
10-Jun-11

1

THEORY OF COMPILATION
Lecture 11 – Code Generation

EranYahav

1Reference: Dragon 8. MCD 4.2.4

www.cs.technion.ac.il/~yahave/tocs2011/compilers-lec11.pptx

2

You are here

Executable

code

exe

Source

text

txt

Compiler

Lexical
Analysis

Syntax
Analysis

Parsing

Semantic
Analysis

Inter.
Rep.

(IR)

Code

Gen.

target languages

3

Absolute
machine code

Code

Gen.
Relative

machine code

Assembly

IR +
Symbol Table

From IR to ASM: Challenges

 mapping IR to ASM operations
 what instruction(s) should be used to implement

an IR operation?
 how do we translate code sequences

 call/return of routines
 managing activation records

 memory allocation
 register allocation
 optimizations

4

10-Jun-11

2

Intel IA-32 Assembly

 Going from Assembly to Binary…
 Assembling
 Linking

 AT&T syntax vs. Intel syntax
 We will use AT&T syntax
 matches GNU assembler (GAS)

5 6

IA-32 Registers

 Eight 32-bit general-purpose registers
 EAX – accumulator for operands and result data.

Used to return value from function calls.
 EBX – pointer to data. Often use as array-base address
 ECX – counter for string and loop operations
 EDX – I/O pointer (GP for us)
 ESI – GP and source pointer for string operations
 EDI – GP and destination pointer for string operations
 EBP – stack frame (base) pointer
 ESP – stack pointer

 EFLAGS register
 EIP (instruction pointer) register
 Six 16-bit segment registers
 … (ignore the rest for our purposes)

7

Not all registers are born equal

 EAX
 Required operand of MUL,IMUL,DIV and IDIV instructions
 Contains the result of these operations

 EDX
 Stores remainder of a DIV or IDIV instruction

(EAX stores quotient)
 ESI, EDI
 ESI – required source pointer for string instructions
 EDI – required destination pointer for string instructions

 Destination Registers of Arithmetic operations
 EAX, EBX, ECX, EDX

 EBP – stack frame (base) pointer
 ESP – stack pointer

8

IA-32 Addressing Modes

 Machine-instructions take zero or more operands
 Source operand
 Immediate
 Register
 Memory location
 (I/O port)

 Destination operand
 Register
 Memory location
 (I/O port)

10-Jun-11

3

Immediate and Register Operands

 Immediate
 Value specified in the instruction itself
 GAS syntax – immediate values preceded by $
 add $4, %esp

 Register
 Register name is used
 GAS syntax – register names preceded with %
 mov %esp,%ebp

9

Memory and Base Displacement Operands

 Memory operands
 Value at given address
 GAS syntax - parentheses
 mov (%eax), %eax

 Base displacement
 Value at computed address
 Address computed out of
 base register, index register, scale factor, displacement

 offset = base + (index*scale) + displacement
 Syntax: disp(base,index,scale)
 movl $42, $2(%eax)
 movl $42, $1(%eax,%ecx,4)

10

11

Base Displacement Addressing

Mov (%ecx,%ebx,4), %eax

7

Array Base Reference

4 4

0 2 4 5 6 7 1

4 4 4 4 4 4

%ecx = base
%ebx = 3

offset = base + (index*scale) + displacement

offset = base + (3*4) + 0 = base + 12

(%ecx,%ebx,4)

How do we generate the code?

 break the IR into basic blocks
 basic block is a sequence of instructions with
 single entry (to first instruction), no jumps to the

middle of the block
 single exit (last instruction)
 code execute as a sequence from first instruction

to last instruction without any jumps
 edge from one basic block B1 to another

block B2 when the last statement of B1 may
jump to B2

12

10-Jun-11

4

Example

13

False

B1

B2 B3

B4

True

t1 := 4 * i
t2 := a [t1]
if t2 <= 20 goto B3

t5 := t2 * t4

t6 := prod + t5

prod := t6

goto B4

t7 := i + 1
i := t2

Goto B5

t3 := 4 * i
t4 := b [t3]
goto B4

creating basic blocks

 Input: A sequence of three-address statements
 Output: A list of basic blocks with each three-

address statement in exactly one block
 Method
 Determine the set of leaders (first statement of a block)
 The first statement is a leader
 Any statement that is the target of a conditional or

unconditional jump is a leader
 Any statement that immediately follows a goto or conditional

jump statement is a leader
 For each leader, its basic block consists of the leader and all

statements up to but not including the next leader or the
end of the program

14

control flow graph

 A directed graph G=(V,E)
 nodes V = basic blocks
 edges E = control flow
 (B1,B2) E when control

from B1 flows to B2

15

B1

B2t1 := 4 * i
t2 := a [t1]
t3 := 4 * i
t4 := b [t3]
t5 := t2 * t4

t6 := prod + t5

prod := t6

t7 := i + 1
i := t7

if i <= 20 goto B2

prod := 0
i := 1

example

1) i = 1
2) j =1
3) t1 = 10*I
4) t2 = t1 + j
5) t3 = 8*t2
6) t4 = t3-88
7) a[t4] = 0.0
8) j = j + 1
9) if j <= 10 goto (3)
10) i=i+1
11) if i <= 10 goto (2)
12) i=1
13) t5=i-1
14) t6=88*t5
15) a[t6]=1.0
16) i=i+1
17) if I <=10 goto (13)

16

i = 1

j = 1

t1 = 10*I
t2 = t1 + j
t3 = 8*t2
t4 = t3-88
a[t4] = 0.0
j = j + 1
if j <= 10 goto B3

i=i+1
if i <= 10 goto B2

i = 1

t5=i-1
t6=88*t5
a[t6]=1.0
i=i+1
if I <=10 goto B6

B1

B2

B3

B4

B5

B6

for i from 1 to 10 do
for j from 1 to 10 do

a[i, j] = 0.0;
for i from 1 to 10 do
a[i, i] = 1.0;

source IR

CFG

10-Jun-11

5

Variable Liveness

 A statement x = y + z
 defines x
 uses y and z

 A variable x is live at a program point if its
value is used at a later point

17

y = 42
z = 73

x = y + z
print(x);

x is live, y dead, z dead

x undef, y live, z live

x undef, y live, z undef

x is dead, y dead, z dead

(showing state after the statement)

Computing Liveness Information

 between basic blocks – dataflow analysis
(next lecture)

 within a single basic block?
 idea
 use symbol table to record next-use information
 scan basic block backwards
 update next-use for each variable

18

Computing Liveness Information

 INPUT: A basic block B of three-address statements.
symbol table initially shows all non-temporary variables in
B as being live on exit.

 OUTPUT: At each statement i: x = y + z in B, liveness and
next-use information of x, y, and z at i.

 Start at the last statement in B and scan backwards
 At each statement i: x = y + z in B, we do the following:

1. Attach to i the information currently found in the symbol table
regarding the next use and liveness of x, y, and z.

2. In the symbol table, set x to "not live" and "no next use.“
3. In the symbol table, set y and z to "live" and the next uses of y

and z to i

19

Computing Liveness Information

 Start at the last statement in B and scan backwards
 At each statement i: x = y + z in B, we do the following:

1. Attach to i the information currently found in the symbol
table regarding the next use and liveness of x, y, and z.

2. In the symbol table, set x to "not live" and "no next use.“
3. In the symbol table, set y and z to "live" and the next uses

of y and z to i

20can we change the order between 2 and 3?

x = 1
y = x + 3
z = x * 3
x = x * z

10-Jun-11

6

common-subexpression elimination

 common-subexpression elimination

21

a = b + c
b = a – d
c = b + c
d = a - d

a = b + c
b = a – d
c = b + c
d = b

DAG Representation of Basic Blocks

22

a = b + c
b = a - d
c = b + c
d = a - d

b0 c0

+ d0

-

+

a

b,d

c

DAG Representation of Basic Blocks

23

a = b + c
b = b - d
c = c + d
e = b + c

b0 c0

+

d0

- +a b c

+ e

algebraic identities

24

a = x^2
b = x*2
c = x/2
d = 1*x

a = x*x
b = x+x
c = x*0.5
d = x

10-Jun-11

7

coming up next

 register allocation

25

The End

26

