
THEORY OF COMPILATION
Lecture 14 – Recap

EranYahav

Thanks to Ohad Shacham (TAU) for some of the slides in this lecture

1

www.cs.technion.ac.il/~yahave/tocs2011/compilers-lec14.pptx

2

Generic compiler structure

Executable

code

exe

Source

text

txt

Semantic

Representation

Backend

(synthesis)

Compiler

Frontend

(analysis)

3

Lexical Analysis

 Input
 program text (file)

 Output
 sequence of tokens

 Read input file
 Identify language keywords
 Count line numbers
 Remove whitespaces
 Report illegal symbols

Lexical Analysis

4

CLASS,CLASS_ID(Hello),LB,BOOLEAN,ID(state),SEMI …

Issues in lexical analysis

 Language changes

 New keywords

 New operators

 New meta-language
features, e.g., annotations

class Hello {
boolean state;
static void main(string[] args) {

Hello h = new Hello();
boolean s = h.rise();
Library.printb(s);
h.setState(false);

}
boolean rise() {

boolean oldState = state;
state = true;
return oldState;

}
void setState(boolean newState) {

state = newState;
}

}

5

Parsing

 Input
 A context free grammar
 A stream of tokens

 Output
 An abstract syntax tree or error

6

Parsing and AST
CLASS,CLASS_ID(Hello),LB,BOOLEAN,ID(state),SEMI …

prog

class_list

class

field_method_list

field field_method_list

type ID(state)

BOOLEAN

method
field_method_list

…

…

parser uses stream of tokens
and generate derivation tree

Grammars: LL(1), LR(0),
SLR(1), LALR(1), LR(1)

 Building parsers

Transition diagram

 Parse table

 Running automaton

Conflict resolution

Write LR grammar for a
language

Ambiguity

Parsing and AST

prog

class_list

class

field_method_list

field field_method_list

type ID(state)

BOOLEAN

method
field_method_list

…

…

Syntax tree built
during parsing

parser uses stream of token
and generate derivation tree

CLASS,CLASS_ID(Hello),LB,BOOLEAN,ID(state),SEMI …

ProgAST

ClassAST

classList

FieldAST[0]
type:BoolType
name:state

MethodAST[0]

MethodAST[1]

MethodAST[2]

…

…

methodListfieldList

 Should know difference
between derivation tree
and AST

 Know how to build AST
from input

FieldsOrMethods ::=

Field:field FieldsOrMethods:next
{: RESULT = next;

RESULT. addField(field); :}

|

Method:method FieldsOrMethods:next
{: RESULT = next;

RESULT.addMethod(method); :}

|

/* empty */
{: RESULT = new FieldsMethods(); :};

Typical Questions

 Build an LR grammar for the language

 Is the following grammar in LR(0), SLR(1), LALR(1), LR(1)

 Build a parser for the grammar

 Run an input string using your parser

Q1: Parsing

 Is the following grammar in LR(0)?

E  E + T
E T
T  F
F  id
F  (E)

11

Answer

 Add a production S  E$
 Construct a finite automaton
 States are set of items A

12

S E$
E T
E  E + T
T  F
F   i
F   (E)

E T 
T

F  i 

i

S  E  $
E  E  + T

E

F  ( E)
E T
E  E + T
T  F
F   i
F   (E)

(

(

F  (E) 
)

F  (E )
E  E  + T

E

E  E +  T
T  F
F   i
F   (E)

+

+

E  E + T 

T

S  E $ 

$

i

i

T  F F

F

(

T
F

LR(0)

Q2: Parsing

 Is the following grammar in LR(0)?

E  E + T
T T * F
E T
T  F
F  id
F  (E)

14

S E$
E T
E  E + T

T T * F
T  F
F   i
F   (E)

E T 

T T  * F

T

F  i 

i

S  E  $
E  E  + T

E

F  ( E)
E T
E  E + T
T T * F
T  F
F   i
F   (E)

(

(

F  (E) 
) F  (E )

E  E  + T

E

E  E +  T
T T * F
T  F
F   i
F   (E)

+

+

E  E + T 
T T  * F

T

S  E $ 

$

i

i

T  F F

F

(

T
F

T T *  F
F   i
F   (E)

i

(

T T * F 

F

*

*

Q3: Parsing

 Is the following grammar in SLR(1)?

E  E + T
T T * F
E T
T  F
F  id
F  (E)

(We already know that its not LR(0))

16

E T 

T T  * F

E  E + T 
T T  * F

T T *  F
F   i
F   (E)

*

*

• compute FOLLOW sets for each non terminal
• Use the FOLLOW set to break conflicts

SLR(1)

FIRST(E) = ?
E  E + T
E T

FIRST(T) = ?
T T * F
T  F

FIRST(F) = { id,(}

S  E$
FOLLOW(E) = FOLLOW(E) U { $ }

E  E + T
FOLLOW(E) = FOLLOW(E) U { + }

F  (E)
FOLLOW(E) = FOLLOW(E) U {) }

FOLLOW(E) = {),+,$}

S  E$
E  E + T
T T * F
E T
T  F
F  id
F  (E)

17

Q4: Parsing

2.31 Can you create a top-down parser for the
following grammars?

(a) S  ‘(‘ S ‘)’ | ‘)’

(b) S  ‘(‘ S ‘)’ | 

(c) S  ‘(‘ S ‘)’ | ‘)’ | 

18

Answer

2.31 Can you create a top-down parser for the following
grammars?

(a) S  ‘(‘ S ‘)’ | ‘)’
Yes – FIRST sets differ

(b) S  ‘(‘ S ‘)’ | 
Yes – FIRST and FOLLOW set differ

(c) S  ‘(‘ S ‘)’ | ‘)’ | 
No – FIRST and FOLLOW set overlap

19

Transition diagram

Z   E $
E   E ‘+’ T
E   T
T   i
T   ‘(’ E ‘)’

S0

Z  E  $
E  E  ‘+’ T

S3

Z  E $ 
S6

T

i

E  E + T 
S5

E  E ‘+’  T
T   i
T   ‘(’ E ‘)’

S4

E  T 
S2

T  i 
S1

T

i

‘+’

E

$

Q5: Complete the diagram for the LR(0) automaton…

20

Answer Q5 (fig 2.89)

Z   E $
E   E ‘+’ T
E   T
T   i
T   ‘(’ E ‘)’

S0

Z  E  $
E  E  ‘+’ T

S3

Z  E $ 
S6

T

i

E  E + T 
S5

E  E ‘+’  T
T   i
T   ‘(’ E ‘)’

S4

E  T 
S2

T  i 
S1

T

i

‘+’

E

$

T  ‘(’  E ‘)’
E   E ‘+’ T
E   T
T   i
T   ‘(’ E ‘)’

S7

‘(’
T

i

T  ‘(‘ E ‘)’
E  E  ‘+’T

S8

T  ‘(‘ E ‘)’
S9

‘)’

E
‘(’

‘(’

‘+’

21

Q6: Parsing

Can you find an input the exercises all states of the
automaton?

22

Answer Q6

The following expression exercises all states

(i) + i

23

Q7

 derive the LR(1) ACTION/GOTO table for the
following grammar:

S A | x b
A  a A b | x

24

A  a  A b {b}
A   a A b {b}
A   x {b}

S9

A  a A b  {b}
S10

A

b

S8

A

x

A  a A  b {b}

Answer Q7 - LR(1) automaton

S   A {$}
S   x b {$}
A   a A b {$}
A   x {$}

S0
A  a  A b {$}
A   a A b {b}
A   x {b}

S  x  b {$}
A  x  {$}

S1

S  x b  {$}
S2

x

b

S6

A  a A b  {$}
S7

A

b

A  a A  b {$}

a

S  A  {$}
S3

S4

A A  x  {b}
S5

x

a

25

Q8

2.50 Is the following grammar LR(0), LALR(1), or
LR(1) ?

(a) S  x S x | y

(b) S  x S x | x

26

Answer Q8

2.50 Is the following grammar LR(0), LALR(1), or
LR(1) ?

(a) S  x S x | y
LR(0)

(b) S  x S x | x

None! A shift-reduce conflict remains

27

Q9

(a) Is this grammar LL(1) ?
(b) Is this language LL(1) ?
(c) Is this grammar LR(0) ?
(d) Is this grammar LR(1) ?
(e) Is this language regular ?

S   | a | ‘(‘ S ‘)’ | ‘(‘ S ‘;’ S ‘)’

28

Answer Q9

(a) Is this grammar LL(1) ?
No, last two rules have a common prefix
(b) Is this language LL(1) ?
Yes, can apply factoring to get

S   | a | ‘(‘ S T
T  ‘)’ | ‘;’ S ‘)’

S   | a | ‘(‘ S ‘)’ | ‘(‘ S ‘;’ S ‘)’

29

Answer Q9

(c) Is this grammar LR(0) ?
No, there is a shift reduce conflict between the epsilon rule and the others
(d) Is this grammar LR(1) ?
Yes, the grammar is LR(1). FOLLOW(S) = { $, ; ,) } .
Any LR(1) lookahead set for an S rule must be a subset of FOLLOW(s), and a

and (are not in FOLLOW(S). Thus, the LR(0) shift-reduce conflict is
eliminated.

(e) Is this language regular ?
No, it requires bracketing (matching), and requires an unbounded number of

states and so cannot be recognized by a finite automaton.

S   | a | ‘(‘ S ‘)’ | ‘(‘ S ‘;’ S ‘)’

30

Q10

Prove that the following grammar is LL(1):
declaration  ID declaration_tail
declaration_tail  , declaration
declaration_tail  : ID ;

31

Answer Q10
Prove that the following grammar is LL(1):

declaration  ID declaration_tail
declaration_tail  , declaration
declaration_tail  : ID ;

By definition, a grammar is LL(1) if it can be parsed by an LL(1)
parser. It can be parsed by an LL(1) parser if no conflicts arise
in the creation of the parse table. In this grammar, no
symbols generate  , so the table can be built entirely from
FIRST sets; FOLLOW sets do not matter. There is only one
symbol, declaration_tail, with more than one production,
and the FIRST sets for the right-hand sides of those
productions are distinct ({,} and {;}). Therefore no conflicts
arise.

32

Semantic analysis

 Context analysis
 Does break and continue appear only inside while statement?

 Scope analysis
 Every variable is predefined
 No double definitions
 Bound variable use to its definition

 Type checking
 Every expression is well typed
 Every statement is well typed

33

Semantic analysis

Syntax analysis is not enough

int a;
a = “hello”;

int a;
b = 1;

Assigning
wrong type

Assigning
undeclared
variable

int a;
int a;
a = 1;

Variable
double
declaration

34

Semantic analysis

ProgAST

ClassAST

classList

FieldAST[0]
type:BoolType

MethodAST[0]

MethodAST[1]

MethodAST[2]

…

…

methodListfieldList

 Representing scopes

 Type-checking

 Semantic checks

Symbol Kind Type

Hello class Hello

Symbol Kind Type Properties

state field boolean instance

main method string[]->void static

rise method void->boolean instance

setState method boolean->void instance

Symbol Kind Type

newState param int

(Program)

(Hello)

(setState)

…

35

Examples of type errors

int a; a = true;

void foo(int x) {
int x;
foo(5,7);

}

1 < true

class A {…}
class B extends A {

void foo() {
A a;
B b;
b = a;

}
}

argument list
doesn’t match

formal parameters

a is not a
subtype of b

assigned type
doesn’t match
declared type

relational operator
applied to non-int type

36

Type rules
E  true : bool

E  e1 : int E  e2 : int

E  e1 op e2 : int

E  false : bool

E  int-literal : int E  string-literal : string

op  { +, -, /, *, %}

E  e1 : int E  e2 : int

E  e1 rop e2 : bool
rop  { <=,<, >, >=}

E  e1 : T E  e2 : T

E  e1 rop e2 : bool
rop  { ==,!=}

Q11: Semantic conditions

 What is checked in compile-time and what is
checked in runtime?

Event C/R
Program execution halts
Break/continue inside a while
statement
Array index within bound
In Java the cast statement
(A)f is legal

In Java method o.m(…) is illegal
since m is private

Semantic conditions

 What is checked in compile-time and what is
checked in runtime?

Event C/R
Program execution halts R (undecidable in general)
Break/continue inside a while
statement

C

Array index within bound R (undecidable in general)
In Java the cast statement
(A)f is legal

Depends: if A is sub-type of f then
checked during runtime (raising
exception), otherwise flagged as an error
during compilation

In Java method o.m(…) is illegal
since m is private

C

39

Q12: language features

 Support Java override annotation inside comments
 // @Override
 Annotation is written above method to indicate it overrides a

method in superclass
 Describe the phases in the compiler affected by the change

and the changes themselves

class A {
void rise() {…}

}
class B extends A {

// @Override
void rise() {…}

}

class A {
void rise() {…}

}
class B extends A {

// @Override
void ris() {…}

}

Legal program Illegal program

40

Answer

 The change affects the lexical analysis, syntax
analysis and semantic analysis

 Does not affect later phases
 User semantic condition

41

Changes to scanner

 Add pattern for @Override inside comment state patterns

 Change action for comments
 instead of not returning any tokens, we now return a token for the

annotation

boolean override=false;
%%
<INITIAL> // { override=false; yybegin(comment); }
<comment> @Override { override=true; }
<comment> \n { if (override)

return new Token(…,override,…)
}

42

Changes to parser and AST

PARSER

method  static type name params ‘{‘ mbody ‘}’
| type name params ‘{‘ mbody ‘}’

| OVERRIDE type name params ‘{‘ mbody ‘}’

AST

Add a Boolean flag to the method AST node to indicate that
the method is annotated

43

Changes to semantic analysis

 Suppose we have an override annotation for a method
m in class A

 We check the following semantic conditions
1. class A extends a superclass (otherwise it does not make sense

to override a method)
2. Traverse the superclasses of A by going up the class hierarchy

until we find the first method m and check that it has the same
signature as A.m
If we fail to find such a method we report an error

44

Intermediate representation

 Allows language-independent, machine
independent optimizations and transformations

 Easy to translate from AST
 Easy to translate to assembly

AST IR

Pentium

Java bytecode

Sparc

optimize

Translation to IR

 Accept AST and translate functions into lists of
instructions
 Compute offsets for fields and virtual functions

 Dispatch vectors
 Register allocation

45

46

Q13: Translation to IR

Question: write the method tables for Rectangle
and Square

class Shape {
boolean isShape() {return true;}
boolean isRectangle() {return false;}
boolean isSquare() {return false;}
double surfaceArea() {…}

}
class Rectangle extends Shape {
double surfaceArea() {…}
boolean isRectangle() {return true;}

}
class Square extends Rectangle {
boolean isSquare() {return true;}

}

Answer

Shape_isShape

Rectangle_isRectangle

Shape_isSqaure

Rectangle_surfaceArea

Shape_isShape

Rectangle_isRectangle

Sqaure_isSqaure

Rectangle_surfaceArea

Method table for rectangle Method table for square

48

Q14: Semantic Analysis

6.3 The following declarations are given for a
language that uses name equivalence.

A, B: array [1..10] of int;

C : array [1..10] of int;
D : array [1..10] of int;

Which of these four variables have the same
type?

49

Answer Q14

6.3 The following declarations are given for a
language that uses name equivalence.

A, B: array [1..10] of int;

C : array [1..10] of int;
D : array [1..10] of int;

A and B

50

Q15
class A {...};
class B extends A {...};
B[] bArray = new B[10];
A[] aArray = bArray;
A x =new A();
if (...)x =new B();
aArray[5]=x;

(a) Explain why line 4 of the Java code, A[] aArray =bArray; is considered well-typed in
Java.
(b) Under what conditions could the assignment aArray[5]=x; lead to a run-time type
error? Explain.
(c) What does Java do to manage this problem with the assignment aArray[5]=x?

51

Q16

 Add support of access qualifiers to a Java-like langauge
 Allow methods to be defined as public or private
 Public --- method accessible to all classes
 Private --- method accessible only to its own class
 Assume that subclasses cannot modify the accessibility defined

by a superclass (e.g., a method defined private by a superclass
cannot be made private by an overriding implementation)

 Why is it helpful to have the assumption that access
qualifiers are not modified by subclasses?

52

Disclaimer

Questions provided here are just a sample of
reasonable questions and do not cover all
course material.

In particular, emphasis in this collection was on
parsing, neglecting other topics.

EXTRAS

53

54

Q17

Calculate nullable, FIRST and FOLLOW sets for the
following grammar

S  uBDz
B  Bv
B  w
D  EF
E  y
E  
F  x
F  

Answer Q17

nullable FIRST FOLLOW

B no w v,x,y,z

D yes x,y z

E yes y x,z

F yes x z

S no u

56

Q18 Problem 3.8 from [Appel]

A simple left-recursive grammar:
S  S + a
S  a

A simple right-recursive grammar that accepts the same
language:

S  a + S
S  a

Which has better behavior for shift-reduce parsing?

57

Answer Q18
Consider the input string: a+a+a+a+a

For the left-recursive case, the stack looks like:
a (reduce)
S
S +
S + a (reduce)
S
S +
S + a (reduce)
S
S +
S + a (reduce)
S
S +
S + a (reduce)
S

The stack never has more than three items on it. In general, with
LR-parsing of left-recursive grammars, an input string of length O(n)
requires only O(1) space on the stack.

58

Answer Q18
For the right-recursive case, the stack looks like:
a
a +
a + a
a + a +
a + a + a
a + a + a
a + a + a + a
a + a + a + a +
a + a + a + a + a (reduce)
a + a + a + a + S (reduce)
a + a + a + S (reduce)
a + a + S (reduce)
a + S (reduce)
S

The stack grows as large as the input string. In general, with LR-parsing
of right-recursive grammars, an input string of length O(n) requires
O(n) space on the stack.

(taken from http://science.slc.edu/~msiff/old-courses/compilers/notes/parse.html)

59

Q19

 derive the LALR(1) automaton (and
ACTION/GOTO table) for the following
grammar:

S A | x b
A  a A b | x

60

A  a A b A  a A b  {b,$}

Answer Q19 - LALR(1) automaton

S   A {$}
S   x b {$}
A   a A b {b,$}
A   x {b,$}

S0
A  a  A b {b,$}
A   a A b {b,$}
A   x {b,$}

S  x  b {$}
A  x  {b,$}

S1

S  x b  {$}
S2

x

b

S6

S7

A

b

A  a A  b

a

S  A  {$}
S3

S4

A
S5

x

S   A {$}
S   x b {$}
A   a A b {$}
A   x {$}

A  a  A b {b,$}
A   a A b {b,$}
A   x {b,$}

S  x  b {$}
A  x  {b,$}

A

a

A  a A  b {b,$}

A  x  {b}

61

LALR(1) ACTION/GOTO table

state
stack symbol / look-ahead token
a b x $ A

0 s4 s1 s3

1 s2 r4

2 r2 r2

3 r1

4 s4 s5 s6

5 r4 r4

6 s7

7 r3 r3

1: S  A
2: S  x b
3: A  a A b
4: A  x

62

Q20

 derive the SLR(1) ACTION/GOTO table (with
shift-reduce conflict) for the following
grammar:

S A | x b
A  a A b | x

63

Answer Q20

state
stack symbol / look-ahead token
a b x $ A

0 s4 s1 s3

1 s2/r4 r4

2 r2 r2

3 r1

4 s4 s5 s6

5 r4 r4

6 s7

7 r3 r3

1: S  A
2: S  x b
3: A  a A b
4: A  x

FOLLOW(S) = {$}
FOLLOW(A) = {$,b}

64

Q21
P  E

E  int

E  E + E

E  E / E
E  E - E
E  E * E
E  E % E

(a) Is this grammar ambiguous ? Why?
[Yes]

65

Q21
(a) Draw an AST for the expression below. Label each AST node clearly with the

meaning of the node (for example, "addition," "identifier," etc). Invent new
types of AST nodes as necessary.

x++ + ++x

(a) It is interesting to observe that while

x++ + ++x

is a legal Java expression, the same expression without white spaces, namely

x+++++x

is not a legal Java expression. That is, the latter expression will cause a compile-
time error. Identify the phase of the compiler in which the error occurred.
Depending on the compiler, the error can be flagged in different stages, and so
there is more than one correct answer.

