
THEORY OF COMPILATION
Lecture 11 – Code Generation

EranYahav

1Reference: Dragon 8. MCD 4.2.4

www.cs.technion.ac.il/~yahave/tocs2011/compilers-lec11.pptx

2

You are here

Executable

code

exe

Source

text

txt

Compiler

Lexical
Analysis

Syntax
Analysis

Parsing

Semantic
Analysis

Inter.
Rep.

(IR)

Code

Gen.

target languages

3

Absolute
machine code

Code

Gen.
Relative

machine code

Assembly

IR +
Symbol Table

From IR to ASM: Challenges

 mapping IR to ASM operations
 what instruction(s) should be used to implement

an IR operation?
 how do we translate code sequences

 call/return of routines
 managing activation records

 memory allocation
 register allocation
 optimizations

4

Intel IA-32 Assembly

 Going from Assembly to Binary…
 Assembling
 Linking

 AT&T syntax vs. Intel syntax

 We will use AT&T syntax
 matches GNU assembler (GAS)

5

6

IA-32 Registers

 Eight 32-bit general-purpose registers
 EAX – accumulator for operands and result data.

Used to return value from function calls.
 EBX – pointer to data. Often use as array-base address
 ECX – counter for string and loop operations
 EDX – I/O pointer (GP for us)
 ESI – GP and source pointer for string operations
 EDI – GP and destination pointer for string operations
 EBP – stack frame (base) pointer
 ESP – stack pointer

 EFLAGS register
 EIP (instruction pointer) register
 Six 16-bit segment registers
 … (ignore the rest for our purposes)

7

Not all registers are born equal

 EAX
 Required operand of MUL,IMUL,DIV and IDIV instructions
 Contains the result of these operations

 EDX
 Stores remainder of a DIV or IDIV instruction

(EAX stores quotient)
 ESI, EDI
 ESI – required source pointer for string instructions
 EDI – required destination pointer for string instructions

 Destination Registers of Arithmetic operations
 EAX, EBX, ECX, EDX

 EBP – stack frame (base) pointer
 ESP – stack pointer

8

IA-32 Addressing Modes

 Machine-instructions take zero or more operands

 Source operand
 Immediate
 Register
 Memory location
 (I/O port)

 Destination operand
 Register
 Memory location
 (I/O port)

Immediate and Register Operands

 Immediate
 Value specified in the instruction itself
 GAS syntax – immediate values preceded by $
 add $4, %esp

 Register
 Register name is used
 GAS syntax – register names preceded with %
 mov %esp,%ebp

9

Memory and Base Displacement Operands

 Memory operands
 Value at given address
 GAS syntax - parentheses
 mov (%eax), %eax

 Base displacement
 Value at computed address
 Address computed out of
 base register, index register, scale factor, displacement

 offset = base + (index*scale) + displacement
 Syntax: disp(base,index,scale)
 movl $42, $2(%eax)
 movl $42, $1(%eax,%ecx,4)

10

11

Base Displacement Addressing

Mov (%ecx,%ebx,4), %eax

7

Array Base Reference

4 4

0 2 4 5 6 7 1

4 4 4 4 4 4

%ecx = base
%ebx = 3

offset = base + (index*scale) + displacement

offset = base + (3*4) + 0 = base + 12

(%ecx,%ebx,4)

How do we generate the code?

 break the IR into basic blocks
 basic block is a sequence of instructions with
 single entry (to first instruction), no jumps to the

middle of the block
 single exit (last instruction)
 code execute as a sequence from first instruction

to last instruction without any jumps
 edge from one basic block B1 to another

block B2 when the last statement of B1 may
jump to B2

12

Example

13

False

B1

B2 B3

B4

True

t1 := 4 * i
t2 := a [t1]
if t2 <= 20 goto B3

t5 := t2 * t4
t6 := prod + t5
prod := t6
goto B4

t7 := i + 1
i := t2
Goto B5

t3 := 4 * i
t4 := b [t3]
goto B4

creating basic blocks

 Input: A sequence of three-address statements
 Output: A list of basic blocks with each three-

address statement in exactly one block
 Method
 Determine the set of leaders (first statement of a block)
 The first statement is a leader
 Any statement that is the target of a conditional or

unconditional jump is a leader
 Any statement that immediately follows a goto or conditional

jump statement is a leader
 For each leader, its basic block consists of the leader and all

statements up to but not including the next leader or the
end of the program

14

control flow graph

 A directed graph G=(V,E)
 nodes V = basic blocks
 edges E = control flow
 (B1,B2) E when control

from B1 flows to B2

15

B1

B2t1 := 4 * i
t2 := a [t1]
t3 := 4 * i
t4 := b [t3]
t5 := t2 * t4
t6 := prod + t5
prod := t6
t7 := i + 1
i := t7
if i <= 20 goto B2

prod := 0
i := 1

example

1) i = 1
2) j =1
3) t1 = 10*I
4) t2 = t1 + j
5) t3 = 8*t2
6) t4 = t3-88
7) a[t4] = 0.0
8) j = j + 1
9) if j <= 10 goto (3)
10) i=i+1
11) if i <= 10 goto (2)
12) i=1
13) t5=i-1
14) t6=88*t5
15) a[t6]=1.0
16) i=i+1
17) if I <=10 goto (13)

16

i = 1

j = 1

t1 = 10*I
t2 = t1 + j
t3 = 8*t2
t4 = t3-88
a[t4] = 0.0
j = j + 1
if j <= 10 goto B3

i=i+1
if i <= 10 goto B2

i = 1

t5=i-1
t6=88*t5
a[t6]=1.0
i=i+1
if I <=10 goto B6

B1

B2

B3

B4

B5

B6

for i from 1 to 10 do
for j from 1 to 10 do

a[i, j] = 0.0;
for i from 1 to 10 do

a[i, i] = 1.0;

source IR

CFG

Variable Liveness

 A statement x = y + z
 defines x
 uses y and z

 A variable x is live at a program point if its
value is used at a later point

17

y = 42
z = 73

x = y + z
print(x);

x is live, y dead, z dead

x undef, y live, z live

x undef, y live, z undef

x is dead, y dead, z dead

(showing state after the statement)

Computing Liveness Information

 between basic blocks – dataflow analysis
(next lecture)

 within a single basic block?
 idea
 use symbol table to record next-use information
 scan basic block backwards
 update next-use for each variable

18

Computing Liveness Information

 INPUT: A basic block B of three-address statements.
symbol table initially shows all non-temporary variables in
B as being live on exit.

 OUTPUT: At each statement i: x = y + z in B, liveness and
next-use information of x, y, and z at i.

 Start at the last statement in B and scan backwards
 At each statement i: x = y + z in B, we do the following:

1. Attach to i the information currently found in the symbol table
regarding the next use and liveness of x, y, and z.

2. In the symbol table, set x to "not live" and "no next use.“
3. In the symbol table, set y and z to "live" and the next uses of y

and z to i

19

Computing Liveness Information

 Start at the last statement in B and scan backwards
 At each statement i: x = y + z in B, we do the following:

1. Attach to i the information currently found in the symbol
table regarding the next use and liveness of x, y, and z.

2. In the symbol table, set x to "not live" and "no next use.“
3. In the symbol table, set y and z to "live" and the next uses

of y and z to i

20can we change the order between 2 and 3?

x = 1
y = x + 3
z = x * 3
x = x * z

common-subexpression elimination

 common-subexpression elimination

21

a = b + c
b = a – d
c = b + c
d = a - d

a = b + c
b = a – d
c = b + c
d = b

DAG Representation of Basic Blocks

22

a = b + c
b = a - d
c = b + c
d = a - d

b0 c0

+ d0

-

+

a

b,d

c

DAG Representation of Basic Blocks

23

a = b + c
b = b - d
c = c + d
e = b + c

b0 c0

+

d0

- +a b c

+ e

algebraic identities

24

a = x^2
b = x*2
c = x/2
d = 1*x

a = x*x
b = x+x
c = x*0.5
d = x

coming up next

 register allocation

25

The End

26

