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You are here…
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What we want
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Lexical analyzer

Potato potato;
Carrot carrot;
x = tomato + potato + carrot

<id,tomato>,<PLUS>,<id,potato>,<PLUS>,<id,carrot>,EOF

Parser

tomato is undefined
potato used before initialized
Cannot add Potato and Carrot

symbol kind type properties

x var ?

tomato var ?

potato var Potato

carrot var Carrot
LocationExpr
id=tomato

AddExpr
left right

AddExpr
left right

LocationExpr
id=potato id=carrot

LocationExpr



Contextual Analysis

 Often called “Semantic analysis”

 Properties that cannot be formulated via CFG
 Type checking
 Declare before use

 Identifying the same word “w” re-appearing – wbw
 Initialization 
 …

 Properties that are hard to formulate via CFG
 “break” only appears inside a loop 
 …

 Processing of the AST 
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Contextual Analysis

 Identification
 Gather information about each named item in the 

program
 e.g., what is the declaration for each usage

 Context checking
 Type checking
 e.g., the condition in an if-statement is a Boolean
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Identification

 Forward references?
 Languages that don’t require declarations?
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month : integer RANGE [1..12];
…
month := 1;
while (month <= 12) {

print(month_name[month]);
month : = month + 1;

}



Symbol table

 A table containing information about 
identifiers in the program

 Single entry for each named item
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name pos type …

month 1 RANGE[1..12]

month_name … …

…

month : integer RANGE [1..12];
…
month := 1;
while (month <= 12) {

print(month_name[month]);
month : = month + 1;

}



Not so fast…
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struct one_int {
int i;

} i;

main() {
i.i = 42;
int t = i.i;
printf(“%d”,t);
}

A struct field named i

A struct variable named i

Assignment to the “i” field of struct “i”

Reading the “i” field of struct “i”



Not so fast…
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struct one_int {
int i;

} i;

main() {
i.i = 42;
int t = i.i;
printf(“%d”,t);
{ 
int i = 73;
printf(“%d”,i);

}
}

A struct field named i

A struct variable named i

Assignment to the “i” field of struct “i”

int variable named “i”

Reading the “i” field of struct “i”



Scopes

 Typically stack structured scopes 

 Scope entry
 push new empty scope element

 Scope exit
 pop scope element and discard its content

 Identifier declaration
 identifier created inside top scope

 Identifier Lookup
 Search for identifier top-down in scope stack

11



Scope-structured symbol table
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Scope stack

0

3 P

“so”

P

“long”

//

2 P

“and”

P

“thanks”

1 P

“x”

P

“all”

//

P

“the”

P

“fish”

P

“thanks”

//

P

“x”

//

{ 
int the=1;
int fish=2;
Int thanks=3;
{ 
int x = 42;
int all = 73;
{ 

… 
}
}
}



Scope and symbol table

 Scope x Identifier -> properties 
 Expensive lookup

 A better solution 
 hash table over identifiers
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Hash-table based Symbol Table
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name
macro

decl 2 P

“x”

1 P //

name
macro

decl 2 P

“thanks”

0 P //

name
macro

decl 3 P

“so”

//

Id.info



Scope info

15

Scope stack

0

3

Id.info(“so”) Id.info(“long”)

//

2

Id.info(“and”) Id.info(“thanks”)

1

Id.info(“x”) Id.info(“all”)

//

Id.info(“the”) Id.info(“fish”) Id.info(“thanks”)

//

Id.info(“x”)

//

(now just pointers to the corresponding record in the symbol table)



Remember lexing/parsing?

 How did we know to always map an identifier 
to the same token?
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Semantic Checks

 Scope rules
 Use symbol table to check that
 Identifiers defined before used
 No multiple definition of same identifier
 Program conforms to scope rules

 Type checking
 Check that types in the program are consistent
 How?



Types

 What is a type?
 Simplest answer: a set of values
 Integers, real numbers, booleans, …

 Why do we care?
 Safety 
 Guarantee that certain errors cannot occur at runtime

 Abstraction
 Hide implementation details 

 Documentation
 Optimization
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Type System (textbook definition)

“A type system is a tractable syntactic method 
for proving the absence of certain program 
behaviors by classifying phrases according to the 
kinds of values they compute”
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-- Types and Programming Languages 
/ Benjamin C. Pierce



Type System

 A type system of a programming language is a 
way to define how “good” program behave
 Good programs = well-typed programs
 Bad programs = not well typed 

 Type checking
 Static typing – most checking at compile time
 Dynamic typing – most checking at runtime

 Type inference
 Automatically infer types for a program (or show that 

there is no valid typing)
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Static typing vs. dynamic typing

 Static type checking is conservative
 Any program that is determined to be well-typed is 

free from certain kinds of errors
 May reject programs that cannot be statically 

determined as well typed
 Why?

 Dynamic type checking 
 May accept more programs as valid (runtime info)
 Errors not caught at compile time
 Runtime cost
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Type Checking

 Type rules specify 
 which types can be combined with certain operator 
 Assignment of expression to variable
 Formal and actual parameters of a method call

 Examples

“drive” + “drink”

42 + “the answer”

stringstring

string

int string

ERROR



Type Checking Rules

 Specify for each operator
 Types of operands
 Type of result

 Basic Types
 Building blocks for the type system (type rules)
 e.g., int, boolean, (sometimes) string

 Type Expressions
 Array types 
 Function types 
 Record types / Classes
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Typing Rules

If E1 has type int and E2 has type int, 
then E1 + E2 has type int

E1 : int E2 : int

E1 + E2 : int

(Generally, also use a context A)
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More Typing Rules (examples)
A  true : boolean 

A  E1 : int A  E2 : int

A  E1 op E2 : int

A  false : boolean 

A  int-literal : int A  string-literal : string

op  { +, -, /, *, %} 

A  E1 : int A  E2 : int

A  E1 rop E2 : boolean
rop  { <=,<, >, >=} 

A  E1 : T A  E2 : T

A  E1 rop E2 : boolean
rop  { ==,!=} 
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And Even More Typing Rules

A  E1 : boolean A  E2 : boolean

A  E1 lop E2 : boolean
lop  { &&,|| } 

A  E1 : int

A  - E1 : int

A  E1 : boolean

A  ! E1 : boolean

A  E1 : T[]

A  E1.length : int

A  E1 : T[] A  E2 : int

A  E1[E2] : T

A  E1 : int

A  new T[E1] : T[]

A  T \in C

A  new T() : T

id : T  A

A  id : T



Type Checking

 Traverse AST and assign types for AST nodes
 Use typing rules to compute node types

 Alternative: type-check during parsing
 More complicated alternative 
 But naturally also more efficient
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Example

45 > 32 && !false 

BinopExpr UnopExpr

BinopExpr

…

op=AND

op=NEGop=GT

intLiteral

val=45

intLiteral

val=32

boolLiteral

val=false

: int : int

: boolean

: boolean

: boolean

: boolean

A  false : boolean

A  int-literal : int

A  E1 : int A  E2 : int

A  E1 rop E2 : boolean

rop  { <=,<, >, >=} 

A  E1 : boolean A  E2 : boolean

A  E1 lop E2 : boolean

lop  { &&,|| } 

A  E1 : boolean

A  !E1 : boolean



Type Declarations

 So far, we ignored the fact that types can also 
be declared 
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TYPE Int_Array = ARRAY [Integer 1..42] OF Integer;

Var a : ARRAY [Integer 1..42] OF Real;

(explicitly)

(anonymously)
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Var a : ARRAY [Integer 1..42] OF Real;

TYPE #type01_in_line_73 = ARRAY [Integer 1..42] OF Real; 
Var a : #type01_in_line_73;

Type Declarations



Forward References

 Forward references must be resolved 
 A forward references added to the symbol table as forward reference, 

and later updated when type declaration is met
 At the end of scope, must check that all forward references have been 

resolved
 Check must be added for circularity
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TYPE Ptr_List_Entry = POINTER TO List_Entry;
TYPE List_Entry = 

RECORD
Element : Integer;
Next : Ptr_List_Entry;

END RECORD;



Type Table

 All types in a compilation unit are collected in 
a type table

 For each type, its table entry contains:
 Type constructor: basic, record, array, pointer,…
 Size and alignment requirements 
 to be used later in code generation

 Types of components (if applicable)
 e.g., types of record fields
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Type Equivalence: Name Equivalence

t1 not (name) equivalence to t2
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Type t1 = ARRAY[Integer] OF Integer;
Type t2 = ARRAY[Integer] OF Integer;

t3 equivalent to t4

Type t3 = ARRAY[Integer] OF Integer;
Type t4 = t3



t5, t6, t7 are all (structurally) equivalent
34

Type Equivalence: Structural Equivalence

Type t5 = RECORD c: Integer; p: POINTER TO t5; END 
RECORD;
Type t6 = RECORD c: Integer; p: POINTER TO t6; END 
RECORD;
Type t7 = 

RECORD
c: Integer;
p: POINTER TO 

RECORD 
c: Integer;
p: POINTER to t5;

END RECORD;
END RECORD;



In practice

 Almost all modern languages use name 
equivalence

 why?
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Coercions

 If we expect a value of type T1 at some point 
in the program, and find a value of type T2, is 
that acceptable?

36

float x = 3.141;
int y = x;



l-values and r-values

 What is dst? What is src?
 dst is a memory location where the value should 

be stored
 src is a value

 “location” on the left of the assignment called 
an l-value

 “value” on the right of the assignment is 
called an r-value

37

dst := src



l-values and r-values (example)
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x:= y + 1

730x42

160x47

x

y

…
…

…

170x42

160x47

x

y

…
…

…



l-values and r-values (example)
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x := A[1]

x := A[A[1]]



expression construct resulting kind

constant rvalue

identifier (variable) lvalue

identifier (otherwise) rvalue

&lvalue rvalue

*rvalue lvalue

V[rvalue] V

V.selector V

rvalue+rvalue rvalue

lvalue := rvalue rvalue

40

l-values and r-values (examples)
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lvalue rvalue
lvalue - deref
rvalue error -

expected
fo

un
d

l-values and r-values



So far…

 Static correctness checking
 Identification
 Type checking

 Identification matches applied occurrences of 
identifier to its defining occurrence

 Type checking checks which type 
combinations are legal

 Each node in the AST of an expression 
represents either an l-value (location) or an r-
value (value)
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How does this magic happen?

 We probably need to go over the AST?

 how does this relate to the clean formalism of 
the parser?
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Syntax Directed Translation

 Semantic attributes
 Attributes attached to grammar symbols

 Semantic actions
 (already mentioned when we did recursive 

descent)
 How to update the attributes

 Attribute grammars
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Attribute grammars

 Attributes
 Every grammar symbol has attached attributes
 Example: Expr.type

 Semantic actions
 Every production rule can define how to assign 

values to attributes 
 Example: 

Expr  Expr + Term
Expr.type = Expr1.type when (Expr1.type == Term.type)

Error otherwise 
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Indexed symbols

 Add indexes to distinguish repeated grammar 
symbols

 Does not affect grammar 
 Used in semantic actions

 Expr  Expr + Term
Becomes
Expr  Expr1 + Term
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Example

47

Production Semantic Rule

D T L L.in = T.type

T  int T.type = integer

T  float T.type = float

L  L1, id L1.in = L.in
addType(id.entry,L.in)

L  id addType(id.entry,L.in)

D

float

L

L id1

T

L id2

id3

float x,y,z

float float

float

float



Dependencies

 A semantic equation a = b1,…,bm
requires computation of b1,…,bm to 
determine the value of a

 The value of a depends on b1,…,bm
 We write a  bi

48



Attribute Evaluation

 Build the AST
 Fill attributes of terminals with values derived 

from their representation
 Execute evaluation rules of the nodes to 

assign values until no new values can be 
assigned
 In the right order such that 
 No attribute value is used before its available
 Each attribute will get a value only once
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Cycles

 Cycle in the dependence graph
 May not be able to compute attribute values

50

T

E
E.S = T.i
T.i = E.s + 1

T.i

E.s

AST Dependence 
graph



Attribute Evaluation

 Build the AST
 Build dependency graph
 Compute evaluation order using topological 

ordering
 Execute evaluation rules based on topological 

ordering

 Works as long as there are no cycles

51



Building Dependency Graph

 All semantic equations take the form

attr1 = func1(attr1.1, attr1.2,…)
attr2 = func2(attr2.1, attr2.2,…)

 Actions with side effects use a dummy attribute
 Build a directed dependency graph G
 For every attribute a of a node n in the AST create a 

node n.a
 For every node n in the AST and a semantic action of 

the form b = f(c1,c2,…ck) add edges of the form (ci,b)
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Example
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Prod. Semantic Rule

D T L L.in = T.type

T  int T.type = integer

T  float T.type = float

L  L1,
id 

L1.in = L.in
addType(id.entry,L.in)

L  id addType(id.entry,L.in)

D

float

L

L id1

T

L id2

id3

float x,y,z

type in dmy

entry

entry

entry

in

in

dmy

dmy



Example
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Prod. Semantic Rule

D T L L.in = T.type

T  int T.type = integer

T  float T.type = float

L  L1,
id 

L1.in = L.in
addType(id.entry,L.in)

L  id addType(id.entry,L.in)

D

float

L

L id1

T

L id2

id3

float x,y,z

type in dmy

entry

entry

entry

in

in

dmy

dmy



Topological Order

 For a graph G=(V,E), |V|=k

 Ordering of the nodes v1,v2,…vk such that for 
every edge (vi,vj)  E, i < j

55

4 3 2

15

Example topological orderings: 1 4 3 2 5, 4 1 3 5 2



Example
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float x,y,z

type in dmy

entry

entry

entry

in

in

dmy

dmy

1

2

3

4

5

7

8 9

10

6
float float

ent1

ent2

ent3

float

float

float
float

float



But what about cycles?

 For a given attribute grammar hard to detect 
if it has cyclic dependencies
 Exponential cost

 Special classes of attribute grammars
 Our “usual trick”
 sacrifice generality for predictable performance
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Inherited vs. Synthesized Attributes

 Synthesized attributes
 Computed from children of a node

 Inherited attributes
 Computed from parents and siblings of a node

 Attributes of tokens are technically considered 
as synthesized attributes
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example
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Production Semantic Rule

D T L L.in = T.type

T  int T.type = integer

T  float T.type = float

L  L1, id L1.in = L.in
addType(id.entry,L.in)

L  id addType(id.entry,L.in)

D

float

L

L id1

T

L id2

id3

float x,y,z

float float

float

float

inherited

synthesized



S-attributed Grammars

 Special class of attribute grammars 
 Only uses synthesized attributes (S-attributed)
 No use of inherited attributes

 Can be computed by any bottom-up parser 
during parsing

 Attributes can be stored on the parsing stack
 Reduce operation computes the (synthesized) 

attribute from attributes of children
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S-attributed Grammar: example
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Production Semantic Rule

S E ; print(E.val)

E  E1 + T E.val = E1.val + T.val

E T E.val = T.val

T T1 * F T.val = T1.val * F.val

T  F T.val = F.val

F  (E) F.val = E.val

F  digit F.val = digit.lexval



example 
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3

F

T

E +

4

F

T

E *

7

F

T

S

Lexval=3Lexval=4Lexval=7

val=7

val=7

val=4

val=4

val=28

val=3

val=3

val=31

31



L-attributed grammars

 L-attributed attribute grammar when every 
attribute in a production A X1…Xn is
 A synthesized attribute, or
 An inherited attribute of Xj, 1 <= j <=n that only 

depends on 
 Attributes of X1…Xj-1 to the left of Xj, or
 Inherited attributes of A
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Summary

 Contextual analysis can move information 
between nodes in the AST
 Even when they are not “local”

 Attribute grammars 
 Attach attributes and semantic actions to grammar

 Attribute evaluation
 Build dependency graph, topological sort, evaluate

 Special classes with pre-determined evaluation 
order: S-attributed, L-attributed
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The End
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