
THEORY OF COMPILATION
Lecture 06 – Semantic Analysis

EranYahav

1

2

You are here

Executable

code

exe

Source

text

txt

Compiler

Lexical
Analysis

Syntax
Analysis

Parsing

Semantic
Analysis

Inter.
Rep.

(IR)

Code

Gen.

You are here…

3

Executable

code

exe

Source

text

txt
Lexical
Analysis

Sem.
Analysis

Process
text
input

characters Syntax
Analysis

tokens AST

Intermediate
code

generation

Annotated AST

Intermediate
code

optimization

IR Code
generationIR

Target code
optimization

Symbolic Instructions

SI Machine code
generation

Write
executable

output

MI

Back End

What we want

4

Lexical analyzer

Potato potato;
Carrot carrot;
x = tomato + potato + carrot

<id,tomato>,<PLUS>,<id,potato>,<PLUS>,<id,carrot>,EOF

Parser

tomato is undefined
potato used before initialized
Cannot add Potato and Carrot

symbol kind type properties

x var ?

tomato var ?

potato var Potato

carrot var Carrot
LocationExpr
id=tomato

AddExpr
left right

AddExpr
left right

LocationExpr
id=potato id=carrot

LocationExpr

Contextual Analysis

 Often called “Semantic analysis”

 Properties that cannot be formulated via CFG
 Type checking
 Declare before use

 Identifying the same word “w” re-appearing – wbw
 Initialization
 …

 Properties that are hard to formulate via CFG
 “break” only appears inside a loop
 …

 Processing of the AST

5

Contextual Analysis

 Identification
 Gather information about each named item in the

program
 e.g., what is the declaration for each usage

 Context checking
 Type checking
 e.g., the condition in an if-statement is a Boolean

6

Identification

 Forward references?
 Languages that don’t require declarations?

7

month : integer RANGE [1..12];
…
month := 1;
while (month <= 12) {

print(month_name[month]);
month : = month + 1;

}

Symbol table

 A table containing information about
identifiers in the program

 Single entry for each named item

8

name pos type …

month 1 RANGE[1..12]

month_name … …

…

month : integer RANGE [1..12];
…
month := 1;
while (month <= 12) {

print(month_name[month]);
month : = month + 1;

}

Not so fast…

9

struct one_int {
int i;

} i;

main() {
i.i = 42;
int t = i.i;
printf(“%d”,t);
}

A struct field named i

A struct variable named i

Assignment to the “i” field of struct “i”

Reading the “i” field of struct “i”

Not so fast…

10

struct one_int {
int i;

} i;

main() {
i.i = 42;
int t = i.i;
printf(“%d”,t);
{
int i = 73;
printf(“%d”,i);

}
}

A struct field named i

A struct variable named i

Assignment to the “i” field of struct “i”

int variable named “i”

Reading the “i” field of struct “i”

Scopes

 Typically stack structured scopes

 Scope entry
 push new empty scope element

 Scope exit
 pop scope element and discard its content

 Identifier declaration
 identifier created inside top scope

 Identifier Lookup
 Search for identifier top-down in scope stack

11

Scope-structured symbol table

12
Scope stack

0

3 P

“so”

P

“long”

//

2 P

“and”

P

“thanks”

1 P

“x”

P

“all”

//

P

“the”

P

“fish”

P

“thanks”

//

P

“x”

//

{
int the=1;
int fish=2;
Int thanks=3;
{
int x = 42;
int all = 73;
{

…
}
}
}

Scope and symbol table

 Scope x Identifier -> properties
 Expensive lookup

 A better solution
 hash table over identifiers

13

Hash-table based Symbol Table

14

name
macro

decl 2 P

“x”

1 P //

name
macro

decl 2 P

“thanks”

0 P //

name
macro

decl 3 P

“so”

//

Id.info

Scope info

15

Scope stack

0

3

Id.info(“so”) Id.info(“long”)

//

2

Id.info(“and”) Id.info(“thanks”)

1

Id.info(“x”) Id.info(“all”)

//

Id.info(“the”) Id.info(“fish”) Id.info(“thanks”)

//

Id.info(“x”)

//

(now just pointers to the corresponding record in the symbol table)

Remember lexing/parsing?

 How did we know to always map an identifier
to the same token?

16

17

Semantic Checks

 Scope rules
 Use symbol table to check that
 Identifiers defined before used
 No multiple definition of same identifier
 Program conforms to scope rules

 Type checking
 Check that types in the program are consistent
 How?

Types

 What is a type?
 Simplest answer: a set of values
 Integers, real numbers, booleans, …

 Why do we care?
 Safety
 Guarantee that certain errors cannot occur at runtime

 Abstraction
 Hide implementation details

 Documentation
 Optimization

18

Type System (textbook definition)

“A type system is a tractable syntactic method
for proving the absence of certain program
behaviors by classifying phrases according to the
kinds of values they compute”

19

-- Types and Programming Languages
/ Benjamin C. Pierce

Type System

 A type system of a programming language is a
way to define how “good” program behave
 Good programs = well-typed programs
 Bad programs = not well typed

 Type checking
 Static typing – most checking at compile time
 Dynamic typing – most checking at runtime

 Type inference
 Automatically infer types for a program (or show that

there is no valid typing)

20

Static typing vs. dynamic typing

 Static type checking is conservative
 Any program that is determined to be well-typed is

free from certain kinds of errors
 May reject programs that cannot be statically

determined as well typed
 Why?

 Dynamic type checking
 May accept more programs as valid (runtime info)
 Errors not caught at compile time
 Runtime cost

21

22

Type Checking

 Type rules specify
 which types can be combined with certain operator
 Assignment of expression to variable
 Formal and actual parameters of a method call

 Examples

“drive” + “drink”

42 + “the answer”

stringstring

string

int string

ERROR

Type Checking Rules

 Specify for each operator
 Types of operands
 Type of result

 Basic Types
 Building blocks for the type system (type rules)
 e.g., int, boolean, (sometimes) string

 Type Expressions
 Array types
 Function types
 Record types / Classes

23

24

Typing Rules

If E1 has type int and E2 has type int,
then E1 + E2 has type int

E1 : int E2 : int

E1 + E2 : int

(Generally, also use a context A)

25

More Typing Rules (examples)
A  true : boolean

A  E1 : int A  E2 : int

A  E1 op E2 : int

A  false : boolean

A  int-literal : int A  string-literal : string

op  { +, -, /, *, %}

A  E1 : int A  E2 : int

A  E1 rop E2 : boolean
rop  { <=,<, >, >=}

A  E1 : T A  E2 : T

A  E1 rop E2 : boolean
rop  { ==,!=}

26

And Even More Typing Rules

A  E1 : boolean A  E2 : boolean

A  E1 lop E2 : boolean
lop  { &&,|| }

A  E1 : int

A  - E1 : int

A  E1 : boolean

A  ! E1 : boolean

A  E1 : T[]

A  E1.length : int

A  E1 : T[] A  E2 : int

A  E1[E2] : T

A  E1 : int

A  new T[E1] : T[]

A  T \in C

A  new T() : T

id : T  A

A  id : T

Type Checking

 Traverse AST and assign types for AST nodes
 Use typing rules to compute node types

 Alternative: type-check during parsing
 More complicated alternative
 But naturally also more efficient

27

28

Example

45 > 32 && !false

BinopExpr UnopExpr

BinopExpr

…

op=AND

op=NEGop=GT

intLiteral

val=45

intLiteral

val=32

boolLiteral

val=false

: int : int

: boolean

: boolean

: boolean

: boolean

A  false : boolean

A  int-literal : int

A  E1 : int A  E2 : int

A  E1 rop E2 : boolean

rop  { <=,<, >, >=}

A  E1 : boolean A  E2 : boolean

A  E1 lop E2 : boolean

lop  { &&,|| }

A  E1 : boolean

A  !E1 : boolean

Type Declarations

 So far, we ignored the fact that types can also
be declared

29

TYPE Int_Array = ARRAY [Integer 1..42] OF Integer;

Var a : ARRAY [Integer 1..42] OF Real;

(explicitly)

(anonymously)

30

Var a : ARRAY [Integer 1..42] OF Real;

TYPE #type01_in_line_73 = ARRAY [Integer 1..42] OF Real;
Var a : #type01_in_line_73;

Type Declarations

Forward References

 Forward references must be resolved
 A forward references added to the symbol table as forward reference,

and later updated when type declaration is met
 At the end of scope, must check that all forward references have been

resolved
 Check must be added for circularity

31

TYPE Ptr_List_Entry = POINTER TO List_Entry;
TYPE List_Entry =

RECORD
Element : Integer;
Next : Ptr_List_Entry;

END RECORD;

Type Table

 All types in a compilation unit are collected in
a type table

 For each type, its table entry contains:
 Type constructor: basic, record, array, pointer,…
 Size and alignment requirements
 to be used later in code generation

 Types of components (if applicable)
 e.g., types of record fields

32

Type Equivalence: Name Equivalence

t1 not (name) equivalence to t2

33

Type t1 = ARRAY[Integer] OF Integer;
Type t2 = ARRAY[Integer] OF Integer;

t3 equivalent to t4

Type t3 = ARRAY[Integer] OF Integer;
Type t4 = t3

t5, t6, t7 are all (structurally) equivalent
34

Type Equivalence: Structural Equivalence

Type t5 = RECORD c: Integer; p: POINTER TO t5; END
RECORD;
Type t6 = RECORD c: Integer; p: POINTER TO t6; END
RECORD;
Type t7 =

RECORD
c: Integer;
p: POINTER TO

RECORD
c: Integer;
p: POINTER to t5;

END RECORD;
END RECORD;

In practice

 Almost all modern languages use name
equivalence

 why?

35

Coercions

 If we expect a value of type T1 at some point
in the program, and find a value of type T2, is
that acceptable?

36

float x = 3.141;
int y = x;

l-values and r-values

 What is dst? What is src?
 dst is a memory location where the value should

be stored
 src is a value

 “location” on the left of the assignment called
an l-value

 “value” on the right of the assignment is
called an r-value

37

dst := src

l-values and r-values (example)

38

x:= y + 1

730x42

160x47

x

y

…
…

…

170x42

160x47

x

y

…
…

…

l-values and r-values (example)

39

x := A[1]

x := A[A[1]]

expression construct resulting kind

constant rvalue

identifier (variable) lvalue

identifier (otherwise) rvalue

&lvalue rvalue

*rvalue lvalue

V[rvalue] V

V.selector V

rvalue+rvalue rvalue

lvalue := rvalue rvalue

40

l-values and r-values (examples)

41

lvalue rvalue
lvalue - deref
rvalue error -

expected
fo

un
d

l-values and r-values

So far…

 Static correctness checking
 Identification
 Type checking

 Identification matches applied occurrences of
identifier to its defining occurrence

 Type checking checks which type
combinations are legal

 Each node in the AST of an expression
represents either an l-value (location) or an r-
value (value)

42

How does this magic happen?

 We probably need to go over the AST?

 how does this relate to the clean formalism of
the parser?

43

Syntax Directed Translation

 Semantic attributes
 Attributes attached to grammar symbols

 Semantic actions
 (already mentioned when we did recursive

descent)
 How to update the attributes

 Attribute grammars

44

Attribute grammars

 Attributes
 Every grammar symbol has attached attributes
 Example: Expr.type

 Semantic actions
 Every production rule can define how to assign

values to attributes
 Example:

Expr  Expr + Term
Expr.type = Expr1.type when (Expr1.type == Term.type)

Error otherwise

45

Indexed symbols

 Add indexes to distinguish repeated grammar
symbols

 Does not affect grammar
 Used in semantic actions

 Expr  Expr + Term
Becomes
Expr  Expr1 + Term

46

Example

47

Production Semantic Rule

D T L L.in = T.type

T  int T.type = integer

T  float T.type = float

L  L1, id L1.in = L.in
addType(id.entry,L.in)

L  id addType(id.entry,L.in)

D

float

L

L id1

T

L id2

id3

float x,y,z

float float

float

float

Dependencies

 A semantic equation a = b1,…,bm
requires computation of b1,…,bm to
determine the value of a

 The value of a depends on b1,…,bm
 We write a  bi

48

Attribute Evaluation

 Build the AST
 Fill attributes of terminals with values derived

from their representation
 Execute evaluation rules of the nodes to

assign values until no new values can be
assigned
 In the right order such that
 No attribute value is used before its available
 Each attribute will get a value only once

49

Cycles

 Cycle in the dependence graph
 May not be able to compute attribute values

50

T

E
E.S = T.i
T.i = E.s + 1

T.i

E.s

AST Dependence
graph

Attribute Evaluation

 Build the AST
 Build dependency graph
 Compute evaluation order using topological

ordering
 Execute evaluation rules based on topological

ordering

 Works as long as there are no cycles

51

Building Dependency Graph

 All semantic equations take the form

attr1 = func1(attr1.1, attr1.2,…)
attr2 = func2(attr2.1, attr2.2,…)

 Actions with side effects use a dummy attribute
 Build a directed dependency graph G
 For every attribute a of a node n in the AST create a

node n.a
 For every node n in the AST and a semantic action of

the form b = f(c1,c2,…ck) add edges of the form (ci,b)

52

Example

53

Prod. Semantic Rule

D T L L.in = T.type

T  int T.type = integer

T  float T.type = float

L  L1,
id

L1.in = L.in
addType(id.entry,L.in)

L  id addType(id.entry,L.in)

D

float

L

L id1

T

L id2

id3

float x,y,z

type in dmy

entry

entry

entry

in

in

dmy

dmy

Example

54

Prod. Semantic Rule

D T L L.in = T.type

T  int T.type = integer

T  float T.type = float

L  L1,
id

L1.in = L.in
addType(id.entry,L.in)

L  id addType(id.entry,L.in)

D

float

L

L id1

T

L id2

id3

float x,y,z

type in dmy

entry

entry

entry

in

in

dmy

dmy

Topological Order

 For a graph G=(V,E), |V|=k

 Ordering of the nodes v1,v2,…vk such that for
every edge (vi,vj)  E, i < j

55

4 3 2

15

Example topological orderings: 1 4 3 2 5, 4 1 3 5 2

Example

56

float x,y,z

type in dmy

entry

entry

entry

in

in

dmy

dmy

1

2

3

4

5

7

8 9

10

6
float float

ent1

ent2

ent3

float

float

float
float

float

But what about cycles?

 For a given attribute grammar hard to detect
if it has cyclic dependencies
 Exponential cost

 Special classes of attribute grammars
 Our “usual trick”
 sacrifice generality for predictable performance

57

Inherited vs. Synthesized Attributes

 Synthesized attributes
 Computed from children of a node

 Inherited attributes
 Computed from parents and siblings of a node

 Attributes of tokens are technically considered
as synthesized attributes

58

example

59

Production Semantic Rule

D T L L.in = T.type

T  int T.type = integer

T  float T.type = float

L  L1, id L1.in = L.in
addType(id.entry,L.in)

L  id addType(id.entry,L.in)

D

float

L

L id1

T

L id2

id3

float x,y,z

float float

float

float

inherited

synthesized

S-attributed Grammars

 Special class of attribute grammars
 Only uses synthesized attributes (S-attributed)
 No use of inherited attributes

 Can be computed by any bottom-up parser
during parsing

 Attributes can be stored on the parsing stack
 Reduce operation computes the (synthesized)

attribute from attributes of children

60

S-attributed Grammar: example

61

Production Semantic Rule

S E ; print(E.val)

E  E1 + T E.val = E1.val + T.val

E T E.val = T.val

T T1 * F T.val = T1.val * F.val

T  F T.val = F.val

F  (E) F.val = E.val

F  digit F.val = digit.lexval

example

62

3

F

T

E +

4

F

T

E *

7

F

T

S

Lexval=3Lexval=4Lexval=7

val=7

val=7

val=4

val=4

val=28

val=3

val=3

val=31

31

L-attributed grammars

 L-attributed attribute grammar when every
attribute in a production A X1…Xn is
 A synthesized attribute, or
 An inherited attribute of Xj, 1 <= j <=n that only

depends on
 Attributes of X1…Xj-1 to the left of Xj, or
 Inherited attributes of A

63

Summary

 Contextual analysis can move information
between nodes in the AST
 Even when they are not “local”

 Attribute grammars
 Attach attributes and semantic actions to grammar

 Attribute evaluation
 Build dependency graph, topological sort, evaluate

 Special classes with pre-determined evaluation
order: S-attributed, L-attributed

64

The End

65

