Lecture 06 — Semantic Analysis

THEORY OF COMPILATION

EranYahav

You are here

[ot]

Source 4.

text

Compiler
L R e R AR RN AREE s EEEEEsEEEEassnEnans -
Lexical Syntax Semantic Inter. Code
Analysis Analysis Analysis Rep. Gen.
Parsing (IR)

—

exe

Executable

code

You are here..

E3

Source

Process I haracters LeX|ca_I tokens | SYntax AST Sem.
text »| Analysis »| Analysis »| Analysis
input

text

Annotated AST

exe
Executable

code

What we want

Potato potato;
Carrot carrot;
X = tomato + potato + carrot

Lexical analyzer

<id,tomato>,<PLUS>,<id,potato>,<PLUS>,<id,carrot>,EOF

__

left right
O Q

i symbol kind type properties
| ?

| [AddExpr) X var '

i left right tomato var ?

1 O Q

potato var Potato

i (1 I._ocatlonExpr] (] I._ocatlonExpr] (1 I._ocatlonExpr] arrot var Carrot

. L|d=tomato J L|d=potato J L|d=carrot J

tomato is undefined
potato used before initialized
Cannot add Potato and Carrot

Contextual Analysis

Often called "Semantic analysis”

Properties that cannot be formulated via CFG
o Type checking
= Declare before use

* ldentifying the same word “w" re-appearing — wbw
o |nitialization

[m]

Properties that are hard to formulate via CFG
= “break” only appears inside a loop

[m]

Processing of the AST

Contextual Analysis

» |dentification

o Gather information about each named item in the
program

o e.g., what is the declaration for each usage

= Context checking
o Type checking
o e.g., the condition in an if-statement is a Boolean

Identification

month : integer RANGE [1..12];

month := 1;

while (month <= 12) {
print (month name [month]);
month : = month + 1;

» Forward references?
» Languages that don’t require declarations?

Symbol table

-~

month
while

\

month :

print (month name [month]);
month : = month + 1;

integer RANGE [1..12];\\

name

pos

type

= 1; month

RANGE[1..12]

(month <= 12) {

month_name

/

= Atable containing information about

» Single entry for each named item

identifiers in the program

Not so fast..

struct one int { A struct field named i
int 1;
}o1; A struct variable named i
main () | Assignment to the “i” field of struct “i”
1.1 = 42

Reading the "“i” field of struct “i”

Not so fast..

struct one 1int { A struct field named i
int 1;

}o1; A struct variable named i
main () { Assignment to the “i” field of struct “i”

1.1 = 42;

int t = 1.1;

, Wo 1 Reading the “i" field of struct “i"
printf (“=:d”, t);
{

int 1 = 73:
printf (“3d”,1);
}
}

\\y/)
I

int variable named

10

Scopes

Typically stack structured scopes

Scope entry
@ push new empty scope element

Scope exit

= pop scope element and discard its content
Identifier declaration

o identifier created inside top scope

Identifier Lookup
o Search for identifier top-down in scope stack

11

Scope-structured symbol table

s

{

{

}

-

int the=1;
int fish=2;
Int thanks=3;

}

~

int x = 42;
int all = 73;
{

}

/ \\longll
6

3 P | o P o1/l
/ “and” / “thanks” /> X"
2 $ P o é P o é P o—
/> "X /> “all”
1 Slp|o S| p | otsy
/ “the” / “fish” / “thanks”
O é P o é) P o— é P o—

— |l

Scope stack

12

Scope and symbol table

= Scope x ldentifier -> properties

o Expensive lookup

= A better solution

o hash table over identifiers

Hash-table based Symbol Table

e

|d.info
Ny
name f
macro
decl 2 | P | o
/9“thanks
name
macro
decl 2 | P | o

&

name

Macro

decl

Scope 1info

/ Id.info(" / Id.info("long”)
3 S| o > |
/ |d.info(*and”) / |d.info(“thanks% |d.info("x")
> & | o >]
/ Id.info("x") / Id.info("all")
1 > [/
/> |d.info(“the") /> |d.info("fish”) / |d.info(“thanks")
0 51 o 51 o > [/

Scope stack

(now just pointers to the corresponding record in the symbol table) 15

Remember lexing/parsing?

» How did we know to always map an identifier
to the same token?

Semantic Checks

= Scoperules

= Use symbol table to check that
= |dentifiers defined before used

= No multiple definition of same identifier
* Program conforms to scope rules

» Type checking

= Check that typesin the program are consistent
= How?

17

Types

= Whatis atype?
o Simplest answer: a set of values
o |ntegers, real numbers, booleans, ...

» Why do we care?
o Safety
= Guarantee that certain errors cannot occur at runtime
= Abstraction
* Hide implementation details
o Documentation
o Optimization

18

Type System (textbook definition)

"A type system is a tractable syntactic method
for proving the absence of certain program
behaviors by classifying phrases according to the
kinds of values they compute”

-- Types and Programming Languages
/ Benjamin C. Pierce

Type System

» Atype system of a programming language is a
way to define how “"good” program behave
o Good programs = well-typed programs
= Bad programs = not well typed

» Type checking
o Static typing — most checking at compile time
o Dynamic typing — most checking at runtime

» Type inference

o Automatically infer types for a program (or show that
there is no valid typing)

20

Static typing vs. dynamic typing

» Static type checkingis conservative

o Any program that is determined to be well-typed is
free from certain kinds of errors

= May reject programs that cannot be statically
determined as well typed

o Why?

» Dynamic type checking
o May accept more programs as valid (runtime info)
o Errors not caught at compile time
o Runtime cost

21

Type Checking

= Type rules specify
o which types can be combined with certain operator
o Assignment of expression to variable
o Formal and actual parameters of a method call

= Examples

string string
“drive” + “drink”
string

int string
42 + “the answer”

ERROR

22

Type Checking Rules

» Specify for each operator
o Types of operands
o Type of result

= Basic Types
o Building blocks for the type system (type rules)
o e.g., int, boolean, (sometimes) string

= Type Expressions
o Array types
o Function types
o Record types [/ Classes

23

Typing Rules

If E1 has type int and E2 has type int,
then E1 + E2 has type int

E1l :int E2 : int

El + E2 :int

(Generally, also use a context A)

24

More Typing Rules (examples)

A + true : boolean A + false : boolean
A + int-literal : int A + string-literal : string
ArE1l:int ArE2:int

Opé{ +, -, /I *I 0/0}

A+-El opE2:int

A El:int ArE2:int
rop e{ <=,<, >, >=}

A+ E1 rop E2 : boolean

A-EL:T A-E2:T
rop e{ ==,1=}

A+ E1 rop E2 : boolean

25

And Even More Typing Rules

A+ E1l: boolean A+ E2: boolean

lop € { &&|| }
A+ E1 /op E2 : boolean
A+ E1l:int A + E1 : boolean
A+-E1:int A+ 1 E1 : boolean
A+ E1l:T[] A-EL1:T[] A+E2:int A+ El:int
A + El.length : int A+E1[E2]: T A+ new T[E1] : T[]

Ar-TN\inC id: TeA
ArnewT(): T Arid: T

Type Checking

* Traverse AST and assign types for AST nodes

o Use typing rules to compute node types

= Alternative: type-check during parsing
= More complicated alternative
o But naturally also more efficient

27

Example

o

(BinopExpr)

: boolean

: boolean

(UnopExpr)
op=NEG

: boolean \ [BinopExpr)

(intLiteral] ([intLiteral)
val=45 J Lval=32 J

(boolLiteral)
val=false

»int : int : boolean

45 > 32 && Ifalse

A+~ E1 : boolean A+ E2 : boolean

A+ E1 lop E2 : boolean
lop € { &&[] }

A + E1 : boolean

A + IE1 : boolean

A+-El:int A+-E2:int

A+ E1 rop E2 : boolean

rO,DE{ <=l<l >I >=}

A + false : boolean

A + int-literal : int

28

Type Declarations

= So far, we ignored the fact that types can also
be declared

TYPE Int_Array = ARRAY [Integer 1..42] OF Integer; (explicitly)

Var a: ARRAY [Integer 1..42] OF Real; (@anonymously)

29

Type Declarations

Var a : ARRAY [Integer1..42] OF Real;

L

TYPE #typeo1_in_line_73 = ARRAY [Integer 1..42] OF Real;
Var a: #typeo1_in_line_73;

30

Forward References

TYPE Ptr_List_Entry = POINTERTO List_Entry;
TYPE List_Entry =
RECORD

Element : Integer;
Next : Ptr_List_Entry;
END RECORD;

= Forward references must be resolved

= Aforward references added to the symbol table as forward reference,
and later updated when type declaration is met

= At the end of scope, must check that all forward references have been
resolved

o Check must be added for circularity

31

Type Table

= All types in a compilation unit are collected in
a type table

» Foreach type, its table entry contains:

o Type constructor: basic, record, array, pointer,...
o Size and alignment requirements
" to be used laterin code generation

o Types of components (if applicable)
* e.g., types of record fields

32

Type Equivalence: Name Equivalence

-
Type t1 = ARRAY[Integer] OF Integer;
Type t2 = ARRAY[Integer] OF Integer;
.
t1 not (name) equivalence to t2
4)
Type t3 = ARRAY[Integer] OF Integer;
Typet4 =13
. J

t3 equivalent to t4

33

Type Equivalence: Structural Equivalence

ge t5 = RECORD c: Integer; p: POINTERTO tg; END \

RECORD:

Type t6 = RECORD c: Integer; p: POINTERTO t6; END
RECORD;
Typet7 =
RECORD
c: Integer;
p: POINTERTO
RECORD
c: Integer;
p: POINTER to tg;

END RECORD;

\\?i?RECORD; 4////

tg, t6, t7 are all (structurally) equivalent

34

In practice

= Almost all modern languages use name
equivalence

= why?

35

Coercions

= |f we expect a value of type T1 at some point
in the program, and find a value of type T2, is
that acceptable?

float x = 3.141;
int y = x;

36

1-values and r-values

dst := src

= Whatis dst? What is src?

o dstis a memory location where the value should
be stored

o srcis a value

= “|location” on the left of the assignment called
an |-value

= “value” on the right of the assignment is
called an r-value

37

1-values and r-values (example)

0x42

O0x47

/3

16

0x42

O0x47

17

16

38

1-values and r-values (example)

39

1-values and r-values (examples)

expression construct | resulting kind

constant rvalue

identifier (variable) lvalue

identifier (otherwise) |rvalue

&lvalue rvalue
*rvalue lvalue
V[rvalue] Vv
V.selector Vv
rvalue+rvalue rvalue

lvalue := rvalue rvalue

1-values and r-values

expected

lvalue |rvalue

lvalue |- deref

found

rvalue |error

So far..

= Static correctness checking
= |dentification
o Type checking

= |dentification matches applied occurrences of
identifier to its defining occurrence

» Type checking checks which type
combinations are legal

» Each nodeinthe AST of an expression
represents either an |-value (location) or anr-
value (value)

42

How does this magic happen?

= We probably need to go over the AST?

= how does this relate to the clean formalism of
the parser?

43

Syntax Directed Translation

= Semantic attributes

o Attributes attached to grammar symbols

= Semantic actions

o (already mentioned when we did recursive
descent)

= How to update the attributes

= Attribute grammars

4t

Attribute grammars

= Attributes

o Every grammar symbol has attached attributes
= Example: Expr.type

= Semantic actions

= Every production rule can define how to assign
values to attributes

= Example:

Expr — Expr + Term
Expr.type = Expra.type when (Expri.type ==Term.type)
Error otherwise

45

Indexed symbols

» Add indexes to distinguish repeated grammar
symbols

* Does not affect grammar
» Used in semantic actions

"= Expr— Expr+Term
Becomes
Expr — Expri + Term

46

Example

float x,y,z

Production | Semantic Rule

D—TL L.in = T.type

T —int T.type = integer

T — float T.type = float

L— Lz, id Li.in=L.in
addType(id.entry,L.in)

L —id addType(id.entry,L.in)

47

Dependencies

» Asemantic equationa=baz,...,.bm
requires computation of bz,...,bm to
determine the value of a

» The value of a depends on bz,...,bm
o We write a < bi

48

Attribute Evaluation

» Buildthe AST

= Fil|l attributes of terminals with values derived
from their representation

» Execute evaluation rules of the nodes to
assign values until no new values can be
assigned

o |n the right order such that
* No attribute value is used before its available
= Each attribute will get a value only once

49

Cycles

* Cycleinthe dependence graph
= May not be able to compute attribute values

e N D
Ce D || A
D <D

g 2N J

AST Dependence
graph

E.S=T.i
Ti=Es+1

Attribute Evaluation

» Buildthe AST
» Build dependency graph

= Compute evaluation order using topological
ordering

» Execute evaluation rules based on topological
ordering

= Works as long as there are no cycles

Building Dependency Graph

= All semantic equations take the form

attr1 = funca(attra.1, attra.2,...)
attr2 = funca(attrz.1, attr2.2,...)

» Actions with side effects use a dummy attribute
» Build a directed dependency graph G

o For every attribute a of a node ninthe AST create a
node n.a

o For every node nin the AST and a semantic action of
the form b =f(c1,c2,...ck) add edges of the form (ci,b)

52

Example

float x,y,z]

/

-

RO

O N

EDECHIRCY D

Prod. Semantic Rule
D—TL |Lin=Ttype

T—int T.type = integer

T — float | T.type = float

L—Ll1, |Lzin=L.in

id addType(id.entry,L.in)
L —id addType(id.entry,L.in)

CxXe>

53

Example

[]
S N

Prod. Semantic Rule
D—TL |Lin=Ttype

T—int T.type = integer

T — float | T.type = float

L—Ll1, |Lzin=L.in

id addType(id.entry,L.in)
L —id addType(id.entry,L.in)

54

Topological Order
» Foragraph G=(V,E), |V|=k

» Ordering of the nodes v1,v2,...vk such that for
every edge (vi,vj) € E, i <]

Example topological orderings:14325,41352

55

Example

[float x,y,z]

4 N

float float float

But what about cycles?

* Fora given attribute grammar hard to detect
if it has cyclic dependencies

o Exponential cost

» Special classes of attribute grammars
o Qur “usual trick”

= sacrifice generality for predictable performance

57

Inherited vs. Synthesized Attributes

» Synthesized attributes

= Computed from children of a node

» |nherited attributes

= Computed from parents and siblings of a node

= Attributes of tokens are technically considered
as synthesized attributes

58

example

float x,y,z

Production | Semantic Rule

D—TL L.in = T.type

T —int T.type = integer

T — float T.type = float

L— Lz, id Li.in=L.in
addType(id.entry,L.in)

L —id addType(id.entry,L.in)

m— inherited

—— synthesized

59

S-attributed Grammars

» Special class of attribute grammars
* Only uses synthesized attributes (S-attributed)
= No use of inherited attributes

» Can be computed by any bottom-up parser
during parsing

» Attributes can be stored on the parsing stack

» Reduce operation computes the (synthesized)
attribute from attributes of children

S-attributed

Grammar: example

Production Semantic Rule
S—E; print(E.val)
E—E1+T E.val = Ea1.val + T.val
E—T E.val =T.val
T—>T1*F T.val =Ta.val * F.val
T—F T.val = F.val

F— (E) F.val = E.val

F — digit F.val = digit.lexval

61

example

4 oE N
St
G >
T D (> (X s >
GErB N GETSIGaETS
\ G G s> J

L-attributed grammars

» |-attributed attribute grammar when every
attribute in a production A — Xa...Xnis
o A synthesized attribute, or

= An inherited attribute of X|, 1 <= j <=n that only
depends on
= Attributes of X1...Xj-1 to the left of Xj, or
* Inherited attributes of A

63

Summary

= Contextual analysis can move information
between nodes in the AST

= Even when they are not "“local”

= Attribute grammars
o Attach attributes and semantic actions to grammar

» Attribute evaluation
= Build dependency graph, topological sort, evaluate

» Special classes with pre-determined evaluation
order: S-attributed, L-attributed

64

The End

