
 1

SmartFuzz

Dynamic Test Generation To Find Integer
Bugs in x86 Binary Linux Programs

D. Molnar and X. C. Li and D. A. Wagner

Seminar in Program Analysis for Cyber-Security
(236804) – Spring 2011
Karine Even - Technion

 2

Outline

● Integer Bugs
● Motivation
● Test Generation for Finding Bugs
● SmartFuzz – Describing the method
● SmartFuzz – Algorithm
● Results
● Advantages/Disadvantages
● Conclusion & Discussion

 3

Integer Bugs

● A common cause for serious security
vulnerabilities

● Result from a mismatch between machine
arithmetic and mathematical arithmetic

● Can lead to a buffer overflow: using too
small/large number than expected

 4

Integer Bugs - Types

● Overflow/Underflow

● Width Conversions

● Signed/Unsigned
Conversion

 5

Motivation

● Integer overflow bugs recently became the
second most common bug type in security
advisories from OS vendors

● Eliminates such bugs is important for
improving software security

● Consider a large legacy code: we want to find
and fix (manually) these bugs

 6

Static Analysis

● Generate many false positives/negatives

● Wrong values: Since it is difficult to statically
reason about integer values with sufficient
precision (false-positive)

● Wrong location: Intent overflow semantics
(false-positive)

● Missed bug: under approximation
(false-negative)

 7

Runtime Checks

● Inserts into the code, runtime checks for
integer bugs and raises an exception if they
occur

● Generate many false positives/negatives

● Benign and harmless overflows (false-positive)
● Intent overflow semantics (false-positive)
● Missed bug: imprecise checks (false-negative)

 8

Uncover Bugs - Motivation

● False positives: time-consuming
(waste the programmer’s/end user’s time)

● Reducing the false positive rate is important

● How?
– Automated process that checks these paths

as part of the tool
– Throws no exception

⇒ Creates a report of all real-bugs instead
– Done via dynamic test generation

 9

Dynamic Test Generation

● A technique for generating test cases that
expose specifically targeted behaviors of the
program

● A test case: an input
● For multi-threaded programs: input+schedule

● Uses a symbolic execution of a test case to
synthesize more test cases

 10

Dynamic Test Generation

● Create an initial set of test cases
– Randomly or by using a valid known one

● For each test case in the set:
– Executes the program both concretely and

symbolically ⇒ extracts a path condition
– Generates new test cases by solving

symbolic constraints and add them to the set

● Path condition: a conjunction of all
constraints over the symbolic values at each
branch point of the concrete execution

 11

Dynamic Test Generation

● Constraints: can represent
– A specific path
– A specific behavior

● For example: a constraints that satisfied once
an assertion is violated

● Feeds to a solver: a path condition + an
assertion violation constraint

● A satisfied assignment ≡ There is an input that
violate a particular assertion and can cause
the program to follow this path

 12

SmartFuzz

● Performs symbolic execution and dynamic test
generation on Linux x86 applications

● Discovers integer bugs in single threaded
programs with untrusted data

● Reports real bugs: use common tools to check
for buggy behavior (no false alarms)

● Reporting service: metafuzz.com, a web
service for tracking test cases and bugs

 13

SmartFuzz

● Constructs test cases that trigger:
– Arithmetic overflows
– Non-value-preserving width conversions
– Dangerous signed/unsigned conversions

(Via symbolic execution)

● Signed/unsigned conversions
Type inference approach: detects values that
are used as both signed and unsigned
integers

 14

SmartFuzz

● Online constraint generation: generates
constraints while the program is running

● Using Valgrind intermediate representation:
Translate the underlying x86 code on-the-fly
into VEX

 15

SmartFuzz

● Concertize the memory address before
accessing the symbolic heap for each memory
access instruction

● Stores symbolic information only for taint data
(data that depends on untrusted inputs)

 16

Algorithm

● Add test cases to a pool
– Usually, starts with valid inputs

● Each test case in the pool receives a score
● A score of a run: according to the number of

new basic blocks seen

● Iteratively creates more test cases

● Reports bugs via Metafuzz framework

 17

Algorithm

● In each iteration of test generation:
– Chooses a high scoring test case
– Executes concretely and symbolically the

program on that test case
(Via the Valgrind binary analysis framework)

– Generates a path condition
(coverage&bug-seeking constraints)

– Solves a path constraints via STP (a solver)

– A solution: many new test cases
– Reports a bug if a test case exhibits it
– Add the pool test cases with no bug

 18

Path Constraints

● Constraints for coverage
– Add for each symbolic branch, a constraint

that tries to force the program down a
different path

– A solution: a new “real” test case

● Constraints for bug-seeking
– Add a constraint that is satisfied if an integer

bug condition is satisfied
– e.g., force an arithmetic calculation overflow

 19

Path Constraints

● Add a constraint that is satisfied if:

● Overflow/Underflow: overflow/underflow occurs
● Width Conversions: source value can be outside

the range of target value
● Signed/Unsigned Conversions: reconstructs

signed/unsigned type information
– Form a four-point lattice:

{“Top”, “Signed”, “Unsigned”, “Bottom”}
– “Bottom”: value has been used

inconsistently as both a signed/unsigned

 20

Results

● Compares:
Dynamic test generation vs. black-box fuzz
testing (different authors)

● metafuzz.com site has recorded more than
2,614 test runs, comprising 2,361,595 test
cases

● Experiments: found approximately 77 total
distinct bugs in 864 compute hours

 21

Results

 22

Results

● SmartFuzz finds bugs missed by zzuf (and
vice versa)

● Interesting case: a program where SmartFuzz
finds bugs but zzuf does not

● The zzuf tool: a simple and effective fuzz
testing program

● Fuzzing: A method of finding software holes
by feeding purposely invalid data as input to
the program

 23

Advantages

● Automated process(till the final report creation)

● Generate tests directly from shipping binaries
● No need or use of source code
● No need to modify the build process for a

program under test

● Tests and analyze the whole-program:
Can find bugs that arise due to interactions
between the application and libraries it uses

 24

Advantages

● Use different techniques for scaling dynamic
test generation
(e.g., saves only necessary variables data)

● Address the problem of type inference for
integer types in binary traces

● Efficient way for reporting bugs via Metafuzz

 25

Disadvantages

● One thread - no concurrency
Cannot test multi-threaded and network-facing
programs

● Uses Valgrind binary analysis framework
Results in long traces and correspondingly longer
symbolic formulas

● Online constraint generation
Instead of offline constraint generation - that is better

 26

Disadvantages

● Cannot generate any test case
The input of test cases is limited by size

● Repeats many sub-expression optimizations
Sends to the solver an expression that is “close” as
possible to the intermediate representation

● Needs a powerful solver
Not all expression are simple/easy to solve

 27

Conclusions & Discussion

● SmartFuzz: cannot guarantee full coverage
⇒ Can use more than one testing tool

● metafuzz.com: presents a long list of bugs
So what's next?

 28

Any Questions?

Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

