
THEORY OF COMPILATION
Lecture 12 – Code Generation

EranYahav

1Reference: Dragon 8. MCD 4.2.4

www.cs.technion.ac.il/~yahave/tocs2011/compilers-lec12.pptx

2

You are here

Executable

code

exe

Source

text

txt

Compiler

Lexical
Analysis

Syntax
Analysis

Parsing

Semantic
Analysis

Inter.
Rep.

(IR)

Code

Gen.

simple code generation

 registers
 used as operands of instructions
 can be used to store temporary results
 can (should) be used as loop indexes due to

frequent arithmetic operation
 used to manage administrative info (e.g., runtime

stack)

 number of registers is limited
 need to allocate them in a clever way

3

simple code generation

 assume machine instructions of the form
 LD reg, mem
 ST mem, reg
 OP reg,reg,reg

 further assume that we have all registers
available for our use
 ignore registers allocated for stack management

4

simple code generation

 translate each 3AC instruction separately

 A register descriptor keeps track of the variable names whose
current value is in that register.
 we use only those registers that are available for local use within a basic

block, we assume that initially, all register descriptors are empty.
 As code generation progresses, each register will hold the value of zero

or more names.
 For each program variable, an address descriptor keeps track of

the location or locations where the current value of that variable
can be found.
 The location may be a register, a memory address, a stack location, or

some set of more than one of these
 Information can be stored in the symbol-table entry for that variable

5

simple code generation

For each three-address statement x := y op z,

1. Invoke getreg (x := y op z) to select registers Rx, Ry, and Rz.

2. If Ry does not contain y, issue: “LD Ry, y’ ”, for a location y’ of y.

3. If Rz does not contain z, issue: “LD Rz, z’ ”, for a location z’ of z.

4. Issue the instruction “OP Rx,Ry,Rz”

5. Update the address descriptors of x, y, z, if necessary.
 Rx is the only location of x now, and

Rx contains only x (remove Rx from other address descriptors).

6

updating descriptors

 1. For the instruction LD R, x
a) Change the register descriptor for register R so it holds only x.
b) Change the address descriptor for x by adding register R as an additional

location.

 2. For the instruction ST x, R
 change the address descriptor for x to include its own memory location.

 3. For an operation such as ADD Rx, Ry, Rz, implementing a 3AC
instruction x = y + z
a) Change the register descriptor for Rx so that it holds only x.
b) Change the address descriptor for x so that its only location is Rx. Note that the

memory location for x is not now in the address descriptor for x.
c) Remove Rx from the address descriptor of any variable other than x.

 4. When we process a copy statement x = y, after generating the load for
y into register Ry, if needed, and after managing descriptors as for all
load statements (rule 1):
a) Add x to the register descriptor for Ry.
b) Change the address descriptor for x so that its only location is Ry .

7

example

8

t= A – B
u = A- C
v = t + u

A = D
D = v + u

A B C D = live outside the block
t,u,v = temporaries in local storate

R1 R2 R3

A B C
A B C

D
D t u v

t = A – B
LD R1,A
LD R2,B
SUB R2,R1,R2

A t
R1 R2 R3

A,R1 B C
A B C

D R2
D t u v

u = A – C
LD R3,C
SUB R1,R1,R3

v = t + u
ADD R3,R2,R1

u t C
R1 R2 R3

A B C,R3

A B C

D R2 R1
D t u v

u t v
R1 R2 R3

A B C
A B C

D R2 R1
D t u

R3

v

example

9

t= A – B
u = A- C
v = t + u

A = D
D = v + u

A B C D = live outside the block
t,u,v = temporaries in local storate

A = D
LD R2, D

u A,D v
R1 R2 R3

R2 B C
A B C

D,R2 R1
D t u

R3

v

D = v + u
ADD R1,R3,R1

exit
ST A, R2
ST D, R1

D A v
R1 R2 R3

R2 B C
A B C

R1
D t u

R3

v

u t v
R1 R2 R3

A B C
A B C

D R2 R1
D t u

R3

v

D A v
R1 R2 R3

A,R2 B C
A B C

D,R1

D t u

R3

v

design of getReg

 many design choices

 simple rules:
 If y is currently in a register, pick a register already

containing y as Ry. No need to load this register.
 If y is not in a register, but there is a register that is

currently empty, pick one such register as Ry.

 complicated case:
 y is not in a register, but there is no free register.

10

design of getReg

 instruction: x = y + z
 y is not in a register, no free register
 let R be a taken register holding value of a

variable v
 possibilities:
 if the value v is available somewhere other than R, we

can allocate R to be Ry
 if v is x, the value computed by the instruction, we can

use it as Ry (it is going to be overwritten anyway)
 if v is not used later, we can use R as Ry
 otherwise: spill the value to memory by ST v,R

11

global register allocation

 so far we assumed that register values are written back to
memory at the end of every basic block

 want to save load/stores by keeping frequently accessed
values in registers
 e.g., loop counters

 idea: compute “weight” for each variable
 for each use of v in B prior to any definition of v add 1 point
 for each occurrence of v in a following block using v add 2 points,

as we save the store/load between blocks
 cost(v) = Buse(v,B) + 2*live(v,B)
 use(v,B) is is the number of times v is used in B prior to any

definition of v
 live(v, B) is 1 if v is live on exit from B and is assigned a value in B

 after computing weights, allocate registers to the “heaviest”
values

12

Example

13

a = b + c
d = d - b
e = a + f

bcdf

f = a - d

acde

cdef

b = d + f
e = a – c

acdf

bcdef

b = d + c

cdef

bcdef

b,c,d,e,f live

B1

B2 B3

B4

acdef

cost(a) = B use(a,B) + 2*live(a,B) = 4
cost(b) = 6
cost(c) = 3
cost(d) = 6
cost(e) = 4
cost(f) = 4

b,d,e,f live

Example

14

LD R3,c
ADD R0,R1,R3
SUB R2,R2,R1

LD R3,f
ADD R3,R0,R3

ST e, R3

SUB R3,R0,R2
ST f,R3

LD R3,f
ADD R1,R2,R3

LD R3,c
SUB R3,R0,R3

ST e, R3

LD R3,c
ADD R1,R2,R3

B1

B2 B3

B4

LD R1,b
LD R2,d

ST b,R1
ST d,R2

ST b,R1
ST a,R2

Register Allocation by Graph Coloring

 Address register allocation by
 liveness analysis
 reduction to graph coloring
 optimizations by program transformation

 Main idea
 register allocation = coloring of an interference graph
 every node is a variable
 edge between variables that “interfere” = are both live

at the same time
 number of colors = number of registers

15

Example

16

v1

v2

v3

v4

v5

v6

v7

v8

time

V1

V8

V2

V4

V7

V6

V5

V3

Example

17

a = read();
b = read();
c = read();
a = a + b + c;
if (a<10) {

d = c + 8;
print(c);

} else if (a<2o) {
e = 10;
d = e + a;
print(e);

} else {
f = 12;
d = f + a;
print(f);

}
print(d);

a = read();
b = read();
c = read();
a = a + b + c;
if (a<10) goto B2 else goto B3

d = c + 8;
print(c); if (a<20) goto B4

else goto B5

e = 10;
d = e + a;
print(e);

f = 12;
d = f + a;
print(f);

print(d);

B1

B2
B3

B4
B5

B6

b

ac

d

e
f

d
d

Example: Interference Graph

18

f a b

d e c

a = read();
b = read();
c = read();
a = a + b + c;
if (a<10) goto B2 else goto B3

d = c + 8;
print(c); if (a<20) goto B4

else goto B5

e = 10;
d = e + a;
print(e);

f = 12;
d = f + a;
print(f);

print(d);

B2
B3

B4
B5

B6

b

ac

d

e
f

d
d

Register Allocation by Graph Coloring

 variables that interfere with each other
cannot be allocated the same register

 graph coloring
 classic problem: how to color the nodes of a graph

with the lowest possible number of colors
 bad news: problem is NP-complete
 good news: there are pretty good heuristic

approaches

19

Heuristic Graph Coloring

 idea: color nodes one by one, coloring the
“easiest” node last

 “easiest nodes” are ones that have lowest
degree
 fewer conflicts

 algorithm at high-level
 find the least connected node
 remove least connected node from the graph
 color the reduced graph recursively
 re-attach the least connected node

20

21

Heuristic Graph Coloring

f a b

d e c

f a

d e c

f a

d e

f

d e

stack:  stack: b

stack: cb stack: acb

22

f

d e

stack: acb

f

d

stack: eacb

f

stack: deacb stack: fdeacb

f1

stack: deacb

f1

d2

stack: eacb

f1

d2 e1

stack: acb

f1 a2

d2 e1

stack: cb

Heuristic Graph Coloring

23

f1 a2 b3

d2 e1 c1

f1 a2

d2 e1 c1

f1 a2

d2 e1

stack: 

stack: bstack: cb

Heuristic Graph Coloring

Result:
3 registers for 6 variables

Can we do with 2 registers?

 two sources of non-determinism in the
algorithm
 choosing which of the (possibly many) nodes of

lowest degree should be detached
 choosing a free color from the available colors

24

Heuristic Graph Coloring

Supercompilation

 exhaustive search in the space of (small)
programs for finding optimal code sequences
 often counter intuitive results, not what a human

would write
 can be very efficient

 generate/test paradigm

25

; n in register %ax
cwd ; convert to double word:

; (%dx,%ax) = (extend_sign(%ax), %ax)
negw %ax ; negate: (%ax,cf) = (-%ax,%ax != 0)
adcw %dx,%dx ; add with carry: %dx = %dx + %dx + cf

; sign(n) in %dx

The End

26

27

Heuristic Graph Coloring

f a b

d e c

f a

d e c

f a

d e

stack:  stack: b

stack: cb stack: fcb

a

d e

28

stack: fcb

a

e

stack: dfcb

a

stack: edfcb stack: aedfcb

a1

stack: edfcb

a1

e2

stack: dfcb

a1

d1 e2

stack: fcb

f2 a1

d1 e2

stack: cb

Heuristic Graph Coloring

a

d e

29

f2 a1 b3

d1 e2 c2

f2 d1

d1 e2 c2

f2 a1

d1 e2

stack: 

stack: bstack: cb

Heuristic Graph Coloring

30

Heuristic Graph Coloring

f a b

d e c

stack:  stack: f

a b

d e c

stack: ef

a b

d c

stack: def

a b

c

31

stack: def

b

c

stack: adef

b

stack: cadef stack: bcadef

b1

stack: cadef

b1

c2

stack: adef

a3

stack: def

Heuristic Graph Coloring

a b

c

b1

c2

32

f2 a3 b1

d1 e2 c2

stack: 

Heuristic Graph Coloring

a3 b1

d1 c2

stack: ef

a3 b1

d1 e2 c2

stack: f

