Lecture 12 — Code Generation

THEORY OF COMPILATION

EranYahav

www.cs.technion.ac.il/~yahave/tocs2011/compilers-leci2.pptx

Reference: Dragon 8. MCD 4.2.4

You are here

[ot]

Source 4.

text

Compiler
L R e R AR RN AREE s EEEEEsEEEEassnEnans -
Lexical Syntax Semantic Inter. Code
Analysis Analysis Analysis Rep. Gen.
Parsing (IR)

—

exe

Executable

code

simple code generation

" reqgisters
o ysed as operands of instructions
o can be used to store temporary results

o can (should) be used as loop indexes due to
frequent arithmetic operation

= ysed to manage administrative info (e.g., runtime
stack)

* number of registers is limited
* need to allocate them in a clever way

simple code generation

» assume machine instructions of the form
* | Dreg, mem

= ST mem, reg

= OP reg,reg,reg

= further assume that we have all registers
available for our use

o ignore registers allocated for stack management

simple code generation

» translate each 3AC instruction separately

= Aregister descriptor keeps track of the variable names whose
current value is in that register.

= we use only those registers that are available for local use within a basic
block, we assume that initially, all register descriptors are empty.

= As code generation progresses, each register will hold the value of zero
or more names.
= For each program variable, an address descriptor keeps track of
the location or locations where the current value of that variable
can be found.

o The location may be a register, a memory address, a stack location, or
some set of more than one of these

= Information can be stored in the symbol-table entry for that variable

simple code generation

For each three-address statement x := y op z,

1.

N

nos W

Invoke getreg (x := y op z) to select registers R, R,, and R,.

If Ry does not containy, issue: "LD R,, y'”, for a location y’ of y.
If Rz does not contain z, issue: "LD R,, ' “, for a location z’ of z.
Issue the instruction "OP R ,R,R,”

) U/ B 4
Update the address descriptors of x, y, z, if necessary.

o R, is the only location of x now, and
R, contains only x (remove R, from other address descriptors).

updating descriptors

1. For the instruction LD R, x

a) Change the register descriptor for register R so it holds only x.

b) Change the address descriptor for x by adding register R as an additional
location.

2. For the instruction ST x, R

= change the address descriptor for x to include its own memory location.

3. For an operation such as ADD Rx, Ry, Rz, implementing a 3AC
instructionx=y +z
a) Change the register descriptor for Rx so that it holds only x.

b) Change the address descriptor for x so that its only location is Rx. Note that the
memory location for x is not now in the address descriptor for x.

c) Remove Rx from the address descriptor of any variable other than x.

. When we process a copy statement x =y, after generating the load for
y into register Ry, if needed, and after managing descriptors as for all
load statements (rule 1):

a) Add xto the register descriptor for Ry.

b) Change the address descriptor for x so that its only locationis Ry .

example

-

[
>
c M @

n >

~

A B C D = live outside the block
t,u,v = temporaries in local storate

t=A-B

LD R1,A
LD R2,B

SUB R2,R1,R2

u=A-C

LD R3,C

SUB R1,R1,R3

v=t+u
ADD R3,R2,R1

Ri1 R2 R3 A B C D t U
A|lB]|]C]|D

Ri1 R2 R3 A B C D t u v
At AR1 | B | C| D |R2

Ri1 R2 R3 A B C D t u v
ul t]C A |l B || D |R2|R1
Ri1 R2 R3 A B C D t u v
ulfl til]v A|B|]C]|D]J|R2|R1|R3

example

4 N\
A=D
LDR2, D
t=A-B
u=A-C
v=t+u
A=D D=v+u
D=v+u ADD R1,R3,R1
exit
- / STA, R2
ST D, R1

A B C D = live outside the block
t,u,v = temporaries in local storate

R1 R2 R3 A D t u v
ujlti]yv A D [R2|Ra|R3
R1 R2 R3 A D t u v
u |AD| v R2 D,R2 Ri | R3
R1 R2 R3 A D t u v
D|A| vV R2 R1 R3
R1 R2 R3 A D t u v
D|A| vV ARz D,R1 R3

design of getReg

= many design choices

» simple rules:

o |fyis currently in a register, pick a register already
containing y as Ry. No need to load this register.

o |fyis notin aregister, but there is a register that is
currently empty, pick one such register as Ry.
= complicated case:
o yisnotin aregister, but there is no free register.

10

design of getReg

" instruction:x=y +2z
» yisnotinaregister, no free register

* |et R be a taken register holding value of a
variable v

= possibilities:
o if the value v is available somewhere other than R, we
can allocate R to be Ry

o if vis x, the value computed by the instruction, we can
use it as Ry (it is going to be overwritten anyway)

o if vis not used later, we can use R as Ry
o otherwise: spill the value to memory by ST v,R

11

global register allocation

= so far we assumed that register values are written back to
memory at the end of every basic block

= want to save load/stores by keeping frequently accessed
values in registers

° e.g., loop counters

» idea: compute “weight” for each variable

o for each use of vin B prior to any definition of v add 1 point

o for each occurrence of v in a following block using v add 2 points,
as we save the store/load between blocks

o cost(v) = Zguse(v,B) + 2*live(v,B)

* use(v,B) is is the number of times v is used in B prior to any
definition of v

* live(v, B)is 1if v is live on exit from B and is assigned a value in B

o after computing weights, allocate registers to the “heaviest”
values

12

Example

| bedf
@= |B1
e=a+f
X def
acde /\ acdf
| QO | B3
cdef - @ <
(bxdef
cdef b,d,e,flive
©: @'6 cost(a) = X use(a,B) + 2*live(a,B) = 4
cost(b) =6
@dEf cost(c) =3
cost(d) =6
L cost(e) = 4
\ cost(f) = 4

b,c,d,e,flive

13

Example

SUBR3,Ro,R2 | B2
ST f,R3

LD R1,b
LD R2,d
4
" LDR3c)
ADD Ro,R1,R3 B1
SUB R2,R2,R1
LD R3,f
ADD R3,Ro,R3
_ STe, R3 W
(~ LDR3f)
ADD R1,R2,R3
LD R3,c
SUB R3,R0,R3
\. STeR3 J

/

LD R3,c

ADD R1,R2,R3

ST b,R1
STd,R2

B4

14

Register Allocation by Graph Coloring

= Address register allocation by

O

O

O

liveness analysis
reduction to graph coloring
optimizations by program transformation

= Main idea

O

O

O

register allocation = coloring of an interference graph
every node is a variable

edge between variables that “interfere” = are both live
at the same time

number of colors = number of registers

15

Example

Example
4 N B3,

a = read();

b = read();

¢ = read();

a=a+b+g;

if (@a<10) §{
d=c+8;
print(c);

} else if (a<20) §
e =10;
d=e+3;
print(e);

}else §
f=12;
d="f+3;
print(f);

}

print(d);

\ /

if (a<20) goto By]
else goto B

Example: Interference Graph

(a= read();
b = read();
C .

-

if (a<20) goto By]
else goto Bg

Register Allocation by Graph Coloring

= variables that interfere with each other
cannot be allocated the same register

= graph coloring

= classic problem: how to color the nodes of a graph
with the lowest possible number of colors

o bad news: problem is NP-complete

o good news: there are pretty good heuristic
approaches

Heuristic Graph Coloring

» idea: color nodes one by one, coloring the
"easiest” node last

= “easiest nodes” are ones that have lowest
degree
o fewer conflicts

= algorithm at high-level

find the least connected node

= remove least connected node from the graph
color the reduced graph recursively

re-attach the least connected node

O

O

O

20

Heuristic Graph Coloring

4 N\
f a b
L INLP
P
4 N\
f 3
gl
\ /

4 N
f a
d e \ C
—
stack: b
4 N
f
DL
o 9%
stack: acb

)

/ ™ Y Y
f f f
I =2 A [
- /) ___
stack: acb stack: eacb stack: deacb
fa fa fa
:> d2 :> d2 e1
st\achéacb st\acTegcb stack: acb

Heuristic Graph Coloring

)

)

)

—
stack: fdeacb

4)
fi a2
d2 e1

stack: cb

Heuristic Graph Coloring

s

fi

~

d2

stack: cb

-

~

az fa az \
e1 d2 e1 c1
Y, \
stack: b
f \ Result:
fa a2 b3 3 registers for 6 variables
Can we do with 2 registers?
d2 e1 c1

stack: ¢

Heuristic Graph Coloring

= two sources of non-determinism in the
algorithm

= choosing which of the (possibly many) nodes of
lowest degree should be detached

= choosing a free color from the available colors

24

Supercompilation

= exhaustive search in the space of (small)
programs for finding optimal code sequences

o often counter intuitive results, not what a human
would write

o can be very efficient
» generate/test paradigm

adcw %dx,%dx ; add with carry: %dx = %dx + %dx + cf
; sign(n) in %dx

o

ﬁn in register %ax \
cwd ; convert to double word:
; (%dx,%ax) = (extend_sign(%ax), %ax)
negw %ax ; negate: (%ax, cf) = (-%ax,%ax != o)

25

The End

Heuristic Graph Coloring

N\ 4 N\
a b f a
NP DN
)
4 N\ 4
f a a
::> d e :> d e
\ / \

stack: cb stack: fcb

)

—___/
stack: edfcb

Heuristic Graph Coloring

-

~

a

e

stack: fcb

)

al

)

)

al

e2

stack: dfcb

)

)

a

e

o

—
stack: dfcb

)

a

—
stack: edfcb

-

da

~

al

e2

stack: fcb

)

)

)

—
stack: aedfcb

4)
f2 a1l
da e2

stack: cb

28

Heuristic Graph Coloring

4) 4 N
f2 a1 f2 da
da e2 :> da e2 \ c2 ::>
N N/
stack: cb stack: b
4 A
E>> f2 a1l b3
di e2 c2
w
N /

stack: ¢

Heuristic Graph Coloring

O\ 4 O\
a b a b
|
stack: € stack: f
4 N 4
a b a b

\——— _

stack: ef stack: def

)

—___/
stack: cadef

Heuristic Graph Coloring

-

~

a

b

)

C

stack: def

)

b1

)

SR

b1

c2

stack: adef

)

)

b

C

o

stack: ad

ef

)

b

—
stack: cadef

-

a

~

b1

3

AN

c2

stack: def

)

)

)

—
stack: bcadef

Heuristic Graph Coloring

4 N\ 4 N\
a3 b1 t a3 b1
da c2 da e2 c2
- = - =
\ % \ %
stack: ef stack: f
4 O
E>> f2 a3 ba
da e2 c2
- =
\ %

stack: ¢

