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simple code generation

 registers 
 used as operands of instructions
 can be used to store temporary results
 can (should) be used as loop indexes due to 

frequent arithmetic operation 
 used to manage administrative info (e.g., runtime 

stack)

 number of registers is limited
 need to allocate them in a clever way
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simple code generation

 assume machine instructions of the form
 LD reg, mem
 ST mem, reg
 OP reg,reg,reg

 further assume that we have all registers 
available for our use
 ignore registers allocated for stack management
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simple code generation

 translate each 3AC instruction separately

 A register descriptor keeps track of the variable names whose 
current value is in that register. 
 we use only those registers that are available for local use within a basic 

block, we assume that initially, all register descriptors are empty. 
 As code generation progresses, each register will hold the value of zero 

or more names.
 For each program variable, an address descriptor keeps track of 

the location or locations where the current value of that variable 
can be found. 
 The location may be a register, a memory address, a stack location, or 

some set of more than one of these 
 Information can be stored in the symbol-table entry for that variable
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simple code generation

For each three-address statement x := y op z, 

1. Invoke getreg (x := y op z) to select registers Rx, Ry, and Rz. 

2. If Ry does not contain y, issue: “LD Ry, y’ ”, for a location y’ of y. 

3. If Rz does not contain z, issue: “LD Rz, z’ ”, for a location z’ of z. 

4. Issue the instruction “OP  Rx,Ry,Rz”

5. Update the address descriptors of x, y, z, if necessary.
 Rx is the only location of x now, and 

Rx contains only x (remove Rx from other address descriptors).  
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updating descriptors

 1. For the instruction LD R, x
a) Change the register descriptor for register R so it holds only x.
b) Change the address descriptor for x by adding register R as an additional 

location.

 2. For the instruction ST x, R
 change the address descriptor for x to include its own memory location.

 3. For an operation such as ADD Rx, Ry, Rz, implementing a 3AC 
instruction x = y + z
a) Change the register descriptor for Rx so that it holds only x.
b) Change the address descriptor for x so that its only location is Rx. Note that the 

memory location for x is not now in the address descriptor for x.
c) Remove Rx from the address descriptor of any variable other than x.

 4. When we process a copy statement x = y, after generating the load for 
y into register Ry, if needed, and after managing descriptors as for all 
load statements (rule 1):
a) Add x to the register descriptor for Ry.
b) Change the address descriptor for x so that its only location is Ry .
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example
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t= A – B
u = A- C
v = t + u

A = D
D = v + u

A B C D = live outside the block
t,u,v = temporaries in local storate

R1 R2 R3

A B C
A B C

D
D t u v

t = A – B
LD R1,A
LD R2,B
SUB R2,R1,R2

A t
R1 R2 R3

A,R1 B C
A B C

D R2
D t u v

u = A – C
LD R3,C
SUB R1,R1,R3

v = t + u
ADD R3,R2,R1

u t C
R1 R2 R3

A B C,R3

A B C

D R2 R1
D t u v

u t v
R1 R2 R3

A B C
A B C

D R2 R1
D t u

R3

v



example
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t= A – B
u = A- C
v = t + u

A = D
D = v + u

A B C D = live outside the block
t,u,v = temporaries in local storate

A = D
LD R2, D

u A,D v
R1 R2 R3

R2 B C
A B C

D,R2 R1
D t u

R3

v

D = v + u
ADD R1,R3,R1

exit
ST A, R2
ST D, R1

D A v
R1 R2 R3

R2 B C
A B C

R1
D t u

R3

v

u t v
R1 R2 R3

A B C
A B C

D R2 R1
D t u

R3

v

D A v
R1 R2 R3

A,R2 B C
A B C

D,R1

D t u

R3

v



design of getReg

 many design choices

 simple rules:
 If y is currently in a register, pick a register already 

containing y as Ry. No need to load this register.
 If y is not in a register, but there is a register that is 

currently empty, pick one such register as Ry.

 complicated case:
 y is not in a register, but there is no free register.
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design of getReg

 instruction: x = y + z
 y is not in a register, no free register
 let R be a taken register holding value of a 

variable v 
 possibilities:
 if the value v is available somewhere other than R, we 

can allocate R to be Ry
 if v is x, the value computed by the instruction, we can 

use it as Ry (it is going to be overwritten anyway)
 if v is not used later, we can use R as Ry
 otherwise: spill the value to memory by ST v,R
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global register allocation

 so far we assumed that register values are written back to 
memory at the end of every basic block

 want to save load/stores by keeping frequently accessed 
values in registers
 e.g., loop counters

 idea: compute “weight” for each variable
 for each use of v in B prior to any definition of v add 1 point 
 for each occurrence of v in a following block using v add 2 points, 

as we save the store/load between blocks
 cost(v) = Buse(v,B) + 2*live(v,B)
 use(v,B) is is the number of times v is used in B prior to any 

definition of v
 live(v, B) is 1 if v is live on exit from B and is assigned a value in B

 after computing weights, allocate registers to the “heaviest” 
values
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Example
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a = b + c
d = d - b
e = a + f

bcdf

f = a - d

acde

cdef

b = d + f
e = a – c

acdf

bcdef

b = d + c

cdef

bcdef

b,c,d,e,f live

B1

B2 B3

B4

acdef

cost(a) = B use(a,B) + 2*live(a,B) = 4
cost(b) = 6
cost(c) = 3
cost(d) = 6
cost(e) = 4
cost(f) = 4

b,d,e,f live



Example
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LD R3,c
ADD R0,R1,R3
SUB R2,R2,R1

LD R3,f
ADD R3,R0,R3

ST e, R3

SUB R3,R0,R2
ST f,R3

LD R3,f
ADD R1,R2,R3

LD R3,c
SUB R3,R0,R3

ST e, R3

LD R3,c
ADD R1,R2,R3

B1

B2 B3

B4

LD R1,b
LD R2,d

ST b,R1
ST d,R2

ST b,R1
ST a,R2



Register Allocation by Graph Coloring

 Address register allocation by
 liveness analysis
 reduction to graph coloring
 optimizations  by program transformation

 Main idea
 register allocation = coloring of an interference graph
 every node is a variable
 edge between variables that “interfere” = are both live 

at the same time
 number of colors = number of registers
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Example
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v1

v2

v3

v4

v5

v6

v7

v8

time

V1

V8

V2

V4

V7

V6
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Example
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a = read();
b = read();
c = read();
a = a + b + c;
if (a<10) {

d = c + 8;
print(c);

} else if (a<2o) {
e = 10;
d = e + a;
print(e);

} else {
f = 12;
d = f + a;
print(f);

} 
print(d);

a = read();
b = read();
c = read();
a = a + b + c;
if (a<10) goto B2 else goto B3 

d = c + 8;
print(c); if (a<20) goto B4 

else goto B5

e = 10;
d = e + a;
print(e);

f = 12;
d = f + a;
print(f);

print(d);

B1

B2
B3

B4
B5

B6

b

ac

d

e
f

d
d



Example: Interference Graph
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f a b

d e c

a = read();
b = read();
c = read();
a = a + b + c;
if (a<10) goto B2 else goto B3 

d = c + 8;
print(c); if (a<20) goto B4 

else goto B5

e = 10;
d = e + a;
print(e);

f = 12;
d = f + a;
print(f);

print(d);

B2
B3

B4
B5

B6

b

ac

d

e
f

d
d



Register Allocation by Graph Coloring

 variables that interfere with each other 
cannot be allocated the same register

 graph coloring
 classic problem: how to color the nodes of a graph 

with the lowest possible number of colors
 bad news: problem is NP-complete 
 good news: there are pretty good heuristic 

approaches 
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Heuristic Graph Coloring

 idea: color nodes one by one, coloring the 
“easiest” node last

 “easiest nodes” are ones that have lowest 
degree
 fewer conflicts

 algorithm at high-level
 find the least connected node
 remove least connected node from the graph
 color the reduced graph recursively
 re-attach the least connected node
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Heuristic Graph Coloring

f a b

d e c

f a

d e c

f a

d e

f

d e

stack:  stack: b

stack: cb stack: acb
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f

d e

stack: acb

f

d

stack: eacb

f

stack: deacb stack: fdeacb

f1

stack: deacb

f1

d2

stack: eacb

f1

d2 e1

stack: acb

f1 a2

d2 e1

stack: cb

Heuristic Graph Coloring
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f1 a2 b3

d2 e1 c1

f1 a2

d2 e1 c1

f1 a2

d2 e1

stack: 

stack: bstack: cb

Heuristic Graph Coloring

Result:
3 registers for 6 variables

Can we do with 2 registers?



 two sources of non-determinism in the 
algorithm
 choosing which of the (possibly many) nodes of 

lowest degree should be detached
 choosing a free color from the available colors
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Heuristic Graph Coloring



Supercompilation

 exhaustive search in the space of (small) 
programs for finding optimal code sequences
 often counter intuitive results, not what a human 

would write
 can be very efficient 

 generate/test paradigm
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; n in register %ax
cwd ; convert to double word: 

;   (%dx,%ax) = (extend_sign(%ax), %ax)
negw %ax             ; negate: (%ax,cf) = (-%ax,%ax != 0)
adcw %dx,%dx ; add with carry: %dx = %dx + %dx + cf

; sign(n) in %dx



The End
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Heuristic Graph Coloring

f a b

d e c

f a

d e c

f a

d e

stack:  stack: b

stack: cb stack: fcb

a

d e



28

stack: fcb

a

e

stack: dfcb

a

stack: edfcb stack: aedfcb

a1

stack: edfcb

a1

e2

stack: dfcb

a1

d1 e2

stack: fcb

f2 a1

d1 e2

stack: cb

Heuristic Graph Coloring

a

d e
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f2 a1 b3

d1 e2 c2

f2 d1

d1 e2 c2

f2 a1

d1 e2

stack: 

stack: bstack: cb

Heuristic Graph Coloring
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Heuristic Graph Coloring

f a b

d e c

stack:  stack: f

a b

d e c

stack: ef

a b

d c

stack: def

a b

c
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stack: def

b

c

stack: adef

b

stack: cadef stack: bcadef

b1

stack: cadef

b1

c2

stack: adef

a3

stack: def

Heuristic Graph Coloring

a b

c

b1

c2
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f2 a3 b1

d1 e2 c2

stack: 

Heuristic Graph Coloring

a3 b1

d1 c2

stack: ef

a3 b1

d1 e2 c2

stack: f


