Lecture 16 – Dataflow Analysis

THEORY OF COMPILATION

Eran Yahav

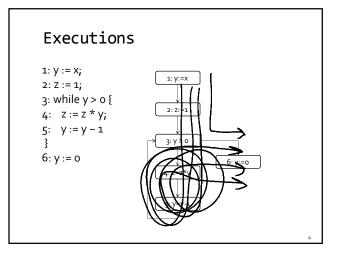
www.cs.technion.ac.il/-yahave/tocs2011/compilers-lec16.pptx

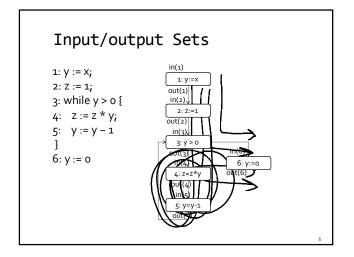
Reference: Dragon 9, 12

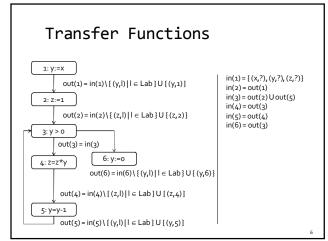
Last time... Dataflow Analysis

- Information flows along (potential) execution paths
- Conservative approximation of all possible program executions
- Can be viewed as a sequence of transformations on program state
 - Every statement (block) is associated with two abstract states: input state, output state
 - Input/output state represents all possible states that can occur at the program point
 - Representation is finite
 - Different problems typically use different representations

Control-Flow Graph 1: y := x; 2: z := 1; 3: while y > o { 4: z := z * y; 5: y := y - 1 } 6: y := 0







Kill/Gen formulation for Reaching Definitions

Block	out (lab)
[x := a] ^{lab}	$in(lab) \setminus \{(x,l) l \in Lab \} \cup \{(x,lab) \}$
[skip] ^{lab}	in(lab)
[b] ^{lab}	in(lab)

Block	kill	gen
$[x := a]^{lab}$	$\{(x,l) \mid l \in Lab \}$	{ (x,lab) }
[skip] ^{lab}	Ø	Ø
[b] ^{lab}	Ø	Ø

For each program point, which assignments <u>may</u> have been made and not overwritten, when program execution reaches this point along <u>some path</u>.

Solving Gen/Kill Equations

```
OUT[ENTRY] = Ø;
for (each basic block B other than ENTRY)OUT[B] = Ø;
while (changes to any OUT occur) {
  for (each basic block B other than ENTRY) {
    OUT[B]= (IN[B] \ killB) ∪ genB
    IN[B] = ∪p∈pred(B) OUT[p]
  }
}
```

- $\bullet \quad \text{Designated block Entry with OUT[Entry]=}\varnothing$
- pred(B) = predecessor nodes of B in the control flow graph

Available Expressions Analysis

```
[x := a+b]<sup>1</sup>;

[y := a*b]<sup>2</sup>;

while [y > a+b]<sup>3</sup>(

[a := a + 1]<sup>4</sup>;

[x := a + b]<sup>5</sup>)
```

(a+b) always available at label 3

For each program point, which expressions <u>must</u> have already been computed, and not later modified, on <u>all paths</u> to the program point

Some required notation

 $\begin{aligned} & blocks: Stmt \longrightarrow P(Blocks) \\ & blocks([x:=a]^{lab}) = \{[x:=a]^{lab}\} \\ & blocks([skip]^{lab}) = \{[skip]^{lab}\} \\ & blocks(S1;S2) = blocks(S1) \cup blocks(S2) \\ & blocks(if[b]^{lab} then S1 else S2) = \{[b]^{lab}\} \cup blocks(S1) \cup blocks(S2) \\ & blocks(while[b]^{lab} do S) = \{[b]^{lab}\} \cup blocks(S) \end{aligned}$

FV: (BExp ∪ AExp) → Var Variables used in an expression

AExp(a) = all non-unit expressions in the arithmetic expression a similarly AExp(b) for a boolean expression b

Available Expressions Analysis

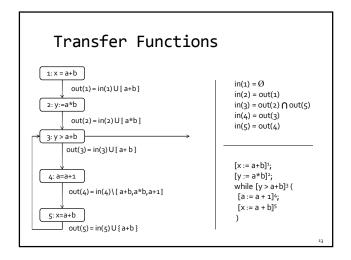
- Property space
 - in_{AE}, out_{AE}: Lab → ℘(AExp)
 - Mapping a label to set of arithmetic expressions available at that label
- Dataflow equations
 - Flow equations how to join incoming dataflow facts
 - Effect equations given an input set of expressions S, what is the effect of a statement

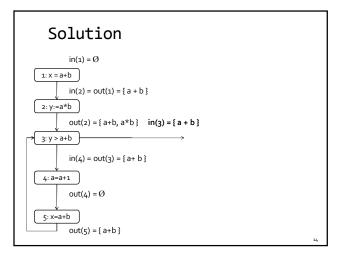
Available Expressions Analysis

- in_{AE} (lab) =
 - $^{\circ}$ \varnothing when lab is the initial label
- out_{AE} (lab) = ...

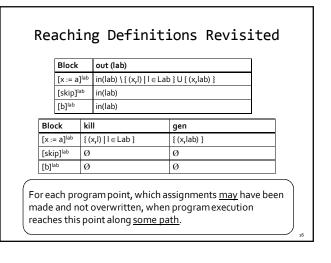
Block	out (lab)
$[x := a]^{lab}$	$in(lab) \setminus \{ a' \in AExp \big x \in FV(a') \} U \{ a' \in AExp(a) \big x \notin FV(a') \}$
[skip] ^{lab}	in(lab)
[b] ^{lab}	in(lab) U AExp(b)

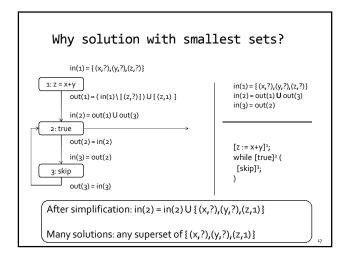
From now on going to drop the AE subscript when clear from context $\,$

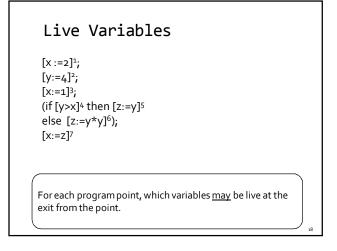


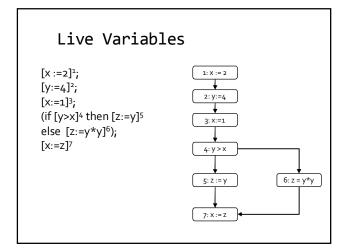


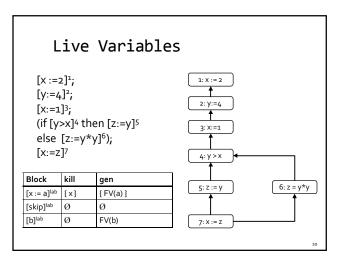
Kill/Gen Block out (lab) [x := a]lat $in(lab) \setminus \{ \ a' \in AExp \ | \ x \in FV(a') \ \} \ U \ \{ \ a' \in AExp(a) \ | \ x \notin FV(a') \ \}$ [skip]^{lab} [b]lab in(lab) U AExp(b) kill gen [x := a]^{lab} $\{a' \in AExp \mid x \in FV(a')\}$ $\{a' \in AExp(a) \mid x \notin FV(a')\}$ [skip]^{lab} $out(lab) = in(lab) \setminus kill(B^{lab}) \cup gen(B^{lab})$ Blab = block at label lab

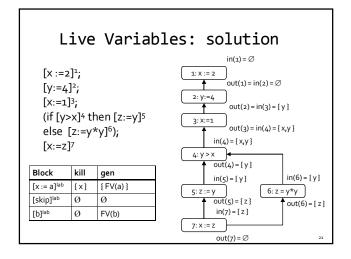


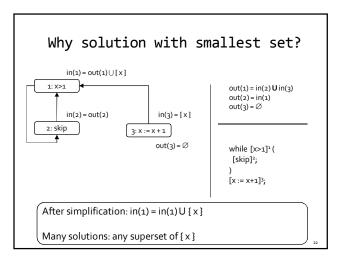


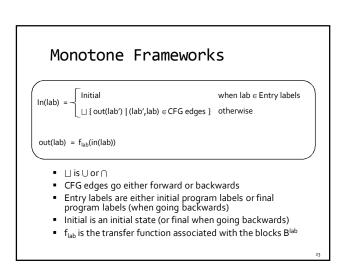


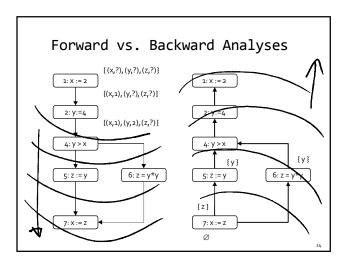












Must vs. May Analyses

- When \sqcup is \cap must analysis
 - ${\tt \tiny o} \ \ {\tt Want \, largest \, sets \, that \, solves \, the \, equation \, system}$
 - Properties hold on all paths reaching a label (exiting a label, for backwards)
- When \sqcup is \cup may analysis
 - Want smallest sets that solve the equation system
 - Properties hold at least on one path reaching a label (existing a label, for backwards)

25

Example: Reaching Definition

- L = ℘(Var×Lab) is partially ordered by ⊆
- | is |
- L satisfies the Ascending Chain Condition because Var × Lab is finite (for a given program)

26

Example: Available Expressions

- L = \((AExp) is partially ordered by \(\)
- \(\sis \)
- L satisfies the Ascending Chain Condition because AExp is finite (for a given program)

Analyses Summary

	Reaching Definitions	Available Expressions	Live Variables
L	℘(Varx Lab)	℘(AExp)	℘(Var)
⊑	\subseteq	\supseteq	⊆
⊔	U	Ω	U
Т	Ø	AExp	Ø
Initial	$\{(x,?) x \in Var\}$	Ø	Ø
Entry labels	{ init }	{ init }	final
Direction	Forward	Forward	Backward
F	$\{f: L \rightarrow L \mid \exists k, g: f(val) = (val \setminus k) \cup g \}$		
f _{lab}	$f_{lab}(val) = (val \setminus kill) \cup gen$		

Analyses as Monotone Frameworks

- Property space
 - Powerset
 - Clearly a complete lattice
- Transformers
 - Kill/gen form
 - Monotone functions (let's show it)

Monotonicity of Kill/Gen transformers

- Have to show that $x \sqsubseteq x'$ implies $f(x) \sqsubseteq f(x')$
- Assume x ⊆ x', then for kill set k and gen set g
 (x \ k) U g ⊆ (x' \ k) U g
- Technically, since we want to show it for all functions in F, we also have to show that the set is closed under function composition

__

Distributivity of Kill/Gen transformers

- Have to show that $f(x \sqcup y) \sqsubseteq f(x) \sqcup f(y)$
- $f(x \sqcup y) = ((x \sqcup y) \setminus k) \cup g$
 - $= ((x \setminus k) \sqcup (y \setminus k)) \cup g$
 - $= (((x \setminus k) \cup g) \sqcup ((y \setminus k) \cup g))$
 - $= f(x) \sqcup f(y)$
- Used distributivity of \sqcup and U

31

Points-to Analysis

- Many flavors
- PWHILE language

```
\begin{split} p \in & \mathsf{PExp} \quad \mathsf{pointer} \; \mathsf{expressions} \\ a ::= x \mid \mathsf{n} \mid \mathsf{a1} \; \mathsf{op_a} \; \mathsf{a2} \mid \&x \mid *x \mid \mathsf{nil} \\ \mathsf{S} ::= [x := a]^{lab} \\ \mid [\mathsf{skip}]^{lab} \\ \mid \mathsf{S1} \mathsf{S2} \\ \mid \mathsf{if} \; [\mathsf{b}]^{lab} \; \mathsf{then} \; \mathsf{S1} \; \mathsf{else} \; \mathsf{S2} \\ \mid \mathsf{while} \; [\mathsf{b}]^{lab} \; \mathsf{do} \; \mathsf{S} \\ \mid \mathsf{x} = \mathsf{malloc} \end{split}
```

Points-to Analysis

- Aliases
 - Two pointers p and q are aliases if they point to the same memory location
- Points-to pair
 - (p,q) means p holds the address of q
- Points-to pairs and aliases
 - (p,q) and (r,q) means that p and r are aliases
- Challenge: no a priori bound on the set of heap locations

Terminology Example $[x := \&z]^1$ $[y := \&z]^2$ $[w := \&y]^3$ $[r := w]^4$ Points-to pairs: (x,z), (y,z), (w,y), (r,y) Aliases: (x,y), (r,w)

(May) Points-to Analysis

- Property Space
 - □ L = $(\&(VarxVar), \subseteq, \cup, \cap, \emptyset, VarxVar)$
- Transfer functions

Statement	out(lab)
$[p = &x]^{lab}$	$in(lab) \cup \{(p,x)\}$
$[p = q]^{lab}$	$in(lab) \cup \{(p,x) \mid (q,x) \in in(lab) \}$
$[*p = q]^{lab}$	$in(lab) \cup \{(r,x) \mid (q,x) \in in(lab) \text{ and } (p,r) \in in(lab) \}$
$[p = *q]^{lab}$	in(lab) U $\{(p,r) \mid (q,x) \in in(lab) \text{ and } (x,r) \in in(lab) \}$

(May) Points-to Analysis

- What to do with malloc?
- Need some static naming scheme for dynamically allocated objects
- Single name for the entire heap
 - ${}^{\scriptscriptstyle\square} \ \big[\!\!\big[[p = \mathsf{malloc}]^{\mathsf{lab}} \big]\!\!\big] (\mathsf{S}) = \ \mathsf{S} \ \cup \ \!\!\big\{ (p, \mathsf{H}) \ \!\!\big\}$
- Name based on static allocation site
 - $[[p = malloc]^{lab}](S) = S \cup \{(p, lab)\}$

(May) Points-to Analysis

Allocation Sites

- Divide the heap into a fixed partition based on allocation site
- All objects allocated at the same program point represented by a single "abstract object"

(May) Points-to Analysis

Weak Updates

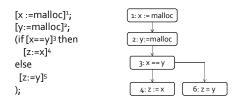
Statement	out(lab)	
$[p = &x]^{lab}$	in(lab) U { (p,x) }	
$[p = q]^{lab}$	in(lab) $U \{(p,x) (q,x) \in in(lab) \}$	
$[*p = q]^{lab}$	in(lab) $U \{(r,x) (q,x) \in in(lab) \text{ and } (p,r) \in in(lab) \}$	
$[p = *q]^{lab}$	$in(lab) \ U \{(p,r) \mid (q,x) \in in(lab) \ and \ (x,r) \in in(lab) \}$	
_	alloc] ¹ ; $\overline{// A_1}$	
Ly:=ma	$[(x,A_1),(y,A_2)]$	
$[z:=x]^3$	{(x,A1), (y,A2), (z,A1)}	
[z:=y] ⁴	<i>i</i>	

 $\{(x,A_1),(y,A_2),(z,A_1),(z,A_2)\}$

(May) Points-to Analysis

- Fixed partition of the (unbounded) heap to static names
 - Allocation sites
 - Types
 - Calling contexts
- What we saw so far flow-insensitive
 - Ignoring the structure of the flow in the program

Flow-sensitive vs. Flow-insensitive Analyses



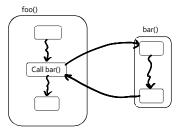
- Flow sensitive: respect program flow

 - a separate set of points-to pairs for every program point
 the set at a point represents possible may-aliases on some path from entry to the program point
- Flow insensitive: assume all execution orders are possible, abstract away order between statements

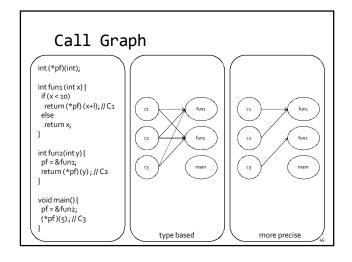
So far...

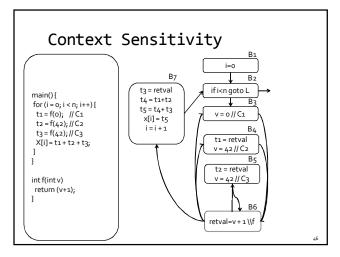
- Intra-procedural analysis
- How are we going to deal with procedures?
- Inter-procedural analysis

Interprocedural Analysis



• The effect of calling a procedure is the effect of executing its body

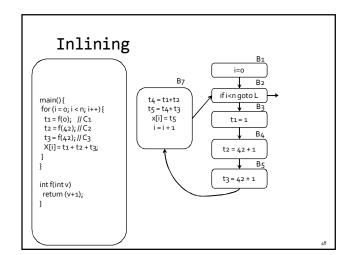




Solution Attempt #1

- Inline callees into callers
 - $\,{}^{\scriptscriptstyle \square}\,$ End up with one big procedure
 - CFGs of individual procedures = duplicated many times
- Good: it is precise
 - distinguishes different calls to the same function
- Bac
 - exponential blow-up, not efficient
 - doesn't work with recursion

main() { f(); f(); } f() { g(); g(); } g() { h(); h(); } h() { ... }



Solution Attempt #2

- Build a "supergraph" = inter-procedural CFG
- Replace each call from P to Q with
 - An edge from point before the call (call point) to Q's entry point
 - An edge from Q's exit point to the point after the call (return pt)
 - Add assignments of actuals to formals, and assignment of return value
- Good: efficient
 - Graph of each function included exactly once in the supergraph
 - Works for recursive functions (although local variables need additional treatment)
- Bad: imprecise, "context-insensitive"
 - The "unrealizable paths problem": dataflow facts can propagate along infeasible control paths

Unrealizable Paths

foo()

Call bar()

Call bar()

50

49

Interprocedural Analysis

begin

proc p() is1

[x := a + 1]²

end³

[a=7]⁴ [call p()]⁵₆

[print x]⁷

[print x

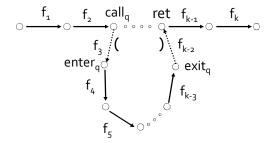
[a=9]⁸

[call p()]⁹10 [print a]¹¹

end

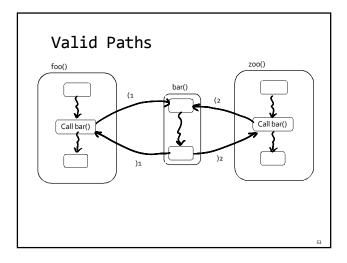
- Extend language with begin/end and with [call p()]^{clab}_{rlab}
- Call label clab, and return label rlab

IVP: Interprocedural Valid Paths



■ IVP: all paths with matching calls and returns

□ And prefixes



Interprocedural Valid Paths

- IVP set of paths
- Start at program entry
- Only considers matching calls and returns
 - aka, valid
- Can be defined via context free grammar
 - □ matched ::= matched ($_i$ matched) $_i$ | ϵ
 - valid ::= valid (, matched | matched
 - paths can be defined by a regular expression

The Join-Over-Valid-Paths (JVP)

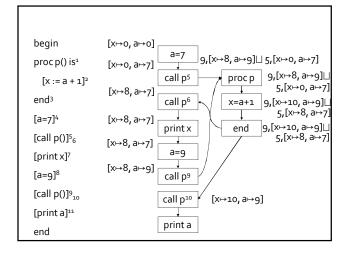
- vpaths(n) all valid paths from program start to n
- JVP[n] = \sqcup {[[$e_{1}, e_{2}, ..., e$]] (initial) ($e_{1}, e_{2}, ..., e$) ∈ vpaths(n)}
- - In some cases the JVP can be computed
 - (Distributive problem)

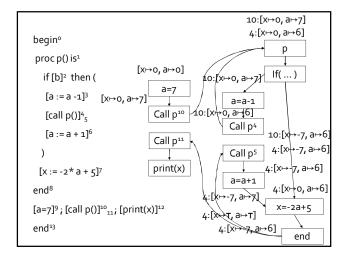
Sharir and Pnueli '82

- Call String approach
 - Blend interprocedural flow with intra procedural flow
 - Tag every dataflow fact with call history
- Functional approach
 - Determine the effect of a procedure
 - E.g., in/out map
 - Treat procedure invocations as "super ops"

The Call String Approach

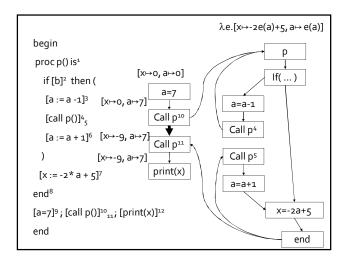
- Record at every node a pair (I, c) where I ∈ L is the dataflow information and c is a suffix of unmatched calls
- Use Chaotic iterations
- To guarantee termination limit the size of c (typically 1 or 2)
- Emulates inline (but no code growth)
- Exponential in size of c

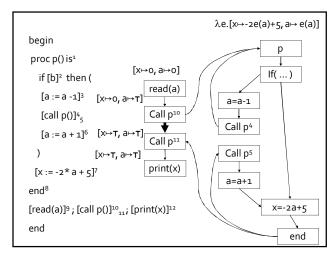




The Functional Approach

- The meaning of a procedure is mapping from states into states
- The abstract meaning of a procedure is function from an abstract state to abstract states





Functional Approach: Main Idea

- Iterate on the abstract domain of functions from L to L
- Two phase algorithm
 - Compute the dataflow solution at the exit of a procedure as a function of the initial values at the procedure entry (functional values)
 - Compute the dataflow values at every point using the functional values
- Computes JVP for distributive problems