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THEORY OF COMPILATION
Lecture 11 – Code Generation

EranYahav

1Reference:  Dragon 8. MCD 4.2.4

www.cs.technion.ac.il/~yahave/tocs2011/compilers-lec11.pptx
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From IR to ASM: Challenges

 mapping IR to ASM operations
 what instruction(s) should be used to implement 

an IR operation?
 how do we translate code sequences

 call/return of routines
 managing activation records

 memory allocation 
 register allocation
 optimizations
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Intel IA-32 Assembly

 Going from Assembly to Binary…
 Assembling
 Linking

 AT&T syntax vs. Intel syntax
 We will use AT&T syntax
 matches GNU assembler (GAS)

5 6

IA-32 Registers

 Eight 32-bit general-purpose registers
 EAX – accumulator for operands and result data. 

Used to return value from function calls.
 EBX – pointer to data. Often use as array-base address
 ECX – counter for string and loop operations
 EDX – I/O pointer (GP for us)
 ESI – GP and source pointer for string operations 
 EDI – GP and destination pointer for string operations
 EBP – stack frame (base) pointer
 ESP – stack pointer

 EFLAGS register
 EIP (instruction pointer) register
 Six 16-bit segment registers
 … (ignore the rest for our purposes)
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Not all registers are born equal

 EAX
 Required operand of MUL,IMUL,DIV and IDIV instructions
 Contains the result of these operations

 EDX
 Stores remainder of a DIV or IDIV instruction 

(EAX stores quotient) 
 ESI, EDI 
 ESI – required source pointer for string instructions
 EDI – required destination pointer for string instructions

 Destination Registers of Arithmetic operations
 EAX, EBX, ECX, EDX

 EBP – stack frame (base) pointer
 ESP – stack pointer
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IA-32 Addressing Modes

 Machine-instructions take zero or more operands
 Source operand
 Immediate 
 Register
 Memory location
 (I/O port)

 Destination operand
 Register
 Memory location
 (I/O port)



10-Jun-11

3

Immediate and Register Operands

 Immediate
 Value specified in the instruction itself
 GAS syntax – immediate values preceded by $
 add $4, %esp

 Register 
 Register name is used
 GAS syntax – register names preceded with %
 mov %esp,%ebp
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Memory and Base Displacement Operands

 Memory operands
 Value at given address
 GAS syntax - parentheses
 mov (%eax), %eax

 Base displacement
 Value at computed address
 Address computed out of
 base register, index register, scale factor, displacement

 offset = base + (index*scale) + displacement
 Syntax: disp(base,index,scale)
 movl $42, $2(%eax) 
 movl $42, $1(%eax,%ecx,4)
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Base Displacement Addressing

Mov (%ecx,%ebx,4), %eax
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Array Base Reference

4 4

0 2 4 5 6 7 1

4 4 4 4 4 4

%ecx = base
%ebx = 3

offset = base + (index*scale) + displacement

offset = base + (3*4) + 0 = base + 12

(%ecx,%ebx,4)

How do we generate the code?

 break the IR into basic blocks
 basic block is a sequence of instructions with
 single entry (to first instruction), no jumps to the 

middle of the block
 single exit (last instruction)
 code execute as a sequence from first instruction 

to last instruction without any jumps
 edge from one basic block B1 to another 

block B2 when the last statement of B1 may 
jump to B2
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Example
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False

B1

B2 B3

B4

True

t1 := 4 * i
t2 := a [ t1 ]
if t2 <= 20 goto B3

t5 := t2 * t4

t6 := prod + t5

prod := t6

goto B4

t7 := i + 1
i := t2

Goto B5

t3 := 4 * i
t4 := b [ t3 ]
goto B4

creating basic blocks

 Input:  A sequence of three-address statements
 Output:  A list of basic blocks with each three-

address statement in exactly one block
 Method
 Determine the set of leaders (first statement of a block)
 The first statement is a leader
 Any statement that is the target of a conditional or 

unconditional jump is a leader
 Any statement that immediately follows a goto or conditional 

jump statement is a leader
 For each leader, its basic block consists of the leader and all 

statements up to but not including the next leader or the 
end of the program
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control flow graph

 A directed graph G=(V,E)
 nodes V = basic blocks
 edges E = control flow
 (B1,B2) E when control 

from B1 flows to B2
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B1

B2t1 := 4 * i
t2 := a [ t1 ]
t3 := 4 * i
t4 := b [ t3 ]
t5 := t2 * t4

t6 := prod + t5

prod := t6

t7 := i + 1
i := t7

if i <= 20 goto B2

prod := 0
i := 1

example

1) i = 1
2) j =1
3) t1 = 10*I
4) t2 = t1 + j
5) t3 = 8*t2
6) t4 = t3-88
7) a[t4] = 0.0
8) j = j + 1
9) if j <= 10 goto (3)
10) i=i+1
11) if i <= 10 goto (2)
12) i=1
13) t5=i-1
14) t6=88*t5
15) a[t6]=1.0
16) i=i+1
17) if I <=10 goto (13)
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i = 1

j = 1

t1 = 10*I
t2 = t1 + j
t3 = 8*t2
t4 = t3-88
a[t4] = 0.0
j = j + 1
if j <= 10 goto B3

i=i+1
if i <= 10 goto B2

i = 1

t5=i-1
t6=88*t5
a[t6]=1.0
i=i+1
if I <=10 goto B6

B1

B2

B3

B4

B5

B6

for i from 1 to 10 do
for j from 1 to 10 do

a[i, j] = 0.0;
for i from 1 to 10 do
a[i, i] = 1.0;

source IR

CFG
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Variable Liveness

 A statement x = y + z
 defines x
 uses y and z

 A variable x is live at a program point if its 
value is used at a later point 
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y = 42
z = 73

x = y + z
print(x);

x is live, y dead, z dead

x undef, y live, z live

x undef, y live, z undef

x is dead, y dead, z dead

(showing state after the statement)

Computing Liveness Information

 between basic blocks – dataflow analysis 
(next lecture)

 within a single basic block?
 idea
 use symbol table to record next-use information
 scan basic block backwards
 update next-use for each variable
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Computing Liveness Information

 INPUT: A basic block B of three-address statements. 
symbol table initially shows all non-temporary variables in 
B as being live on exit.

 OUTPUT: At each statement i: x = y + z in B, liveness and 
next-use information of x, y, and z at i.

 Start at the last statement in B and scan backwards
 At each statement i: x = y + z in B, we do the following:

1. Attach to i the information currently found in the symbol table 
regarding the next use and liveness of x, y, and z.

2. In the symbol table, set x to "not live" and "no next use.“
3. In the symbol table, set y and z to "live" and the next uses of y 

and z to i
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Computing Liveness Information

 Start at the last statement in B and scan backwards
 At each statement i: x = y + z in B, we do the following:

1. Attach to i the information currently found in the symbol 
table regarding the next use and liveness of x, y, and z.

2. In the symbol table, set x to "not live" and "no next use.“
3. In the symbol table, set y and z to "live" and the next uses 

of y and z to i

20can we change the order between 2 and 3?

x = 1
y = x + 3
z = x * 3
x = x * z
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common-subexpression elimination

 common-subexpression elimination
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a = b + c
b = a – d
c = b + c
d = a - d

a = b + c
b = a – d
c = b + c
d = b

DAG Representation of Basic Blocks
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a = b + c
b = a - d
c = b + c
d = a - d

b0 c0

+ d0

-

+

a

b,d

c

DAG Representation of Basic Blocks
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a = b + c
b = b - d
c = c + d
e = b + c

b0 c0

+

d0

- +a b c

+ e

algebraic identities 
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a = x^2
b = x*2
c = x/2
d = 1*x

a = x*x
b = x+x
c = x*0.5
d = x
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coming up next

 register allocation
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The End
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