten resource may be prematurely disposed. Hence, static disposal
of fields must explicitly check for this special case.

static analysis on Java byte code [5]. The source code transforma-
tion component of the system utilizes the Eclipse JDT framework,
which provides libraries for rewriting Java source code [3]. The
most important restriction of our current prototype implementation
is that it requires the user to manually refactor all inner classes.

In earlier sections, we implicitly assumed only closed programs
because determining the dispose strategy for fields requires knowl-
edge about every instance of a class. Unfortunately, the entire pro-
gram may not always be available for analysis. In such cases, we
require manual specifications concerning the relevant behavior of
missing methods, such as relevant points-to annotations e.g., con-
ceptually similar to AliasJava [6]. For example, in our case study
(see Section 9), we needed to annotate the relevant side-effects of
native methods called by the Eclipse SWT library.

Dynamic Instrumentation All dynamic instrumentation is ac-
complished by calling static methods of a Manager class, which
tracks resource reference counts for dynamically disposed re-
sources and other run-time information necessary for weakly dis-
posing a resource. Unlike traditional reference counting schemes
which track the number of physical links to a memory location,
our reference counting technique differentiates between interest
and non-interest links. We refer to this modified version of refer-
ence counting as interest counting. CLOSER inserts increment and
decrement count statements before and after every assignment in-
volving a variable that may reference a resource if (i) the inferred
dispose strategy for that resource is dynamic and (ii) for put and
get field instructions, there is no non-interest annotation between
the parent type and field. Our dynamic instrumentation does not
rely on modifying the JVM; we insert increment and decrement
count statements directly into source code.

The Manager class is also involved in weak static dispose
events. In particular, if a resource is conditionally acquired, CLOSER
generates code to save the resource at calls to obligating methods
and queries whether the resource has been acquired before dispos-
ing it. In some special cases of weak static dispose, a simple null
check before the dispose may be sufficient.

9. Case Study: Automating an SWT Graphics
Showcase Application

To evaluate our proposed resource management strategy, we ap-
plied CLOSER to an SWT Graphics Showcase Example applica-
tion available through the Eclipse documentation [1]. This 7,440
line typical GUI-based Java application illustrates different graph-
ics capabilities of the SWT library and is a good target for evaluat-
ing CLOSER because it is both large enough to be realistic and also
small enough to allow us to remove all the existing resource man-
agement code and refactor inner classes (see Section 8). Further-
more, this application uses 67 different kinds of resources and has
reasonably complex resource management logic. In this section, we
report on our preliminary experiences and compare the code pro-
duced by CLOSER with the original manually written code.

Figure 7 compares various statistics between the original appli-
cation and the resulting instrumented code. Figure 8 presents the
number of manual annotations required by CLOSER. In the appli-
cation we analyzed, the user has to annotate only five primitive
resources; CLOSER then infers 34 other primitive resource types
due to inheritance and 28 higher-level resources. These 28 inferred
higher-level resources correspond exactly to the classes designated
as higher-level resources by the programmer. This one-to-one cor-
respondence between the resources in the original and instrumented
code (row 1 of Figure 7) indicates that the notion of higher-level
resources proposed in this paper is a natural fit for resource man-
agement in object-oriented languages.

Original Instrumented
Resources 67 67
Strong Static Dispose 116 117
Weak Static Dispose 14 63
Dynamic Dispose 0 0
Number of Resource Bugs 1 0
Lines of Resource
Mgmt Code 316 356

Resource Mgmt Code
to Application Size Ratio 4.2% 4.9%

Figure 7. Comparison Between Manually vs. Automatically Re-
source Managed Applications

In the original application, the programmer instruments 116
strong static dispose calls compared with the 117 calls inserted
by CLOSER. Incidentally, the extra dispose call inserted by our
tool revealed a resource leak in the original application, where the
dispose call on a Transpose object (a resource in the SWT library)
was forgotten by the programmer.

The number of weak static dispose calls instrumented by
CLOSER is larger than the number weak dispose calls present in
the original code (63 vs. 14). All redundant weak dispose calls in-
serted by CLOSER are due to our path-insensitive analysis. Without
exception, every single redundant weak dispose call inserted by
CLOSER was due to the use of the following programming pattern:

private void paint() {
if(image == null) {

image = new Image(...);
}

}

In frequently invoked methods, such as paint in the above exam-
ple, the programmer uses the condition image == null to detect
the first invocation of the method and allocates the resource only
then. Since the image is overwritten only when the instance variable
image is null, it is clearly not necessary to dispose image before
the overwrite. Since our tool is not path-sensitive, it does not de-
tect this correlation and inserts the following redundant weak static
dispose code:

private void paint() {
if(image == null) {

if(image!=null){
image.dispose();

}
image = new Image(...);

}
}

Since this code is invoked exactly once (i.e., for the first invocation
of paint), the overhead of this redundant dispose call is negligible,
albeit a visual disturbance in the generated code. However, it would
be easy to implement a peephole optimizer to detect such cases.

There were no shared resources in the application we analyzed,
and hence no manual reference counting was present in the original
code. CLOSER also did not detect any spuriously shared resources
and was able to infer a unique solicitor for every resource used in
the application.

While we only instrument the SWT graphics showcase applica-
tion, CLOSER also needs to analyze all transitively called methods
of the SWT and Java libraries, summing up to a total of 8,836 meth-
ods (or several hundred thousand lines of byte code) which take
approximately 11:08 minutes to analyze on a single core. Since
the underlying libraries (e.g., SWT) typically do not change during
software development, the large bulk of this computation can be
memoized to substantially decrease running time.

Resource Annotations 5

Non-Interest Annotation 9

Annotated Points-to Information 16

Figure 8. Number of Required Annotations

Even though all the byte code of the SWT and Java libraries
are available, some low-level library functions call native methods
which CLOSER cannot reason about. Unfortunately, some native
methods create important points-to links and need to be annotated
with the appropriate points-to information. We found 16 such in-
stances of native library calls that required manual annotation.

We believe that the results of our case study as presented in
Figures 7 and 8 are satisfactory in the following respects:

• Our tool requires reasonably few annotations to work correctly
in a reasonably large application with over 7,400 lines of code.
• CLOSER generates code that is very similar (in fact, almost

identical) to hand-written code, except in the few situations
where the programmer checks for edge cases. This suggests that
the automatically generated code should be almost as efficient
as hand-written code in the vast majority of cases.
• CLOSER does not cause a substantial code bloat. As shown in

Figure 7, the resource management code increases by only 40
lines (0.7% of the whole application).
• Our tool relieves the programmer from the burden of manually

managing resources. In the application we analyzed, the pro-
grammer needs to write 316 lines less code (4.2% of the entire
application), allowing her to focus on the more important pro-
gramming tasks than disposing resources.
• Most importantly, resource management automated by CLOSER

is correct by construction, making it impossible to leak or dou-
ble dispose resources. The existence of a single resource bug
in the SWT showcase graphics application written by expert
Java programmers highlights the error-prone nature of manual
resource management and the potential usefulness of a tool like
CLOSER.

10. Related Work
Static resource management: Shaham et. al. [22] present an ap-
proach for static garbage collection in Java programs. Their ap-
proach employs shape analysis to approximate the last time an ob-
ject is used and inject appropriate memory deallocation code. Their
approach is based on shape analysis and does not scale to large
programs. Cherem and Rugina [12] follow the same approach but
employ a more scalable shape analysis. Our approach has two ad-
vantages: (i) Since resources are used in a more limited regime than
arbitrary memory locations, our approach can adopt a less precise
and more scalable analysis. (ii) We allow the user to specify non-
interest, making a distinction between physical and logical last use.
In the above approaches reading a field of the managed object is
considered a use. As a result, native resources associated with an
object will be released when all pointers to it are no further deref-
erenced. Our approach allows native resources associated with an
object to be released earlier, even when the object itself remains
live for a longer period of time.

Escape analysis (e.g., [9]) allows heap objects to be allocated
on the stack when they do not escape the scope of a method. In
principle, this technique can be applied to dispose resources (and
is in fact parallel to our local disposal policy). While this technique
has been shown to be useful, it is limited to objects that do not

escape their allocating method. Our approach also applies in cases
where the resource does escape method boundaries.

In region-based memory management [23, 7, 18], the lifetime of
an object is predicted at compile-time. An object is associated with
a memory region, and the allocation and deallocation of each region
are inferred automatically at compile time. While this approach can
be applied to manage resources, our approach permits finer-grained
resource management.

Static error detection and verification: Among bug finding tools,
Livshits [20] uses simple and scalable static analyses to detect SWT
resource leaks in Eclipse. A number of other static tools target de-
tection or prevention of memory and resource leaks [19, 13, 14,
16, 15, 24]. In principle, most of these approaches are capable
of detecting cases where an object is leaked or double disposed.
In contrast with our approach, all of these techniques require the
programmer to write manual resource management code. Further-
more, fixing the errors detected by these tools is known to be a
hard problem on its own. Finally, some of these approaches either
require additional (potentially cumbersome) annotations or restrict
the class of programs that may be written, e.g. by restricting alias-
ing [14, 13, 16].

Dynamic error detection: Dynamic tools such as Tracematches
[8], and MOP [11] are also able to detect violation of typestate
properties, and in particular detect resource leaks. In [11], Java-
MOP was used to successfully detect a number of resource leaks in
Eclipse. In contrast to dynamic bug-finding techniques which are
necessarily unsound, our tool is correct by construction.

Hybrid approaches: Similar to CLOSER, [17] also uses a com-
bination of points-to and liveness analysis to reduce the overhead
of garbage collection by automatically inserting deallocation code
into the program. However, since CLOSER is mainly geared to-
wards resource instead of memory management, there are some im-
portant differences: First, [17] mainly targets static deallocation of
short-lived objects in local scope, whereas CLOSER must also track
objects whose life times span multiple methods because many re-
sources have non-local scope. Second, CLOSER distinguishes be-
tween reachability via interest and non-interest links; reasoning
based only on physical reachability would not be adequate for solv-
ing the resource drag problem.

11. Acknowledgements
We would like to thank the anonymous reviewers and Suhabe
Bugrara for their valuable feedback and useful suggestions.

References
[1] http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.platform.

doc.isv/whatsNew/platform isv whatsnew.html. See section titled
SWT graphics showcase.

[2] Bug reports for Eclipse projects. See bugs.eclipse.org/bugs.
[3] Eclipse Java Development Tools. See www.eclipse.org.
[4] The using statement. See C# Language Specification, msdn.microsoft.com.
[5] Watson Libraries for Program Analysis (WALA). Available at

wala.sf.net.
[6] ALDRICH, J., KOSTADINOV, V., AND CHAMBERS, C. Alias annota-

tions for program understanding. In OOPSLA ’02: Proceedings of the
17th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications (New York, NY, USA, 2002),
ACM, pp. 311–330.

[7] ALEXANDER AIKEN, M. F., AND LEVIEN, R. Better static
memory management: Improving region-based analysis of higher-
order languages. In Proc. ACM Conf. on Programming Language
Design and Implementation (June 1995).

[8] ALLAN, C., AVGUSTINOV, P., CHRISTENSEN, A. S., HENDREN,
L., KUZINS, S., LHOTÁK, O., DE MOOR, O., SERENI, D.,
SITTAMPALAM, G., AND TIBBLE, J. Adding trace matching with
free variables to aspectj. In OOPSLA ’05: Proceedings of the 20th
annual ACM SIGPLAN conference on Object oriented programming,
systems, languages, and applications (New York, NY, USA, 2005),
ACM, pp. 345–364.

[9] BLANCHET, B. Escape analysis for object oriented languages.
application to Javatm. In OOPSLA (Denver, 1998).

[10] BOEHM, H. Destructors, finalizers, and synchronization. ACM
SIGPLAN Notices 38, 1 (2003), 262–272.

[11] CHEN, F., AND ROŞU, G. MOP: An Efficient and Generic Runtime
Verification Framework. In Object-Oriented Programming, Systems,
Languages and Applications(OOPSLA’07) (2007).

[12] CHEREM, S., AND RUGINA, R. Compile-time deallocation
of individual objects. In ISMM ’06: Proceedings of the 2006
international symposium on Memory management (New York, NY,
USA, 2006), ACM Press, pp. 138–149.

[13] DELINE, R., AND FAHNDRICH, M. Enforcing high-level protocols
in low-level software. In PLDI ’01: Proceedings of the ACM
SIGPLAN 2001 conference on Programming language design and
implementation (New York, NY, USA, 2001), ACM Press, pp. 59–69.

[14] DELINE, R., AND FÄHNDRICH, M. Adoption and focus: Practical
linear types for imperative programming. In Proc. ACM Conf. on
Programming Language Design and Implementation (Berlin, June
2002), pp. 13–24.

[15] FINK, S., YAHAV, E., DOR, N., RAMALINGAM, G., AND GEAY,
E. Effective typestate verification in the presence of aliasing. In
ISSTA ’06: Proceedings of the 2006 international symposium on
Software testing and analysis (New York, NY, USA, 2006), ACM
Press, pp. 133–144.

[16] FOSTER, J. S., TERAUCHI, T., AND AIKEN, A. Flow-sensitive type
qualifiers. In Proc. ACM Conf. on Programming Language Design
and Implementation (Berlin, June 2002), pp. 1–12.

[17] GUYER, S., MCKINLEY, K., AND FRAMPTON, D. Free-Me: a static
analysis for automatic individual object reclamation. Proceedings
of the 2006 ACM SIGPLAN conference on Programming language
design and implementation (2006), 364–375.

[18] HALLENBERG, N., ELSMAN, M., AND TOFTE, M. Combining
region inference and garbage collection. In Proc. ACM Conf. on
Programming Language Design and Implementation (Berlin, 2002),
pp. 141–152.

[19] HEINE, D. L., AND LAM, M. S. A practical flow-sensitive and
context-sensitive c and c++ memory leak detector. In PLDI ’03:
Proceedings of the ACM SIGPLAN 2003 conference on Programming
language design and implementation (New York, NY, USA, 2003),
ACM, pp. 168–181.

[20] LIVSHITS, V. B. Turning Eclipse against itself: Finding bugs
in Eclipse code using lightweight static analysis. Eclipsecon ’05
Research Exchange, Mar. 2005.

[21] SHAHAM, R., KOLODNER, E. K., AND SAGIV, M. Heap profiling
for space-efficient java. In PLDI ’01: Proceedings of the ACM
SIGPLAN 2001 conference on Programming language design and
implementation (New York, NY, USA, 2001), ACM Press, pp. 104–
113.

[22] SHAHAM, R., YAHAV, E., KOLODNER, E. K., AND SAGIV, S.
Establishing local temporal heap safety properties with applications
to compile-time memory management. In SAS (2003), R. Cousot,
Ed., vol. 2694 of Lecture Notes in Computer Science, Springer,
pp. 483–503.

[23] TOFTE, M., AND TALPIN, J.-P. Implementation of the typed call-by-
value lambda-calculus using a stack of regions. In Proc. ACM Symp.
on Principles of Programming Languages (1996), pp. 188–201.

[24] WEIMER, W., AND NECULA, G. Finding and preventing run-
time error handling mistakes. Proceedings of the 19th annual ACM
SIGPLAN Conference on Object-oriented programming, systems,
languages, and applications (2004), 419–431.

