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THEORY OF COMPILATION
Lecture 17 – Dataflow Analysis (and more!)

EranYahav
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www.cs.technion.ac.il/~yahave/tocs2011/compilers-lec17.pptx

Reference:  Dragon 9, 12

Last week: dataflow

 General recipe
 design the domain
 transfer functions
 determine join operation (may/must?)
 direction: forward/backward?

 note initial values
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Analyses Summary
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Reaching 
Definitions

Available 
Expressions

Live Variables

L (Var x  Lab) (AExp) (Var)

   

   

  AExp 

Initial { (x,?) | x Var}  

Entry labels { init } { init } final

Direction Forward Forward Backward

F { f: L  L | k,g : f(val) = (val \ k) U g } 

flab flab(val) = (val \ kill) gen

Interprocedural Analysis

 The effect of calling a procedure is the effect 
of executing its body

4

Call bar()

foo()

bar()



25-Jun-11

2

Call Graph
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int (*pf)(int);

int fun1 (int x) {
if (x < 10)

return (*pf) (x+l); // C1
else

return x;
}

int fun2(int y) {
pf = &fun1;
return (*pf) (y) ; // C2

}

void main() {
pf = &fun2;
(*pf )(5) ; // C3

} 

c1

c2

c3

fun1

fun2

main

c1

c2

c3

fun1

fun2

main

type based more precise

Context Sensitivity
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main() {
for (i = 0; i < n; i++) {
t1 = f(0);    // C1
t2 = f(42); // C2
t3 = f(42); // C3
X[i] = t1 + t2 + t3;

}
}

int f(int v)
return (v+1);

} 

i=0

if i<n goto L

v = 0 // C1

t1 = retval
v = 42 // C2

t2 = retval
v = 42 // C3

retval=v + 1 \\f

t3 = retval
t4 = t1+t2
t5 = t4+ t3

x[i] = t5
i = i + 1

B1

B2

B3

B4

B5

B6

B7

Solution Attempt #1

 Inline callees into callers
 End up with one big procedure
 CFGs of individual procedures = 

duplicated many times

 Good: it is precise
 distinguishes different calls to the 

same function

 Bad 
 exponential blow-up, not efficient
 doesn’t work with recursion
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main() { f(); f(); }
f() { g(); g(); }
g() { h(); h(); }
h() { ... }

Inlining
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main() {
for (i = 0; i < n; i++) {
t1 = f(0);    // C1
t2 = f(42); // C2
t3 = f(42); // C3
X[i] = t1 + t2 + t3;

}
}

int f(int v)
return (v+1);

} 

i=0

if i<n goto L

t1 = 1

t2 = 42 + 1

t3 = 42 + 1

t4 = t1+t2
t5 = t4+ t3

x[i] = t5
i = i + 1

B1

B2

B3

B4

B5

B7
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Solution Attempt #2

 Build a “supergraph” = inter-procedural CFG
 Replace each call from P to Q with 
 An edge from point before the call (call point) to Q’s entry point
 An edge from Q’s exit point to the point after the call (return pt)
 Add assignments of actuals to formals, and assignment of return 

value
 Good: efficient
 Graph of each function included exactly once in the supergraph
 Works for recursive functions (although local variables need 

additional treatment)
 Bad: imprecise, “context-insensitive”
 The “unrealizable paths problem”: dataflow facts can propagate 

along infeasible control paths
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Unrealizable Paths
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Call bar()

foo()

bar()

Call bar()

zoo()

Interprocedural Analysis

 Extend language with begin/end and with [call p()]clab
rlab

 Call label clab, and return label rlab
11

begin 

proc p() is1 

[x := a + 1]2 

end3

[a=7]4

[call p()]5
6

[print x]7

[a=9]8

[call p()]9
10

[print a]11

end

IVP: Interprocedural Valid Paths

( )

f1 f2 fk-1 fk

f3

f4

f5

fk-2

fk-3

callq

enterq exitq

ret

 IVP: all paths with matching calls and returns
 And prefixes
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Valid Paths

13

Call bar()

foo()

bar()

Call bar()

zoo()

(1

)1

(2

)2

Interprocedural Valid Paths

 IVP set of paths
 Start at program entry

 Only considers matching calls and returns 
 aka, valid

 Can be defined via context free grammar
 matched ::= matched (i matched )i | ε
 valid ::= valid (i matched | matched
 paths can be defined by a regular expression

The Join-Over-Valid-Paths (JVP)

 vpaths(n) all valid paths from program start to n
 JVP[n] = {e1, e2, …, e (initial) 

(e1, e2, …, e)  vpaths(n)}
 JVP  JFP
 In some cases the JVP can be computed
 (Distributive problem)

Sharir and Pnueli ‘82

 Call String approach
 Blend interprocedural flow with intra procedural 

flow
 Tag every dataflow fact with call history

 Functional approach
 Determine the effect of a procedure
 E.g., in/out map

 Treat procedure invocations as “super ops”
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The Call String Approach

 Record at every node a pair (l, c) where l  L is 
the dataflow information and c is a suffix of 
unmatched calls

 Use Chaotic iterations
 To guarantee termination limit the size of c 

(typically 1 or 2)
 Emulates inline (but no code growth)
 Exponential in size of c

begin 

proc p() is1 

[x := a + 1]2 

end3

[a=7]4

[call p()]5
6

[print x]7

[a=9]8

[call p()]9
10

[print a]11

end

proc p

x=a+1

end

a=7

call p5

call p6

print x

a=9

call p9

call p10

print a

[x0, a0]

[x0, a7] 5,[x0, a7]

5,[x0, a7]

5,[x8, a7]

[x8, a7]

[x8, a7]

[x8, a7]

[x8, a9]

9,[x8, a9]

9,[x8, a9]

9,[x10, a9]

[x10, a9]

5,[x8, a7]
9,[x10, a9]

(slide from Tom Reps)

begin0

proc p() is1

if [b]2 then (

[a := a -1]3

[call p()]4
5

[a := a + 1]6

)

[x := -2* a + 5]7

end8

[a=7]9 ; [call p()]10
11 ; [print(x)]12

end13

a=7

Call p10

Call p11

print(x)

p

If( … )

a=a-1

Call p4

Call p5

a=a+1

x=-2a+5

end

10:[x0, a7]

[x0, a7]

[x0, a0]
10:[x0, a7]

10:[x0, a6]

4:[x0, a6]

4:[x0, a6]

4:[x-7, a6]

10:[x-7, a6]
4:[x-7, a6]

4:[x-7, a6]

4:[x-7, a7]

4:[x, a]

(slide from Tom Reps)

The Functional Approach

 The meaning of a procedure is mapping from 
states into states

 The abstract meaning of a procedure is 
function from an abstract state  to abstract 
states
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begin 

proc p() is1

if [b]2 then (

[a := a -1]3

[call p()]4
5

[a := a + 1]6

)

[x := -2* a + 5]7

end8

[a=7]9 ; [call p()]10
11 ; [print(x)]12

end 

a=7

Call p10

Call p11

print(x)

p

If( … )

a=a-1

Call p4

Call p5

a=a+1

x=-2a+5

end

[x0, a7]

[x0, a0]

e.[x-2e(a)+5, a e(a)]

[x-9, a7]

[x-9, a7]

(slide from Tom Reps)

begin 

proc p() is1

if [b]2 then (

[a := a -1]3

[call p()]4
5

[a := a + 1]6

)

[x := -2* a + 5]7

end8

[read(a)]9 ; [call p()]10
11 ; [print(x)]12

end 

read(a)

Call p10

Call p11

print(x)

p

If( … )

a=a-1

Call p4

Call p5

a=a+1

x=-2a+5

end

[x0, a]

[x0, a0]

e.[x-2e(a)+5, a e(a)]

[x, a]

[x, a]

(slide from Tom Reps)

Functional Approach: Main Idea

 Iterate on the abstract domain of functions 
from L to L

 Two phase algorithm
 Compute the dataflow solution at the exit of a 

procedure as a function of the initial values at the 
procedure entry (functional values)

 Compute the dataflow values at every point using 
the functional values

 Computes JVP for distributive problems

Meanwhile, IRL

 new compilers for new languages
 new compilers for old languages
 e.g., Java->JavaScript

 new uses of compiler technology
 …

24



25-Jun-11

7

Google Web Toolkit

25

Javascript

code

js

Java

code 

txt

Semantic

Representation

Backend

(synthesis)

Compiler

Frontend

(analysis)

GWT Compiler Optimization
public class ShapeExample implements EntryPoint {

private static final double SIDE_LEN_SMALL = 2;

private final Shape shape = new SmallSquare();

public static abstract class Shape {

public abstract double getArea();

}

public static abstract class Square extends Shape {

public double getArea() { return getSideLength() * getSideLength(); }

public abstract double getSideLength();

}

public static class SmallSquare extends Square {

public double getSideLength() { return SIDE_LEN_SMALL; }

}

public void onModuleLoad() {

Shape shape = getShape();

Window.alert("Area is " + shape.getArea());

}

private Shape getShape() { return shape; }

26(source: http://dl.google.com/io/2009/pres/Th_1045_TheStoryofyourCompile-ReadingtheTeaLeavesoftheGWTCompilerforanOptimizedFuture.pdf)

GWT Compiler Optimization
public class ShapeExample implements EntryPoint {
public void onModuleLoad() {
Window.alert("Area is 4.0");

}

27(source: http://dl.google.com/io/2009/pres/Th_1045_TheStoryofyourCompile-ReadingtheTeaLeavesoftheGWTCompilerforanOptimizedFuture.pdf)

Adobe ActionScript

First introduced in Flash Player 9, ActionScript 3 is an object-oriented 
programming (OOP) language based on ECMAScript—the same standard 
that is the basis for JavaScript—and provides incredible gains in runtime 
performance and developer productivity. ActionScript2, the version of 
ActionScript used in Flash Player 8 and earlier, continues to be supported 
in Flash Player 9 and Flash Player 10.

28

ActionScript 3.0 introduces a new highly optimized ActionScript Virtual 
Machine, AVM2, which dramatically exceeds the performance possible with 
AVM1. As a result, ActionScript 3.0 code executes up to 10 times faster than 
legacy ActionScript code.

(source: http://www.adobe.com/devnet/actionscript/articles/actionscript3_overview.html)
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Adobe ActionScript

29

AVM

bytecode

swf

AS

code 

txt

Semantic

Representation

Backend

(synthesis)

Compiler

Frontend

(analysis)

Adobe ActionScript: Tamarin

30

The goal of the "Tamarin" project is to implement a high-performance, open 
source implementation of the ActionScript™ 3 language, which is based 
upon and extends ECMAScript 3rd edition (ES3). ActionScript provides 
many extensions to the ECMAScript language, including packages, 
namespaces, classes, and optional strict typing of variables. 
"Tamarin" implements both a high-performance just-in-time compiler and 
interpreter.

The Tamarin virtual machine is used within the Adobe® Flash® Player and is 
also being adopted for use by projects outside Adobe. The Tamarin just-in-
time compiler (the "NanoJIT") is a collaboratively developed component 
used by both Tamarin and Mozilla TraceMonkey. The ActionScript compiler 
is available as a component from the open source Flex SDK.

Mozilla SpiderMonkey

 SpiderMonkey is a fast interpreter 
 runs an untyped bytecode and operates on values of 

type jsval—type-tagged double-sized values that represent 
the full range of JavaScript values. 

 SpiderMonkey contains two JavaScript Just-In-Time (JIT) 
compilers, a garbage collector, code implementing the basic 
behavior of JavaScript values…

 SpiderMonkey's interpreter is mainly a single, tremendously 
long function that steps through the bytecode one instruction 
at a time, using a switch statement (or faster alternative, 
depending on the compiler) to jump to the appropriate chunk 
of code for the current instruction. 

31(source: https://developer.mozilla.org/En/SpiderMonkey/Internals)

Mozilla SpiderMonkey: Compiler

 consumes JavaScript source code 
 produces a script which contains bytecode, source 

annotations, and a pool of string, number, and identifier 
literals. The script also contains objects, including any 
functions defined in the source code, each of which has its 
own, nested script.

 The compiler consists of
 a random-logic rather than table-driven lexical scanner
 a recursive-descent parser that produces an AST
 a tree-walking code generator

 The emitter does some constant folding and a few codegen
optimizations

32(source: https://developer.mozilla.org/En/SpiderMonkey/Internals)
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Mozilla SpiderMonkey

 SpiderMonkey contains a just-in-time trace compiler 
that converts bytecode to machine code for faster 
execution. 

 The JIT works by detecting commonly executed loops, 
tracing the executed bytecodes in those loops as they 
run in the interpreter, and then compiling the trace to 
machine code. 

 See the page about the Tracing JIT for more details.

 The SpiderMonkey GC is a mark-and-sweep, non-
conservative (exact) collector. 

33(source: https://developer.mozilla.org/En/SpiderMonkey/Internals)

Mozilla TraceMonkey

34(source: http://hacks.mozilla.org/2009/07/tracemonkey-overview/)

Mozilla TraceMonkey

 Goal: generate type-specialized code
 Challenges
 no type declarations
 statically trying to determine types mostly hopeless

 Idea
 run the program for a while and observe types
 use observed types to generate type-specialized code
 compile traces

 Sounds suspicious?

35

Mozilla TraceMonkey

 Problem 1: “observing types” + compiling 
possibly more expensive than running the 
code in the interpreter

 Solution: only compile code that executes 
many times
 “hot code” = loops
 initially everything runs in the interpreter
 start tracing a loop once it becomes “hot”

36
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Mozilla TraceMonkey

 Problem 2: past types do not guarantee 
future types… what happens if types change?

 Solution: insert type-checks into the 
compiled code
 if type-check fails, need to recompile for new 

types
 code with frequent type changes will suffer some 

slowdown

37

Mozilla TraceMonkey

38

function addTo(a, n) {
for (var i = 0; i < n; ++i)
a = a + i;

return a;
}

var t0 = new Date();
var n = addTo(0, 

10000000);
print(n);
print(new Date() - t0);

a = a + i;    // a is an integer number (0 before, 1 after)
++i;              // i is an integer number (1 before, 2 after)
if (!(i < n))  // n is an integer number (10000000)

break;

trace_1_start: 
++i;                    // i is an integer number (0 before, 1 after)
temp = a + i;  // a is an integer number (1 before, 2 after)
if (lastOperationOverflowed())

exit_trace(OVERFLOWED); 
a = temp; 
if (!(i < n)) // n is an integer number (10000000)

exit_trace(BRANCHED); 
goto trace_1_start; 

39

Mozilla TraceMonkey

System Run Time (ms)
SpiderMonkey (FF3) 990
TraceMonkey (FF3.5) 45
Java (using int) 25
Java (using double) 74
C (using int) 5
C (using double) 15

Static Analysis Tools

 Coverity
 SLAM
 ASTREE
 …

40
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Lots and lots of research

 Program Analysis
 Program Synthesis
 …

 Next semester
 Project –contact me if you’re interested
 Advanced course in program analysis 

43

THE END

44


