
When Role Models Have Flaws:
Static Validation of Enterprise Security Policies

Marco Pistoia Stephen J. Fink
IBM Watson Research Center

Hawthorne, New York
{pistoia,sjfink}@us.ibm.com

Robert J. Flynn
Polytechnic University
Brooklyn, New York

flynn@poly.edu

Eran Yahav
IBM Watson Research Center

Hawthorne, New York
eyahav@us.ibm.com

Abstract

Modern multiuser software systems have adopted Role-
Based Access Control (RBAC) for authorization manage-
ment. This paper presents a formal model for RBAC pol-
icy validation and a static-analysis model for RBAC sys-
tems that can be used to (i) identify the roles required by
users to execute an enterprise application, (ii) detect po-
tential inconsistencies caused by principal-delegation poli-
cies, which are used to override a user’s role assignment,
(iii) report if the roles assigned to a user by a given policy
are redundant or insufficient, and (iv) report vulnerabilities
that can result from unchecked intra-component accesses.
The algorithms described in this paper have been imple-
mented as part of IBM’s Enterprise Security Policy Evalu-
ator (ESPE) tool. Experimental results show that the tool
found numerous policy flaws, including ten previously un-
known flaws from two production-level applications, with
no false-positive reports.

1 Introduction: RBAC Systems

Role-Based Access Control (RBAC) [8] has become a
popular authorization model for managing enterprise-scale
applications. Many enterprise software systems support
RBAC, including Java, Enterprise Edition (EE)1 [19], Mi-
crosoft .NET Common Language Runtime (CLR) [9], and
modern database management systems.

An RBAC policy restricts access to protected operations
based on “roles”. A role is a semantic grouping of access
rights, which can be assigned to users and groups of an ap-
plication or system. Typically, a system administrator man-
ages an RBAC policy via declarative artifacts, distinct from
the application code. Unfortunately, the code and the secu-
rity policy can interact in complex and subtle ways, based
on possible component dependencies, principal-delegation

1Formerly known as Java 2, Enterprise Edition (J2EE).

policies, and the run-time authorization model. In this com-
plexity, an RBAC policy may hide security vulnerabilities,
which can be extremely difficult to find with testing or code
inspection.

To alleviate these problems, we present a static-analysis
model to verify that an RBAC policy does not exhibit
certain classes of vulnerabilities. This paper presents a
novel theoretical foundation and an interprocedural analy-
sis framework to model the flow of authorization informa-
tion in an RBAC system and automatically detect security
policy misconfigurations. The model presented in this pa-
per identifies three types of security flaws, corresponding to
RBAC policies that are:
• Insufficient, leading to stability problems due to poten-

tial run-time authorization failures,
• Redundant, granting a superset of the minimal set of

roles necessary to execute a program, thus violating
the Principle of Least Privilege [21], or

• Subversive, permitting an execution to bypass de-
clared access restrictions by exploiting unchecked
intra-component calls.

We present a sound static-analysis algorithm to verify
that an RBAC policy is sufficient and not subversive, and a
complete analysis to identify redundant policies. The analy-
sis can suggest alternative policies that remedy these flaws.

We have implemented the algorithms described in this
paper as part of an IBM tool called Enterprise Security Pol-
icy Evaluator (ESPE). We present the results obtained by
executing ESPE on a number of Java EE applications. The
tool found numerous security policy flaws, including pre-
viously unknown flaws from publicly available codes and
from two production-level commercial applications, with
no false-positive reports.

2 Motivating Example

An RBAC system allows any resource to be restricted
with zero, one, or multiple roles. If no role protects a re-

source, any principal may access it. When multiple roles
restrict a resource, the role requirement manifests as a logi-
cal OR; a principal must possess at least one of the specified
roles. If multiple resources access each other, forming a
chain of calls, then the user accessing the first resource in
the chain needs roles authorizing each link in the chain; the
role requirement manifests as a logical AND. Thus, in order
to configure an RBAC policy correctly, a system adminis-
trator must infer which role requirements could arise in any
possible execution, and evaluate potentially complex logi-
cal expressions of these role requirements.

Roles Granted:
Student, Assistant

Role Required: Student

Role Required: Student
or Assistant

run-as: Professor

Role Required: Professor
Role Required:
Professor

Component

Intercomponent call

Intracomponent call

SubversiveSubversive

InsufficientInsufficient

RedundantRedundant

m0m0

m1m1 m2m2

m3m3 m4m4 m5m5

m6m6 m7m7

Role Required: Student Role Required: Student

InsufficientInsufficient

User: bob

Figure 1. RBAC in Component-Based System

Figure 1 shows a simple example of an RBAC policy
for a distributed Java EE application. The run-time sys-
tem (container) intercepts inter-component method calls,
and checks RBAC authorization at that time. In Figure 1,
user bob has been granted the Student role, which satis-
fies the role requirement to invoke entry method m0.

The call graph shows that m0 leads to the invocation of
an inter-component call from m2 to m5, which has been
access-restricted with the Professor role. Unfortunately,
this invocation will fail at run time because bob does not
have the required role.

In practice, the container will often fail to maintain
enough information to report useful error messages. In Java
EE, the container will report the following unhelpful error
message at run time:

java.rmi.ServerException:
Nested exception is: java.rmi.AccessException:
CORBA NO_PERMISSION 9998

For large applications, manually tracking back the error
across the distributed call stack presents a difficult chal-
lenge. For this reason, it is desirable for authorization fail-
ures to occur immediately on entry to an application. We
call a policy that does not enforce this desirable property
insufficient.

The example also violates the Principle of Least Priv-
ilege [21], which states that a user should be granted no
more rights than necessary. The policy grants bob the role

Assistant, which is extraneous for the example code.
Note that even though a call to m1 would be satisfied by
the Assistant role, since the Student role is required
anyway, granting the Assistant role is unnecessary. A
redundant policy, which grants unnecessary privileges, can
lead to security problems as the code evolves over an appli-
cation’s lifetime.

2.1 Principal Delegation

In an RBAC system, the identity of the principal who ini-
tiates a transaction propagates to downstream calls. How-
ever, some resources may need to be executed as though
called by a principal with different, perhaps more privi-
leged, roles. For this purpose, most RBAC systems allow
the administrator to map each component to a principal-
delegation policy and override the identity of the executing
principal with a specified identity. At run time, all the down-
stream calls from that point on assume the roles held by that
identity.

In the example, the component of m1 uses a run-as
delegation policy that forces all the subsequent downstream
calls to be performed under the Professor role. Thanks
to this policy, the authorization check for m3 succeeds.

Principal delegation polices can lead to authorization
failures. In the example, the component of m3 does not set
the principal-delegation policy back to Student, which is
the role requirement to invoke m7. Thus, bob, who was
granted the Student role at the beginning, is now denied
access to m7 for not having the role of Student. In this
case, the principal delegation has, as a side effect, made the
RBAC policy insufficient.

2.2 Intra- vs. Inter-component Calls

By default, component-based systems enforce authoriza-
tion checks only across component boundaries.2 Once an
execution enters a component, the system does not perform
authorization checks for further behavior inside said com-
ponent [28]. This design favors execution performance.
However, if the access-control policy for an internal exe-
cution point differs from that of the component entry point,
unintended security violations can occur.

In the example, the intra-component call from m3 to m6
will not fail, even though when executing m3 the princi-
pal does not hold the required role, Student. In gen-
eral, when an execution can bypass declared authorization
checks by exploiting intra-component calls, we call the ex-
ecution subversive.

2This behavior can be overwritten programmatically where required.

3 A Formal Model for RBAC

This section presents a formal model for RBAC and de-
fines the notions of sufficiency, minimality, and subversion.

3.1 Concrete Semantics

Given a program p with sets of methods M and roles R,
we define role formulae to be propositional-logic statements
over R, where each r ∈ R is considered as a predicate. We
denote the set of role formulae over R by B(R).

Definition 3.1. An RBAC policy for p is a tuple P =
(R,U, υ, µ, π), where

1. R is a finite set of role predicates.
2. U is a finite set of users.
3. υ : U → B(R) is the user role assignment function,

interpreted as follows: ∀u ∈ U , υ(u) defines the roles
granted to u at program entry; υ(u) �= false.

4. µ : M → B(R) is the role requirement function, map-
ping each method to the roles required to invoke it.

5. π : M ⇀ B(R) is the principal delegation partial func-
tion, defined as follows: ∀m ∈ M , π(m), if defined,
indicates the roles that m sets as part of its principal-
delegation policy; π(m) �= false.

Function µ typically requires a disjunction of roles, al-
lowing a user u to invoke a method m if and only if u pos-
sesses any of the roles in the disjunction µ(m). More pre-
cisely, if g ∈ B(R) defines the roles dynamically held by
an execution when it invokes m, the invocation of m will
succeed if and only if g ⇒ µ(m). In particular, if µ(m) ⇔
true, then m is unprotected, while if µ(m) ⇔ false,
then m is inaccessible.

Function υ typically assigns a conjunction of roles,
granting a user multiple roles simultaneously. If υ(u) ⇔
true for some user u, then u can only access unprotected
resources.

The π partial function models changes in privileges ac-
cording to principal-delegation policies. If, for a method m,
π(m) is defined, then when the program makes a call from
m, it assumes roles π(m). When π(m) is not defined, it
signifies no principal delegation in place; the roles held by
the user executing p do not change. If π(m) ⇔ true, the
principal-delegation policy strips all privileges; in this state,
the program can access only unprotected resources.

We now define, informally, an instrumented concrete se-
mantics to describe the behavior of a program under an
RBAC policy. We assume a standard concrete semantics for
a program in the underlying language, where the program
state consists of a program counter, stack, heap, local vari-
ables, and global variables. We assume for this discussion a
single thread of execution; generalizing to multiple threads

does not introduce any difficulties. We instrument the pro-
gram state additionally with a stack w of dynamically held
roles; if S is the program configuration under the standard
concrete semantics, then 〈S,w〉 is the program configura-
tion under the instrumented concrete semantics. The stack
alphabet is Σ := B(R); each σ ∈ Σ represents roles that an
execution may hold at a particular point.

Definition 3.2. The base instrumentation for an execu-
tion initiated by a user u is defined as follows. Given a
configuration 〈S,w〉, we denote a transition of the instru-
mented concrete semantics into a configuration 〈S′, w′〉 by
〈S,w〉 � 〈S′, w′〉. Since the only operations that affect
the instrumentation are method calls and returns, we only
describe the effect of these operations. When a security vi-
olation occurs, the semantics transitions into a designated
authorization error state. In the following, we only show
transitions to non-error states (implicitly defining all other
transitions as transitions to the error state), and assume that
S′ is the updated configuration according to the standard
concrete semantics applied to S.

• Init: Call to entry point m′

〈S, ε〉 � 〈S′, υ(u)ε〉, υ(u) ⇒ µ(m′)

• Call: m calls m′

〈S, σw〉 �
{
〈S′, σσw〉, π(m) undefined ∧σ ⇒ µ(m′)
〈S′, π(m)σw〉, π(m) defined ∧π(m) ⇒ µ(m′)

• Return
〈S, σw〉 � 〈S′, w〉

3.2 Accounting for Intra-component Calls

As discussed in Section 2.2, an RBAC system typically
performs authorization checks only on inter-component
calls. This unintuitive semantics can lead to unexpected vi-
olations of the Principle of Least Privilege, if not accounted
for correctly. We now extend the instrumented concrete se-
mantics to distinguish between intra- and inter-component
calls. We denote the set of modules of p by MD and de-
fine a function md : M → MD that maps each method to
its module. The modified semantics is identical to those of
Section 3.1, with the following special rule, which overrides
the semantics of intra-component procedure calls:

Definition 3.3. The modified instrumentation for an exe-
cution is identical to the base instrumentation for inits and
returns, and changes the handling of calls as follows:
• Intercomponent Call: m calls m′, md(m) �= md(m′)

〈S, σw〉 �
{
〈S′, σσw〉, π(m) undefined ∧σ ⇒ µ(m′)
〈S′, π(m)σw〉, π(m) defined ∧π(m) ⇒ µ(m′)

• Intra-component Call: m calls m′, md(m) = md(m′)

〈S, σw〉 � 〈S′, σσw〉
Note that the rule for intra-component calls does not have

any side condition. Therefore such calls cannot lead to an
authorization check error.

3.3 Sufficiency, Minimality, Subversion

This section formalizes the notion of an RBAC policy
being too restrictive or too permissive.

Definition 3.4. An RBAC policy P for a program p is suf-
ficient if for any user u and for any execution e such that
υ(u) ⇒ µ(me), where me ∈ M is the entry point of e, e
does not transition to an authorization error state; insuffi-
cient otherwise.

In other words, for P to be sufficient, it is necessary that
no execution transitions to an authorization error state, pro-
vided the user has permission to initiate the execution by
calling its entry point. If an authorization failure occurs, it
must occur immediately when the user calls an entry point
(for example, an application service).

It is possible to define a partial order on the class of all
the RBAC policies on a program p that share the same role
requirement function.

Definition 3.5. Given a program p with sets of methods M ,
users U , and roles R, we define a partial order on the class
C(U,R, µ) of all the RBAC policies on p sharing the same
role requirement function µ : M → B(R), as follows.

Given two user role assignment functions υ1, υ2 : U →
B(R), we say that υ1 is less permissive than υ2, and write
υ1
 υ2, if υ1(u) ⇒ υ2(u),∀u ∈ U . If υ1
 υ2∧∃u ∈ U :
υ2(u) � υ1(u), we say that υ1 is strictly less permissive
than υ2, and write υ1 ≺ υ2.

Given two principal delegation partial functions π1, π2 :
M ⇀ B(R), we say that π1 is less permissive than π2, and
write π1
 π2, if ∀m ∈ M either π1(m) ⇒ π2(m) or both
π1(m) and π2(m) are undefined. If π1
 π2 ∧ ∃m ∈ M :
π2(m) � π1(m), we say that π1 is strictly less permissive
than π2, and write π1 ≺ π2.

Given two RBAC policies P1 = (R,U, υ1, µ, π1), P2 =
(R,U, υ2, µ, π2) ∈ C(U,R, µ), we say that P1 is less per-
missive than P2, and write P1
 P2 if υ1
 υ2 and π1

π2. If P1
 P2 and υ1 ≺ υ2 or π1 ≺ π2, we say that P1 is
strictly less permissive than P2, and write P1 ≺ P2.

Intuitively, if P1 ≺ P2, then P1 is “stricter” than P2; P1

grants fewer privileges to the users executing the code. This
allows reasoning about the Principle of Least Privilege; an
RBAC policy should grant the minimum set of privileges
necessary to prevent authorization failures. More formally,
an RBAC policy should be “minimal”:

Definition 3.6. An RBAC policy P sufficient for a program
p is minimal if there exists no sufficient RBAC policy Q for
p such that Q ≺ P ; otherwise, P is redundant.

Given a program, it is possible to execute it with respect
to either the base or the modified instrumentation. In the
latter case, the execution will differ in the state of roles veri-
fied and granted, and in possible transitions to authorization
error states.

Definition 3.7. An RBAC policy P is subversive if there
exists any execution with P that transitions to an autho-
rization error state under the base instrumentation, but not
under the modified instrumentation.

In other words, P is subversive if sufficient under the
modified instrumentation, but insufficient under the base
instrumentation. From a security perspective, a subver-
sive execution may be a violation of the Principle of
Least Privilege because a user may access a restricted re-
source, bypassing the intended security policy by exploiting
unchecked intra-component calls.

4 Static Analysis for RBAC

Let P be an RBAC policy for a program p. At each pro-
gram point, it is important to detect whether P is either too
permissive or too restrictive. To do this, it is important to
identify (i) the set of roles required at each program point,
and (ii) the set of roles the user may possess at each pro-
gram point, based on the concrete semantics of P . This
section describes a conservative Role-Requirement Analy-
sis that approximates these sets, and shows how this analy-
sis can identify RBAC policies that can cause security flaws.
The Role-Requirement Analysis can be used to infer alter-
native policies that correct such flaws.

4.1 Role Domain

At each point during execution, the RBAC policy re-
quires a certain set of roles, and the user holds a certain
set of roles. The Role-Requirement Analysis computes val-
ues that overapproximate the set of roles required at any
program point. The values computed are preconditions that
ensure that a call to a given method m will not lead to au-
thorization errors, including (transitively) any further calls
from m.

As described in Section 3.1, an RBAC policy specifies
role requirements and user authorization in terms of role
formulae over the set of roles R, B(R). Henceforth, we as-
sume that these role formulae are monotone (no negations),
and specified in conjunctive normal form.

We present the Role-Requirement Analysis as a dataflow
analysis over sets of roles. To this end, we map role for-
mulae in monotone conjunctive normal form (MCNF(R))

to elements of P(P(R)) via a mapping φ. For σ ∈
MCNF(R), with σ =

∧k
i=1

∨ti

j=1 rij , we define φ(σ) as

φ(σ) := {Ri}k
i=1, where Ri := {rij}ti

j=1,∀i = 1, . . . , k.
Via this mapping, we proceed to define a set-based

dataflow analysis over the semilattice LS with elements
P(P(R)), join operator ∪, and partial order ⊇. We have
shown [17] that with appropriate quotients, this semilattice
is isomorphic through φ to the corresponding semilattice
derived from MCNF(R) with join operator ∧ and partial
order ⇒. This result ensures that the set-based dataflow
analysis formulation is a faithful representation of the anal-
ysis problem derived from the concrete semantics defined
in terms B(R) and ⇒.

4.2 Role-Requirement Analysis

The first step of the Role-Requirement Analysis algo-
rithm is to build a call graph G = (N,E) overapproxi-
mating the method calls during execution of the applica-
tion, and to compute the RBAC policy P by identifying
which methods in the application are access-restricted and
which components define principal-delegation policies. If a
method is reachable from the program entry point, then it
will correspond to a node in G.

The Role-Requirement Analysis overapproximates the
sets of roles required at each program point via the solu-
tion to a backwards dataflow problem induced by G and
P . We first define mc : N → M , mapping a call graph
node to its corresponding method. Functions µc, πc : N →
P(P(R)) and mdc : N → MD are defined as follows:
µc(n) := µ(mc(n)), πc(n) := π(mc(n)), and mdc(n) =
md(mc(n)),∀n ∈ N . Dataflow functions Gen, Kill : E →
P(P(R)) are defined as follows, ∀e = (n1, n2) ∈ E:

Gen(e) :=

{
µc(n2), mdc(n1) �= mdc(n2) ∧ πc(n1) undef

∅, otherwise

Kill(e) :=

{
P(R), mdc(n1) �= mdc(n2) ∧ πc(n1) defined

∅, otherwise

We use Gen and Kill in the following dataflow equations:

Out(e) = (In(e) \ Kill(e)) ∪ Gen(e)
In(e) =

⋃
f∈Γ+(e) Out(f)

where Γ+((n1, n2)) := {(n′
1, n

′
2) ∈ E : n′

1 = n2}.
These monotone dataflow equations are solved via itera-

tion to a fixed point [1]. In the solution, Out((n1, n2)) over-
approximates the roles required for a user invoking mc(n2)
from mc(n1). We define a function Λ : N → B(R) that an-
notates each node with (an overapproximation of) the tran-
sitive role requirement needed to call that node from another

component. Λ(n) is defined as follows, ∀n ∈ N :

Λ(n) = φ−1((
⋃

(n,n′)∈E

Out(n, n′)) ∪ µc(n))

4.3 Security Analyses

The Role-Requirement Analysis forms the basis for sev-
eral security analyses. Given an RBAC policy P =
(R,U, υ, µ, π) as in Definition 3.1, the Role-Requirement
Analysis can be used to automatically detect if P is insuf-
ficient, minimal, or subversive. If it detects that P is insuf-
ficient or subversive, the analysis can report code locations
that make P insufficient or subversive, and output alterna-
tive υ and π that can make P sufficient or non-subversive,
respectively. If it detects that P is redundant, the analysis
can report a more accurate policy P ′ in which, according to
the analysis, the redundancy has been eliminated.

4.3.1 Sufficiency Analysis

This section defines a notion of an RBAC policy’s being
sufficient with respect to the Role-Requirement Analysis re-
sult, and then proves a related soundness property.

We define the following two types of edges in the call
graph:
• Entry Edges. We augment the call graph G = (N,E)

with an additional node ñ ∈ N representing a generic
client invoking p’s entry points. If m0 ∈ M is an entry
point of p and n0 ∈ N is a call graph node representing
m0, then the edge e0 := (ñ, n0) ∈ E is called an entry
edge.

• run-as Edges. An edge e = (n1, n2) ∈ E is said to
be a run-as edge if it is an inter-component edge and
if πc(n1) is defined. run-as edges are exactly those
on which the Kill function is nontrivial.

For notational convenience in later sections, we define
the result of sufficiency analysis as indicating a policy to be
“abstractly sufficient:”

Definition 4.1. Let P be an RBAC policy and Λ : N →
B(R) the result of Role-Requirement Analysis for P . P is
abstractly sufficient if the following two conditions hold:

1. For each entry edge e0 = (ñ, n0) ∈ E, υ(u) ⇒ Λ(n0)
for each u ∈ U such that υ(u) ⇒ µ(n0).

2. π(n1) ⇒ Λ(n2) for each run-as edge (n1, n2) ∈ E.
Otherwise, P is said to be abstractly insufficient.

It is straightforward to verify whether an RBAC policy P
is abstractly sufficient based on Definition 4.1. The follow-
ing theorem establishes soundness of sufficiency analysis as
so defined:

Theorem 4.1. If an RBAC policy P is abstractly sufficient,
then it is sufficient.

Proof. Straightforward by induction on the structure of the
call graph.

Of course, there can be RBAC policies that are abstractly
insufficient, but sufficient in the concrete semantics. These
false positives can arise due to overapproximation in the call
graph on which the analysis relies.

4.3.2 Minimality Analysis

Using the results of sufficiency analysis, we now present
an analysis to determine if an RBAC policy is redundant,
violating the Principle of Least Privilege.

Given the result Λ of a Role-Requirement Analysis for
an RBAC policy P , a simple greedy algorithm can search
for an alternative policy Q such that P is more permis-
sive than Q, but Q is still sufficient. This minimality anal-
ysis iteratively removes one role from role assignments
υ(u),∀u ∈ U , and π(m),∀m ∈ M , and verifies via Λ
whether the resulting RBAC policy is still abstractly suffi-
cient. This process terminates after at most O(|R|(|E| +
|M |)) iterations and leads to a sufficient RBAC policy that
better satisfies the Principle of Least Privilege.

The following result shows that this minimality analysis
algorithm is complete:

Corollary 4.1. If an RBAC policy P is abstractly sufficient,
and there exists an abstractly sufficient policy Q such that
Q ≺ P , then P is redundant.

Proof. By Theorem 4.1, both P and Q are sufficient. There-
fore, according to Definition 3.6, P is redundant.

Thus, any problems reported by minimality analysis rep-
resent actual violations of the Principle of Least Privilege;
there are no false positives. The analysis is not sound, and
may fail to identify some violations.

4.3.3 Subversion Analysis

It is easy to construct a Role-Requirement Analysis that
overapproximates the roles required by a program p assum-
ing that p will be executed with respect to the base instru-
mented semantics as explained in Definition 3.2. To do
so, it is enough to modify the dataflow computation pre-
sented in Section 4.2 by disregarding the distinction be-
tween inter- and intra-component edges, and considering all
calls as inter-component calls. Technically, we define each
call graph node to be in a separate module by using a mod-
ified set of modules MD′ and a module mapping function
md′

c : N → MD′. We define a labeling function Λ′, that
annotates the call graph with the solution of the dataflow
equation under the module mapping md′

c.
The notions of an RBAC policy’s being abstractly suf-

ficient or abstractly insufficient with respect to the base

instrumented semantics abstraction can be obtained from
Definition 4.1 by simply replacing Λ with Λ′. For simplic-
ity, we will say that P is abstractly sufficient for Λ [Λ′] if is
abstractly sufficient with respect to the modified [base] in-
strumented semantics abstraction; abstractly insufficient for
Λ [Λ′] otherwise.

It is easy to see that Theorem 4.1 applies to the base in-
strumented semantics as well, with straightforward modifi-
cations. In particular, this means that an RBAC policy P
that is abstractly sufficient for Λ′ is sufficient with respect
to the base instrumented semantics. Thus the subversion
analysis is sound:

Corollary 4.2. If a RBAC policy P is abstractly sufficient
for Λ′, then it is not subversive.

With Corollary 4.2, the analysis can verify that a policy
is not subversive, with the analysis subject to potential false
positives.

5 Implementation

This section describes the implementation of the security
analyses described in Section 4.3.

5.1 General Architecture

ESPE runs as a stand-alone Java program, and can ana-
lyze Java EE deployed applications packaged in Enterprise
ARchive (EAR) files or separate Java ARchive (JAR) and
Web ARchive (WAR) files [28]. These files contain the ob-
ject code and deployment descriptors of one or more appli-
cations. Source code is unnecessary since ESPE analyzes
object code. ESPE analyzes standard Java EE applications
regardless of the platform vendor. All the library files used
by the applications at run time must be part of the analysis
to allow ESPE to provide sound results.

ESPE comprises two main components: a deployment-
descriptor analyzer and a security analysis engine. ESPE
analyzes the object code and produces a call graph mod-
eling the execution of the applications. ESPE analyzes
also the deployment descriptors to detect which resources
have been access-restricted with roles, and which compo-
nents define principal-delegation policies. Based on this
information, the deployment-descriptor analyzer produces
two mappings: one mapping associates enterprise resources
with the roles necessary to access them; the other mapping
associates each component with the run-as role specified
by that component, if any. Next, ESPE analyzes both the
call graph and the security mappings, and identifies secu-
rity and stability problems.

After the call graph has been built, as explained in Sec-
tion 5.2, ESPE performs the Role-Requirement Analysis.

5.2 Call Graph Construction

ESPE’s security analysis engine relies on a Java EE byte-
code analysis system called T. J. Watson Libraries for Anal-
ysis (WALA), developed at IBM Research [29] and for-
merly known as DOMO [3]. WALA provides a range of
call graph construction algorithms, ranging from class hier-
archy analysis [6] to control-flow analysis with a variety of
context-sensitivity policies [10]. With these choices, ESPE
supports a range of cost/precision trade-offs.

A crucial implementation challenge for Java EE anal-
ysis concerns accurate modeling of inter-component calls.
Consider for example an enterprise bean having remote in-
terface Bean2, remote home interface Bean2Home, and
enterprise bean class Bean2Bean [25]. Suppose that
method m1 in enterprise bean Bean1Bean calls remote
method m2 on Bean2Bean. For this to be possible, m2
must be a method declared in Bean2 and implemented in
Bean2Bean, and a code similar to the following must be
embedded in m1.

Context initial = new InitialContext();
Object objref =

initial.lookup("java:comp/env/ejb/Bean2");
Bean2Home bean2Home = (Bean2Home)

PortableRemoteObject.narrow(
objref, Bean2Home.class);

Bean2 bean2Object = bean2Home.create();
bean2Object.m2();

At the bytecode level, the call to bean2Object.m2
delegates to an implementation generated automatically by
the Java EE deployment tool. This implementation would
consult run-time registries and pass a message over Remote
Method Invocation over Internet Inter-ORB Protocol (RMI-
IIOP) to the process hosting the home container for the
bean. The receiving process would unmarshall the RMI-
IIOP message, activate the relevant component through the
bean lifecycle implementation, and finally delegate to a re-
flective call to complete the remote invocation.

Analyzing bytecode solely, it would be impossible to
resolve this remote method invocation, since the relevant
dispatch tables are effectively encoded in the eXtensible
Markup Language (XML) deployment descriptor, and read
by the container at run-time. Instead, WALA consults
the Java EE deployment descriptor to identify such inter-
component calls and models the observed behavior, in-
dependent of the container implementation. Effectively,
WALA ignores the generated, deployed code, and models
the application-level semantics of inter-component calls di-
rectly, based on direct analysis of the deployment descrip-
tor. This functionality is necessary for accurate analysis of
inter-component calls in Java EE, and to our knowledge is
not supported by any other static analysis implementation.

For the code above, the call graph will contain an addi-
tional edge that links the declaration of m2 in Bean2 to the

actual (remote) implementation of m2 in Bean2Bean, as
shown in Figure 2.

Bean1Bean.m1()

Bean2.m2()

Bean1Bean.m1()

Bean2.m2()

Bean2Bean.m2()

Traditional Static
Analysis Engine

J2EE-specific Static
Analysis Engine

Component

Intercomponent call

Intracomponent call

Figure 2. Traditional Static Analyzer vs. ESPE

ESPE also includes code to automatically identify ap-
plication entry points, which correspond to EJB inter-
faces, servlets, JavaServer Pages (JSP) applications, Struts,
message-driven beans, and Java EE application clients. The
call graph construction resolves behavior from these vari-
ous types of entry points appropriately, depending on the
semantics of each type as specified by Java EE [28].

6 Experimental Results

This section summarizes the experimental results ob-
tained by using ESPE on the following Java EE
V1.4 applications: PetStore [27], Bookstore [7],
EnrollerApp [26], SavingsAcc [26], DukesBank
[26], ITSOBank [16], Trade3 [11], SPECj2002 [24],
and anonymous production-level applications A and B.

The results reported in Table 1 are from running ESPE on
an IBM T60P ThinkPad with an Intel T2600 Core Duo 2.16
GHz processor, 2 GB of Random Access Memory (RAM),
and Microsoft Windows XP SP2 operating system. ESPE
was run on a Java, Standard Edition (SE) V1.5.0 07 run-
time environment. For each application, Table 1 shows the
application size (which does not include the libraries), the
size of the call graph generated by ESPE, the time taken
to perform the analysis, the total amount of memory (Java
heap size) required to perform the analysis, the number of
roles defined by the application, and the number of prob-
lems reported by ESPE, characterized as insufficiency, re-
dundancy, and subversion problems. We further classify
each problem as arising from role assignments to users (υ)
or role assignments from principal-delegation policies (π).
DukesBank, ITSOBank, and commercial applications

A and B came with predefined roles, while for the other ap-
plications it was necessary for a system administrator to
define the security policy based on the introspection per-
formed on the applications by Sun Microsystems’ Deploy-
ment Tool for Java 2 Platform Enterprise Edition 1.4. In

Application Size Call Graph Time Mem. Roles Problems
(KB) Nodes Edges (sec.) (MB) Insufficiency Redundancy Subversion

υ π υ π υ π

PetStore 1,282 6,465 23,360 35 117 3 8 0 0 5 0 0
Bookstore 359 16,269 86,448 62 162 3 2 2 0 14 0 0
EnrollerApp 15 2,212 10,060 12 220 3 1 0 0 0 0 0
SavingsAcc 10 2,164 9,799 12 227 4 1 0 0 0 0 0
DukesBank 149 3,452 9,322 23 212 2 1 0 0 1 0 3
ITSOBank 1,388 11,448 42,220 59 150 7 10 0 6 3 0 4
Trade3 2,414 5,634 20,655 29 114 2 21 0 0 0 1 0
SPECj2002 3,608 5,536 20,614 52 150 2 31 0 0 13 2 3
A 2,580 618 1,007 11 239 4 3 0 0 0 0 0
B 12,889 15,527 78,434 19 241 6 1 2 2 2 0 0

Table 1. Empirical Results of ESPE Analysis

this task, the system administrator attempted to configure
valid security policies, and did not intend to introduce any
security flaws.

The experiments in this paper rely on call graph con-
struction via Rapid Type Analysis (RTA) [2], supporting
analysis of large Java EE applications in relatively short
time. The results shows that the analysis discovered a num-
ber of policy problems in each application, spanning the
three types of policy flaws we have identified. Most of
the flaws stem from user role assignments as opposed to
principal-delegation policies. Notably, the analysis discov-
ered thirty-eight flaws in the four applications which came
configured with RBAC policies, including ten flaws in the
two production codes A and B from IBM customers.

As explained earlier, the redundancy analysis is com-
plete, so all redundancy reports identify actual violations of
the Principle of Least Privilege. The sufficiency and subver-
sion analyses are sound but not complete, and so subject to
false positives. We examined each of the insufficiency and
subversion problems reported by ESPE by hand, in order to
identify false positives.

Somewhat surprisingly, none of the reported problems
appear to be false positives, despite overapproximations in
the relatively imprecise RTA call graph. We believe that
the calling patterns in these Java EE programs that affect
RBAC analysis are predominantly monomorphic, and thus
amenable to context-insensitive call graph analysis. In prac-
tice, most enterprise beans map directly from the structure
of an underlying relational database, and so do not utilize
inheritance or linked structures. Furthermore, applications
rarely store or manipulate EJB instances with complex heap
data structures. Although the underlying container utilizes
complex libraries and data structures, the WALA analyzer
truncates paths into the container, so container code does
not pollute the application-level call graph. Furthermore,
interactions with Java standard libraries are usually uninter-
esting for role analysis, since library methods are not re-
stricted with roles.

We now discuss the problems identified in the four codes

which came with pre-configured RBAC policies. We first
discuss the problems in the two production commercial ap-
plications in more detail, since these represent real prob-
lems from the field.

Commercial application A contained three insufficiency
errors that were not detected during testing. The architec-
ture of application A assumed that four of its archive files be
installed on an Internet environment, while the remaining
three archive files be installed on an intranet environment
for use by customer-service representatives. During test-
ing, paths of execution initiated in the intranet and involving
components of both environments were never explored, and
three role requirements were not identified, leading to three
insufficiency problems. Those paths, which were valid,
were however identified by ESPE, and the security policy
was corrected before any user could experience a run-time
authorization failure.

Production-level application B contained seven security
problems, one of which was due to the user role assignment
function’s being insufficient. This vulnerability was inter-
esting because it was also difficult to discover without an
automated tool. In an RBAC system, certain resources can
be marked as inaccessible, meaning that no user can ac-
cess them regardless of the roles the user has been granted.
One of the methods in B was marked as inaccessible be-
cause it was supposed to be executed only for debugging
purposes, when security is disabled. ESPE detected a path
that exposed that inaccessible method to indirect invocation
by other programs. If that path had inadvertently been ex-
ploited at run time, it would have caused an authorization
failure. That problem was not detected during testing.

The ITSOBank program exposes a redundant pol-
icy. For example, when method onMessage in
IncomingTransferBean invokes getBalance and
setBalance on BranchAccountLocal, its com-
ponent sets the principal delegation to mdbuser, but
this role is not necessary to execute any of the
methods transitively reached from that execution point,
which makes π redundant. Similarly, entry point

Consultation.getBranchBalance has been re-
stricted with role formula accountant ∨ manager ∨
clerk ∨ consultant. A system administrator granting
a user the right to execute this entry point may either choose
any of these roles, or all of them. ESPE has detected that
roles manager ∧ clerk ∧ consultant are transitively
necessary to execute the application starting at that entry
point, but role accountant is not.

Both DukesBank and ITSOBank present cases of
subversive policies. For example, in DukesBank, the
Dispatcher component sets the principal-delegation
policy to bankAdmin, but this role would not be suf-
ficient to execute the intra-component method invoca-
tions restricted with bankCustomer if authorization
were enforced regardless of component boundaries. In
ITSOBank, the component IncomingTransferBean
enforces principal delegation by assigning the user the iden-
tify of role mdbuser. However, this principal-delegation
policy would not be sufficient for the user to pass the sub-
sequent internal authorization test for manager ∨ clerk
∨ consultant.

Overall, we conclude that ESPE is effective in identi-
fying flaws in RBAC security policies. The tool has been
applied by various groups in IBM working with customer
enterprise applications.

7 Related Work

Ferraiolo and Kuhn proposed RBAC in 1992 [8]. Work
on building and analyzing models and implementations
for RBAC has concentrated on complex architectures [22].
Schaad, et al. [23] used the Alloy specification language
[12] for modeling RBAC96, and the Alloy Constraint An-
alyzer (Alcoa) [13] to check desirable properties such as
separation of duties.

XML documents are often used by Web applications.
Several mechanisms and frameworks for specification and
enforcement of RBAC policies for XML documents have
been proposed [5, 14]. Such mechanisms are flexible in the
sense that they prohibit or allow access to specific individ-
ual elements in XML documents. Recently, Murata, et al.
[15] proposed a static analysis approach based on finite state
automata that alleviates the burden of enforcement of such
specifications at run time. A positive side effect of this work
is faster execution of queries over XML documents.

In the area of Web applications, a number of testing and
static analysis techniques have been studied, but they have
concentrated primarily on the problem of control and infor-
mation flow between static and dynamic resources utilized
by Web applications. For example, Ricca, et al. [20] intro-
duced a Unified Modeling Language (UML) model for Web
applications that is useful for structural testing. However,
this model concentrates on links between Web pages and in-

teractive features of Web applications, and does not provide
support for distributed object components. The purpose of
the work of Clarke, et al. [4] is to enforce confinement of
EJB objects. An EJB object’s confinement can be breached
when a direct reference to the EJB object is returned to a
client, thereby allowing a client to invoke security-sensitive
methods bypassing any RBAC restriction. They proposed
coding guidelines that, if observed, prevent confinement
breaches. Additionally, they described a straightforward
static analysis algorithm that checks for violations of those
guidelines in EJB programs.

Centonze, et al. [3] identified the need for determining
the location-based RBAC policy Λ implicitly defined by a
method-based RBAC policy µ. They proved necessary and
sufficient conditions under which µ admits an equivalent Λ
and proposed a static analysis model to determine whether
µ is inconsistent, meaning that it does not admit any equiv-
alent Λ. This happens, for example, if two methods access
the same data in the same mode, but are not restricted with
the same roles. That work was implemented in the Static
Analysis for Validation of Enterprise Security (SAVES) tool
which, like ESPE, was built on top of WALA. ESPE extends
SAVES by identifying a different class of RBAC vulnerabil-
ities.

In addition to RBAC, Java offers a low-level access-
control mechanism to protect static resources, such as the
file system, network, and operating system. Both static and
dynamic analysis techniques are employed in modeling se-
curity and authorization. Much of this work has been ap-
plied to eliminate or minimize redundant authorization tests
and identify the minimal security policy to execute a Java
SE application without authorization failures [18].

8 Summary

This paper has presented a novel theoretical founda-
tion for RBAC consistency validation, and a static analy-
sis model to represent the flow of authorization informa-
tion in an RBAC system. The analysis can identify the
roles required by users to execute an enterprise applica-
tion, detect potential inconsistencies caused by principal-
delegation policies, find vulnerabilities which can result
from unchecked intra-component accesses, and report if the
roles assigned to a user by a given policy are redundant or
insufficient. The algorithms described in this paper have
been implemented as part of IBM’s ESPE tool. This paper
has presented the results obtained by executing ESPE on a
number of production-level Java EE applications.

9 Acknowledgments

The authors wish to thank Julian Dolby for his contribu-
tions to the WALA analysis framework; Paolina Centonze

for configuring the RBAC policies of some of the bench-
marks used in this paper; and the anonymous reviewers of
ICSE 2007 for their insightful comments.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Prin-
ciples, Techniques, and Tools. Addison-Wesley, Reading,
MA, USA, Jan. 1986.

[2] D. F. Bacon and P. F. Sweeney. Fast Static Analysis of C++
Virtual Function Calls. In Proceedings of the 11th ACM SIG-
PLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, pages 324–341, San
Jose, CA, USA, 1996. ACM Press. Also published in ACM
SIGPLAN Notices 31(10).

[3] P. Centonze, G. Naumovich, S. J. Fink, and M. Pistoia. Role-
Based Access Control Consistency Validation. In Proceed-
ings of the 2006 International Symposium on Software Test-
ing and Analysis (ISSTA 2006), pages 121–132, Portland,
ME, USA, 2006. ACM Press.

[4] D. Clarke, M. Richmond, and J. Noble. Saving the World
from Bad Beans: Deployment-Time Confinement Check-
ing. In Proceedings of the 18th annual ACM SIGPLAN
Conference on Object-Oriented Programing, Systems, Lan-
guages, and Applications, pages 374–387, Anaheim, CA,
USA, 2003. ACM Press.

[5] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and
P. Samarati. A Fine-grained Access Control System for
XML Documents. ACM Transactions on Information Sys-
tems Security, 5(2):169–202, 2002.

[6] J. Dean, D. Grove, and C. Chambers. Optimization of
Object-Oriented Programs Using Static Class Hierarchy
Analysis. In Proceedings of the 9th European Conference
on Object-Oriented Programming, pages 77–101, Aarhus,
Denmark, August 1995. Springer-Verlag.

[7] H. M. Deitel, P. J. Deitel, and S. E. Santry. Advanced Java
2 Platform: How to Program. Prentice Hall, Upper Saddle
River, NJ, USA, September 2001.

[8] D. F. Ferraiolo and D. R. Kuhn. Role-Based Access Con-
trols. In Proceedings of the 15th NIST-NCSC National Com-
puter Security Conference, pages 554–563, Baltimore, MD,
USA, October 1992.

[9] A. Freeman and A. Jones. Programming .NET Security.
O’Reilly & Associates, Inc., Sebastopol, CA, USA, June
2003.

[10] D. Grove and C. Chambers. A Framework for Call Graph
Construction Algorithms. ACM Trans. Program. Lang. Syst.,
23(6):685–746, November 2001.

[11] IBM Corporation, Trade3 Benchmark, http://www.
ibm.com/software/.

[12] D. Jackson. Alloy: A Lightweight Object Modelling No-
tation. ACM Trans. Softw. Eng. Methodol., 11(2):256–290,
2002.

[13] D. Jackson, I. Schechter, and H. Shlyahter. Alcoa: The Al-
loy Constraint Analyzer. In Proceedings of the 22nd Interna-
tional Conference on Software Engineering, pages 730–733,
Limerick, Ireland, 2000. ACM Press.

[14] M. Kudo and S. Hada. XML Document Security Based
on Provisional Authorization. In Proceedings of the 7th
ACM Conference on Computer and Communications Secu-
rity, pages 87–96, Athens, Greece, Nov. 2000. ACM Press.

[15] M. Murata, A. Tozawa, M. Kudo, and S. Hada. XML Ac-
cess Control Using Static Analysis. In Proceedings of the
10th ACM Conference on Computer and Communications
Security, pages 73–84, Washington, DC, USA, Oct. 2003.
ACM Press.

[16] J. Picon, P. Genchi, M. Sahu, M. Weiss, and A. Dessureault.
Enterprise JavaBeans Development Using VisualAge for
Java. IBM Redbooks. IBM Corporation, International Tech-
nical Support Organization, San Jose, CA, USA, June 1999.

[17] M. Pistoia, S. J. Fink, R. J. Flynn, and E. Yahav. When Role
Models Have Flaws: Static Validation of Enterprise Security
Policies. Technical Report RC24056 (W0609-065), IBM
Corporation, Thomas J. Watson Research Center, Yorktown
Heights, NY, USA, Sept. 2006.

[18] M. Pistoia, R. J. Flynn, L. Koved, and V. C. Sreedhar. In-
terprocedural Analysis for Privileged Code Placement and
Tainted Variable Detection. In Proceedings of the 9th Euro-
pean Conference on Object-Oriented Programming, Glas-
gow, Scotland, UK, July 2005. Springer-Verlag.

[19] M. Pistoia, N. Nagaratnam, L. Koved, and A. Nadalin. En-
terprise Java Security. Addison-Wesley, Reading, MA,
USA, February 2004.

[20] F. Ricca and P. Tonella. Analysis and Testing of Web Ap-
plications. In Proceedings of the 23rd International Confer-
ence on Software Engineering, pages 25–34, Toronto, ON,
Canada, 2001. IEEE Computer Society.

[21] J. H. Saltzer and M. D. Schroeder. The Protection of Infor-
mation in Computer Systems. In Proceedings of the IEEE,
volume 63, pages 1278–1308, Sept. 1975.

[22] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-
based access control models. IEEE Computer, 29(2):38–47,
Feb. 1996.

[23] A. Schaad and J. D. Moffett. A Lightweight Approach to
Specification and Analysis of Role-Based Access Control
Extensions. In Proceedings of the 7th ACM Symposium
on Access Control Models and Technologies, pages 13–22,
Monterey, CA, USA, 2002. ACM Press.

[24] Standard Performance Evaluation Corporation Java Busi-
ness Benchmark 2000 (SPECjbb2000), http://www.
spec.org.

[25] Sun Microsystems, Enterprise JavaBeansTM Specification,
http://java.sun.com/products/ejb/.

[26] Sun Microsystems, J2EE 1.4 Tutorial, http:
//java.sun.com/j2ee/1.4/download.html#
tutorial/.

[27] Sun Microsystems, Java PetStore, http://java.sun.
com/developer/releases/petstore/.

[28] Sun Microsystems, JavaTM Platform, Enterprise Edition
Specification, http://java.sun.com/j2ee.

[29] T. J. Watson Libraries for Analysis (WALA), http://
wala.sourceforge.net.

