Lecture 03 - Syntax analysis: top-down parsing

THEORY OF COMPILATION

Eran Yahav

You are here

Compiler

Last Week: from characters to tokens

<ID,"x"> <EO> <ID,"b"> <MULT> <ID,"b"> <MINUS> <INT,4> <MULT> <ID,"a"> <MULT> <ID,"c">

Last Week: Regular Expressions

Basic Patterns	The character x
x	Any character, usually except a new line
\cdot	Any of the characters $x_{1} y_{1} z$
$[x y z]$	
Repetition Operators	An R or nothing (=optionally an R)
$R ?$	Zero or more occurrences of R
$R^{2} *$	One or more occurrences of R
$R+$	An R1 followed by R2
Composition Operators	
R1R2	Either an R1 or R2
R1 $\mid R 2$	
Grouping	R itself
(R)	

Today: from tokens to AST

<ID,"x"> <EQ> <ID,"b"> <MULT> <ID,"b"> <MINUS> <INT,4> <MULT> <ID,"a"> <MULT> <ID,"c">
ŋ

Parsing

- Goals
- Is a sequence of tokens a valid program in the language?
- Construct a structured representation of the input text
- Error detection and reporting
- Challenges
- How do you describe the programming language?
- How do you check validity of an input?
- Where do you report an error?

Context free grammars

$$
G=(V, T, P, S)
$$

- V - non terminals
- T-terminals (tokens)
- P-derivation rules
- Each rule of the form $V \rightarrow(T \cup V)^{*}$
- S - initial symbol

Why do we need context free grammars?

$$
\begin{aligned}
& S \rightarrow S S \\
& S \rightarrow(S) \\
& S \rightarrow()
\end{aligned}
$$

Example

$$
\begin{aligned}
& S \rightarrow S ; S \\
& S \rightarrow \text { id }:=E \\
& E \rightarrow \text { id }|E+E| E * E \mid(E)
\end{aligned}
$$

$$
\begin{aligned}
& V=\{S, E\} \\
& \left.T=\left\{i d, '^{\prime},{ }^{\prime} *^{\prime},{ }^{\prime}\left({ }^{\prime},\right)^{\prime}\right)\right\}
\end{aligned}
$$

Derivation

Parse Tree

Questions

- How did we know which rule to apply on every step?
- Does it matter?
- Would we always get the same result?

Ambiguity

Leftmost/rightmost Derivation

- Leftmost derivation
- always expand leftmost non-terminal
- Rightmost derivation
- Always expand rightmost non-terminal
- Allows us to describe derivation by listing the sequence of rules
- always know what a rule is applied to
- Orders of derivation applied in our parsers (coming soon)

Leftmost Derivation

Rightmost Derivation

Bottom-up Example

$$
\begin{aligned}
& S \rightarrow S ; S \\
& S \rightarrow i d:=E \\
& E \rightarrow i d|E+E| E * E \mid(E)
\end{aligned}
$$

id := id ; id := id + id
id := id ; id := id + id
id := E; id := id + id
id := E; id := id + id
S ; id := id + id
S ; id := id + id
S ; id := E + id
S ; id := E + id
S ; id := E + E
S ; id := E + E
S ; id := E
S ; id := E
S ; S
S ; S
S }->\mathrm{ S;S
S }->\mathrm{ S;S
Bottom-up picking left alternative on every step \rightarrow Rightmost derivation when going top-down

Parsing

- A context free language can be recognized by a nondeterministic pushdown automaton
- Parsing can be seen as a search problem
- Can you find a derivation from the start symbol to the input word?
- Easy (but very expensive) to solve with backtracking
- CYK parser can be used to parse any context-free language but has complexity $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- We want efficient parsers
- Linear in input size
- Deterministic pushdown automata
- We will sacrifice generality for efficiency

'rBpute-fonces pansing

(not a parse tree... a search for the parse tree by exhaustively applying all rules)

Efficient Parsers

- Top-down (predictive)
- Construct the leftmost derivation
- Apply rules "from left to right"
- Predict what rule to apply based on nonterminal and token
- Bottom up (shift reduce)
- Construct the rightmost derivation
- Apply rules "from right to left"
- Reduce a right-hand side of a production to its non-terminal

Efficient Parsers

- Top-down (predictive parsing)
already read...

to be read...
- Bottom-up (shift reduce)

Grammar Hierarchy

Top-down Parsing

- Given a grammar $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})$ and a word w
- Goal: derive w using G
- Idea
- Apply production to leftmost nonterminal
- Pick production rule based on next input token
- General grammar
- More than one option for choosing the next production based on a token
- Restricted grammars (LL)
- Know exactly which single rule to apply
- May require some lookahead to decide

Boolean Expressions Example

Production to apply is known from next input token

Recursive Descent Parsing

- Define a function for every nonterminal
- Every function work as follows
- Find applicable production rule
- Terminal function checks match with next input token
- Nonterminal function calls (recursively) other functions
- If there are several applicable productions for a nonterminal, use lookahead

Matching tokens

```
void match(token t) {
    if (current == t)
        current = next_token();
    else
        error;
}
```

- Variable current holds the current input token

functions for nonterminals

```
E L LIT | (E OP E) | not E
LIT }->\mathrm{ true | false
OP }->\mathrm{ and | or | xor
```

```
void E() {
    if (current \in {TRUE, FALSE}) // E -> LIT
        LIT();
    else if (current == LPAREN) // E -> ( E OP E )
        match(LPARENT); E(); OP(); E(); match(RPAREN);
    else if (current == NOT) // E -> not E
        match(NOT); E();
    else
        error;
}
void LIT() {
        if (current == TRUE) match(TRUE);
        else if (current == FALSE) match(FALSE);
        else error;
    }
```


functions for nonterminals

Adding semantic actions

- Can add an action to perform on each production rule
- Can build the parse tree
- Every function returns an object of type Node
- Every Node maintains a list of children
- Function calls can add new children

Building the parse tree

```
Node E() {
    result = new Node();
    result.name = "E";
    if (current \in {TRUE, FALSE}) // E -> LIT
        result.addChild(LIT());
    else if (current == LPAREN) // E -> ( E OP E )
        result.addChild(match(LPARENT));
        result.addChild(E());
        result.addChild(OP());
        result.addChild(E());
        result.addChild(match(RPAREN));
    else if (current == NOT) // E -> not E
        result.addChild(match(NOT));
        result.addChild(E());
    else error;
        return result;
}
```


Recursive Descent

```
void A() {
    choose an A-production, A -> X X }\mp@subsup{X}{2}{}\ldots..\mp@subsup{X}{k}{
    for (i=1; i\leq k; i++) {
        if (Xi is a nonterminal)
            call procedure Xi();
        elseif (Xi == current)
                advance input;
        else
            report error;
    }
}
```

- How do you pick the right A-production?
- Generally - try them all and use backtracking
- In our case - use lookahead

Recursive descent: are we done?

```
term -> ID | indexed_elem
indexed_elem }->\mathrm{ ID [ expr ]
```

- The function for indexed_elem will never be tried...
- What happens for input of the form
- ID [expr]

Recursive descent: are we done?

$$
\begin{aligned}
& S \rightarrow A \quad a \quad b \\
& A \rightarrow a \mid
\end{aligned}
$$

int S() \{
return $A() \& \&$ match(token('a')) \&\& match(token('b'));
\}
int $A()$ \{
return match(token('a')) || 1;
\}

- What happens for input "ab"?
- What happens if you flip order of alternatives and try "aab"?

Recursive descent: are we done?

$$
E \rightarrow E \text { - term }
$$

int $E()$ \{
return E() \& \& match(token($\left.\left.{ }^{-}-{ }^{\prime}\right)\right)$ \&\& term();
\}

- What happens with this procedure?
- Recursive descent parsers cannot handle left-recursive grammars

Figuring out when it works...

```
term -> ID | indexed_elem
    indexed_elem -> ID [ expr ]
```

(2) $\begin{array}{lllll}S & \rightarrow & A & a & b \\ A & \rightarrow & a & 1 & \varepsilon\end{array}$

3 examples where we got into trouble with our recursive descent approach

FIRST sets

- For every production rule $A \rightarrow \alpha$
- $\operatorname{FIRST}(\alpha)=$ all terminals that α can start with
- i.e., every token that can appear as first in α under some derivation for α
- In our Boolean expressions example
- FIRST(LIT) $=$ \{true, false $\}$
- $\operatorname{FIRST}((E O P E))=\left\{{ }^{\prime}\left({ }^{\prime}\right\}\right.$
- FIRST (not E) $=\{$ not $\}$
- No intersection between FIRST sets => can always pick a single rule
- If the FIRST sets intersect, may need longer lookahead
- $\quad L L(k)=$ class of grammars in which production rule can be determined using a lookahead of k tokens
- $\mathrm{LL}(1)$ is an important and useful class

FOLLOW Sets

- What do we do with nullable alternatives?
- Use what comes afterwards to predict the right production
- For every production rule $A \rightarrow \alpha$
- FOLLOW(A) = set of tokens that can immediately follow A
- Can predict the alternative A_{k} for a non-terminal N when the lookahead token is in the set
- $\operatorname{FIRST}\left(A_{k}\right) \cup$ (if A_{k} is nullable then FOLLOW(N))

LL(k) Grammars

- A grammar is in the class $\operatorname{LL}(\mathrm{K})$ when it can be derived via:
- Top down derivation
- Scanning the input from left to right (L)
- Producing the leftmost derivation (L)
- With lookahead of k tokens (k)
- A language is said to be $\operatorname{LL}(\mathrm{k})$ when it has an LL(k) grammar

Back to our $1^{\text {st }}$ example

```
term -> ID | indexed_elem
indexed_elem-> ID [ expr ]
```

- $\operatorname{FIRST}(I D)=\{I D\}$
- $\operatorname{FIRST}($ indexed_elem) $=\{$ ID $\}$
- FIRST/FIRST conflict

Left factoring

- Rewrite the grammar to be in LL(1)

```
term -> ID | indexed_elem
indexed_elem-> ID [ expr ]
```


term \rightarrow ID after_ID
after_ID \rightarrow [expr] | ε

Intuition: just like factoring $x * y+x * z$ into $x *(y+z)$

Left factoring - another example

```
S -> if E then S else S
    | if E then S
    | T
```

```
S }->\mathrm{ if E then S S'
    | T
    S' }->\mathrm{ else S | &
```


Back to our $2^{\text {nd }}$ example

```
S -> A a b
A }->\mathrm{ a | &
```

- $\operatorname{FIRST}(S)=\left\{{ }^{\prime} a^{\prime}\right\}, \operatorname{FOLLOW}(S)=\{ \}$
- $\operatorname{FIRST}(A)=\left\{' a^{\prime} \varepsilon\right\}, \operatorname{FOLLOW}(A)=\left\{{ }^{\prime} a^{\prime}\right\}$
- FIRST/FOLLOW conflict

Substitution

```
S -> A a b
A }->\textrm{a}|
```

$\sqrt{\square}$ Substitute A in S
$S \rightarrow$ a a b | a b
$\sqrt{7}$ Left factoring

```
S -> a after_A
after_A -> a b | b
```


Back to our $3^{\text {rd }}$ example

```
E T E - term
```

- Left recursion cannot be handled with a bounded lookahead
- What can we do?

Left recursion removal

- $L\left(\mathrm{G}_{1}\right)=\beta, \beta \alpha, \beta \alpha \alpha, \beta \alpha \alpha \alpha, \ldots$
- $\mathrm{L}(\mathrm{G} 2)=$ same
- For our $3^{\text {rd }}$ example:

LL(k) Parsers

- Recursive Descent
- Manual construction
- Uses recursion
- Wanted
- A parser that can be generated automatically
- Does not use recursion

LL(k) parsing with pushdown automata

- Pushdown automaton uses
- Prediction stack
- Input stream
- Transition table
- nonterminals x tokens -> production alternative
- Entry indexed by nonterminal N and token t contains the alternative of N that must be predicated when current input starts with t

LL(k) parsing with pushdown automata

- Two possible moves
- Prediction
- When top of stack is nonterminal N, pop N , lookup table[N, t. If table[N, t] is not empty, push table[$\mathrm{N}, \mathrm{t}]$ on prediction stack, otherwise - syntax error
- Match
- When top of prediction stack is a terminal T, must be equal to next input token t. If ($t==\mathrm{T}$), pop T and consume t. If $(\mathrm{t} \neq \mathrm{T})$ syntax error
- Parsing terminates when prediction stack is empty. If input is empty at that point, success. Otherwise, syntax error

Example transition table

(1) $\mathrm{E} \rightarrow$ LIT
(2) $E \rightarrow(E O P E)$
(3) $E \rightarrow \operatorname{not} E$
(4) LIT \rightarrow true
(5) LIT \rightarrow false
(6) OP \rightarrow and
(7) OP \rightarrow or
(8) OP \rightarrow xor

> Which rule should be used

Simple Example

Input suffix	Stack content	Move
aacbb\$	A\$	$\operatorname{predict}(\mathrm{A}, \mathrm{a})=\mathrm{A} \rightarrow \mathrm{aAb}$
aacbb\$	aAb\$	match(a,a)
acbb\$	Ab\$	$\operatorname{predict}(\mathrm{A}, \mathrm{a})=\mathrm{A} \rightarrow \mathrm{aAb}$
acbb\$	aAbb\$	match(a,a)
cbb\$	Abb\$	$\operatorname{predict}(\mathrm{A}, \mathrm{c})=\mathrm{A} \rightarrow \mathrm{c}$
cbb\$	cbb\$	match(c, c)
bb\$	bb\$	match(b,b)
b\$	b\$	match(b,b)
\$	\$	match(\$,\$) - success

	\mathbf{a}	\mathbf{b}	\mathbf{c}
A	$\mathrm{A} \rightarrow \mathrm{aAb}$		$\mathrm{A} \rightarrow \mathrm{c}$

Simple Example

bcbb\$	$A \rightarrow a \mathrm{Ab} \mid \mathrm{c}$	
Input suffix	Stack content	Move
abcbb\$	A\$	$\operatorname{predict}(\mathrm{A}, \mathrm{a})=\mathrm{A} \rightarrow \mathrm{aAb}$
abcbb\$	aAb\$	match(a,a)
bcbb\$	Ab\$	$\operatorname{predict}(\mathrm{A}, \mathrm{b})=\mathrm{ERROR}$

	\mathbf{a}	\mathbf{b}	\mathbf{c}
A	$\mathrm{A} \rightarrow \mathrm{aAb}$		$\mathrm{A} \rightarrow \mathrm{c}$

Error Handling

- Mentioned last time
- Lexical errors
- Syntax errors
- Semantic errors (e.g., type mismatch)

Error Handling and Recovery

$$
x=a *(p+q *(-b *(r-s)
$$

- Where should we report the error?
- The valid prefix property
- Recovery is tricky
- Heuristics for dropping tokens, skipping to semicolon, etc.

Error Handling in LL Parsers

| $C \$$ | $S \rightarrow a$ c \mid b S
 Input suffix Stack content Move
 $C \$$ $S \$$ $\operatorname{predict}(S, c)=$ ERROR
 |
| :--- | :--- | :--- |

- Now what?
- Predict bS anyway "missing token b inserted in line XXX "

	a	\mathbf{b}	\mathbf{c}
S	$\mathrm{S} \rightarrow \mathrm{ac}$	$\mathrm{S} \rightarrow \mathrm{bS}$	

Error Handling in LL Parsers

$C \$$	$S \rightarrow$ a c \| b S	
Input suffix	Stack content	Move
bc\$	S\$	predict(b, c) $=\mathrm{S} \rightarrow \mathrm{bS}$
$b c \$$	bS\$	match(b,b)
C\$	S\$	Looks familiar?

- Result: infinite loop

	a	b	c
S	$\mathrm{S} \rightarrow \mathrm{ac}$	$\mathrm{S} \rightarrow \mathrm{bS}$	

Error Handling

- Requires more systematic treatment
- Enrichment
- Acceptable-set method
- Not part of course material

Summary

- Parsing
- Top-down or bottom-up
- Top-down parsing
- Recursive descent
- LL(k) grammars
- LL(k) parsing with pushdown automata
- LL(K) parsers
- Cannot deal with left recursion
- Left-recursion removal might result with complicated grammar

Coming up next time

- More syntax analysis

