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Simultaneous near-certain preparation of qubits (quantum bits) in their ground states is a key hurdle in
quantum computing proposals as varied as liquid-state NMR and ion traps. “Closed-system” cooling
mechanisms are of limited applicability due to the need for a continual supply of ancillas for fault
tolerance, and to the high initial temperatures of some systems. “Open-system’” mechanisms are therefore
required. We describe a new, efficient initialization procedure for such open systems. With this procedure,
an n-qubit device that is originally maximally mixed, but is in contact with a heat bath of bias ¢ > 27",
can be almost perfectly initialized. This performance is optimal due to a newly discovered threshold
effect: for bias € < 27" no cooling procedure can, even in principle (running indefinitely without any
decoherence), significantly initialize even a single qubit.
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Quantum computation poses a difficult experimental
challenge. Simultaneous near-certain preparation of qubits
(quantum bits) in their ground states is a key hurdle in
proposals as varied as NMR and ion traps [1-6]. Such
“cooling” (also known as ‘“‘biasing” or ‘““polarizing’’) is
required both for initiation of the computation [7] and in
order to supply ancillas for fault tolerance as the compu-
tation proceeds.

Cooling of quantum systems has long been essential in a
variety of experimental contexts unrelated to quantum
computation, and is performed by processes that directly
cool the system such as laser cooling in ion traps or
application of strong magnetic fields in NMR. Spin ex-
change has also been employed in order to transfer highly-
cooled states into the desired system from another that is
more readily directly cooled [8—10]. In all these methods,
the temperature is limited by the original cooling process.

Algorithmic cooling.—It is in principle possible, how-
ever, to reach even lower temperatures by application of
certain logic gates among the qubits [11]. (Even prior to
quantum computation, the need for signal amplification in
NMR imaging led to the implementation of a basic 3-qubit
logic gate [12].) In several quantum computation proposals
this kind of improvement in cooling is necessary due to the
requirement that a large number of qubits all be, with high
probability, simultaneously in their ground states.

We distinguish between closed- and open-system algo-
rithmic cooling methods. In the former [3,4,11] an initial
phase of physical cooling is performed, which reduces the
entropy of the system. In the second phase an entropy
preserving (unitary) algorithmic process is performed on
the qubits. By contrast, in an open process [13] some of the
qubits of the system can be cooled by external interaction
even during (or at interruptions in) the quantum computa-
tion. Open-system cooling places an additional experimen-
tal difficulty: computation qubits must not decohere during
the process of cooling other qubits with which, at another
stage, they must interact. Nonetheless, closed-system cool-
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ing appears to be insufficient for two reasons. The first
applies specifically to liquid-state NMR quantum comput-
ing, where the initial entropy-reducing preparation is quite
weak: the probability of the ground state of each qubit
exceeds the probability of the excited state by the small
factor of e*® =~ 1+ 107°. In the subsequent (unitary)
phase an &’ fraction of the qubits can be prepared in
highly-cooled states [11] (and see [14] for experimental
demonstration); for information-theoretic reasons, this
fraction is the best possible, but at the current value of &
it is too small for effective implementation of a quantum
computer. The second reason applies more broadly. Any
quantum computing implementation must cope with noise.
Fault-tolerance mechanisms have been designed that can
do so [15] if the noise level is below a specified threshold
(estimated to be between 10™* and 1072 per qubit per
operation [16]) and if a continual supply of ‘“‘ancillas”
(qubits initialized in a known state) is available. Ancilla
initialization need not be perfect but the error cannot
exceed the same fault-tolerance threshold. In ion traps,
for example, direct cooling can place qubits in their ground
states with probability = 0.95, a level that necessitates
further cooling to exceed the threshold [17,18]. Since fresh
ancillas are needed in each time step, either a large supply
must be chilled in advance and maintained without sub-
stantial decoherence, or—more likely—an open-system
approach must be adopted in which registers are cooled on
a regular basis.

It is necessary, therefore, to study effective means for
open-system algorithmic cooling. A suggested framework
(the ‘‘heat-bath™ approach) was made in [13] (see also
[19]) and is related to bias amplification methods in current
liquid-state NMR experiments (e.g., in '3C-labeled tri-
chloroethylene), as well as proposals for solid-state NMR
experiments in malonic acid [20]. A heat-bath device
comprises two types of qubits—some that are hard to
cool (but relax slowly), and others that are readily cooled
(but relax rapidly). The former are computation qubits and
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the latter are “‘refrigerants.” At chosen times, the compu-
tation and refrigerant qubits can undergo joint unitary
interaction (such as spin exchange). A similar framework
is contemplated for ion trap quantum computers [18]—the
computation ions are not cooled directly due to the deco-
herence that this causes; instead they are cooled by inter-
action with separate refrigerant ions that have been directly
laser-cooled.

Results.—In this Letter we establish the theoretical lim-
its for cooling on heat-bath devices. We introduce a cooling
mechanism achieving much higher bias amplification than
given previously. We bound the number of cooling steps
required in our process, a crucial matter since any cooling
process must be carried out within the relaxation times of
the computation qubits. Finally, we show that our method
is optimal in terms of entropy extraction per cooling step.
In the course of doing so we discover a threshold phenome-
non: significant initialization cannot be achieved at all
unless &, the bias that can be imparted to the rapidly
relaxing qubits, is asymptotically above 27". The proof
uses majorization inequalities to convert the problem to
analysis of a certain combinatorial “‘chip game.”

For specificity we assume that the quantum computer
has n — 1 computation qubits and an nth refrigerant qubit
that is in contact with the heat bath. The cooling step, ¢,
changes the traced density matrix on the nth qubit to
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(no matter what the previous state was). In between cooling
steps, reversible (unitary) quantum logic gates can be
applied to the register of n qubits. Let J, be the density
matrix of the maximally mixed state over the
2"-dimensional Hilbert space. The question is: starting
from 7I,, and using these operations, how different from
I, can we make the density matrix of the device?

Theorem 1 (Physical limit).—No heat-bath method can
increase the probability (i.e., |amplitude|?) of any basis
state from its initial value, 27", to any more than
min{2 "¢*?""', 1}. This conclusion holds even under the
idealization that an unbounded number of cooling and
logic steps can be applied without error or decoherence.

This shows that if ¢ << 27" then the variation distance
between the uniform distribution, and any distribution
reachable by cooling, is <K 1.

We establish a converse to this statement using a specific
cooling procedure, the partner pairing algorithm (PPA).
For convenience let & = tanhe. (For small ¢, € = &.)

Theorem 2 (Cold qubit extraction).—Within 4n&~2[1 +
log(1/8)] cooling steps, the PPA creates a probability
distribution in which with probability 1 — O(HIOIW), all
of the first n — [1 + o(1)]log,1/& bits are |0)’s (where o(1)
denotes a term tending to 0 as & tends to 0).

This extraction procedure is useful for quantum comput-
ing (it extracts qubits of bias almost 1, i.e., that are almost
certainly in their ground state) as long as € > 27". (For

comparison, the previous heat-bath procedure [19] ampli-
fies bias of a qubit by only (3/2)". At comparable levels of
amplification it also requires more cooling steps.)

The notion that the computation qubits are entirely
insulated from the environment is, of course, merely a
simplification good for moderate time spans. To be useful,
algorithms must converge within the relaxation time of the
computation qubits. Next we show that the PPA is near-
optimal in terms of the number of cooling steps:

Theorem 3 (Cooling steps required).—Any algorithm
that creates a bit of constant bias requires a number of
cooling steps proportional to & 2.

Other applications of algorithmic cooling.—A central
point of this Letter is the firm limit that Theorem 1 sets on
the cooling parameter ¢ in order that the heat-bath method
be useful for quantum computation. However, it is impor-
tant to note that heat-bath cooling algorithms (the PPA or
others) may be viable for other applications even at smaller
. Specifically, algorithmic cooling is likely to find signifi-
cant application in the scientific and medical imaging
applications for which NMR technology is already in
wide use. The signal-to-noise ratio in NMR imaging is
proportional to the polarization of the nuclear spins and
to the square root of the duration of the scan; since the
duration is often limited in medicine by the need to immo-
bilize the patient, improved sensitivity demands increased
polarization. In other applications the benefit of increased
polarization is in decreased scan times. Algorithmic cool-
ing of a few nuclear spins may therefore be highly bene-
ficial even in the range ¢ <« 27" that is not adequate for
quantum computation. For example, perfect implementa-
tion of the PPA on a 5-qubit molecule (4 computation
qubits and one refrigerant) would yield a qubit of bias
16¢, implying a 256-fold decrease in scan duration com-
pared to cooling without algorithmic amplification.

Method of proof of Theorem 1.—The eigenvalues of a
density matrix are the probabilities with which the spectral
basis states are measured; the spectral basis gives measure-
ment probabilities that are furthest from uniform in the
sense of majorization [21]. A probability vector (py, ...) is
said to majorize another (p},...) if there exists a doubly
stochastic matrix D such that (py, ...)D = (p}, ...). This is
a partial (pre-)order on probability distributions in which
the singular distribution (1, 0, 0, ...) dominates all others,
while the uniform distribution is dominated by all. A
density matrix £ is said to majorize another A’ if the
eigenvalues of 4 majorize those of A’.

Domination in majorization implies domination in any
of the other measures we are interested in, such as variation
distance from uniform or the sum of the largest K proba-
bilities (for a fixed K). So our concern is: if uy,...,u,
represent the reversible actions of an algorithm between its
cooling steps (each acting on the density matrix as con-
jugation by a unitary operator), how different can the
eigenvalues of cu,¢---u;tJ, be from those of I, (in
which all equal 27")?
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A classical cooling algorithm is one that uses only
reversible (deterministic) classical logic gates between
cooling steps. In this case each operator u; acts on the
density matrix as conjugation by a permutation matrix. The
first step of the analysis shows:

Proposition.—Given any quantum
uy, ..., u,, there are classical steps 77, ..
V7L e, majorizes v, - u et

We may therefore restrict attention to classical cooling
algorithms. Observe that every intermediate density matrix
created by a classical algorithm is diagonal. Hence the
classical cooling steps are equivalent to the following
discrete process on probability distributions on the set
{0, 1}*: begin with the uniform distribution on {0, 1}".
The only tool for modifying the probability distribution
is “discrete cooling steps,” which have the effect of trans-
forming the current distribution (denoted p) to a new
distribution (denoted p’), related to p by:

logic  steps
., 7, such that

Pho = (Pwo T Pw1) 7=5= | for each binary string

2

e

Pt = (Pwo T Pw) 5= | w of length n — 1.

There is no way of directly cooling the first n — 1 bits, but
in between cooling steps we can perform arbitrary permu-
tations of the binary strings. Because of the proposition,
Theorem 1 is equivalent to showing that the above discrete
process cannot increase any probability from its initial
value, 27", to any more than 27182 In the discrete
process, the role of a permutation of the basis is to pair
off the current probabilities before the next cooling step.

If the basis states of the computer are relabeled so that
their probabilities are py = ... = p,n_; (ties broken in
arbitrary but fixed fashion), then for each even i we will
refer to the states i and i + 1 as each other’s “partners.”
The PPA is simply: in each cooling step, pair partners
together.

The second step in demonstrating Theorem 1 is estab-
lishing a relation between the output of an arbitrary clas-
sical cooling algorithm B and that of the PPA. Lemma:
given any initial probability distribution p =
{po, ..., p»»_1}, and any cooling algorithm B, the distribu-
tion which results from applying the PPA for ¢ cooling
steps majorizes the distribution which results from apply-
ing B for ¢ cooling steps.

As a consequence, in pursuit of Theorem 1’s upper
bound on the achievable probability of any one string, we
can focus solely on the PPA. The remainder of the proof is
a detailed analysis of the PPA under the dynamics of
Eq. (2). These dynamics are difficult to analyze directly,
but can be linearized in the following chip game: 2" chips
are placed initially at the origin of the real line. In each step
you choose a pairing of the chips, and then the positions of
each pair of chips (say x and y) are moved to (x + y)/2 =
€. Your goal is to move any one chip as far to the right as
possible.

In this linearization, a probability p is mapped to a chip
at log(2"p), and the above dynamics replace the true

physical dynamics which carry the chips to the pair
(x, y') satisfying y/ — x' = 2¢ and e¥ + ¢’ = e + €.

The theorem rests on showing: (a) the maximum proba-
bility p..x achieved by the PPA and the maximum chip
position x,,,, achieved by the linearized PPA are related by
102(2" Prmax) = Xmax- (b) The linearized PPA cannot carry
any chip beyond £2" !,

Part (a) follows from: Lemma: suppose x = (xg = ... =
xp_p)andy = (yg = ... = yyn_;) are two possible sets of
chips, such that x; = y; for all i. Apply the PPA to x,
resulting in x’; apply the linearized PPA to y, resulting in
y'. Then x} = y! for all i. Part (b) follows by showing that
certain combinatorial structures of a set of chips are pre-
served by the linearized PPA. Let ¢(S) denote the mean of a
subset S of the chips. Such a subset is called an assembly if
either: (1) it is a pair of partners or (2) it is the union (or
“merger’’) of two assemblies S| and S, such that the
closed intervals [c(S|) — |S;le/2, ¢(S;) + |S;le/2] and
[c(Sy) — 1S,1e/2, c(S,) + |S,]e/2] intersect. A maximal
assembly is one which cannot be merged with any other
assembly. Lemma: maximal assemblies are preserved by
the linearized PPA. (This is the most technically complex
part of the argument.)

Method of proof of Theorem 2.—The runtime analysis
relies on tracking the distribution entropy. For 0 = 6 = 1
let H(5) = 152 log:2s + 128 log- 2. Let (1 % 8)p/2 be
two probabilities paired in a cooling step of the PPA. The
change in their contribution to the distribution entropy due
to the cooling step is [H(&) — H(8)]p. We show that in the
PPA, any pair of partners satisfy 6 = &, so this contribution
is nonpositive, and hence the distribution entropy is non-
increasing in each cooling step. For pairs separated by 6 =
&/2, the decrease in entropy is strictly positive, and on this
basis we show that within % cooling steps, at
least 1 — vy of the probability resides in partners {p, p'} for
which |logp — logp’| = & We also show that once this
condition is satisfied, for any positive even y, at least (1 —
¥)(1 — e~ 0F2%/2) of the probability resides in just y of the

states. Finally, Theorem 2 follows by setting y = ; +11?)gg21 7z

andy = % . The total probability of these y most likely
states is 1 — O(r3p5775), and once indexed lexicographi-

cally in decreasing likelihood from 0 to 2" — 1, they all
share |0)’s in their first n—log,y=n—[1+
o(1)Jlog,1/& bits.

Method of proof of Theorem 3.—The entropy of the
initial distribution is nlog2; a distribution in which some
bit has bias bounded away from 0 has entropy (n — ¢) log2
for a constant ¢ > 0. The entropy can decrease by at most
log2 — H(&) = &? in each cooling step.

Numerical estimates.—We depict a specific way of us-
ing the PPA. Consider an ion trap quantum computer in
which four qubits are reserved for preparation of ancillas,
all others being devoted to the main quantum algorithm
(including the fault-tolerance mechanism). Of the reserved
qubits, three are ‘“‘computation qubits” and one is the
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“refrigerant.” Ion trap technology is capable of placing the
refrigerant in its ground state with probability 0.95 (i.e.,
& = arctanh 0.9 =~ 1.47). Calculation shows that applica-
tion of the PPA on the quadruple for just nine cooling steps
suffices to prepare one of the qubits in the ground state with
probability 1 — 10~#. This is at the conservative end of the
estimates for the fault-tolerance threshold for quantum
computation. Hence after every nine cooling steps the
PPA can prepare an ancilla, ready to be moved by spin
exchange into the main bank of qubits (in place of a
“warm” qubit generated by the fault-tolerance
mechanism).

Implementation objectives. —It is necessary to study the
sensitivity of the model to imperfections in the cooling
steps, as well as in the logic gates between cooling steps, in
specific experimental implementations.

Experimental algorithmic cooling also has the opportu-
nity to produce a physically meaningful result well before
producing a quantum computer. A series of papers [22—24]
show that if k qubits have bias less than 22 then their joint
state is separable. Conversely, in the ball of radius 27%/2
about the maximally mixed state there exist nonseparable
states. Liquid-state NMR experiments have not, to date,
produced a demonstrably nonseparable state. Achieving
this goal will require some combination of an increase in
the number of coherently-manipulated qubits and an in-
crease in the individual polarization of these qubits. The
latter demands implementation of new cooling techniques.

In the simple model adopted in this Letter we have
assumed that there is only a single refrigerant qubit. One
may ask how the model is affected if the number of such
qubits is proportional to the number of computation qubits.
(In liquid-state NMR, for example, we can expect that
nuclei of various types will be present in fixed propor-
tions.) The answer is that while some gain is likely, the
fundamental limits of the model are unchanged because
with a slowdown in the cooling process by a factor of O(n),
the same effect can be achieved by spin exchange with a
single refrigerant qubit.

The necessity of cooling many qubits for quantum com-
putation.—In view of the difficulty of cooling certain kinds
of quantum computers, the question was posed of whether
this was truly necessary [25]. Quantum-over-classical
computational speedups may indeed be possible on devices
that are initialized in a highly (though not completely)
mixed state; see [25,26]. However, general-purpose quan-
tum computers cannot be directly simulated on such de-
vices [7], so the need for effective cooling is unlikely to be
circumvented. The necessity of using ancillas to compen-
sate for noise buttresses this conclusion.

Summary.—We have studied the fundamental limits of
open-system ‘‘heat-bath” cooling, with a view to the sig-
nificance of such methods for quantum computation as
well as for imaging tasks limited by imperfect state prepa-
ration. We have provided a cooling (bias amplification)
method and have shown that: (a) the bias it achieves is

substantially higher than in previous methods, and the
ground-state probability after any number of cooling steps
is highest possible. (b) The number of cooling steps it
requires 1is asymptotically close to best possible.
(c) There is a sharp threshold for the heat-bath temperature,
above which substantial cooling is impossible in any
method, and below which it is achieved by ours.
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