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Abstract. This paper addresses the problem of establishing temporal properties of pro-
grams written in languages, such as Java, that make extensive use of the heap to allocate—
and deallocate—new objects and threads. Establishing liveness properties is a particularly
hard challenge. One of the crucial obstacles is that heap locations have no static names and
the number of heap locations is unbounded. The paper presents a framework for the veri-
fication of Java-like programs. Unlike classical model checking, which uses propositional
temporal logic, we use first-order temporal logic to specify temporal properties of heap
evolutions; this logic allows domain changes to be expressed, which permits allocation and
deallocation to be modelled naturally. The paper also presents an abstract-interpretation
algorithm that automatically verifies temporal properties expressed using the logic.

1 Introduction
Modern programming languages, such as Java, make extensive use of the heap. The
contents of the heap may evolve during program execution due to dynamic allocation
and deallocation of objects. Moreover, in Java, threads are first-class objects that can be
dynamically allocated. Statically reasoning about temporal properties of such programs
is quite challenging, because there are no a priori bounds on the number of allocated
objects, or restrictions on the way the heap may evolve. In particular, proving liveness
properties of such programs, e.g., that a thread is eventually created in response to each
request made to a web server, can be a quite difficult task.

The contributions of this paper can be summarized as follows:
1. We introduce a first-order modal (temporal) logic [9, 8] that allows specifications

of temporal properties of programs with dynamically evolving heaps to be stated in
a natural manner.

2. We develop an abstract interpretation [4] for verifying that a program satisfies such
a specification.

3. We implemented a prototype of the analysis using the TVLA system [11] and ap-
plied it to verify several temporal properties, including liveness properties of Java
programs with evolving heaps.
We have used the framework to specify and verify the following:
Specify general heap-evolution properties: The framework has been used to specify

in a general manner, various properties of heap evolution, such as properties of garbage-
collection algorithms.

Verify termination of sequential heap-manipulating programs: Termination is shown
by providing a ranking function based on the set of items reachable from a variable it-
erating over the linked data structure. In particular, we have verified termination of all
example programs from [6].
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Verify temporal properties of concurrent heap-manipulating programs: We have
used the framework to verify temporal properties of concurrent heap-manipulating pro-
grams — in particular, liveness properties, such as the absence of starvation in programs
using mutual exclusion, and response properties [13]. We have applied this analysis to
programs with an unbounded number of threads.

Due to space limitations, the prototype implementation is only discussed in [17, 20].
The remainder of this paper is organized as follows: Section 2 gives an overview of

the verification method and contrasts it with previous work. Section 3 introduces trace
semantics based on first-order modal logic, and discusses how to state trace proper-
ties using the language of evolution logic. Section 4 defines an implementation of trace
semantics via first-order logic. Section 5 shows how abstract traces are used to conser-
vatively represent sets of concrete traces. Section 6 summarizes related work. Finally,
Section 7 concludes the paper.

2 Overview
2.1 A Temporal Logic Supporting Evolution
The specification language, Evolution Temporal Logic (ETL), is a first-order linear tem-
poral logic that allows specifying properties of the way program execution causes dy-
namically allocated memory (“the heap”) to evolve.

It is natural to consider the concrete semantics of a program as the set of its execu-
tion traces [5, 16], where each trace is an infinite sequence of worlds. First-order logical
structures provide a natural representation of worlds with an unbounded number of ob-
jects: an individual of the structure’s domain (universe) corresponds to an anonymous,
unique store location, and predicates represent properties of store locations. Such a rep-
resentation allows properties of the heap contents to be maintained while abstracting
away any information about the actual physical locations in the store.

This gives rise to traces in which worlds along the trace may have different domains.
Such traces can be seen as models of a first-order modal logic with a varying-domain
semantics [8]. This could be equivalently, but less naturally, modelled using constant-
domain semantics.

This framework generalizes other specification methods that address dynamic allo-
cation and deallocation of objects and threads. In particular, its descriptive power goes
beyond Propositional LTL and finite-state machines (e.g., [1]).

Program properties can be verified by showing that they hold for all traces. Techni-
cally, this can be done by evaluating their first-order modal-logic formulae against all
traces. We use a variant of Lewis’s counterpart theory [12] to cast modal models (and
formula evaluation) in terms of classical predicate logic with transitive closure (FOTC)
[3].

Program verification using the above concrete semantics is clearly non-computable
in general. We therefore represent potentially infinite sets of infinite concrete traces
by one abstract trace. Infinite parts of the concrete traces are folded into cycles of the
abstract traces. Termination of the abstract interpretation on an arbitrary program is
guaranteed by bounding the size of the abstract trace. Two abstractions are employed:
(i) representing multiple concrete worlds by a single abstract world, and (ii) creating
cycles when an abstract world reoccurs in the trace.

Because of these abstractions, we may fail to show the correctness of certain pro-
grams, even though they are correct. Fortunately, we can use reduction arguments and
progress monitors as employed in other program-verification techniques (e.g., [10]).

As in finite-state model checking (e.g., [16]), we let the specification formula affect
the abstraction by making sure that abstract traces that fulfill the formula are distin-



guished from the ones that do not. However, our abstraction does not fold the history of
the trace into a single state. This idea of using the specification to affect the precision
of the analysis was not used in [15, 18], which only handle safety properties.

2.2 Overview of the Verification Procedure
First, the property ϕ is specified in ETL. The formula is then translated in a straight-
forward manner into an FOTC logical formula, (ϕ)†, using a translation procedure de-
scribed in Appendix A. An abstract-interpretation procedure is then applied to explore
finite representations of the set of traces, using Kleene’s 3-valued logic to conserva-
tively interpret formulae. The abstract-interpretation procedure essentially computes a
greatest fixed point over the set of traces, starting with an abstract trace that represents
all possible infinite traces from an initial state, and gradually increasing the set of ab-
stract traces and reducing the set of represented concrete traces. Finally, the formula
(ϕ)† is evaluated on all of the abstract traces in the fixed point. If (ϕ)† is satisfied in
all of them, then the original ETL formula ϕ must be satisfied by all (infinite) traces of
the program. However, it may be the case that for some programs that satisfy the ETL
specification, our analysis only yields “maybe”.

2.3 Running Example
Consider a web server in which a new thread is dynamically allocated to handle each
http request received. Each thread handles a single request, then terminates and is
subject to garbage collection. Assume that worker threads compete for some exclusively
shared resource, such as exclusive access to a data file. Figure 1 shows fragments of a
Java program that implements such a naive web server.

public class Worker implements Runnable {
Request request;
Resource resource; ...
public void run() { ...
synchronized(resource) { lw1

resource.processRequest(request); lwc

} lw2

}}
Fig. 1. Java fragment for worker thread in a web server with no explicit scheduling.

A number of properties for the naive web-server implementation are shown in Tab. 1
as properties P1–P4. For now you may ignore the formulae in the third column; these
will become clear as ETL syntax is introduced in Sec. 3.

Due to the unbounded arrival of requests to the web server, and the fact that a thread
is dynamically created for each request, absence of starvation (P2) does not hold in
the naive implementation. To guarantee absence of starvation, we introduce a scheduler
thread into the web server. The web server now consists of a listener thread (as before)
and a queue of worker threads managed by the scheduler thread. The listener thread
receives an http request, creates a corresponding worker thread, and places the new
thread on a scheduling queue. The scheduler thread picks up a worker thread from the
queue and starts its execution (which is still a very naive implementation).

When using a web server with a scheduler, a number of additional properties of in-
terest exist, labeled P5–P8 (for additional properties of interest see [17]). Figure 2 shows
fragments of a web-server program in which threads use an explicit FIFO scheduler.

The ability of our framework to model explicit scheduling queues provides a mech-
anism for addressing issues of fairness in the presence of dynamic allocation of threads.
(Further discussion of fairness is beyond the scope of this paper).



public class Scheduler
implements Runnable {

protected Queue schedQ;
protected Resource resource; ...
public void run() {
while(true) { ... ls1
synchronized(resource) { ls2
while(resource.isAcquired())
resource.wait(); ls3
// may block until
// queue not empty

worker=schedQ.dequeue(); ls4
worker.start(); ls5

}
}
}
}

public class Listener
implements Runnable {

protected Queue schedQ; ...
public void run() {
while(true) { ... la1

req=rqStream.readObject(); la2

worker=
new Thread(new Worker(req)); la3

schedQ.enqueue(worker); la4

... }
}}

public class Worker
implements Runnable {

Request req;
Resource resource; ...
public void run() {
synchronized(resource) { ... lw1

resource.processRequest(req); lwc

resource.notifyAll();
} lw2

}}
Fig. 2. Java code fragment for a web server with an explicit scheduler.

Pr. Description Formula

P1 mutual exclusion over the shared resource �∀t1, t2: thread.(t1 6= t2)
→ ¬(at[lwc](t1) ∧ at[lwc](t2))

P2 absence of starvation for worker threads �∀t: thread.at[lw1](t) → ♦at[lwc](t)

P3
a thread only created when
a request is received

�(∀t: thread.¬ � t)∨
(∀t: thread.¬ � t) U (∃v: request.� v)

P4 each request is followed by thread creation �∃v: request.� v → ♦∃t: thread.� t

P5
mutual exclusion of listener and scheduler
over scheduling queue

�∀t1, t2: thread.(t1 6= t2)
→ ¬(at[ls2](t1) ∧ at[la3](t2))

P6
each created thread is eventually
inserted into the scheduling queue

�∀t: thread.� t
→ ♦∃q: queue.rval[head.next∗](q, t)

P7
each scheduled worker thread was
removed from the scheduling queue

�∀t: thread.at[lw1](t)
→ ¬∃q: queue.rval[head.next∗](q, t)

P8
each worker thread waiting in the queue
eventually leaves the queue

∃q: queue.�∀t: thread.
(rval[head.next∗](q, t))
→ ♦¬(rval[head.next∗](q, t))

Table 1. Web server ETL specification using predicates of Tab. 2.

3 Trace-Based Evolution Semantics
In this section, we define a trace-based semantic domain for programs that manipulate
unbounded amounts of dynamically allocated storage. To allow specifying temporal
properties of such programs, we employ first-order modal logic [8]. Various such logics
have been defined, and in general they can be given a constant-domain semantics, in
which the domain of all worlds is fixed, or a varying-domain semantics, in which the



domains of worlds can vary and domains of different worlds can overlap. In the most
general setting, in both types of semantics an object can exist in more than a single
world, and an equality relation is predefined to express global equality between indi-
viduals.

To model the semantics of languages such as Java, and to hide the implementa-
tion details of dynamic memory allocation, we use a semantics with varying domains.
However, the semantics is deliberately restricted because of our intended application
to program analysis. By design, our evolution semantics has a notion of equality in the
presence of dynamic allocation and deallocation, without the need to update a prede-
fined global-equality relation. Evolution semantics is adapted from Lewis’s counterpart
semantics [12]. In both evolution and counterpoint semantics, an individual cannot exist
in more than a single world; each world has its own domain, and domains of different
worlds are non-intersecting. Under this model, equality need only be defined within a
single world’s boundary; individuals of different worlds are unequal by definition.To
relate individuals of different worlds, an evolution mapping is defined; however, unlike
Lewis, we are interested in an evolution mapping that is reflexive, transitive, and sym-
metric, which models the fact that, during a computation, an allocated memory cell does
not change its identity until deallocated. In Sec. 5.3, we show how to track statically, in
the presence of abstraction, the equivalence relation induced by the evolution mapping.

As is often done, we add a skip action from the exit of the program to itself, so that
all terminating traces are embedded in infinite traces. The semantics of the program is
its set of infinite traces.

In the rest of this paper, we work with a fixed set of predicates (or vocabulary)
P = {eq, p1, . . . , pk}. We denote by Pk the set of predicates from P with arity k.

Definition 1. A world (program configuration) is represented via a first-order logical
structure W = 〈Uw, ιw〉, where Uw is the domain (universe) of the structure, and ιw
is the interpretation function mapping predicates to their truth values; that is, for each
p ∈ Pk, ιw(p) : Uk

w → {0, 1}, such that for all u ∈ Uw, ιw(eq)(u, u) = 1, and for all
u1, u2 ∈ Uw such that u1 and u2 are distinct individuals ιw(eq)(u1, u2) = 0.

Definition 2. A trace is an infinite sequence of worlds π1

Dπ1
,eπ1

,Aπ2−−−−−−−−→ π2

Dπ2
,eπ2

,Aπ3−−−−−−−−→
. . ., where: (i) each world represents a global state of the program, π1 is an initial
state, and for each πi, its successor world πi+1 is derived by applying a single pro-
gram action to πi; (ii) Dπi

⊆ Uπi
is the set of individuals deallocated at πi, and

Aπi+1
⊆ Uπi+1

is the set of individuals newly allocated at πi+1; (iii) each pair of
consecutive worlds πi, πi+1 is related by a stepwise evolution function, a bijective re-
naming function eπi

: Uπi
\Dπi

→ Uπi+1
\Aπi+1

.

Extracting Trace Properties
To extract trace properties, we need a language that can relate information from different
worlds in a trace. We define the language of evolution logic (ETL), which is a first-order
linear temporal logic with transitive closure, as follows:

Definition 3. [ETL Syntax] An ETL formula is defined by

ϕ ::= 0|1|p(v1, . . . , vn)| � v1| � v1|ϕ1 ∨ ϕ2|¬ϕ1|∃v1.ϕ1|(TC v1, v2 : ϕ1)(v3, v4)
|ϕ1 U ϕ2|χϕ1

where vi are logical variables.
The set of free variables in a formula ϕ denoted by FV (ϕ) is defined as usual. In

a transitive closure formula, FV ((TC v1, v2 : ϕ1)(v3, v4)) = (FV (ϕ1) \ {v1, v2}) ∪
{v3, v4}.



The operators � and � allow the specification to refer to the exact moments of birth
and death (respectively) of an individual.4

Shorthand Formulae: For convenience, we also allow formulae to contain the short-
hand notations (v1 = v2) , eq(v1, v2), (v1 6= v2) , ¬eq(v1, v2), ϕ1 ∧ϕ2 , ¬(¬ϕ1 ∨

¬ϕ2), ϕ1 → ϕ2 , ¬ϕ1 ∨ ϕ2, ∀v.ϕ1 , ¬(∃v.¬ϕ1), ♦ϕ1 , 1 U ϕ1, and �ϕ1 ,
¬(1 U ¬ϕ1). We also use the shorthand p∗(v3, v4) for (TC v1, v2 : p(v1, v2))(v3, v4)∨
(v3 = v4), when p is a binary predicate.

In our examples, the predicates that record information about a single world in-
clude the predicates of Tab. 2, plus additional predicates defined in later sections. The
set of predicates {at[lab](t) : lab ∈ Labels} is parameterized by the set of program
labels. Similarly, the set of predicates {rval[fld](o1, o2) : fld ∈ Fields} is parameter-
ized by the set of selector fields. We use the shorthand notation rval[x.fld∗](v1, v2) ,
∃v′.rval[x](v1, v

′)∧rval[fld]∗(v′, v2). The transitive closure allows specifying proper-
ties relating to unbounded length of heap-allocated data structures (e.g., in rval[fld]∗(v′, v2)).

We use unary predicates, such as thread(t), to represent type information. This
could have been expressed using a many-sorted logic, but we decided to avoid this for
expository purposes. Instead, for convenience we define the shorthands ∃v: type.ϕ ,
∃v.type(v) ∧ ϕ and ∀v: type.ϕ , ∀v.type(v) → ϕ.

Predicates Intended Meaning
thread(t) t is a thread
{at[lab](t) : lab ∈ Labels} thread t is at label lab
{rval[fld](o1, o2) : fld ∈ Fields} field fld of the object o1 points to the object o2
heldBy(l, t) the lock l is held by the thread t
blocked(t, l) the thread t is blocked on the lock l
waiting(t, l) the thread t is waiting on the lock l

Table 2. Predicates used to record information about a single world

Example 1. Property P2 of Tab. 1 specifies the absence of starvation for worker threads
(Fig. 1). The formula ∃t: thread.♦at[lwc](t) states that some thread eventually enters
the critical section. The formula �∃t: thread.♦at[lwc](t) expresses the fact that glob-
ally some thread eventually enters the critical section.

The property �(∀v. � v → ♦ � v) states that globally, each individual that is
allocated during program execution is eventually deallocated. Note that the universal
quantifier quantifies over individuals of the world in which it is evaluated. This property
is an instance of the commonly used “Response structure” [13, 7], in which an allocation
in a world has a deallocation response in some future world.

The properties

∀t: thread.�(at[llh](t) → ∃v.rval[i.next∗](t, v) ∧ ♦(at[llh](t) ∧ ¬rval[i.next∗](t, v)))
∀t: thread.�(∀v.at[llh](t) ∧ ¬rval[i.next∗](t, v) → �¬at[llh](t) ∨ ¬rval[i.next∗](t, v))

establish a ranking function for linked data structures based on transitive reachability.
These properties state that at the loop head llh, the set of individuals transitively reach-
able from program variable i decreases on each iteration of the loop. (Typically i is a
pointer that traverses a linked data structure during the loop.) Note that these properties
relate an unbounded number of individuals of one world to another.

4 These operators could be extended to handle allocation and deallocation of a (possibly un-
bounded) set of individuals.



The property �(∀v.♦�∀t: thread.
∧

x∈V ar
fld∈F ields

¬rval[x.fld∗](t, v) → ♦ � v) is a

desired property of a garbage collector — that all non-reachable items are eventually
collected.

Evolution Semantics In the following definitions, head(π) denotes the first world in a
trace π, tail(π) denotes the suffix of π without the first world, and πi denotes the suffix
of π starting at the i-th world. We also use last(τ) to denote the last world of a finite
trace prefix τ .

Definition 4. [Evolution mapping] Let τ be the finite prefix of length k of the trace π.
We say that an individual u ∈ Uhead(τ) evolves into an individual u′ ∈ Ulast(τ) in the
trace π in k steps, and write π |=k u  u′ when there is a sequence of individuals
u1, . . . , uk such that u1 = u and uk = u′ and for each two successive worlds in τ ,
ui+1 = eτi

(ui).

Definition 5. [Assignment evolution] Let τ be the finite prefix of length k of the trace
π. Given a formula ϕ and an assignment Z mapping free variables of ϕ to individuals
of a domain Uhead(τ), we say that π |=k Z  Z ′ (Z evolves into Z ′ in π in k steps)
if for each free variable fvi of ϕ, π |=k Z(fvi)  Z ′(fvi), Z(fvi) ∈ Uhead(τ), and
Z ′(fvi) ∈ Ulast(τ).

Definition 6. [ETL evolution semantics] We define inductively when an ETL formula ϕ
is satisfied over a trace π with an assignment Z (denoted by π, Z |= ϕ) as follows:

– π, Z |= 1, and not π, Z |= 0.
– π, Z |= p(v1, . . . , vk) when ιhead(π)(p)(Z(v1), . . . , Z(vk)) = 1
– π, Z |= ¬ϕ when not π, Z |= ϕ
– π, Z |= ϕ ∨ ψ when π, Z |= ϕ or π, Z |= ψ
– π, Z |= ∃v.ϕ(v) when there exists u ∈ Uhead(π) s.t. π, Z[v 7→ u] |= ϕ(v)
– π, Z |= (TC v1, v2 : ϕ)(v3, v4) when there exists u1, . . . , un+1 ∈ Uhead(π), such

that Z(v3) = u1, Z(v4) = un+1, and for all 1 ≤ i ≤ n,
π, Z[v1 7→ ui, v2 7→ ui+1] |= ϕ.

– π, Z |= �v when Z(v) ∈ Ahead(tail(π)).
– π, Z |= �v when Z(v) ∈ Dhead(π).
– π, Z |= χϕ when there exists Z ′ such that tail(π), Z ′ |= ϕ and π |=1 Z  Z ′.
– π, Z |= ϕ U ψ when there exists k ≥ 1, Z ′, and Z ′′ s.t.,
πk, Z ′ |= ψ and π |=k Z  Z ′

and for all 1 ≤ j < k, πj , Z ′′ |= ϕ and π |=j Z  Z ′′,

We write π |= ϕ when π, Z |= ϕ for every assignment Z.

It is worth noting that the first-order quantifiers in this definition only range over
the individuals of a single world, yet the overall effect achieved by using the evolution
mapping is the ability to reason about individuals of different worlds, and how they
relate to each other. In essence, the assignment Z[v 7→ u] binds v to (the evolution of)
an individual from the domain of the world over which the quantifier was evaluated (cf.
the semantics of χ and U ).

The combination of first-order quantifiers and modal operators creates complica-
tions that do not occur in propositional temporal logics. In particular, the quantification
domain of a quantifier may vary as the domain of underlying worlds varies. Verification
of ETL properties therefore requires a mechanism for recording the domain related to
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Fig. 3. Interaction of first-order quantifiers and temporal operators

each quantifier, and for relating members of quantification domains to individuals of fu-
ture worlds. For ETL, this mechanism is provided by evolution-mappings, which relate
individuals of a world to the individuals of its successor world. Transitively composing
evolution-mappings captures the evolution of individuals along a trace.

Example 2. The formula ∃v.�x(v) states that the pointer variable x remains constant
throughout program execution, and points to an object that existed in the program’s
initial world. On the other hand, the formula �∃v.x(v) merely states that x never has
the value null; however, x is allowed to point to different objects at different times
in the program’s execution, and in particular x can point to objects that did not exist in
the initial world. Examples illustrating the two situations are shown in Fig. 3, where in
(a) x points to the same object in all worlds, and in (b) it points to different objects in
different worlds.

Definition 7. We say that a program satisfies an ETL formula ϕ when all (infinite)
traces of the program satisfy ϕ.

The evolution semantics allows each world to have a different domain, thus concep-
tually representing a varying-domain semantics, which allows dynamic allocation and
deallocation of objects and threads. In Section 4, we give a possible implementation of
this semantics in terms of evolving first-order logical structures.

Separable Specifications It is interesting to consider subclasses of ETL for which the
verification problem is somewhat easier. Two such classes are: (i) spatially separable
specifications — do not place requirements on the relationships between individuals of
one world; this allows each individual to be considered separately, and the verification
problem can be handled as a set of propositional verification problems; (ii) temporally
separable specifications — do not relate individuals across worlds. Essentially, this
corresponds to the extraction of propositional information from each world, and having
temporal specifications over the extracted propositions. This class was addressed in [2,
19].

4 Expressing Trace Semantics using First-Order Logic
In this section, we use first-order logic to express a trace semantics; we encode temporal
operators using standard first-order quantifiers. This allows us to automatically derive
an abstract semantics in Section 5. This approach also extends to other kinds of temporal
logic, such as the µ-calculus. Our initial experience is that we are able to demonstrate
that some temporal properties, including liveness properties, hold for programs with
dynamically allocated storage.

4.1 Representing Infinite Traces via First-Order Structures
We encode a trace via an infinite first-order logical structure using the set of designated
predicates specified in Tab. 3. Successive worlds are connected using the succ predicate.



Each world of the trace may contain an arbitrary number of individuals. The predicate
exists(o, w) relates an individual o to a world w in which it exists. Each individual
only exists in a single world. The evolution(o1, o2) predicate relates an individual o1
to its counterpart o2 in a successor world. The predicates isNew and isFreed hold
for newly created or deallocated individuals and are used to model the allocation and
deallocation operators.

Definition 8. A concrete trace is a trace encoded as an infinite first-order logical struc-
ture T = 〈UT , ιT 〉, where UT is the domain of the trace, and ιT is the interpretation
function mapping predicates to their truth value in the logical structure, i.e., for each
p ∈ Pk, ιT (p) : Uk

T → {0, 1}. To exclude structures that cannot represent valid traces,
we impose certain integrity constraints [15]. For example, we require that each world
has at most one successor (predecessor), and that equality (eq) is reflexive.

Predicate Intended Meaning
world(w) w is a world
currWorld(w) w is the current world
initialWorld(w) w is the initial world
succ(w1, w2) w2 is the successor of w1

Predicate Intended Meaning
exists(o, w) object o is in world w
evolution(o1, o2) object o1 evolves to o2
isNew(o) object o is new
isFreed(o) object o is freed

Table 3. Trace predicates.
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Fig. 4. A concrete trace T \
4 .

Example 3. Figure 4 shows four worlds of the trace T \
4 where each world is depicted as

a large node containing other nodes and worlds along the trace are related by successor
edges. Information in a single world is represented by a first-order logical structure,
which is shown as a directed graph. Each node of the graph corresponds to a heap-
allocated object. Hexagon nodes correspond to thread objects, and small round nodes
to other types of heap-allocated objects. Predicates holding for an object are shown
inside the object node, and binary predicates are shown as edges. For brevity, we use
the label rval[r] to stand for rval[resource]. Grey edges, crossing world boundaries,
are evolution edges, which relate objects of different worlds. Note that these are the
only edges that cross world boundaries.

4.2 Exact Extraction of Trace Properties
Once traces are represented via first-order logical structures, trace properties can be
extracted by evaluating formulae of first-order logic with transitive closure.

We translate a given ETL formula ϕ to an FOTC formula (ϕ)† by making the
underlying trace structure explicit, and translating temporal operators to FOTC claims



over worlds of the trace. The translation procedure is straightforward, and given in
Appendix A.

Example 4. The property ∃t : thread.♦at[lwc](t) of Example 1 is translated to

∃w : world.∃t : thread.initialWorld(w) ∧ exists(t, w) ∧ ∃w′∃t′ : thread.succ∗(w,w′)∧
exists(t′, w′) ∧ evolution∗(t, t′) ∧ at[lwc](t

′)

which evaluates to 1 for the trace prefix of Fig. 4.

Definition 9. The meaning of a formula ϕ over a concrete trace T , with respect to an
assignment Z, denoted by [[ϕ]]T2 (Z), yields a truth value in {0, 1}. The meaning of ϕ is
defined inductively as follows:

[[l]]T2 (Z) = l (where l ∈ {0, 1}) [[p(v1, . . . , vk)]]T2 (Z) = ιT (p)(Z(v1), . . . , Z(vk))
[[ϕ1 ∨ ϕ2]]

T
2 (Z) = max([[ϕ1]]

T
2 (Z), [[ϕ2]]

T
2 (Z)) [[¬ϕ1]]

T
2 (Z) = 1 − [[ϕ1]]

T
2 (Z)

[[∃v1.ϕ1]]
T
2 (Z) = maxu∈UT [[ϕ1]]

T
2 (Z[v1 7→ u])

[[(TC v1, v2 : ϕ1)(v3, v4)]]
T
2 (Z) =

maxn ≥ 1, u1, . . . , un+1 ∈ U,
Z(v3) = u1, Z(v4) = un+1

minn
i=1[[ϕ1]]

T
2 (Z[v1 7→ ui, v2 7→ ui+1])

We say that T and Z satisfy ϕ (denoted by T,Z |= ϕ) if [[ϕ]]T2 (Z) = 1. We write T |= ϕ
if for every Z we have T,Z |= ϕ.

The correctness of the translation is established by the following theorem:

Theorem 1. For every closed ETL formula ϕ and a trace π, π |= ϕ if and only if
rep(π) |= (ϕ)†, where rep(π) is the first-order representation of π, i.e., the first-order
structure that corresponds to π, in which every world in π is mapped to a world in
rep(π), with the succ predicate holding for consecutive worlds.

4.3 Semantics of Actions
Informally, a program action ac consists of a precondition acpre under which the action
is enabled, which is expressed as a logical formula, and a set of formulae for updating
the values of predicates according to the effect of the action. An enabled action speci-
fies that a possible next world in the trace is one in which the interpretations of every
predicate p of arity k is determined by evaluating a formula ϕp(v1, v2, . . . , vk), which
may use v1, v2, . . . , vk and all predicates in P (see [15]).

5 Exploring Finite Abstract Traces via Abstract Interpretation
In this section, we give an algorithm for conservatively determining the validity of a
program with respect to an ETL property. A key difficulty in proving liveness properties
is the fact that a liveness property might be violated only by an infinite trace. Therefore,
our procedure for verifying liveness properties is a greatest fixed-point computation,
which works down from an initial approximation that represents all infinite traces. In
this section, we present our abstract-interpretation algorithm; procedure explore of
Figure 8.

Our approach uses finite representations of infinite traces. Finite representations
are obtained by abstraction to three-valued logical structures. The third logical value,
1/2, represents “unknown” and may result from abstraction. The abstract semantics
conservatively models the effect of actions on abstract representations.



5.1 A Finite Representation of Infinite Traces
The first step in making the algorithm of Figure 8 feasible is to define a finite represen-
tation of sets of infinite traces. Technically, we use 3-valued logical structures to finitely
represent sets of infinite traces.

Definition 10. An abstract trace is a 3-valued first-order logical structure T = 〈UT , ιT 〉,
where UT is the domain of the abstract trace, and ιT is the interpretation, mapping
predicates to their truth values, i.e., for each p ∈ Pk, ιT (p) : Uk

T → {0, 1, 1/2}. We
refer to the values 0 and 1 as definite values, and to 1/2 as a non definite value.

An individual u for which ιT (eq)(u, u) = 1/2 is called a summary individual;5 a
summary individual may represent more than one concrete individual.

The meaning of a formula ϕ over a 3-valued abstract trace T , with respect to an
assignment Z, denoted by [[ϕ]]T3 (Z), is defined exactly as in Def. 9, but interpreted over
{0, 1, 1/2}.

We say that a trace T with an assignment Z potentially satisfies a formula ϕ when
[[ϕ]]T3 (Z) ∈ {1, 1/2} and denote this by T,Z |=3 ϕ.

We now define how concrete traces are represented by abstract traces. The idea is
that each individual of a concrete trace is mapped by the abstraction into an individual
of an abstract trace. The new two definitions permit an (abstract or concrete) trace to be
related to a less-precise abstract trace. Abstraction is a special case of this in which the
first trace is a concrete trace. First, the following definition imposes an order on truth
values of the 3-valued logic:

Definition 11. For l1, l2 ∈ {0, 1, 1/2}, we define the information order on truth values
as follows: l1 v l2 if l1 = l2 or l2 = 1/2.

The embedding ordering of abstract traces is then defined as follows:

Definition 12. Let T = 〈U, ι〉 and T ′ = 〈U ′, ι′〉 be abstract traces encoded as first-
order structures. A function f : T → T ′ such that f is surjective is said to embed T
into T ′ if for each predicate p ∈ Pk, and for each u1, . . . , uk ∈ U :

ι(p(u1, u2, . . . , uk)) v ι′(p(f(u1), f(u2), . . . , f(uk)))

We say that T ′ represents T when there exists such an embedding f .

One way of creating an embedding function f is by using canonical abstraction.
Canonical abstraction maps individuals to an abstract individual based on the values
of the individuals’ unary predicates. All individuals having the same values for unary
predicate symbols are mapped by f to the same abstract individual. We denote the
canonical abstraction of a trace T by t embed(T ). Canonical abstraction guarantees
that each abstract trace is no larger than some fixed size, known a priori.

Example 5. Figure 5 shows an abstract trace, with four abstract worlds, that represents
the concrete trace of Fig. 4. An individual with double-line boundaries is a summary
individual representing possibly more than a single concrete individual. Similarly, the
worlds with double-line boundaries are summary worlds that possibly represent more
than a single world. Dashed edges are 1/2 edges, that represent relations that may or
may not hold. For example, a 1/2 successor edge between two worlds represents the

5 Note that for all u ∈ UT , ιT (eq)(u, u) = 1 or ιT (eq)(u, u) = 1/2.
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Fig. 5. An abstract trace T4 that represents the concrete trace T \
4 .

possible succession of worlds. The summary world following the initial world repre-
sents the two concrete worlds between the initial and the current world of T \

4 , which
have the same values for their unary predicates. Similarly, the summary node labeled
at[lw1] represents all thread individuals in these worlds that reside at label lw1.

Note that this abstract trace also represents other concrete traces besides T \
4 , for

example, concrete traces in which in the current world some threads are blocked on the
lock and some are not blocked.

5.2 Abstract Interpretation
The abstract semantics represents abstract traces using 3-valued structures. Intuitively,
applying an action to an abstract trace unravels the set of possible next successor worlds
in the trace. That is, an abstract action elaborates an abstract trace by materializing a
world w from the summary world at the tail of the trace; w becomes the definite suc-
cessor of the current world currWorld, and w’s (indefinite) successor is the summary
world at the tail of the trace. currWorld is then advanced to w, which often causes the
former currWorld to be merged with its predecessor. When a trace is extended, we
evaluate the formula’s precondition and its update formulae using 3-valued logic (as in
Def. 10).

Example 6. Figures 5, 6, and 7 illustrate the application of the action that releases a
lock. Figure 6 shows the materialization of the next successor world for the trace T4 of
Figure 5. In the successor world, the thread that was at label lwc no longer holds the
lock and has advanced to label lw2. The currWorld predicate is then advanced, and
the former currWorld is merged with its predecessor, resulting in the abstract trace
shown in Figure 7.

The abstract-interpretation procedure explore is shown in Figure 8. It computes
a greatest fixed point starting with the set {T>

1 , T
>
2 }; these two abstract traces repre-

sent all possible concrete (infinite) traces that start at a given initial state. T>
1 and T>

2
each have two worlds: an initial world that represents the initial program configura-
tion connected by a 1/2-valued successor edge to a summary world that represents the
unknown possible suffixes. The summary world ws1 of T>

1 has a summary individual
us1 related to it. The summary individual us1 has 1/2 values for all of its predicates,
including exists(us1, ws1) = 1/2, meaning that future worlds of the trace do not nec-
essarily contain any individuals. The summary world of T>

2 has no summary individual
related to it and represents suffixes in which all future worlds are empty. Figure 9 shows
an initial abstract trace (corresponding to T>

1 ) representing all traces starting with an
arbitrary number of worker threads at label lw1 sharing a single lock.
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Fig. 6. An intermediate abstract trace, which represents the first stage of applying an
action to T4.
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Fig. 7. The resulting abstract trace after applying an action over T4 (after advancing
currWorld).

The procedure explore accumulates abstract traces in the set Traces until a fixed
point is reached. Throughout this process, however, the set of concrete traces repre-
sented by the abstract traces in Traces is actually decreasing. It is in this sense that
explore is computing a greatest fixed point.

Once a fixed point has been reached, the property of interest is evaluated over ab-
stract traces in the fixed point. Formula evaluation over an abstract trace exploits values
of instrumentation predicates when possible (this is explained in the following sec-

explore() {
Traces = {T>

1 , T
>
2 }

while changes occur {
select and remove τ from Traces
for each action ac enabled for τ
Traces = Traces

⋃
{ac(τ)}

}
for each τ ∈ Traces
if τ 6|=3 (ϕ)† report possible error

}

Fig. 8. Computing the set of abstract traces
and evaluating the property (ϕ)†.

rval[r]

succ

at[lw_1]

initialWorld

succ

currWorld
ws1

us1

Fig. 9. An initial abstract
trace T>

1 .



tion). This allows the use of recorded definite values, whereas re-evaluation might have
yielded 1/2.

We now show the soundness of the approach. We extend mappings on individuals
to operate on assignments: If f : UT → UT ′

is a function and Z : V ar → UT is
an assignment, f ◦ Z denotes the assignment f ◦ Z : V ar → UT ′

such that (f ◦
Z)(v) = f(Z(v)). One of the nice features of 3-valued logic is that the soundness
of the analysis is established by the following theorem (which generalizes [15] for the
infinite case):

Theorem 2. [Embedding Theorem] Let T = 〈UT , ιT 〉 and T ′ = 〈UT ′

, ιT
′

〉 be two
traces encoded as first-order structures, and let f : UT → UT ′

be a function such that
T vf T ′. Then, for every formula ϕ and complete assignment Z for ϕ, [[ϕ]]T3 (Z) v

[[ϕ]]T
′

3 (f ◦ Z).

The algorithm in Figure 8 must terminate. Furthermore, whenever it does not report
an error, the program satisfies the original ETL formula ϕ.

It often happens that this approach to verifying temporal properties yields 1/2, due
to an overly conservative approximation. In the next section, we present machinery for
refining the abstraction to allow successful verification in interesting cases.

Example 7. Space precludes us from showing a real application, such as the web server.
Instead, we use an artificial example, which is also used in the next section. Figure 10
shows an abstract trace in which the property ∃v.P (v) U Q(v) holds for all the concrete
traces represented by the abstract trace, but the formula ∃v.P (v) U Q(v) evaluates to
1/2 because the successor and evolution edges have value 1/2.

P P Q

initialWorld

succ succ

succ succ succ

Fig. 10. ∃v.P (v) U Q(v) holds in all concrete traces that the abstract trace T10 repre-
sents, yet ∃v.P (v) U Q(v) evaluates to 1/2 on T10 itself.

5.3 Property-Guided Instrumentation
To refine the abstraction, we can maintain more precise information about the correct-
ness of temporal formulae as traces are being constructed. This principle is referred to
in [15] as the Instrumentation Principle. This work goes beyond what was mentioned
there, by showing how one could actually obtain instrumentation predicates from the
temporal specification.

Trace Instrumentation The predicates in Tab. 4 are required for preserving properties
of interest under abstraction. The instrumentation predicate current(o) denotes that o
is a member of the current world and should be distinguished from individuals of pre-
decessor worlds. This predicate is required due to limitations of canonical embedding.
The predicate twe(o1, o2) records equality across worlds and is required due to the loss
of information about concrete locations caused by abstraction.

Transworld Equality: In the evolution semantics, two individuals are considered to
be different incarnations of the same individual when one may transitively evolve into



Predicate Intended Meaning Formula

twe(o1, o2)
object o1 is equal to object o2

possibly across worlds
(o1 = o2) ∨ evolution

∗(o1, o2)
∨evolution∗(o2, o1)

current(o) object o is a member of current world ∃w : world(o, w) ∧ currWorld(w)

Table 4. Trace instrumentation predicates.

the other. We refer to this notion of equality as transworld equality and introduce an
instrumentation predicate twe(v1, v2) to capture this notion.

Because the abstraction operates on traces (and not only single worlds), individuals
of different worlds may be abstracted together. Transworld equality is crucial for distin-
guishing a summary node that represents different incarnations of the same individual
in different worlds from a summary node that may represent a number of different in-
dividuals.

Transworld equality is illustrated in Fig. 11; the 1-valued twe self-loop to the sum-
mary thread-node at label lwc records the fact that this summary node actually repre-
sents multiple incarnations of a single thread, and not a number of different threads.
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Fig. 11. Abstract trace with transworld equality instrumentation (Only 1-valued
transworld equality edges are shown).

Temporal Instrumentation Given an ETL specification formula, we construct a cor-
responding set of instrumentation predicates for refining the abstraction of the trace
according to the property of interest. The set of instrumentation predicates corresponds
to the sub-formulae of the original specification.

Example 8. In Example 7, the property ∃v.P (v) U Q(v) evaluated to 1/2 although it is
satisfied by all concrete traces that T10 represents. We now add the temporal instrumen-
tation predicates Ip(v) and Iq(v) to record the values of the temporal subformulae P (v)
and Q(v). The predicates are updated according to their value in the previous worlds.
Note the use of transworld equality instrumentation to more precisely record transitive
evolution of objects. In particular, this provides the information that the summary node
of the second world is an abstraction of different incarnations of the same single object.
This is shown in Fig. 12.

6 Related Work
The Bandera Specification Language (BSL) [2] allows writing specifications via com-
mon high-level patterns. In BSL, it is impossible to relate individuals of different worlds,
and impossible to refer to the exact moments of allocation and deallocation of an object.
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initialWorld
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succ
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Fig. 12. In the abstract trace T12, ∃v.P (v) U Q(v) evaluates to 1.

In [14], a special case of the abstraction from [18, 19], named “counter abstraction”,
is used to abstract an infinite-state parametric system into a finite-state one. They use
static abstraction, i.e., they have a preceding model-extraction phase. In contrast, in our
work abstraction is applied dynamically on every step of state-space exploration, which
enables us to handle dynamic allocation and deallocation of objects and threads.

In [19], we have used observing-propositions defined over a first-order configuration
to extract a propositional Kripke structure from a first-order one. The extracted structure
was then subject to PLTL model-checking techniques. This approach is rather limited,
because individuals of different worlds could not be specifically related.

7 Conclusion
We believe this work provides a foundation for specifying and verifying properties of
programs manipulating the heap with dynamic allocation and deallocation of objects
and threads. In the future, we plan to develop more scalable approaches, and in partic-
ular abstract-interpretation algorithms that are tailored for ETL.
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A Translation of ETL to FO
T C

We say that a ETL sub-formula is temporally-bound if it appears under a temporal operator.
Translations for temporally-bound and non-temporally-bound formulae are different, since non-
temporally-bound formulae should be bound to the initial world of the trace.

Definition 13. [ETL translation to FOTC] We denote by (ϕ)†w the bounded translation of a
formula ϕ in a world w and by (ϕ)† the non-bounded translation.

– (ϕ)† = ∃w:world.initialWorld(w) ∧ (ϕ)†w

– if ϕ is an atomic formula other than �x and �x then (ϕ)†w = ϕ. If ϕ = �x then (ϕ)†w =
isNew(x). If ϕ = �x then (ϕ)†w = isFreed(x).

– (ϕ ∧ ψ)†w = (ϕ)†w ∧ (ψ)†w , (ϕ ∨ ψ)†w = (ϕ)†w ∨ (ψ)†w , (¬ϕ)†w = ¬(ϕ)†w

– (∃x ϕ)†w = ∃x.exists(w, x) ∧ (ϕ)†w

– ((TC x1, x2 : ϕ)(x3, x4))
†w = (TC x1, x2 : (ϕ)†w∧exists(w, x1)∧exists(w, x2))(x3, x4)

– (ϕ(x1, . . . , xn) U ψ(y1, . . . , yk))†w =

∃w′:world.∃y′1, . . . , y
′
k.succ

∗(w,w′) ∧ (ψ(y′1, . . . , y
′
k))†w′

∧
∧

1≤i≤k
evolution∗(yi, y

′
i) ∧ ∀w̃:world.∃x′

1, . . . , x
′
n.(succ

∗(w, w̃)

∧ succ∗(w̃, w′) → (ϕ(x′
1, . . . , x

′
n))†w̃ ∧

∧
1≤j≤n

evolution∗(xj , x
′
j))

– (χϕ(x1, . . . , xn))†w =

∃w′:world.∃x′
1, . . . , x

′
n.succ(w,w

′)

∧ (ϕ(x′
1, . . . , x

′
n)†w′

∧
∧

1≤j≤n
evolution(xj , x

′
j) ∧ exists(x

′
j , w

′)

Note that xi and yi are not necessarily distinct. Simplified translations may be used for the ♦
and � temporal operators.


