25-Jun-11

Lecture 16 — Dataflow Analysis

THEORY OF COMPILATION

EranYahav

www.cs.technion.ac.il/~yahave/tocs2o11/compilers-lec16.pptx

Reference: Dragon g, 12

Last time.. Dataflow Analysis

= Informationflows along (potential) execution paths

= Conservativeapproximation of all possible program
executions

» Can be viewedas a sequence of transformations on
program state

s Every statement (block) is associated with two abstract
states: input state, output state

Input/output state represents all possible states that can
occur at the program point

s Representation is finite
Different problems typically use different representations

o

o

Control-Flow Graph

X
L

vy
4
:whiley>o0{
z:=2%Yy;
yi=y-1

O\MU'I.L\WNH

y:=0

Executions

Ly:i=X —

2:2:=1; s

3: whiley>o0{

4 Z:=Z*y; [2:z:F1

5: y=y-1 l

} 3:y30

6:y:=0 YA W N

25-Jun-11

Input/output Sets

in(2)

X
L

vy
4
:whiley>o0{
z:=2%Yy;
yi=y-1

O\MU'I.L\WNH

y:=0

Transfer Functions

in(1)={(x?),(v,?), (z,2)}
in(2)=out(2)

in(3) = out(2) U out(s)
in(4) = out(3)

in(5) = out(4)

in(6) = out(3)

out(6)=in(6)\ {(y,l)| | € Lab} U {(y,6)}

out(4)=in(H\{(z,)|I € Lab}U 1 (z,4)}

out(5)=in(5)\ {(y,) |l € Lab} U {(y,5)}

Kill/Gen formulation for Reaching Definitions

Block out (lab)

[x:=a]" [in(lab) \ { (x,I) | e Lab } U { (x,lab) }
[skip]® [in(lab)

[b]'ab in(lab)

Block kill gen
[x:=a]"® [{(xl)|leLab} {(xlab) }
[skip]?b |@ (4]

[b]'ab a a

Foreach program point, which assignments may have been
made and not overwritten, when program execution
reaches this point along some path.

Solving Gen/Kill Equations

OUT[ENTRY]= &;
for (each basic block B other than ENTRY) OUT[B] = &;
while (changes to any OUT occur) {
for (each basic block B other than ENTRY) {
OUT[B]= (IN[B] \ killB) U genB
IN[B] =Upepred(B) OUT[p]
}
}

= Designated block Entry with OUT[Entry]=0

= pred(B) = predecessor nodes of B in the control flow graph

25-Jun-11

Available Expressions Analysis

[x:=a+b]%

[y:=a*b]3

while [y > a+b]3()

[a:=a+1]% (a+b) always available
+ ways aval

[x:=a+b]5 at label 3

)

~
Foreach program point, which expressions must have
already been computed, and not later modified, on all paths

to the program point
/

Some required notation

blocks : Stmt — P(Blocks)

blocks([x := a]'ab) = {[x := a]2b}
blocks([skip]'2P) = {[skip]'ab}

blocks(S1; S2) = blocks(S1) U blocks(S2)
blocks(if [b]2b then S1 else S2) = {[b]2b} U blocks(S1) U blocks(S2)
blocks(while [b]'@b do S) = {[b]'2b} U blocks(S)

~

_/

FV: (BExp U AExp)— Var
Variables used in an expression

AExp(a) = all non-unit expressions in the arithmetic expression a
similarly AExp(b) for a boolean expression b

Available Expressions Analysis

= Property space
8 inag OUt,e: Lab — @ (AExp)

s Mapping a label to set of arithmetic expressions
available at that label

= Dataflow equations
s Flow equations—how to join incoming dataflow
facts
= Effectequations- givenan input set of
expressions S, what is the effect of a statement

Available Expressions Analysis

= inye(lab) =

s P when labis the initial label

s N{out,c(lab’)|lab’ € pred(lab)} otherwise
= outpe(lab) = ...

Block out (lab)

[x:= a]lab in(lab) \ {a’ e AExp | x e FV(a') }U {a' e AExp(a) | x € FV(a') }
[skip]ab in(lab)

[b]'ab in(lab) U AExp(b)

From now on going to drop the AE subscript when clear from context

25-Jun-11

Transfer Functions

out(z)=in(1)U{a+b}

out(2)=in(2)U{a*b}

3y >a+b
out(3)=in(3)U{a+b}

Ea:au

out(4)=in(4)\{a+b,a*b,a+1}

out(5)=in(5)U{a+b}

in2) =0

in(2) = out(2)

in(3) = out(2) N out(s)
in(4) = out(3)

in(5) = out(4)

[x:= a+b]%;
[y:=a*b]%;

while [y >a+b]3 (
[a:=a+1]%
[x:=a+b]s

)

Solution

in2) =0

in(2)=out(1) ={a+b}

out(2) ={a+b, a*b} in(3)=f{a+b}

1y >a+b
in(4) = out(3) ={a+b}

E&:a+1

out(4) =0

out(s) ={a+b}

Kill/Gen

Block out (lab)

[x:= a]lab in(lab) \ {a’ e AExp | x e FV(a') }U {a' e AExp(a) | x € FV(a') }
[skip]ab in(lab)

[b]'ab in(lab) U AExp(b)

Block kill gen

[x:=a]"® [{a'eAExp|xeFV(@)} |{a' € AExp(a) |x ¢ FV(a')}

[skip]?b (@ (4]

[b]'ab 9] AExp(b)

out(lab) = in(lab) \ kill(B'2®) U gen(B'2b)

Blab = block at label lab

Reaching Definitions Revisited

Block out (lab)

[x:=a]" [in(lab) \ { (x,I) | e Lab } U { (x,lab) }
[skip]® [in(lab)

[b]'ab in(lab)

Block kill gen
[x:=a]"® [{(x])|leLab} {(xlab) }
[skip]?b |@ (4]

[b]'ab a a

Foreach program point, which assignments may have been
made and not overwritten, when program execution
reaches this point along some path.

25-Jun-11

Why solution with smallest sets?

in(2)={(x,2),(y, (2,7}

1z=xty in(2)={(x,2),(y,(z,2)}

out(1) = (in(W\ {(z,2)}) U{(z1) } in(2) = out(1) U out(3)
in(3) = out(2)
in(2) = out(2) U out(3)

:true

out(2)=in(2)

[z:=x+y];

in(3) = out(2) while [true]? (
[skipl3;

)

out(3)=in(3)

After simplification: in(2) = in(2) U { (x,?),(y,?),(z,1)}

Many solutions: any superset of { (x,?),(y,?),(z,1)}

Live Variables

[x:=2]%

ly:=41%

[x:=1]3;

(if [y>x]4 then [z:=y]5
else [z:=y*y]®);
[x:=2]7

Foreach program point, which variables may be live at the
exit from the point.

Live Variables

[x:=2]%

[y:=41%

[x:=1]3;

(if [y>x]4 then [z:=y]5
else [z:=y*y]®);
[x:=2]7

Live Variables

[x:=2]%

[y:=41%

[x:=1]3;

(if [y>x]4 then [z:=y]5
else [z:=y*y]®);

[x:=2]7
Block kill gen
[x:=a]? | {x} {FV@)}
[skip]®b | @ (4]
[b]lab (%] FV(b)

25-Jun-11

Live Variables: solution

in(1)=92
[x:=2]%
[y:=4]2; out(1)=in(2)=J
[x:=1]5;

out(2)=in(3) =1y}
(if [y>x]4 then [z:=y]5 o

else [z:=y*y]®);
[x:=2]7

out(3)=in(4)={xy}
in(4)={xy}

Fout(4) =1y}

Block kill |gen

— in(5)={y} in(6)={y}
[X:.: al®® | {x} |{FV(a)} C&Z:D*Y
[skip]*® | @ [] out(5) =1z} Fout(6)=12}

[b]'ab %) FV(b) in(z)={z}

out(7)= 2

Why solution with smallest set?

in(12) = out(1) U{x}

out(1)=in(2) Uin(3)
out(2)=in(1)
out(3)=

in(2) = out(2) in(3)={x}
3iXi=x41
out(3)=9 while [x>1]* (
[skip]%
)
[x:= x+1]3;

After simplification: in(2) =in(2) U {x}

Many solutions: any superset of {x }

Monotone Frameworks

when lab € Entry labels

Initial
In(lab) =
LI {out(lab’) | (lab’,lab) € CFG edges } otherwise

out(lab) = fi,(in(lab))

= LlisUorn
= CFG edges go either forward or backwards

= Entry labels are either initial program labels or final
program labels (when going backwards)

= |Initial is an initial state (or final when going backwards)
= f,p is the transfer function associated with the blocks B'a

Forward vs. Backward Analyses

1), (v,?),(z,7)}

142), (v,?), (2}

25-Jun-11

Must vs. May Analyses

= When LJisN - must analysis
s Want largestsetsthat solves the equation system

s Properties hold on all paths reaching a label
(exiting a label, for backwards)

= When L is U - may analysis
= Want smallestsets that solve the equation system

s Properties hold at least on one pathreachinga
label (existing a label, for backwards)

Example: Reaching Definition

= L= @(VarxLab)is partially ordered by

" UisU

= L satisfies the Ascending Chain Condition
because Var x Lab is finite (for a given
program)

Example: Available Expressions

= L= @(AExp)is partially ordered by 2

= LisN

= L satisfies the Ascending Chain Condition
because AExp is finite (for a given program)

Analyses Summary

Reaching Available Live Variables
Definitions Expressions
L @ (Varx Lab) § (AExp) o (Var)
= c =) c
u U N U
1 %] AExp %}
Initial {(x?)|xeVar} | %]
Entry labels {init} {init} final
Direction Forward Forward Backward
F {f:L—L|3kg:f(val)=(val\k)U g}
fiab flap(val) = (val \ kill) Ugen

25-Jun-11

Analyses as Monotone Frameworks

= Property space
= Powerset
o Clearly a complete lattice

= Transformers
o Kill/gen form
= Monotone functions (let’s show it)

Monotonicity of Kill/Gen transformers

= Have to show that x = x’ implies f(x) = f(x’)

= Assume x = x/, then forkill set k and gen set g
x\klUgc=(x'\k)Ug

= Technically, since we want to show it for all
functionsin F, we also have to show that the
set is closed under function composition

Distributivity of Kill/Gen transformers

= Have to show that f(x Ll y) = f(x) LI f(y)
= fixUy)=((xUy)\k)Ug

=(x\k) U(y\k)Ug

= (x\kUg) LUy\k)Uq))

=f(x) L f(y)

= Used distributivity of Ll and U
s Worksregardless of whether] isUorn

Points-to Analysis

= Many flavors
= PWHILE language

pePExp pointer expressions
an=x|n|aiop,az|&x|*x|nil

S ::=[x:= a]b
| [skip]'ab
| S1;S2
| if [b]'b then Sz else S2
| while [b]* do S
| x = malloc

25-Jun-11

Points-to Analysis

= Aliases

= Two pointersp and q are aliasesif they point to
the same memory location

= Points-to pair
s (p,q) meansp holds the address of q
= Points-to pairs and aliases
= (p,q) and (r,q) meansthatp and r are aliases

= Challenge: no a priori bound on the set of
heap locations

Terminology Example

[x := &z]* / \
[y := &z]? @ @

[w:=&y]3
[r:=w]4 e

Points-to pairs: (x,2), (y,2), (w,y), (r,y)
Aliases: (x,y), (r,w)

(May) Points-to Analysis

= Property Space
s L=(gp(VarxVar),g,UN,d, VarxVar)

= Transfer functions

Statement | out(lab)

[p=28x]" |in(lab) U{(p,¥)}

[p=ql® in(lab) U {(p,x) | (g,¥) € in(lab) }

[*p=q] |in(lab) U {(r,x) | (q,x) € in(lab) and (p,r) € in(lab) }
[p="*qlt |in(lab) U {(p,r)|(g,x) €in(lab) and (x,r) € in(lab) }

(May) Points-to Analysis

= What to do with malloc?

= Need some static naming scheme for
dynamically allocated objects

= Single name for the entire heap
@ [[p=malloc]®](S)= SU{(p,H)}

= Name based on static allocation site
o [[p = malloc]®] (S) = SU{ (p,lab)}

25-Jun-11

(May) Points-to Analysis

[x :=malloc]?;
[y:=malloc]?

(if [x==y]3 then

[z:=x]4
else

[z:=y]5
)i

%]

{06H)}
L06H), (v, H)}
L06H), (v, H)}

L06H), (v, H), (z,H)}

L06H), (v, H), (z,H)}

L06H), (v, H), (z,H)}

Single name H for the entire heap

Allocation Sites

= Divide the heap into a fixed partition based
on allocation site

= All objects allocated at the same program
point represented by a single “abstract
object”

(May) Points-to Analysis

[x :=malloc]?; // A1

[y:=malloc]? // A2

(if [x==y]3 then
[z:=x]4

else

[z:=y]°

)i

%]

(A1)}
{(4A2), (y,A2)}

{(4A2), (y,A2)}

{(xA), (y,A2),(z,A1)}

{(xA2), (y,A2),(z,A2)}

1(xA2), (y,A2),(z,A1), (2,A2)}

Allocation-site based naming (using A, instead of just “lab” for clarity)

39

Weak Updates

Statement | out(lab)

[p=8x1"" |in(lab) Ui(p)}

[p=ql® in(lab) U {(p,X) | (q,x) € in(lab) }
{
{

[*p=ql> |in(lab) U
[p=*ql" |in(lab) U {(p,n) | (q,%) €in(lab) and (x,1) € in(lab) }

(r,x) | (q,x) € in(lab) and (p,r) € in(lab) }

[

[x ;=ma||OC]liu{<xAm

[y:=mallocl; /A2 "

[z:=X]3; A
- !

{(xA), (y,A2), (z,A2)}
[z:=y]%
{(xA), (y,A2),(z,A2),(2,A2)}

40

10

25-Jun-11

(May) Points-to Analysis

= Fixed partition of the (unbounded) heap to
staticnames
o Allocation sites
o Types
= Calling contexts
» What we saw so far — flow-insensitive
= Ignoring the structure of the flow in the program

n

Flow-sensitive vs.
Flow-insensitive Analyses

[x :=malloc]y;
[y:=malloc]?
(if [x==yB then
[z:=x]4
else
[z:=y]

)I

= Flow sensitive: respect program flow
= aseparate set of points-to pairs for every program point
o the setat a point represents possible may-aliases on some path from
entry tothe program pOiI’\t
= Flow insensitive: assume all execution orders are possible,
abstractaway order between statements

e

So far..

= Intra-procedural analysis

= How are we going to deal with procedures?
= Inter-procedural analysis

3

Interprocedural Analysis

foo()

‘

bar()

= The effect of calling a procedure is the effect
of executing its body

44

11

25-Jun-11

Call Graph

Gt(*Pf)(int); \ / \ /

intfuna (int x) {
if (x <10)
return (*pf) (x+1); // C1
else
return x;

}

int fun2(inty){

pf = &funy;

return (*pf) (y); // C2
}

void main() {
pf =&fun2;
(*pf)(5); 11 C3

N AN

type based / \

more precise /16

Context Sensitivity

O)

main() {
for(i=o;i<n;i++){
t1=f(o); //Ca
t2=f(42);//C2
t3=1(42);//C3
X[i]=t1+t2+1t3;

}

}

intf(intv)
return (v+1);

}

./

By B2

t3=retval

t4 = t1+t2 B3

S [fv=one]
X(il= tg v=o0//Ca
i=i+1

ta1=retval
v=42//C2

Bs

t2 =retval
v=42//C3

retval=v+1\\f

4

Solution Attempt #1

®= Inline callees into callers
s End up with one big procedure
s CFGs of individual procedures =
duplicated many times
* Good: it is precise
= distinguishes different calls to the
same function
= Bad
s exponential blow-up, not efficient
s doesn’t work with recursion

main() {f0); f0; 3
f0{90i90;}

90 £h0; h0; 1
hO{...}

4

Inlining

O)

main() {
for(i=o;i<n;i++){
t1=f(o); //Ca
t2=f(42);//C2
t3=1(42);//C3
X[i]=t1+t2+1t3;

}

}

intf(intv)

return (v+1);

}

./

mlm
N »

B7

ifi<ngoto L

t4 = t1+t2

t5=t4+t3
x[i]=t5

i=i+1

8

12

25-Jun-11

Solution Attempt #2

= Build a “supergraph” = inter-procedural CFG

= Replace each call from P to Q with
= An edge from point before the call (call point) to Q's entry point
= Anedge from Q’s exit point to the point after the call (return pt)

e Add assignments of actuals to formals, and assignment of return
value

= Good: efficient
e Graph of each function included exactly once in the supergraph

= Works for recursive functions (although local variables need
additional treatment)

= Bad: imprecise, “context-insensitive”

e The “unrealizable paths problem”: dataflow facts can propagate
along infeasible control paths

49

Unrealizable Paths

foo() 200()

L)

e

Interprocedural Analysis
begin
proc p() is*

[x:=a+1]?

end3
[a=7]
[callp01ss
[print x]7
[a=9]®
[callp01e,
[print a]**

end

= Extend language with begin/end and with [call p()]2®,,,,

= (Call label clab, and return label rlab

IVP: Interprocedural Valid Paths

f, f, clly ret f, f,

O——0———=Q cco0 Q——>0——0
f3 ().‘."-... fk-z
enter,! exit,
f, l / f,
O

O

f:\‘O”

m |VP: all paths with matching calls and returns
O And prefixes

-3

13

25-Jun-11

Valid Paths

foo() 200()

Interprocedural Valid Paths

= IVP set of paths
o Start at programentry

= Only considers matching calls and returns
o aka, valid

= Can be defined via context free grammar
s matched ::= matched (;matched); | €

s valid ::= valid (;matched | matched
= paths can be defined by a regular expression

The Join-Over-Valid-Paths (JVP)

= vpaths(n) all valid paths from program start to n
= JVP[n] =L{[e, e, .., €] (initial)
(e, e, ..., €) € vpaths(n)}
= JVPCJFP
s In some cases the JVP can be computed
s (Distributive problem)

Sharir and Pnueli €82

= Call String approach

= Blend interprocedural flow with intra procedural
flow

s Tag every dataflow fact with call history

= Functional approach
= Determinethe effect of a procedure
* E.g., infout map
= Treat procedureinvocationsas “superops”

14

25-Jun-11

The Call String Approach

= Record at every node a pair (I, c)where | € Liis
the dataflow information and c is a suffix of
unmatched calls

= Use Chaotic iterations

= To guarantee termination limit the size of c
(typically 1 or 2)

= Emulates inline (but no code growth)

= Exponential in size of ¢

begin [x~0, a~0]
proc p() is* [x~0, a7] 9,[x~8, a~9lLI 5,[x~0, am7]
[x:=a+1]? ‘ call ps procp ‘ 9,[x~8, a~g]L
' [x~8, an7] 1 5,[x~0, a~7]
ends call p® x=a+1 |g,[x~10, a~9g]L]
P 9 brg 9]
5/1x~c, a~7
[a=7]* [x~8, a~7] I
7 ‘ print x ‘ end |9,[x~10, a~9]Ll
[call pOT% [x—~8, a~7] 5,[x~8, a~7]
[print x]?
fa=gl® 8ol

[call pO1°,6
[printa]**

[x—10, a~9]

end

10:[x~0, a~7]
4:[x~0, a~6]

begin®

proc p()is*
. [x—o0, a~o0]
if [b]2 then (
[a:=a-1F [x-0,am7]
[call p()]4
[a:=a+1]° :[X-7, a6
) i[x-7, am6]

[x:=-2%a+5]
end?®) :[x+0, a—6]
[a=71%; [call pOI*°,,; [print(x)]*>

ends

The Functional Approach

» The meaning of a procedure is mapping from
states into states

» The abstract meaning of a procedure is
function from an abstract state to abstract
states

15

25-Jun-11

Ae.[x—~-2e(a)+5, a~ e(a)]
begin

proc p()is*
. [x~0, a~0]
if [b]2 then (
[a:=a-1F [x-0,am7]
[call p()]4

[a:=a+1]° [x~-9,a~7

) [x=-9, a~7]

[xi=-2%a+57 [print(x |

end?
[a=71%; [call pOI*°,,; [print(x)]*>

end

Le.[x—~-2e(a)+5, a~ e(a)]
begin

proc p()is*
. [x~0, a~0]
if [b]2 then (
[a:=a-1P [x~0,a-T]
[call p()]4

[a:=a+1]° [x-T, amT]

) [x~T, a~T]

[xi=-2%a+57 [print(x |

end?
[read(a)]?; [call p()]*°,,; [print(x)]*?

end

Functional Approach: Main Idea

= |terate onthe abstract domain of functions
fromLtoL
= Two phase algorithm

s Computethe dataflowsolution at the exit of a
procedure as a function of the initial values at the
procedure entry (functional values)

s Computethe dataflow values at every point using
the functionalvalues

= Computes JVP for distributive problems

16

