25-Jun-11

Lecture 17 — Dataflow Analysis (and more!)

THEORY OF COMPILATION

EranYahav

www.cs.technion.ac.il/~yahave/tocs2o11/compilers-lecay.pptx

Reference: Dragon g, 12

Last week: dataflow

= General recipe
= designthe domain
= transferfunctions
= determinejoin operation (may/must?)
a direction: forward/backward?

= note initial values

Analyses Summary

Reaching Available Live Variables
Definitions Expressions
L @ (Varx Lab) § (AExp) o (Var)
= c =) c
u U N U
1 %] AExp %}
Initial {(x?)|xeVar} | %]
Entry labels {init} {init} final
Direction Forward Forward Backward
F {f:L—L|3kg:f(val)=(val\k)U g}
fab fiap(val) = (val \ kill) Ugen

Interprocedural Analysis

foo()

‘

bar()

= The effect of calling a procedure is the effect
of executing its body




25-Jun-11

Call Graph

Gt(*Pf)(int); \ / \ /

intfuna (int x) {
if (x <10)
return (*pf) (x+1); // C1
else
return x;

}

int fun2(inty){

pf = &funy;

return (*pf) (y); // C2
}

void main() {
pf =&fun2;
(*pf)(5); 11 C3

N AN

type based / \

more precise /5

Context Sensitivity

O )

main() {
for(i=o;i<n;i++){
t1=f(o); //Ca
t2=f(42);//C2
t3=1(42);//C3
X[i]=t1+t2+1t3;

}

}

intf(intv)
return (v+1);

}

./

By B2

t3=retval

t4 = t1+t2 B3

S [ fv=one ]
X(il= tg v=o0//Ca
i=i+1

ta1=retval
v=42//C2

Bs

t2 =retval
v=42//C3

retval=v+1\\f

Solution Attempt #1

®= Inline callees into callers
s End up with one big procedure
s CFGs of individual procedures =
duplicated many times
* Good: it is precise
= distinguishes different calls to the
same function
= Bad
s exponential blow-up, not efficient
s doesn’t work with recursion

main() {f0); f0; 3
f0{90i90;}

90 £h0; h0; 1
hO{...}

Inlining

O )

main() {
for(i=o;i<n;i++){
t1=f(o); //Ca
t2=f(42);//C2
t3=1(42);//C3
X[i]=t1+t2+1t3;

}

}

intf(intv)

return (v+1);

}

./

mlm
N »

B7

ifi<ngoto L

t4 = t1+t2

t5=t4+t3
x[i]=t5

i=i+1




25-Jun-11

Solution Attempt #2

= Build a “supergraph” = inter-procedural CFG

= Replace each call from P to Q with
= An edge from point before the call (call point) to Q's entry point
= Anedge from Q’s exit point to the point after the call (return pt)

e Add assignments of actuals to formals, and assignment of return
value

= Good: efficient
e Graph of each function included exactly once in the supergraph

= Works for recursive functions (although local variables need
additional treatment)

= Bad: imprecise, “context-insensitive”

e The “unrealizable paths problem”: dataflow facts can propagate
along infeasible control paths

Unrealizable Paths

foo() 200()

L)

e

Interprocedural Analysis
begin
proc p() is*

[x:=a+1]?

end3
[a=7]
[callp01ss
[print x]7
[a=9]®
[callp01e,
[print a]**

end

= Extend language with begin/end and with [call p()]2®,,,,

= (Call label clab, and return label rlab

IVP: Interprocedural Valid Paths

f, f, clly ret f, f,

O——0———=Q cco0 Q——>0——0
f3 ( ).‘."-... fk-z
enter,!  exit,
f, l / f,
O

O

f:\‘O”

m |VP: all paths with matching calls and returns
O And prefixes

-3




25-Jun-11

Valid Paths

foo() 200()

Interprocedural Valid Paths

= IVP set of paths
o Start at programentry

= Only considers matching calls and returns
o aka, valid

= Can be defined via context free grammar
s matched ::= matched (;matched ); | €

s valid ::= valid (;matched | matched
= paths can be defined by a regular expression

The Join-Over-Valid-Paths (JVP)

= vpaths(n) all valid paths from program start to n
= JVP[n] =L{[e, e, .., €] (initial)
(e, e, ..., €) € vpaths(n)}
= JVPCJFP
s In some cases the JVP can be computed
s (Distributive problem)

Sharir and Pnueli €82

= Call String approach

= Blend interprocedural flow with intra procedural
flow

s Tag every dataflow fact with call history

= Functional approach
= Determinethe effect of a procedure
* E.g., infout map
= Treat procedureinvocationsas “superops”




25-Jun-11

The Call String Approach

= Record at every node a pair (I, c)where | € Liis
the dataflow information and c is a suffix of
unmatched calls

= Use Chaotic iterations

= To guarantee termination limit the size of c
(typically 1 or 2)

= Emulates inline (but no code growth)

= Exponential in size of ¢

begin [x~0, a~0]

proc p() is* [x~0, a7] 9,[x~8, a~9lLI 5,[x~0, am7]

[X:=a+1]? ‘ call ps procp ‘ 9,[x~8, a~g]L
[x-8, a7] T 5,[x~0, a~7]
end3 ‘ call p& ‘ ‘ X=a+1 9,[XI—>10,88|—>9]U
[a=7]¢ [x>8, an7] 1 5/[x~8, a~7]
‘ print x ‘ end |9,[x~10, a~9]Ll
[call p()156 [x—~8, a~7] 5,[x~8, a~7]
[print x]?
fa=ol" 8ol
[call p()1%,0 [x~10, a~g]
[printa]**

(slide from Tom Reps)

10:[x~0, a~7]
4:[x~0, a~6]

begin®

proc p()is*
. [x—o0, a~o0]
if [b]2 then (
[a:=a-1F  [x-0,am7]
[call p()]4
[a:=a+1]° :[X-7, a6
) i[x-7, am6]

[x:=-2%a+5]
end?® ) 4:[x—+0, a~6]
[a=712; [call pOT*°,,; [print(x)]**

ends

(slide from Tom Reps)

The Functional Approach

» The meaning of a procedure is mapping from
states into states

» The abstract meaning of a procedure is

function from an abstract state to abstract
states




25-Jun-11

Ae.[x—~-2e(a)+5, a~ e(a)]
begin

proc p()is*
. [x~0, a~0]
if [b]2 then (
[a:=a-1F  [x-0,am7]
[call p()]4

[a:=a+1]° [x~-9,a~7

) [x=-9, a~7]

[xi=-2%a+57 [ print(x |

end?
[a=71%; [call pOI*°,,; [print(x)]*>

end

(slide from Tom Reps)

Le.[x—~-2e(a)+5, a~ e(a)]
begin

proc p()is*
. [x~0, a~0]
if [b]2 then (
[a:=a-1P  [x~0,a-T]
[call p()]4

[a:=a+1]° [x-T, amT]

) [x~T, a~T]

[xi=-2%a+57 [ print(x |

end?
[read(a)]?; [call p()]*°,,; [print(x)]*?

end

(slide from Tom Reps)

Functional Approach: Main Idea

= |terate onthe abstract domain of functions
fromLtoL
= Two phase algorithm

s Computethe dataflowsolution at the exit of a
procedure as a function of the initial values at the
procedure entry (functional values)

s Computethe dataflow values at every point using
the functionalvalues

= Computes JVP for distributive problems

Meanwhile, IRL

= new compilers for new languages

= new compilersfor old languages
= e.g.,Java->JavaScript

* new uses of compilertechnology




25-Jun-11

GWT Compiler Optimization
Google Web Toolkit P P

public class ShapeExample implements EntryPoint {
private staticfinal double SIDE_LEN_SMALL =2;

private final Shape shape = new SmallSquare();

Compiler

public static abstract class Shape {

v : public abstract double getArea();
Lo ]! =] !
i] Frontend Semantic Backend - public staticabstract class Square extends Shape {
Java 4 (analysis) Representation || (synthesis) g Javascript public double getArea() { return getSideLength() * getSideLength();
code H code public abstract double getSideLength();

: H }
s n s annaad ; ublc static cass SmallSquare extends Square

public double getSideLength() {return SIDE_LEN_SMALL; }
¥
public void onModuleLoad() {

Shape shape = getShape();

Window.alert("Area is " + shape.getArea());
¥
private Shape getShape() { return shape; }

(source: http://dl. 100 I

Compi turepdf) 26

GWT Compiler Optimization i )
Adobe ActionScript

public class ShapeExample implements EntryPoint §
public void onModuleLoad() {
Window.alert("Areais 4.0"); Firstintroduced in Flash Player g, ActionScript 3 is an object-oriented
programming (OOP) language based on ECMAScript—the same standard
} / *AG* / that is the basis for JavaScript—and provides incredible gains in runtime
performance and developer productivity. ActionScript 2, the version of

ActionScript used in Flash Player 8 and earlier, continuesto be supported
in Flash Player g and Flash Player 10.

ActionScript 3.0 introduces a new highly optimized ActionScript Virtual
Machine, AVM2, which dramatically exceeds the performance possible with

AVM1. As a result, ActionScript 3.0 code executes up to 10 times faster than
legacy ActionScript code.

(source: http://dl. 100 I

Compiler uture.pdf) 27 (source: http://www.adobe.ct d

Jactionscript/articles/actionscript3_overview.html) 28




25-Jun-11

Adobe ActionScript

Compiler

Adobe ActionScript: Tamarin

The goal of the "Tamarin" project is to implement a high-performance, open

txt
I_ Frontend Semantic Backend
AS . ) ) AVM
(analysis) Representation (synthesis)
code bytecode

Lo ]

source implementation of the ActionScript™ 3 language, which is based
upon and extends ECMAScript 3rd edition (ES3). ActionScript provides
many extensions to the ECMAScript language, including packages,
namespaces, classes, and optional strict typing of variables.

"Tamarin" implements both a high-performance just-in-time compiler and
interpreter.

The Tamarin virtual machine is used within the Adobe® Flash® Player and is
also being adopted for use by projects outside Adobe. The Tamarin just-in-
time compiler (the "NanoJIT") is a collaboratively developed component
used by both Tamarin and Mozilla TraceMonkey. The ActionScript compiler
is available as a component from the open source Flex SDK.

Mozilla SpiderMonkey

= SpiderMonkey s a fastinterpreter

= runsan untyped bytecode and operates on values of
tﬁpe jsval—type-tagged double-sized values that represent
the full range of JavaScript values.

= SpiderMonkey contains two JavaScript Just-In-Time (JIT)
compilers, a garbage collector, code implementing the basic
behavior of JavaScript values...

= SpiderMonkey's interpreter is mainly a single, tremendously
long function that steps through the bytecode one instruction
at a time, using a switch statement (or faster alternative,
depending on the compiler) to jump to the appropriate chunk
of code for the current instruction.

(source: ht morzilla.org/En/Spider nals)

Mozilla SpiderMonkey: Compiler

consumes JavaScript source code

produces a script which contains bytecode, source
annotations, and a pool of string, number, and identifier
literals. The script also contains objects, includingany
functions defined in the source code, each of which has its
own, nested script.

The compiler consists of

= arandom-logic rather than table-driven lexical scanner
o arecursive-descent parser that produces an AST

= atree-walking code generator

The emitter does some constant folding and a few codegen
optimizations

(source: ht morzilla.org/En/Spider nals) 32




25-Jun-11

Mozilla SpiderMonkey

= SpiderMonkey contains a just-in-time trace compiler
that converts bytecode to machine code for faster
execution.

= The JIT works by detecting commonly executed loops,
tracing the executed bytecodes in those loops as they
run in the interpreter, and then compiling the trace to
machine code.

= See the page about the Tracing JIT for more details.

= The SpiderMonkey GC is a mark-and-sweep, non-
conservative (exact) collector.

(source: ht mozilla.org/En/ nals)

Mozilla TraceMonkey

generic add
operation

awy

1 X0t

1 X0€

‘Convert result to
eneic value

Save result

Firefox 3 Firefox 3.5
s oo s
Javascript Interpreter JavaScript Interpreter)iT

(source: http:/jhack Il -overview]) 34

Mozilla TraceMonkey

» Goal: generate type-specialized code
= Challenges
s no type declarations
s statically trying to determine types mostly hopeless

= Idea
s runthe programfor a while and observe types

s use observed types to generate type-specialized code
s compile traces

= Sounds suspicious?

Mozilla TraceMonkey

= Problem 1: “observing types” + compiling
possibly more expensive than running the
code inthe interpreter

= Solution: only compile code that executes
many times

s “hot code” =loops
= initially everythingruns in the interpreter
= starttracingaloop once it becomes “hot”




25-Jun-11

Mozilla TraceMonkey

= Problem 2: past types do not guarantee
future types... what happens if types change?

= Solution:insert type-checksinto the
compiled code
= if type-checkfails, need to recompile for new
types
s code with frequenttype changes will suffer some
slowdown

\

Y

Mozilla TraceMonkey

a=a+i; //aisaninteger number (o before, 1 after)
++; //iis an integer number (1 before, 2 after)
function E_’ddT(_J(a' n{ i if (I(i<n)) //nis an integer number (10000000)
for(varl.:o;|<n; ++i) break;
a=a+i;
return a; \
}
ﬂaceflﬁstart:
var to = new Date(); ++i; //iis an integer number (o before, 1 after)
var n = addTo(o, temp=a+i; //ais an integer number (1 before, 2 after)
10000000); if (lastOperationOverflowed())
print(n); exit_trace(OVERFLOWED);
print(new Date() - to); a=temp;
if ({(i< n))//n is an integer number (10000000)
exit_trace(BRANCHED);

/ Qoto trace_1_start;

/
~

Mozilla TraceMonkey

System Run Time (ms)
SpiderMonkey (FF3) 990
TraceMonkey (FF3.5) 45

Java (using int) 25

Java (using double) 74

C(using int) 5

C (using double) 15

Static Analysis Tools

= Coverity
= SLAM
= ASTREE

40

10



25-Jun-11

ol SIS Prdences | | e —
|.LZ,...n...,yc/’/l/‘/;‘ { PYSTYSTOL (e RS ———
.

Operator Phone 1000 woets

Sty = T5_300PA

] TS

€ coverity mw////// 7%
ididdd i 5 A

projects >> Covtel Desk Phone 2000

Dashboard [Prajects] Configuration

Fies Components | Defect | |[.<]

dir_31579/linux-2.6.31 /bluetooth

Untrusted use of n | fscratch
loc_event(): An unsantized value

from an untrusted source used in a
trusted contest.

nad: Mav, Und

“evt.erase == 254" taking false path =
- else 4f (evt.erase == uf
Clear_events();

Defect Impact
The unsanitized value may be
incomsctly a3sumed to be within |
3 cartain rangs by later operations.

0" taking true path
} else iF (evt o
d verlable "evt.handle” to o tainted sink. [hide

2000/ (adju

Status: New

Also detected in 4 other projects 1

(showed s1_event(na, evt.nanate,
te /dir_31579/linux-2.6.31/dr

tainted_data_ar 8 ey

tainted_dat )

parm_assign. t

upper_bounds

dota, Tndex (

ent (-

Ovmer:

handle ¥a\n*, |

rue path

3 else
Assigning: “handie” = " +111

-

3le >
ned: v, Unda

Viewe settings (shovi...)

Aosty_| [ mppty + next

+ 11154 TAINTED_SCALAR
ua fiad, Unspadfiad

Adminis

+ 11149 TAINTED_SCALAR
Un s, Unspachiad

152 TAINTED_SCALAR

Changes apply to z)m;l Desk Phone
st

Classification: [Undassified
Severity: (Unspecfied
Action: [Undecded

Revart

TAINTED_SCALAR
ad: Mav, Undasihad, Unipachiad

]
]

Lots and lots of research
= Program Analysis
= Program Synthesis
= Nextsemester
s Project—contact me if you're interested
= Advanced coursein program analysis

11



