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Integer Bugs

● A common cause for serious security 
vulnerabilities

● Result from a mismatch between machine 
arithmetic and mathematical arithmetic

● Can lead to a buffer overflow: using too 
small/large number than expected
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Integer Bugs - Types

● Overflow/Underflow

● Width Conversions

● Signed/Unsigned 
Conversion
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Motivation

● Integer overflow bugs recently became the 
second most common bug type in security 
advisories from OS vendors

● Eliminates such bugs is important for 
improving software security

● Consider a large legacy code: we want to find 
and fix (manually) these bugs
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Static Analysis

● Generate many false positives/negatives

● Wrong values: Since it is difficult to statically 
reason about integer values with sufficient 
precision (false-positive)

● Wrong location: Intent overflow semantics 
(false-positive)

● Missed bug: under approximation 
(false-negative)
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Runtime Checks

● Inserts into the code, runtime checks for 
integer bugs and raises an exception if they 
occur

● Generate many false positives/negatives 

● Benign and harmless overflows (false-positive)
● Intent overflow semantics (false-positive)
● Missed bug: imprecise checks (false-negative)
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Uncover Bugs - Motivation

● False positives: time-consuming 
(waste the programmer’s/end user’s time)

● Reducing the false positive rate is important

● How?
– Automated process that checks these paths 

as part of the tool
– Throws no exception 

⇒ Creates a report of all real-bugs instead 
– Done via dynamic test generation
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Dynamic Test Generation

● A technique for generating test cases that 
expose specifically targeted behaviors of the 
program

● A test case: an input
● For multi-threaded programs: input+schedule

● Uses a symbolic execution of a test case to 
synthesize more test cases
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Dynamic Test Generation

● Create an initial set of test cases
– Randomly or by using a valid known one

● For each test case in the set:
– Executes the program both concretely and 

symbolically ⇒ extracts a path condition
– Generates new test cases by solving 

symbolic constraints and add them to the set

● Path condition: a conjunction of all 
constraints over the symbolic values at each 
branch point of the concrete execution 
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Dynamic Test Generation

● Constraints: can represent 
– A specific path  
– A specific behavior

● For example: a constraints that satisfied once 
an assertion is violated

● Feeds to a solver: a path condition + an 
assertion violation constraint

● A satisfied assignment ≡ There is an input that 
violate a particular assertion and can cause 
the program to follow this path 
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SmartFuzz

● Performs symbolic execution and dynamic test 
generation on Linux x86 applications

● Discovers integer bugs in single threaded 
programs with untrusted data

● Reports real bugs: use common tools to check 
for buggy behavior (no false alarms)

● Reporting service: metafuzz.com, a web 
service for tracking test cases and bugs
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SmartFuzz

● Constructs test cases that trigger: 
– Arithmetic overflows
– Non-value-preserving width conversions
– Dangerous signed/unsigned conversions

(Via symbolic execution)

● Signed/unsigned conversions
Type inference approach: detects values that 
are used as both signed and unsigned 
integers
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SmartFuzz

● Online constraint generation: generates 
constraints while the program is running

● Using Valgrind intermediate representation:
Translate the underlying x86 code on-the-fly 
into VEX
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SmartFuzz

● Concertize the memory address before 
accessing the symbolic heap for each memory 
access instruction

● Stores symbolic information only for taint data 
(data that depends on untrusted inputs)
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Algorithm

● Add test cases to a pool 
– Usually, starts with valid inputs

● Each test case in the pool receives a score
● A score of a run: according to the number of 

new basic blocks seen

● Iteratively creates more test cases

● Reports bugs via Metafuzz framework
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Algorithm

● In each iteration of test generation:
– Chooses a high scoring test case
– Executes concretely and symbolically the 

program on that test case
(Via the Valgrind binary analysis framework)

– Generates a path condition 
(coverage&bug-seeking constraints)

– Solves a path constraints via STP (a solver)

– A solution: many new test cases
– Reports a bug if a test case exhibits it
– Add the pool test cases with no bug
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Path Constraints

● Constraints for coverage
– Add for each symbolic branch, a constraint 

that tries to force the program down a 
different path

– A solution: a new “real” test case

● Constraints for bug-seeking
– Add a constraint that is satisfied if an integer 

bug condition is satisfied
– e.g., force an arithmetic calculation overflow
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Path Constraints

● Add a constraint that is satisfied if:

● Overflow/Underflow: overflow/underflow occurs
● Width Conversions: source value can be outside 

the range of target value
● Signed/Unsigned Conversions: reconstructs 

signed/unsigned type information
– Form a four-point lattice: 

{“Top”, “Signed”, “Unsigned”, “Bottom”}
– “Bottom”: value has been used 

inconsistently as both a signed/unsigned
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Results

● Compares: 
Dynamic test generation vs. black-box fuzz 
testing (different authors)

● metafuzz.com site has recorded more than 
2,614 test runs, comprising 2,361,595 test 
cases

● Experiments: found approximately 77 total 
distinct bugs in 864 compute hours
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Results
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Results

● SmartFuzz finds bugs missed by zzuf (and 
vice versa)

● Interesting case: a program where SmartFuzz 
finds bugs but zzuf does not

● The zzuf tool: a simple and effective fuzz 
testing program

● Fuzzing: A method of finding software holes 
by feeding purposely invalid data as input to 
the program
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Advantages

● Automated process(till the final report creation)

● Generate tests directly from shipping binaries
● No need or use of source code
● No need to modify the build process for a 

program under test

● Tests and analyze the whole-program: 
Can find bugs that arise due to interactions 
between the application and libraries it uses
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Advantages

● Use different techniques for scaling dynamic 
test generation 
(e.g., saves only necessary variables data)

● Address the problem of type inference for 
integer types in binary traces

● Efficient way for reporting bugs via Metafuzz
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Disadvantages

● One thread - no concurrency 
Cannot test multi-threaded and network-facing 
programs

● Uses Valgrind binary analysis framework 
Results in long traces and correspondingly longer 
symbolic formulas

● Online constraint generation 
Instead of offline constraint generation - that is better
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Disadvantages

● Cannot generate any test case 
The input of test cases is limited by size

● Repeats many sub-expression optimizations
Sends to the solver an expression that is “close” as 
possible to the intermediate representation

● Needs a powerful solver
Not all expression are simple/easy to solve 
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Conclusions & Discussion

● SmartFuzz: cannot guarantee full coverage
⇒ Can use more than one testing tool

● metafuzz.com: presents a long list of bugs
So what's next?
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Any Questions?

Thank You!
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