
Improving Efficiency and Enhancing Concurrency of Untrusted Storage

Christian Cachin∗ Idit Keidar† Alexander Shraer†

Many users no longer keep all their data on local storage.
Instead, it often resides on remote, online service providers.
Examples include network filesystems, online collaboration
servers such as Wikis, repositories using versioning tools
like SVN, and web-based email providers. Because the data
resides in another trust domain, users need methods for pro-
tecting the remotely stored data.

We are interested in the integrity of stored data and con-
sider an untrusted server providing a storage service to
multiple clients that connect to the server using an asyn-
chronous network. The clients locally maintain a small
amount of trusted memory but do not communicate with
each other.

In this model, some malicious actions by the server can
never be prevented. For example, the server may use an out-
dated value in the reply to a reader and omit a more recent
update. The SUNDR system [2, 4] showed how such attacks
can be exposed and made easily detectable. It ensures that
whenever the server causes the views of two clients to dif-
fer in a single operation, the two clients may never again
see each other’s updates after that. Such a divergence can
easily be detected through out-of-band communication.

SUNDR guarantees that the read and write operations
observed by every client are atomic, preserving linearizabil-
ity, and, furthermore, that for any operation visible to multi-
ple clients, the sequence of operations occurring before that
operation is the same. This notion has been called fork-
linearizability. For a system with n clients, the SUNDR
protocol incurs a communication overhead proportional to
n2 bits per operation.

Recently Cachin et al. [1] presented a more efficient
fork-linearizable storage protocol with only O(n) commu-
nication overhead per operation and showed that no fork-
linearizable storage protocol is wait-free, even in execu-
tions where the server is correct. This means that even
in the failure-free case, concurrent operations by different
clients may slow each other down. Indeed, no existing fork-
linearizable storage protocols guarantees progress for cor-
rect clients when other clients fail by crashing, even if the
server is correct.

∗IBM Research, Zurich Research Laboratory, CH-8803 Rüschlikon,
Switzerland. cca@zurich.ibm.com

†Department of Electrical Engineering, Technion, Haifa 32000, Israel.
{idish@ee,shralex@tx}.technion.ac.il

In ongoing work, we have examined two weaker consis-
tency conditions that have been introduced recently: fork-
sequential-consistency [5] and fork-* consistency [3]. Can
they guarantee wait-freedom for operations by concurrent
clients? We have discovered that neither of them allows
linearizability and wait-freedom when the server is correct.
Moreover, we show that fork-* consistency allows viola-
tions of causality in the sense that a client reads an outdated
value from storage, although there was a more recent update
that influenced the client.

We introduce a new storage access protocol that elimi-
nates all these problems and achieves a notion that we call
weak fork-linearizability. In particular, in every execution
where the server is correct, the protocol is linearizable and
wait-free, i.e., clients never wait for each other, even if some
clients crash. If the server is faulty, the protocol still guar-
antees causality, data integrity, and linearizability for all but
the last operation observed by every client. At the cost of
exchanging only a small amount of information, clients can
detect whether their states are consistent. In case a viola-
tion is detected, they can roll back to the latest consistent
state. The protocol is efficient, requires only a single round
of message exchange between a client and the server for ev-
ery operation and has a communication overhead of only
O(n) bits per request.

References
[1] C. Cachin, abhi shelat, and A. Shraer, “Efficient fork-

linearizable access to untrusted shared memory,” in Proc.
26th ACM Symposium on Principles of Distributed Comput-
ing (PODC), 2007.

[2] J. Li, M. Krohn, D. Mazires, and D. Shasha, “Secure untrusted
data repository (SUNDR),” in Proc. 6th Symp. Operating Sys-
tems Design and Implementation (OSDI), 2004.

[3] J. Li and D. Mazières, “Beyond one-third faulty replicas in
Byzantine fault-tolerant systems,” in Proc. 4th Symp. Net-
worked Systems Design and Implementation (NSDI), 2007.

[4] D. Mazières and D. Shasha, “Building secure file systems out
of Byzantine storage,” in Proc. 21st ACM Symposium on Prin-
ciples of Distributed Computing (PODC), 2002.

[5] A. Oprea and M. K. Reiter, “On consistency of encrypted
files,” in Proc. 20th International Conference on Distributed
Computing (DISC) (S. Dolev, ed.), LNCS 4167, 2006.


