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This article deals with the emulation of atomic read/write (R/W) storage in dynamic asynchronous message
passing systems. In static settings, it is well known that atomic R/W storage can be implemented in a
fault-tolerant manner even if the system is completely asynchronous, whereas consensus is not solvable.
In contrast, all existing emulations of atomic storage in dynamic systems rely on consensus or stronger
primitives, leading to a popular belief that dynamic R/W storage is unattainable without consensus.

In this article, we specify the problem of dynamic atomic read/write storage in terms of the interface
available to the users of such storage. We discover that, perhaps surprisingly, dynamic R/W storage is
solvable in a completely asynchronous system: we present DynaStore, an algorithm that solves this problem.
Our result implies that atomic R/W storage is in fact easier than consensus, even in dynamic systems.
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1. INTRODUCTION

Distributed systems provide high availability by replicating the service state at multi-
ple processes. A fault-tolerant distributed system may be designed to tolerate failures
of a minority of its processes. However, this approach is inadequate for long-lived sys-
tems, because over a long period, the chances of losing more than a minority inevitably
increase. Moreover, system administrators may wish to deploy new machines due to
increased workloads, and replace old, slow machines with new, faster ones. Thus, real-
world distributed systems need to be dynamic, that is, adjust their membership over
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time. Such dynamism is realized by providing users with an interface to reconfiguration
operations that add or remove processes.

Dynamism requires some care. First, if one allows arbitrary reconfiguration, one
may lose liveness. For example, say that we build a fault tolerant solution using three
processes, p1, p2, and p3. Normally, the adversary may crash one process at any mo-
ment in time, and the up-to-date system state is stored at a majority of the current
configuration. However, if a user initiates the removal of p1 while p1 and p2 are the ones
holding the up-to-date system state, then the adversary may not be allowed to crash
p2, for otherwise the remaining set cannot reconstruct the up-to-date state. Providing
a general characterization of allowable failures under which liveness can be ensured is
a challenging problem.

A second challenge dynamism poses is ensuring safety in the face of concurrent re-
configurations, that is, when some user invokes a new reconfiguration request while an-
other request (potentially initiated by another user) is under way. Early work on replica-
tion with dynamic membership could violate safety in such cases [Davcev and Burkhard
1985; Paris and Long 1988; El Abbadi and Dani 1991] (as shown in Yeger Lotem et al.
[1997]). Many later works have rectified this problem by using a centralized sequencer
or some variant of consensus to agree on the order of reconfigurations (see discussion
of related work in Section 2).

Interestingly, consensus is not essential for implementing replicated storage. The
ABD algorithm [Attiya et al. 1995] shows that atomic read/write (R/W) shared memory
objects can be implemented in a fault-tolerant manner even if the system is completely
asynchronous. Nevertheless, to the best of our knowledge, all previous dynamic storage
solutions rely on consensus or similar primitives, leading to a popular belief that
dynamic storage is unattainable without consensus.

In this work, we address the two challenges mentioned above, and debunk the myth
that consensus is needed for dynamic storage. We first provide a precise specification of
a dynamic problem. To be concrete, we focus on atomic R/W storage, though we believe
the approach we take for defining a dynamic problem can be carried to other problems.
We then present DynaStore, a solution to this problem in an asynchronous system
where processes may undetectably crash, so that consensus is not solvable. We note
that our solution is given as a possibility proof, rather than as a blueprint for a new
storage system. Given our result that consensus-less solutions are possible, we expect
future work to apply various practical optimizations to our general approach, in order
to build real-world distributed services. We next elaborate on these two contributions.

Dynamic Problem Specification

In Section 3, we define the problem of an atomic R/W register in a dynamic system. Sim-
ilarly to a static R/W register, the dynamic variant exposes a read and write interface
to users, and atomicity [Lamport 1986] is required for all such operations. In addition,
users can trigger reconfigurations by invoking reconfig operations, which return OK
when they complete. Exposing reconfig operations in the model allows us to provide a
protocol-independent specification of service liveness guarantees, as we explain next.

Clearly, the progress of such service is conditioned on certain failure restrictions
in the deployed system. A fault model specifies the conditions under which progress
is guaranteed. It is well understood how to state a liveness condition of the static
version of this problem: t-resilient R/W storage guarantees progress if fewer than t
processes crash. For an n-process system, it is well known that t-resilient R/W storage
exists when t < n/2, and does not exist when t ≥ n/2 [Attiya et al. 1995]. A dynamic
fault model serves the same purpose, but needs to additionally capture changes in-
troduced by the user through the reconfig interface. Under reasonable use of reconfig,
and some restricted fault conditions, the system will make progress. For example, an

Journal of the ACM, Vol. 58, No. 2, Article 7, Publication date: April 2011.



Dynamic Atomic Storage without Consensus 7:3

administrative-user can deploy machines to replace faulty ones, and thereby enhance
system longevity. On the other hand, if used carelessly, reconfiguration might cause the
service to halt, for example, when servers are capriciously removed from the system.

Suppose the system initially has four processes {p1, p2, p3, p4} in its configuration
(also called view). Initially, any one process may crash. Suppose that p1 crashes. Then,
additional crashes would lead to a loss of liveness. Now suppose the user requests to
reconfigure the system to remove p1. While the request is pending, no additional crashes
can happen, because the system must transfer the up-to-date state from majority of the
previous view to a majority of the new one. However, once the removal is completed, the
system can tolerate an additional crash among the new view {p2, p3, p4}. Overall, two
processes may crash during the execution. Viewed as a simple threshold condition, this
exceeds a minority threshold, which contradicts lower bounds. The liveness condition
we formulate is therefore not in the form of a simple threshold; rather, we require
crashes to occur gradually, contingent on reconfigurations.

A dynamic system also needs to support additions. Suppose the system starts with
three processes {p1, p2, p3}. In order to reconfigure the system to add a new process
p4, a majority of the view {p1, p2, p3} must be alive to effect the change. Additionally, a
majority of the view {p1, p2, p3, p4} must be alive to hold the state stored by the system.
Again, the condition here is more involved than a simple threshold. That is, if a user
requests to add p4, then while the request is pending, a majority of both old and new
views need to be alive. Once the reconfiguration is completed, the requirement weakens
to a majority of the new view.

Given these, we state the following requirement for liveness for dynamic R/W storage:
At any moment in the execution, let the current view consist of the initial view with all
completed reconfiguration operations (add/remove) applied to it. We require that the set
of crashed processes and those whose removal is pending be a minority of the current
view, and of any pending future views. Moreover, like previous reconfigurable storage
algorithms [Lynch and Shvartsman 2002; Gilbert et al. 2003], we require that no new
reconfig operations will be invoked for “sufficiently long” for the started operations to
complete. This is formally captured by assuming that only a finite number of reconfig
operations are invoked.

Note that a dynamic problem is harder than the static variant. In particular, a so-
lution to dynamic R/W is a fortiori a solution to the static R/W problem. Indeed, the
solution must serve read and write requests, and in addition, implement reconfigura-
tion operations. If deployed in a system where the user invokes only read and write
requests, and never makes use of the reconfiguration interface, it must solve the R/W
problem with precisely the same liveness condition, namely, tolerating any minority of
failures. Similarly, dynamic consensus is harder than static consensus, and is therefore
a fortiori not solvable in an asynchronous setting with one crash failure allowed. As
noted above, in this paper, we focus on dynamic R/W storage.

DynaStore: Dynamic Atomic R/W Storage

Our algorithm does not need consensus to implement reconfiguration operations. Intu-
itively, previous protocols used consensus, virtual synchrony, or a sequencer, in order
to provide processes with an agreed-upon sequence of configurations, so that the mem-
bership views of processes do not diverge. The key observation in our work is that
it is sufficient that such a sequence of configurations exists, and there is no need for
processes to know precisely which configurations belong to this sequence, as long as
they have some assessment which includes these configurations, possibly in addition
to others that are not in the sequence. In order to enable this property, in Section 4
we introduce weak snapshots, which are easily implementable in an asynchronous sys-
tem. Roughly speaking, such objects support update and scan operations accessible by
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a given set of processes, such that scan returns a set of updates that, if non-empty, is
guaranteed to include the first update made to the object (but the object cannot identify
which update that is).

In DynaStore, which we present in Section 5, each view w has a weak snapshot object
ws(w), which stores reconfiguration proposals for what the next view should be. Thus,
we can define a unique global sequence of views, as the sequence that starts with some
fixed initial view, and continues by following the first proposal stored in each view’s ws
object. Although it is impossible for processes to learn what this sequence is, they can
learn a DAG of views that includes this sequence as a path. They do this by creating
a vertex for the current view, querying the ws object, creating an edge to each view in
the response, and recursing. Reading and writing from a chain of views is then done
in a manner similar to previous protocols, for example, Lynch and Shvartsman [2002],
Gilbert et al. [2003], Chockler et al. [2005], and Rodrigues and Liskov [2003, 2004].

Summary of Contributions

In summary, our work makes two contributions.
—We define a dynamic R/W storage problem that includes a clean and explicit live-

ness condition, which does not depend on a particular solution to the problem. The
definition captures a dynamically changing resilience requirement, corresponding
to reconfiguration operations invoked by users. The approach easily carries to other
problems, such as consensus. As such, it gives a clean extension of existing static
problems to the dynamic setting.

—We discover that dynamic R/W storage is solvable in a completely asynchronous
system with failures, by presenting a solution to this problem. Along the way we
define a new abstraction of weak snapshots, employed by our solution, which may be
useful in its own right. Our result implies that the dynamic R/W is weaker than the
(dynamic) consensus problem, which is not solvable in this setting. This was known
before for static systems, but not for the dynamic version. The result counters the
intuition that emanates from all previous dynamic systems, which used agreement
to handle configuration changes.

2. RELATED WORK

Several existing solutions can be viewed in retrospect as solving a dynamic prob-
lem. Most closely related are works on reconfigurable R/W storage. RAMBO [Lynch
and Shvartsman 2002; Gilbert et al. 2003] solves a similar problem to the one we
have formulated above; other works [Martin and Alvisi 2004; Rodrigues and Liskov
2003; 2004] extend this concept for Byzantine fault tolerance. All of these works have
processes agree upon a unique sequence of configuration changes. Some works use
an auxiliary source (such as a single reconfigurer process or an external consensus
algorithm) to determine configuration changes [Lynch and Shvartsman 1997, 2002;
Englert and Shvartsman 2000; Gilbert et al. 2003; Martin and Alvisi 2004; Rodrigues
and Liskov 2004], while others implement fault-tolerant consensus decisions on view
changes [Chockler et al. 2005; Rodrigues and Liskov 2003]. In contrast, our work im-
plements reconfigurable R/W storage without any agreement on view changes.

Since the closest related work is on RAMBO, we further elaborate on the similarities
and differences between RAMBO and DynaStore. In RAMBO, a new configuration can
be proposed by any process, and once it is installed, it becomes the current configura-
tion. In DynaStore, processes suggest changes and not configurations, and thus, the
current configuration is determined by the set of all changes proposed by complete
reconfigurations. For example, if a process suggests to add p1 and to remove p2, while
another process concurrently suggests to add p3, DynaStore will install a configuration
including both p1 and p3 and without p2, whereas in RAMBO there is no guarantee that
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any future configuration will reflect all three proposed changes, unless some process
explicitly proposes such a configuration. In DynaStore, a quorum of a configuration
is any majority of its members, whereas RAMBO allows for general quorum-systems,
specified explicitly for each configuration by the proposing process. In both algorithms,
a non-faulty quorum is required from the current configuration. A central idea in al-
lowing dynamic changes is that a configuration can be replaced, after which a quorum
of the old configuration can crash. In DynaStore, a majority of a current configuration
C is allowed to crash as soon as C is no longer current, that is, when a reconfig oper-
ation proposing a new membership change completes at one of the processes. Notice
that a reconfig operation in DynaStore involves communication with a majority of C
and the new configuration (for state-transfer) allowing any minority of C to crash at
any time. In RAMBO, C must be garbage-collected at every nonfaulty process p ∈ C,
and all read and write operations that began at p before C was garbage-collected must
complete. Thus, whereas in DynaStore the conditions allowing a quorum of C to fail
can be evaluated based on events visible to the application, in RAMBO these condi-
tions are internal to the algorithm. Moreover, if some process p ∈ C might fail, it
might be impossible for other processes to learn whether a quorum of C is still needed.
Assuming that all quorums required by RAMBO and DynaStore are responsive, both
algorithms require additional assumptions for liveness. In both, the liveness of read
and write operations is conditioned on the number of reconfigurations being finite.
In addition, in both algorithms, the liveness of reconfigurations does not depend on
concurrent read and write operations. However, whereas reconfigurations in RAMBO
rely on additional synchrony or failure-detection assumptions required for consensus,
reconfigurations in DynaStore, just like its read and write operations, only require the
number of reconfigurations to be finite.

View-oriented group communication systems provide a membership service whose
task is to maintain a dynamic view of active members. These systems solve a dy-
namic problem of maintaining agreement on a sequence of views, and additionally
provide certain services within the members of a view, such as atomic multicast and
others [Chockler et al. 2001; Birman et al. 2010]. Maintaining agreement on group
membership in itself is impossible in asynchronous systems [Chandra et al. 1996].
However, perhaps surprisingly, we show that the dynamic R/W problem is solvable in
asynchronous systems. This appears to contradict the impossibility but it does not: We
do not implement group membership because our processes do not have to agree on and
learn a unique sequence of view changes. Furthermore, unlike to group communication
systems we do not expose views to the application and views are only used internally in
the analysis. Processes running our algorithm maintain a local estimate of the current
view of the system, however such views do not necessarily correspond to a view of the
system as visible to any external observer (some membership changes may not have
been acknowledged to a user). Local estimates at different processes may diverge and
re-merge over time when no new membership changes are proposed for a sufficiently
long period of time.

The State Machine Replication (SMR) approach [Lamport 1998; Schneider 1990]
provides a fault tolerant emulation of arbitrary data types by forming agreement
on a sequence of operations applied to the data. Paxos [Lamport 1998] implements
SMR, and allows one to dynamically reconfigure the system by keeping the configu-
ration itself as part of the state stored by the state machine. Another approach for
reconfigurable SMR is to utilize an auxiliary configuration-master to determine view
changes, and incorporate directives from the master into the replication protocol. This
approach is adopted in several practical systems, for example, Lee and Thekkath [1996],
MacCormick et al. [2004], and van Renesse and Schneider [2004], and is formulated in
Lamport et al. [2009]. Naturally, a reconfigurable SMR can support our dynamic R/W
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memory problem. However, our work solves it without using the full generality of SMR
and without reliance on consensus.

An alternative way to break the minority barrier in R/W emulation is by strength-
ening the model using a failure detector. Delporte-Gallet et al. [2010] identify the
weakest failure detector for solving R/W memory with arbitrary failure thresholds.
Their motivation is similar to ours – solving R/W memory with increased resilience
threshold. Unlike our approach, they tackle more than a minority of failures right from
the outset. They identify the quorums failure detector as the weakest detector required
for strengthening the asynchronous model, in order to break the minority resilience
threshold. Our approach is incomparable to theirs, that is, our model is neither weaker
nor stronger. On the one hand, we do not require a failure detector, and on the other, we
allow the number to failures to exceed a minority only after certain actions are taken.
Moreover, their model does not allow for additions as ours does. Indeed, our goal differs
from Delporte-Gallet et al. [2010], namely, to model dynamic reconfiguration in which
resilience is adaptive to actions by the processes. It is an interesting future direction
to define a quorum failure detector corresponding to the adaptive failure model used
in this article.

3. DYNAMIC PROBLEM DEFINITION

We specify a read/write service with atomicity guarantees. The storage service is de-
ployed on a collection of processes that interact using asynchronous message passing.
We assume an unknown, unbounded and possibly infinite universe of processes �, sub-
ject to crash failures. Communication links between all pairs of processes do not create,
duplicate, or alter messages. Moreover, the links are reliable: if a process pi sends a
message m to a process pj and neither pi nor pj crash then pj eventually receives m.1

Executions and Histories. System components, namely the processes and the commu-
nication links between them, are modeled as I/O Automata [Lynch 1996]. An automaton
has a state, which changes according to transitions that are triggered by actions, which
are classified as input, output, and internal.2 A protocol P specifies the behaviors of
all processes. An execution of P is a sequence of alternating states and actions, such
that state transitions occur according to the specification of system components. The
occurrence of an action in an execution is called an event.

The application interacts with the service via operations defined by the service in-
terface. As operations take time,3 they are represented by two events – an invocation
(input action) and a response (output action). A process pi interacts with its incoming
link from process pj via the receive(m)i, j input action, and with its outgoing link to pj
via the send(m)i, j output action. The failure of process pi is modeled using the input
action crashi, which disables all actions at pi. In addition, pi can disable all input
actions using the internal action halti.

A history of an execution consists of the sequence of invocations and responses occur-
ring in the execution. An operation is complete in a history if it has a matching response.
An operation o precedes another operation o′ in a sequence of events σ , whenever o com-
pletes before o′ is invoked in σ . A sequence of events π preserves the real-time order of
a history σ if for every two operations o and o′ in π , if o precedes o′ in σ then o precedes

1This requirement can be weakened to account for processes that have not yet joined or have left the system.
The issue of message reliability in a dynamic setting was studied in the context of group communication
systems [Chockler et al. 2001].
2A minor difference from I/O Automata as defined in Lynch [1996], is that in our model input actions can
be disabled, as explained below. Note that we do not make use of any I/O Automata property that may be
affected by this difference.
3By slight abuse of terminology, we use the terms operation and operation execution interchangeably.

Journal of the ACM, Vol. 58, No. 2, Article 7, Publication date: April 2011.



Dynamic Atomic Storage without Consensus 7:7

o′ in π . Two operations are concurrent if neither one of them precedes the other. A
sequence of events is sequential if it does not contain concurrent operations.

We assume that executions of our algorithm are well-formed, that is, the sequence of
events at each client consists of alternating invocations and matching responses, start-
ing with an invocation. Finally, we assume that every execution is fair, which means,
informally, that it does not halt prematurely when there are still steps to be taken or
messages to be delivered (see the standard literature for a formal definition [Lynch
1996]).

Service Interface. We consider a multi-writer/multi-reader (MWMR) service, from
which any process may read or write. The service stores a value v from a domain V and
offers an interface for invoking read and write operations and obtaining their result.
Initially, the service holds a special value ⊥ �∈ V. When a read operation is invoked at
a process pi, the service responds with a value x, denoted readi() → x. When a write
is invoked at pi with a value x ∈ V, denoted writei(x), the response is OK. We assume
that the written values are unique, that is, no value is written more than once. This is
done so that we are able to link a value to a particular write operation in the analysis,
and can easily be implemented by having write operations augment the value with the
identifier of the writer and a local sequence number.

In addition to read and write operations, the service exposes an interface for invok-
ing reconfigurations. We define Changes

def= {Remove, Add}×�. We informally call any
subset of Changes a set of changes. A view is a set of changes. A reconfig operation takes
as parameter a set of changes c and returns OK. We say that a change ω ∈ Changes is
proposed in an execution if a reconfigi(c) operation is invoked at some process pi such
that ω ∈ c.

Intuitively, only processes that are members of the current system configuration
should be allowed to initiate actions. To capture this restriction, we define an output
action enable operations; the read, write and reconfig input actions at a process pi are
initially disabled, until an enable operations event occurs at pi.

Safety Specification. The sequential specification of the service indicates its behavior
in sequential executions. It requires that each read operation returns the value written
by the most recent preceding write operation, if there is one, and the initial value ⊥
otherwise.

Atomicity [Lamport 1986], also called linearizability [Herlihy and Wing 1990], re-
quires that for every execution, there exist a corresponding sequential execution, which
preserves the real-time order, and which satisfies the sequential specification. Formally,
let σRW be the subsequence of a history σ consisting of all events corresponding to the
read and write operations in σ , without any events corresponding to reconfig operations.
Linearizability is defined as follows:

Definition 3.1 (linearizability [Herlihy and Wing 1990]). A history σ is linearizable
if σRW can be extended (by appending zero or more response events) to a history σ ′,
and there exists a sequential permutation π of the subsequence of σ ′ consisting only of
complete operations such that:

(1) π preserves the real-time order of σ ; and
(2) The operations of π satisfy the sequential specification.

Active Processes. We assume a non-empty view Init, which is initially known to every
process in the system. We say, by convention, that a reconfig(Init) completes by time 0.
A process pi is active if pi does not crash, some process invokes a reconfig operation to
add pi, and no process invokes a reconfig operation to remove pi. We do not require all
processes in � to start taking steps from the beginning of the execution, but instead
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we assume that if pi is active then pi takes infinitely many steps (if pi is not active,
then it may stop taking steps).

Dynamic Service Liveness. We first give preliminary definitions, required to specify
service liveness. For a set of changes w, the removal-set of w, denoted w.remove, is the
set {i | (Remove, i) ∈ w}. The join set of w, denoted w.join, is the set {i | (Add, i) ∈ w}.
Finally, the membership of w, denoted w.members, is the set w.join \ w.remove.

At any time t in the execution, we define V (t) to be the union of all sets c such that a
reconfig(c) completes by time t. Thus, V (0) = Init. Note that removals are permanent,
that is, a process that is removed will never again be in members. More precisely, if a
reconfiguration removing pi from the system completes at time t0, then pi is excluded
from V (t).members, for every t ≥ t0.4 Let P(t) be the set of pending changes at time t,
that is, for each element ω ∈ P(t) some process invokes a reconfig(c) operation such that
ω ∈ c by time t, and no process completes such a reconfig operation by time t. Denote
by F(t) the set of processes that crashed by time t.

Intuitively, any pending future view should have a majority of processes that did not
crash and were not proposed for removal; we specify a simple condition sufficient to
ensure this. A dynamic R/W service guarantees the following liveness properties:

Definition 3.2 (Dynamic Service Liveness). If at every time t in the execution, fewer
than |V (t).members|/2 processes out of V (t).members∪P(t).join are in F(t)∪P(t).remove,
and the number of different changes proposed in the execution is finite,5 then the
following hold:

(1) Eventually, the enable operations event occurs at every active process that was
added by a complete reconfig operation.

(2) Every operation invoked at an active process eventually completes.

4. THE WEAK SNAPSHOT ABSTRACTION

A weak snapshot object S accessible by a set P of processes supports two operations,
updatei(c) and scani(), for a process pi ∈ P. The updatei(c) operation gets a value c and
returns OK, whereas scani() returns a set of values. Note that the set P of processes is
fixed (i.e., static). We require the following semantics from scan and update operations:

PR1 (integrity) Let o be a scani() operation that returns C. Then, for each c ∈ C, an
update j(c) operation is invoked by some process pj prior to the completion of o.

PR2 (validity) Let o be a scani() operation that is invoked after the completion of an
update j(c) operation, and that returns C. Then, C �= ∅.

PR3 (monotonicity of scans) Let o be a scani() operation that returns C and let o′ be a
scanj() operation that returns C ′ and is invoked after the completion of o. Then,
C ⊆ C ′.

PR4 (non-empty intersection) There exists c such that for every scan() operation that
returns C �= ∅, it holds that c ∈ C.

PR5 (termination) If some majority M of processes in P does not crash, then every
scani() and updatei(c) invoked by any process pi ∈ M eventually completes.

Although these properties bear resemblance to the properties of atomic snapshot
objects [Afek et al. 1993], PR1-PR5 define a weaker abstraction: we do not require
that all updates are ordered as in atomic snapshot objects, and even in a sequential

4In practice, one can add back a process by changing its id.
5In reality, liveness would still hold even with an infinite number of reconfigurations, provided that each
operation is concurrent with a finite number of reconfigurations. It is easy to show that this requirement is
necessary for liveness.
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ALGORITHM 1: Weak snapshot - code for process pi

1: operation updatei(c)
2: if collect() = ∅ then
3: Mem[i].Write(c)
4: end if
5: return OK

6: operation scani()
7: C ← collect()
8: if C = ∅ then return ∅
9: C ← collect()
10: return C

11: procedure collect()
12: C ← ∅;
13: for each pk ∈ P
14: c ← Mem[k].Read()
15: if c �= ⊥ then C ← C ∪ {c}
16: return C
17: end

execution, the set returned by a scan does not have to include the value of the most
recently completed update that precedes it (validity only requires that some value
is returned). Intuitively, these properties only require that the “first” update is seen
by all scans that see any updates. As we shall see below, this allows for a simpler
implementation than of a snapshot object. In particular, in a sequential execution our
algorithm only records the value of the first update whereas subsequent updates have
no effect.

DynaStore will use multiple weak snapshot objects, one of each view w. The weak
snapshot of view w, denoted ws(w), is accessible by the processes in w.members. To sim-
plify notation, we denote by updatei(w, c) and scani(w) the update and scan operation,
respectively, of process pi of the weak snapshot object ws(w). Intuitively, DynaStore
uses weak snapshots as follows: in order to propose a set of changes c to the view w,
a process pi invokes updatei(w, c); pi can then learn proposals of other processes by
invoking scani(w), which returns a set of sets of changes.

Implementation. Our implementation of scan and update is shown in Algorithm 1. It
uses an array Mem of |P| single-writer multi-reader (SWMR) atomic registers, where
all registers are initialized to ⊥. Such registers support Read() and Write(c) operations
such that only process pi ∈ P invokes Mem[i].Write(c) and any process pj ∈ P can in-
voke Mem[i].Read(). The implementation of such registers in message-passing systems
is described in the literature [Attiya et al. 1995].

A scani() reads from all registers in Mem by invoking collect, which returns the set C
of values found in all registers. After invoking collect once, scani() checks whether the
returned C is empty. If so, it returns ∅, and otherwise invokes collect one more time.
An updatei(c) invokes collect, and in case ∅ is returned, writes c to Mem[i]. If collect()
returns a non-empty set, the update simply returns OK. Intuitively, in this case another
update is already the “first” and there is no need to perform a Write since future scan
operations would not be obligated to observe it. In DynaStore, this happens when some
process has already proposed changes to the view, and thus, the weak snapshot does not
correspond to the most up-to-date view in the system and there is no need to propose
additional changes to this view.
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4.1. Correctness of Algorithm 1

Standard emulation protocols for atomic SWMR registers [Attiya et al. 1995] guar-
antee integrity (property PR1) and termination (property PR5). We next show that
Algorithm 1 preserves properties PR2-PR4. We assume that all registers in Mem are
initialized to ⊥ and that no process invokes update(⊥), which is indeed preserved by
DynaStore.

Notice that at most one Mem[i].Write operation can be invoked in the execution,
since after the first Mem[i].Write operation completes, any collect invoked by pi (the
only writer of this register) will return a non-empty set and pi will never invoke
another Write. Informally, this together with atomicity of all registers in Mem implies
properties PR2-PR3. We start the formal proof of these two properties by showing that
each register Mem[i] can be assigned at-most one noninitial value.

LEMMA 4.1. For any i ∈ P, the following holds: (a) if Mem[i].Read() is invoked
after the completion of Mem[i].Write(c), and returns c′, then c′ = c; and (b) if two
Mem[i].Read() operations return c �= ⊥ and c′ �= ⊥, then c = c′.

PROOF. Recall that only pi can write to Mem[i] (by invoking an update operation).
We next show that Mem[i].Write can be invoked at most once in an execution. Suppose
for the sake of contradiction that Mem[i].Write is invoked twice in the execution, and
observe the second invocation. Section 5.3 mentions our assumption of a mechanism
that always completes a previous operation on a weak snapshot object, if any such
operation has been invoked and did not complete (because of restarts), whenever a
new operation is invoked on the same weak snapshot object. Thus, when Mem[i].Write
is invoked for the second time, the first Mem[i].Write has already completed. Before
invoking the Write, pi completes collect, which executes Mem[i].Read. By atomicity of
Mem[i], since the first Write to Mem[i] has already completed writing a non-⊥ value,
collect returns a set containing this value, and the condition in line 2 in Algorithm 1
evaluates to FALSE, contradicting our assumption that a Write was invoked after the
collect completes.

(a) follows from atomicity of Mem[i] since Mem[i].Write is invoked at most once in
the execution. In order to prove (b), notice that if c �= c′, since pi is the only writer of
Mem[i], this means that both Mem[i].Write(c) and Mem[i].Write(c′) are invoked in the
execution, which contradicts the fact that Mem[i].Write is invoked at most once in the
execution.

The next lemma proves that Algorithm 1 preserves validity (property PR2).

LEMMA 4.2. Let o be a scani() operation that is invoked after the completion of an
update j(c) operation, and that returns C. Then C �= ∅.

PROOF. Since update j(c) completes, either Mem[i].Write(c) completes or collect re-
turns a non-empty set. In the first case, when o reads from Mem[i] during both first
and second collect, the Read returns c by Lemma 4.1. The second case is that collect
completes returning a non-empty set. Thus, a read from some register Mem[ j] during
this collect returns c′ �= ⊥. By atomicity of Mem[ j] and Lemma 4.1, since o is invoked
after update j(c) completes, any read from Mem[ j] performed during o returns c′. Thus,
in both cases the first and second collect during o return a non-empty set, which means
that C �= ∅.

Similarly, we next show that Algorithm 1 preserves monotonicity of scans (property
PR3).

LEMMA 4.3. Let o be a scani() operation that returns C and let o′ be a scanj() operation
that returns C ′ and is invoked after the completion of o. Then C ⊆ C ′.
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PROOF. If C = ∅, the lemma trivially holds. Otherwise, consider any c ∈ C. Notice
that c is returned by a Read r from some register Mem[k] during the second collect of
o. Atomicity of Mem[k] and Lemma 4.1 guarantee that every Read r′ from the same
register invoked after the completion of r returns c. Both times collect is executed
during o′, it reads from Mem[k] and since o′ is invoked after o completes both times a
set containing c is returned from collect, that is, c ∈ C ′.

The key to showing non-empty intersection (property PR4) is to observe that every
scan() operation that returns a non-empty set executes collect twice. Let us focus on
the first collect that completes in the execution returning some non-empty set C and
denote this collect by α. Notice that any scan() operation returning a non-empty set
starts at least one collect after α completes. We show that this means that any value
returned by α in the set C also appears in any non-empty set returned by a scan() in
the execution, guaranteeing that such sets have a non-empty intersection.

LEMMA 4.4. There exists c such that for every scan() operation that returns C ′ �= ∅, it
holds that c ∈ C ′.

PROOF. Let o be the first scani() operation during which collect in line 7 returns a non-
empty set, and let C �= ∅ be this set. Let o′ be any scan() operation that returns C ′ �= ∅.
We next show that C ⊆ C ′, which means that any c ∈ C preserves the requirements of
the lemma. Since C ′ �= ∅, the first invocation of collect() during o′ returns a non-empty
set. By definition of o, the second collect during o′ starts after the first collect of o
completes. For every c ∈ C, there is a Mem[k].Read() executed by the first collect of o
that returns c �= ⊥. By Lemma 4.1 and atomicity of Mem[k], a Read from the same
register performed during the second collect of o′ returns c. Thus, C ⊆ C ′.

5. DYNASTORE

This section describes DynaStore, an algorithm for multi-writer multi-reader (MWMR)
atomic storage in a dynamic system, which is presented in Algorithm 2. A key com-
ponent of our algorithm is a procedure ContactQ (lines 68-80) for reading and writing
from/to a quorum of members in a given view, used similarly to the communicate pro-
cedure in ABD [Attiya et al. 1995]. When there are no reconfigurations, ContactQ is
invoked twice by the read and write operations – once in a read-phase and once in
a write-phase. More specifically, both read and write operations first execute a read-
phase, where they invoke ContactQ to query a quorum of the processes for the latest
value and timestamp, after which both operations execute a write-phase as follows:
a read operation invokes ContactQ again to write-back the value and timestamp ob-
tained in the read-phase, whereas a write operation invokes ContactQ with a higher
and unique timestamp and the desired value.

To allow reconfiguration, the members of a view also store information about the
current view. They can change the view by modifying this information at a quorum of
the current view. We allow the reconfiguration to occur concurrently with any read and
write operations. Furthermore, once reconfiguration is done, we allow future reads and
writes to use (only) the new view, so that processes can be expired and removed from
the system. Hence, the key challenge is to make sure that no reads linger behind in
the old view while updates are made to the new view. Atomicity is preserved using the
following strategy.

—The read-phase is modified so as to first read information on reconfiguration, and
then read the value and its timestamp. If a new view is discovered, the read-phase
repeats with the new view.

—The write-phase, which works in the last view found by the read-phase, is modified
as well. First, it writes the value and timestamp to a quorum of the view, and then, it
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Fig. 1. Two scenarios that illustrate operation flow in DynaStore. (a) reconfig(c) operation from configuration
c1 to c2 (where c2 = c1 ∪ c) is concurrent with write(v). DynaStore ensures that one of them writes the value
v in configuration c2. (b) In this scenario, the reconfig(c) fails. DynaStore ensures that either the first read()
completes in c1, or write(v) writes the value v in c2.

reads the reconfiguration information. If a new view is discovered, the protocol goes
back to the read-phase (the write-phase begins again when the read-phase ends).

—The reconfig operation has a preliminary phase, writing information about the new
view to the quorum of the old one. It then continues by executing the phases described
above, starting in the old view.

The core of a read-phase is procedure ReadInView, which reads the configuration
information (line 34) and then invokes ContactQ to read the value and timestamp from
a quorum of the view (line 35). It returns a non-empty set if a new view was discovered
in line 34. Similarly, procedure WriteInView implements the basic functionality of
the write-phase, first writing (or writing-back) the value and timestamp by invoking
ContactQ in line 42, and then reading configuration information in line 43 (we shall
explain lines 39-40 in Section 5.3).

We next give intuition into why the above regime preserves read/write atomicity, by
considering the simple case where only one reconfiguration request is ever invoked,
reconfig(c), from c1 to c2 (where c2 = c1 ∪ c); we shall refer to this reconfiguration
operation as RC. Figure 1(a) depicts a scenario where RC, invoked by process p1,
completes while a second process p2 concurrently performs a write(v) operation. In our
scenario p2 is not initially aware of the existence of c2, and hence the write operation
performs a write-phase W writing in c1 the value v with timestamp ts. After the write
completes, p1 executes a read operation, which returns v (the only possible return value
according to atomicity). The read operation starts with a read-phase which operates
in c2 – the latest view known to p1. Therefore, for v to be returned by the read, our
algorithm must make sure that v and ts are transferred to c2 by either RC or the write
operation.

There are two possible cases with respect to RC. The first case is that RC’s read-
phase observes W , that is, during the execution of ContactQ in the read-phase of RC,
p1 receives v and ts from at least one process. In this case, RC’s write-phase writes-back
v and ts into c2. The second case is that RC’s read-phase does not observe W . In this
case, as was explained previously, our algorithm must not allow the write operation to
complete without writing the value and timestamp to a quorum of the new view c2. We
next explain how this is achieved. Since RC’s read-phase does not observe W , when RC
invokes ContactQ during its read-phase, W ’s execution of ContactQ writing a quorum
of c1 has not completed yet. Thus, W starts to read c1’s configuration information after
RC’s preliminary phase has completed. This preliminary phase writes information
about c2 to a majority of c1. Therefore, W discovers c2 and the write operation continues
in c2.

Figure 1(b) considers a different scenario, where p1 fails before completing RC. Again,
we assume that p2 is not initially aware of c2, and hence the write operation performs
a write-phase W in c1 writing the value v with timestamp ts. Concurrently with p2’s
write, p3 invokes a read operation in c1. Atomicity of the register allows this read
to return either v or ⊥, the initial value of the register; in the scenario depicted in
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Figure 1(b) ⊥ is returned. After the write operation completes, p3 invokes a second
read operation, which returns v (the only possible value allowed by atomicity for this
read). There are two cases to consider, with respect to the view in which the first read
executes its final phase. The simple case is when this view is c1. Then, the second read
starts by executing a read-phase in c1 and hence finds out about v.

The second case is more delicate, and it occurs when the first read completes in c2.
Recall that this read returns ⊥ and thus it does not observe W and the latest value v.
Nevertheless, since the second read starts with a read-phase in c2, the algorithm must
ensure that v is stored at a quorum of c2. This is done by the write operation, as we now
explain. Since the first read operation starts in c1 but completes in c2, it finds c2 when
reading the reconfiguration information during a read-phase R in c1. Since R does not
observe W , it must be that W completes its ContactQ writing a majority of c1 only after
R invokes its ContactQ reading from a majority of c1. Since R inspects reconfiguration
information before invoking ContactQ while W does so after completing ContactQ, it
must be that W starts inspecting reconfiguration information after R has finished in-
specting reconfiguration information. Monotonicity of scans (property PR3) guarantees
that W finds all configuration changes observed by R, and hence finds out about c2.
Consequently, the write operation continues in c2 and completes only after writing v in
c2. Here, it is important that the read-phase reads reconfiguration information before
it performs ContactQ, while the write-phase reads reconfiguration information after it
performs ContactQ. This inverse order is necessary to ensure atomicity in this scenario.

In these examples, additional measures are needed to preserve atomicity if several
processes concurrently propose changes to c1. Thus, the rest of our algorithm is dedi-
cated to the complexity that arises due to multiple contending reconfiguration requests.
Our description is organized as follows: Section 5.1 introduces the pseudo-code of Dy-
naStore, and clarifies its notations and atomicity assumptions. Section 5.2 presents the
DAG of views, and shows how every operation in DynaStore can be seen as a traversal
on that graph. Section 5.3 discusses reconfig operations. Section 5.4 presents the notion
of established views, which is central to the analysis of DynaStore. Formal proofs are
given in Section 5.5.

5.1. DynaStore Basics

DynaStore uses operations, upon clauses, and procedures. Operations are invoked by
the application, whereas upon-clauses are triggered by messages received from the
network: whenever a process pi receives a message m from pj (through a receive(m)i, j
input action), m is stored in a buffer (this is not showed in the pseudo-code) and
the upon-clause is an internal action enabled when some condition on the message
buffer holds. Procedures are called from an operation. Operations and local variables
at process pi are denoted with subscript i.

Whereas upon-clauses are atomic, for simplicity of presentation, we do not formulate
operations as atomic actions in the pseudo-code (with slight abuse of the I/O automata
terminology), and operations sometimes block waiting for a response from a majority
of processes in a view (in lines 31, 75, 54, 34 and 43), either explicitly (in lines 31
and 75), or in the underlying implementation of a SWMR register (e.g., Attiya et al.
[1995]) which is used in the construction of weak-snapshots. Note, however, that it
is a trivial exercise to convert the pseudo-code to the I/O automata syntax, as each
operation is atomic until it blocks waiting for a majority and thus the operation can be
devided into multiple atomic actions: initially an action corresponding to the code that
precedes the wait statenent executes, and when messages are received from a majority,
the upon-clause receiving the messages uses an additional internal flag to enable the
execution of the operation part following the wait, which forms another atomic action,
and disable code which precedes the wait.
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Operations and upon-clauses access different variables for storing the value and
timestamp6: vi and tsi are accessed in upon-clauses, whereas operations (and proce-
dures) manipulate vmax

i and tsmax
i . Procedure ContactQ sends a write-request including

vmax
i and tsmax

i (line 72) when writing a quorum, and a read-request (line 74) when
reading a quorum (msgNumi, a local sequence number, is also included in such mes-
sages). When pi receives a write-request, it updates vi and tsi if the received timestamp
is bigger than tsi, and sends back a REPLY message containing the sequence number of
the request (line 86). When a read-request is received, pi replies with vi, tsi, and the
received sequence number (line 88).

Every process pi executing DynaStore maintains a local estimation of the latest view,
curViewi (line 9), initialized to Init when the process starts. If the number of changes
proposed in the execution is finite, such estimates will eventually become the same
at all active processes, however the estimates may otherwise diverge as we shall see
below. Although pi is able to execute all event-handlers immediately when it starts,
recall that invocations of read, write or reconfig operations at pi are only allowed once
they are enabled for the first time; this occurs in line 11 (for processes in Init.join) or
in line 96 (for processes added later). If pi discovers that it is being removed from the
system, it simply halts (line 52). In this section, we denote changes of the form (Add, i)
by (+, i) and changes of the form (Remove, i) by (−, i).

5.2. Traversing the Graph of Views

Weak snapshots organize all views into a DAG, where views are the vertices and there
is an edge from a view w to a view w′ whenever an update j(w, c) has been made in
the execution by some process j ∈ w.members, updating ws(w) to include the change
c �= ∅ such that w′ = w ∪ c; |c| can be viewed as the weight of the edge – the distance
between w′ and w in changes. Our algorithm maintains the invariant that c ∩ w = ∅
(Lemma 5.3 in Section 5.5), and thus w′ always contains more changes than w, that is,
w ⊂ w′. Hence, the graph of views is acyclic.

The main logic of DynaStore lies in procedure Traverse, which is invoked by all
operations. This procedure traverses the DAG of views, and transfers the state of the
emulated register from view to view along the way. Traverse starts from the view
curViewi. Then, the DAG is traversed in an effort to find all membership changes
in the system; these are collected in the set desiredView. After finding all changes,
desiredView is added to the DAG by updating the appropriate ws object, so that other
processes can find it in future traversals.

The traversal resembles the well-known Dijkstra algorithm for finding shortest paths
from some single source [Cormen et al. 1990], with the important difference that our
traversal modifies the graph. A set of views, Front, contains the vertices reached by the
traversal and whose outgoing edges were not yet inspected. Initially, Front = {curViewi}
(line 48). Each iteration processes the vertex w in Front closest to curViewi (lines 50
and 51).

During an iteration of the loop in lines 49–64, it might be that pi already knows that w
does not contain all proposed membership changes. This is the case when desiredView,
the set of changes found in the traversal, is different from w. In this case, pi installs an
edge from w to desiredView using updatei (line 54). As explained in Section 4, in case
another update to ws(w) has already completed, update does not install an additional
edge from w; the only case when multiple outgoing edges exist is if they were installed
concurrently by different processes.

6This allows for a practical optimization, whereby operations and upon clauses act like separate monitors:
an operation can execute concurrently with an upon-clause, and at most one of each kind can be executed at
a time.
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ALGORITHM 2: Code for process pi, part 1
1: state
2: vi ∈ V ∪ {⊥}, initially ⊥ // latest value received in a WRITE message
3: tsi ∈ N0 × (� ∪ {⊥}), initially (0,⊥) // timestamp corresponding to vi (timestamps have

selectors num and pid)
4: vmax

i ∈ V ∪ {⊥}, initially ⊥ // latest value observed in Traverse
5: tsmax

i ∈ N0 × (� ∪ {⊥}), initially (0, ⊥) // timestamp corresponding to vmax
i

6: pickNewTSi ∈ {FALSE, TRUE}, initially FALSE // should Traverse pick a new timestamp?
7: Mi : set of messages, initially ∅
8: msgNumi ∈ N0, initially 0 // counter for sent messages
9: curViewi ∈ Views, initially Init // latest view

10: initially:
11: if (i ∈ Init.join) then enable operations

12: operation readi():
13: pickNewTSi ← FALSE

14: newView ← Traverse(∅, ⊥)
15: NotifyQ(newView)
16: return vmax

i

17: operation writei(v):
18: pickNewTSi ← TRUE

19: newView ← Traverse(∅, v)
20: NotifyQ(newView)
21: return OK

22: operation reconfigi(cng):
23: pickNewTSi ← FALSE

24: newView ← Traverse(cng, ⊥)
25: NotifyQ(newView)
26: return OK

27: procedure NotifyQ(w)
28: if did not receive 〈NOTIFY, w〉 then
29: send 〈NOTIFY, w〉 to w.members
30: end if
31: wait for 〈NOTIFY, w〉 from

a majority of w.members
32: end

33: procedure ReadInView(w)
34: ChangeSets ← scani(w)
35: ContactQ(R, w.members)
36: return ChangeSets
37: end

38: procedure WriteInView(w, v)
39: if pickNewTSi then
40: (pickNewTSi, v

max
i , tsmax

i ) ←
(FALSE, v, (tsmax

i .num+ 1, i))
41: end if
42: ContactQ(W, w.members)
43: ChangeSets ← scani(w)
44: return ChangeSets
45: end

46: procedure Traverse(cng, v)
47: desiredView ← curViewi ∪ cng
48: Front ← {curViewi}
49: do
50: s ← min{|�| : � ∈ Front}
51: w ← any � ∈ Front s.t. |�| = s
52: if (i �∈ w.members) then halti
53: if w �= desiredView then
54: updatei(w, desiredView \ w)
55: end if
56: ChangeSets ← ReadInView(w)
57: if ChangeSets �= ∅ then
58: Front ← Front \ {w}
59: for each c ∈ ChangeSets
60: desiredView ← desiredView ∪ c
61: Front ← Front ∪ {w ∪ c}
62: end if
63: else ChangeSets ← WriteInView(w, v)
64: while ChangeSets �= ∅
65: curViewi ← desiredView
66: return desiredView
67: end

68: procedure ContactQ(msgType, D)
69: Mi ← ∅
70: msgNumi ← msgNumi + 1
71: if msgType = W then send
72: 〈REQ, W, msgNumi, v

max
i , tsmax

i 〉 to D
73: else send
74: 〈REQ, R, msgNumi, ⊥, (0, ⊥)〉 to D
75: wait until 〈REPLY, msgNumi, · · ·〉 is

in Mi from a majority of D
76: if msgType = R then
77: tm ← maximal timestamp t s.t.

〈REPLY, msgNumi, v, t〉 is in Mi
78: vm ← value corresponding to tm
79: if tm > tsmax

i then
80: (vmax

i , tsmax
i ) ← (vm, tm)

81: end if
82: end
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ALGORITHM 3: Code for process pi , part 2
83: upon receiving 〈REQ, msgType, num, v, ts〉 from pj :
84: if msgType = W then
85: if (ts > tsi) then (vi, tsi) ← (v, ts)
86: send 〈REPLY, num〉 to pj
87: end if
88: else send message 〈REPLY, num, vi , tsi〉 to pj

89: upon receiving 〈REPLY, · · ·〉:
90: add the message and its sender-id to Mi

91: upon receiving 〈NOTIFY, w〉 for the first time:
92: send 〈NOTIFY, w〉 to w.members
93: if (curViewi ⊂ w) then
94: pause any ongoing Traverse
95: curViewi ← w
96: if (i ∈ w.join) then enable operations
97: if paused in line 94, restart Traverse from line 47
98: end if

Next, pi invokes ReadInView(w) (line 56), which reads the state and configuration
information in this view, returning all edges outgoing from w found when scanning
ws(w) in line 34. By validity (property PR2), if pi or another process had already
installed an edge from w, a non-empty set of edges is returned from ReadInView. If
one or more outgoing edges are found, w is removed from Front, the next views are
added to Front, and the changes are added to desiredView (lines 59–61). If pi does not
find outgoing edges from w, it invokes WriteInView(w) (line 63), which writes the latest
known value to this view and again scans ws(w) in line 43, returning any outgoing
edges that are found. If here too no edges are found, the traversal completes.

Notice that desiredView is chosen in line 51 only when there are no other views
in Front, since it contains the union of all views observed during the traversal
(Lemma 5.2), and thus any other view in Front must be of smaller size (i.e., contain
fewer changes). Moreover, when w �= desiredView is processed, the condition in line 53
evaluates to true, and ReadInView returns a non-empty set of changes (outgoing edges)
by validity (property PR2). Thus, WriteInView(w, ∗) is invoked only when desiredView
is the only view in Front, that is, w = desiredView (this transfers the state found during
the traversal to desiredView, the latest-known view). For the same reason, when the
traversal completes, Front = {desiredView} (Lemma 5.6). Then, desiredView is assigned
to curViewi in line 65 and returned from Traverse.

To illustrate such traversals, consider the example in Figure 2. Process pi invokes
Traverse and let initView be the value of curViewi when Traverse is invoked. Assume
that initView.members includes at least p1 and pi, and that cng = ∅ (this parameter of
Traverse will be explained in Section 5.3). Initially, its Front, marked by a rectangle in
Figure 2, includes only initView, and desiredView = initView. Then, the condition in
line 53 evaluates to false and pi invokes ReadInView(initView), which returns {{(+, 3)},
{(+, 5)}, {(−, 1), (+, 4)}}. Next, pi removes initView from Front and adds vertices V1, V2
and V3 to Front as shown in Figure 2. For example, V3 results from adding the changes
in {(−, 1), (+, 4)} to initView. At this point, desiredView = initView ∪ {(+, 3), (+, 5),
(−, 1), (+, 4)}. In the next iteration of the loop in lines 49–64, one of the smallest views
in Front is processed. In our scenario, V1 is chosen. Since V1 �= desiredView, pi installs
an edge from V1 to desiredView. Suppose that no other updates were made to ws(V1)
before pi ’s update completes. Then, ReadInView(V1) returns {{(+, 5), (−, 1), (+, 4)}} (in-
tegrity and validity properties of weak snapshots). Then, V1 is removed from Front and
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Fig. 2. Example DAG of views.

V4 = V1 ∪ {(+, 5), (−, 1), (+, 4)} is added to Front. In the next iteration, an edge is
installed from V2 to V4 and V2 is removed from Front.

Now, the size of V3 is smallest in Front, and suppose that another process pj has
already completed update j(V3, {(+, 7)}). pi executes update (line 54), however since
an outgoing edge already exists, a new edge is not installed. Then, ReadInView(V3)
is invoked and returns {{(+, 7)}}. Next, V3 is removed from Front, V5 = V3 ∪ {(+, 7)}
is added to Front, and (+, 7) is added to desiredView. Now, Front = {V4, V5}, and we
denote the new desiredView by V6. When V4 and V5 are processed, pi installs edges
from V4 and V5 to V6. Suppose that ReadInView of V4 and V5 in line 56 return only the
edge installed in the preceding line. Thus, V4 and V5 are removed from Front, and V6 is
added to Front, resulting in Front = {V6}. During the next iteration ReadInView(V6) and
WriteInView(V6) execute and both return ∅ in our execution. The condition in line 64
terminates the loop, V6 is assigned to curViewi and Traverse completes returning V6.

5.3. Reconfigurations (Liveness)

A reconfig(cng) operation is similar to a read, with the only difference that desiredView
initially contains the changes in cng in addition to those in curViewi (line 47). Since
desiredView only grows during a traversal, this ensures that the view returned from
Traverse includes the changes in cng (Lemma 5.7 in Section 5.5). As explained ear-
lier, Front = {desiredView} when Traverse completes (Lemma 5.6), which means that
desiredView appears in the DAG of views.

When a process pi completes WriteInView in line 63 of Traverse, the latest state of
the register has been transfered to desiredView, and thus it is no longer necessary for
other processes to start traversals from earlier views. Thus, after Traverse completes
returning desiredView, pi invokes NotifyQ with this view as its parameter (lines 15,
20 and 25), to let other processes know about the new view. NotifyQ(w) sends a NOTIFY

message (line 29) to w.members. A process receiving such a message for the first time
forwards it to all processes in w.members (line 92), and after a NOTIFY message con-
taining the same view was received from a majority of w.members, NotifyQ returns. In
addition to forwarding the message, a process pj receiving 〈NOTIFY, w〉 checks whether
curViewj ⊂ w (i.e., w is more up-to-date than curViewj), and if so it pauses any ongoing
Traverse, assigns w to curViewj , and restarts Traverse from line 47. As the execution of
Traverse between wait statements is atomic, Traverse executed by pj can be restarted
only when it blocks waiting for messages from a majority of some view w′. Restarting
Traverse in such case can be necessary if less than a majority of members in w′ are
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active. Intuitively, Definition 3.2 implies that in such case w′ must be an old view, that
is, some reconfig operation completes proposing new changes to system membership.
Lemma 5.26 proves that in this case pj will receive a 〈NOTIFY, w〉 message such that
curViewj ⊂ w and restart its traversal (provided, of course, that pj has not been re-
moved, that is, that it belongs to w.members). We show in Theorem 5.28(a) that such
NOTIFY messages also ensure that enable operations event occurs at every active process
that was added by a complete reconfig operation, as required by Definition 3.2.

Note that when a process pi restarts Traverse, pi may have an outstanding scani or
updatei operation on a weak snapshot ws(w) for some view w, in which case pi restarts
Traverse without completing the operation. It is possible that pi might be unable to
complete such outstanding operations because w is an old view, that is, more than a
majority of its members were removed. After Traverse is restarted, it is possible that pi
encounters w again in the traversal and needs to invoke another operation on ws(w),
in which case w is not known to be old. We require that in this case pi first terminates
previous outstanding operations on ws(w) before it invokes the new operation. The
mechanism to achieve this is a simple queue, and it is not illustrated in the code. Note
that started snapshot operations on old views do not need to be completed.

Restarts of Traverse introduce an additional potential complication for write opera-
tions: suppose that during its execution of write(v), pi sends a WRITE message with v and
a timestamp ts. It is important that if Traverse is restarted, v is not sent with a different
timestamp (unless it belongs to some other write operation). Before the first message
with v is sent, we set the pickNewTSi flag to false (line 40). The condition in line 39
prevents Traverse from re-assigning v to vmax

i or incorrect tsmax
i , even if a restart occurs.

In Section 5.5.3, we prove that DynaStore preserves Dynamic Service Liveness (Def-
inition 3.2). Thus, liveness is conditioned on the number of different changes proposed
in the execution being finite (in reality, liveness would still hold even with an infinite
number of reconfigurations, provided that each operation is concurrent with a finite
number of reconfigurations). Using this assumption, we prove in Theorem 5.28(b) that
from some point of the execution onward no more 〈NOTIFY, newView〉 messages can
be received by a process pi that can cause the restart of Traverse, that is, such that
curViewi ⊂ newView. Lemma 5.27 proves that, if pi is active, Traverse and the operation
during which it was invoked will then terminate.

5.4. Sequence of Established Views (Safety)

Our traversal algorithm performs a scan(w) to discover outgoing edges from w. How-
ever, different processes might invoke update(w) concurrently, and different scans
might see different sets of outgoing edges. In such cases, it is necessary to prevent pro-
cesses from working with views on different branches of the DAG. Specifically, we would
like to ensure an intersection between views accessed in reads and writes. Fortunately,
non-empty intersection (property PR4) guarantees that all scan(w) operations that re-
turn non-empty sets (i.e., return some outgoing edges from w), have at least one element
(edge) in common. Note that a process cannot distinguish such an edge from others
and therefore traverses all returned edges. This property of the algorithm enables us
to define a totally ordered subset of the views, which we call established, as follows:

Definition 5.1 (Sequence of Established Views). The unique sequence of established
views E is constructed as follows:

—the first view in E is the initial view Init;
—if w is in E , then the next view after w in E is w′ = w ∪ c, where c is an element

chosen arbitrarily from the intersection of all sets C �= ∅ returned by some scan(w)
operation in the execution.
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Note that each element in the intersection mentioned in Definition 5.1 is a set of
changes, and that property PR4 guarantees a non-empty intersection. In order to find
such a set of changes c in the intersection, one can take an arbitrary element from the
set C returned by the first collect(w) that returns a non-empty set in the execution.
This unique sequence E allows us to define a total order relation on established views.
For two established views w and w′ we write w ≤̇ w′ if w appears in E no later than
w′; if in addition w �= w′ then w <̇ w′. Notice that for two established views w and w′,
w <̇ w′ if an only if w ⊂ w′.

Notice that the first graph traversal in the system starts from curViewi = Init,
which is established by definition. When Traverse is invoked with an established view
curViewi, every time a vertex w is removed from Front and its children are added, one of
the children is an established view, by definition. Thus, Front always includes at least
one established view, and since it ultimately contains only one view, desiredView, we
conclude that desiredView assigned to curViewi in line 65 and returned from Traverse
is also established (Lemma 5.8). Thus, all views sent in NOTIFY messages or stored in
curViewi are established. Note that while a process pi encounters all established views
between curViewi and the returned desiredView in an uninterrupted traversal, it only
recognizes a subset of established views as such (whenever Front contains a single
view, that view must be in E).

We show that WriteInView (line 63) is always performed in an established view
(Lemma 5.8). Moreover, we prove that each traversal performs a ReadInView on
every established view in E between curViewi and the returned view desiredView
(Lemma 5.9(a)). Thus, intuitively, by reading each view encountered in a traversal,
we are guaranteed to intersect any write completed on some established view in the
traversed segment of E .

By performing the scan before ContactQ in ReadInView and after the ContactQ in
WriteInView we guarantee that in this intersection the state is transferred correctly as
we now explain. This interleaving of snapshot and data operations guarantees that for
any W = WriteInView and R = ReadInView that operate on the same view w, either
the maximal timestamp found by R is at least as high as the one written by W , that
is, R reads the data written by W or some newer data, or the set of changes returned
by R is contained in the set returned by W , that is, W sees at least all those outgoing
edges from the view w that R sees. Moreover, if R is invoked after W then the former
necessarily holds. This property is proven in Lemma 5.10 of Section 5.5 and we refer
the reader to the beginning of Section 5 for examples that illustrate its usefulness.
Our proof uses this property in Lemma 5.11 to show that data read from a view w′
will be at least as new as data read from a view w if both views are established and
w <̇ w′, which means, intuitively, that state is transfered correctly along the sequence
of established views.

To facilitate the proof of atomicity we associate a timestamp ats(o) with each read
or write operation o. If o is a read, then ats(o) is tsmax

i upon the completion of Traverse
during o; if o is a write, then ats(o) equals to tsmax

i when its assignment completes in
line 40. Although this definition does not associate a timestamp with every read or
write operation, Lemma 5.16 shows that timestamps are well defined for all complete
reads and writes. It also proves that for every read there is a corresponding write of
the returned value that has the same associated timestamp as the read, and that the
timestamps associated with different writes are different. Lemma 5.17 proves that if
o and o′ are two complete read or write operations such that o completes before o′
is invoked, then ats(o) ≤ ats(o′) and if o′ is a write operation, then ats(o) < ats(o′).
Theorem 5.18 completes the proof of linearizability (atomicity) by using associated
timestamps to construct for every execution a serial history equivalent to the history
of the execution.
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5.5. Correctness of DynaStore

5.5.1. Traverse. We use the convention whereby each time Traverse is restarted, a new
execution of Traverse begins; this allows us to define one view from which a traversal
starts – this is the value curViewi when the execution of Traverse begins in line 47.

We note that whenever a process pi performs scani(w) or updatei(w, c), it holds that
i ∈ w.members because of the check in line 52. Thus, it is allowed to perform these
operations on w.

LEMMA 5.2. At the beginning and end of each iteration of the loop in lines 49-64, it
holds that

⋃
w∈Front w ⊆ desiredView.

PROOF. We prove that if an iteration begins with
⋃

w∈Front w ⊆ desiredView then this
invariant is preserved also when the iteration ends. The lemma then follows from
the fact that at the beginning of the first iteration Front = {curViewi} (line 48) and
desiredView = curViewi ∪ cng (line 47).

Suppose that at the beginning of an iteration
⋃

w∈Front w ⊆ desiredView. If the loop
in lines 59-61 does not execute, then Front and desiredView do not change, and the
condition is preserved at the end of the iteration. If the loop in lines 59-61 does execute,
then w ⊆ desiredView is removed from Front, w ∪ c is added to Front and c is added to
desiredView, thus the condition is again preserved.

LEMMA 5.3. Whenever updatei(w, c) is executed, c �= ∅ and c ∩ w = ∅.

PROOF. updatei(w, c) is executed only in line 54 when w �= desiredView and c =
desiredView \ w, which means that c ∩ w = ∅. By Lemma 5.2, since w �= desiredView, it
holds that w ⊂ desiredView. Thus, c = desiredView \ w �= ∅.

LEMMA 5.4. Let T be an execution of Traverse that starts from curViewi = initView.
For every view w that appears in Front at some point during the execution of T , it holds
that initView ⊆ w.

PROOF. We prove that if an iteration of the loop in lines 49-64 begins such that each
view in Front contains initView, then this invariant is preserved also when the iteration
ends. The lemma then follows from the fact that at the beginning of the first iteration
Front = {curViewi} (line 48).

Suppose that at the beginning of an iteration each view in Front contains initView.
Front can only change during this iteration if the condition in line 57 evaluates to true,
that is, if ChangeSets �= ∅. In this case, the loop in lines 59-61 executes at least once,
and w ∪ c is added to Front in line 61 for some c. Since w was in Front in the beginning
of this iteration, by our assumption it holds that initView ⊆ w, and therefore w ∪ c also
contains initView.

LEMMA 5.5. Let w ∈ Front be a view. During the execution of Traverse, if w is removed
from Front in some iteration of the loop in lines 49-64, then the size of any view w′ added
to Front in the same or a later iteration, is bigger than |w|.

PROOF. Suppose that w is removed from Front during an iteration. Then its size,
|w|, is minimal among the views in Front (lines 50 and 51) at the beginning of this
iteration. By line 61, whenever a view is inserted to Front, it has the form w ∪ c where
c ∈ ChangeSets returned by scani in line 34. By property PR1, some update(w, c)
operation is invoked in the execution, and by Lemma 5.3, c �= ⊥ and c ∩ w = ∅. Thus,
the view w ∪ c is strictly bigger than w removed from Front in the same iteration. It
follows that any view w′ added to Front in this or in a later iteration has size bigger
than |w|.
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LEMMA 5.6. If at some iteration of the loop in lines 49-64 ReadInView returns
ChangeSets = ∅, then w = desiredView and Front = {desiredView}.

PROOF. Suppose for the sake of contradiction that w �= desiredView. Before ReadIn-
View is invoked, updatei(w, desiredView \w) completes, and then, by Lemma 4.2, when
ReadInView completes it returns a non-empty set, a contradiction.

Suppose for the sake of contradiction that there exists a view w′ ∈ Front such that
w′ �= desiredView. By Lemma 5.2, w′ ⊆ desiredView. Since w′ �= desiredView, we
get that w′ ⊂ desiredView and thus |w′| < |desiredView|, contradicting the fact that
w = desiredView, and not w′, is chosen in line 51 in the iteration.

LEMMA 5.7. desiredView returned from Traverse contains cng.

PROOF. At the beginning of Traverse, desiredView is set to curViewi ∪ cng in line 47,
and during the execution of Traverse, no element is removed from desiredView. Thus,
cng ⊆ desiredView when Traverse completes.

LEMMA 5.8. curViewi is an established view. Moreover, desiredView in line 65 of
Traverse is established and whenever WriteInView(w, ∗) is invoked, w is an established
view.

PROOF. We prove the lemma using the following claim:

CLAIM 5.8.1. If curViewi from which a traversal starts is an established view, then
Front at the beginning and end of the loop in lines 49-64 contains an established view,
and the view desiredView assigned to curViewi in line 65 in Traverse is established.
Moreover, whenever WriteInView(w, ∗) is invoked, w is an established view.

PROOF. Initially, Front contains curViewi (line 47), which is established by assump-
tion, and therefore Front indeed contains an established view when the first iteration of
the loop begins. If a view w is removed from Front in line 58, then ChangeSets �= ∅. We
distinguish between two cases: (1) if w is not an established view, then Front at the end
of the iteration still contains an established view; (2) if w is an established view, then,
by Lemma 4.4 and the definition of E , since ChangeSets is a non-empty set returned
by scani(w), there exists c ∈ ChangeSets such that w ∪ c is established. Since for every
c ∈ ChangeSets, w ∪ c is added to Front in line 61, the established view succeeding w in
the sequence is added to Front, and thus Front at the end of this iteration of the loop
in lines 49-64 still contains an established view.

By Lemma 5.6, when the loop in lines 49-64 completes, as well as when WriteIn-
View(w, ∗) is invoked, Front = {desiredView}. Since during such iterations, ReadIn-
View returns ∅, Front does not change from the beginning of the iteration. We have
just shown that Front contains an established view at the beginning of the do-while
loop, and thus, desiredView in line 65 is established, and so is any view w passed to
WriteInView.

We next show that the precondition of the claim above holds, that is, that curViewi is
an established view, by induction on |curViewi|. The base is curViewi = Init, in which
case it is established by definition. Assuming that curViewi is established if its size is
less than k, observe such view of size k > |Init|. Consider how curViewi got its current
value – it was assigned either by some earlier execution of Traverse at pi in line 65, or in
line 95 when a NOTIFY message is received, which implies that some process completes
a traversal returning this view. In either case, since curViewi �= Init, some process
pj has desiredView = curViewi in line 65, while starting the traversal with a smaller
view curViewj . Notice that curViewj is established by our induction assumption, and
since curViewi is the value of desiredView in line 65 of a Traverse that started with an
established view, it is also established by Claim 5.8.1.
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LEMMA 5.9. Let T be an execution of Traverse and initView be the value of curViewi
when pi starts this execution, then (a) if T invokes WriteInView(w, ∗) then T completes
a ReadInView(w′) which returns a non-empty set for every established view w′ such that
initView ≤̇ w′ <̇ w, and a ReadInView(w) that returns ∅; and (b) if T reaches line 65
with desiredView = w′′, then it completes WriteInView(w′′, ∗) which returns ∅.

PROOF. When T begins, the established view w′ = initView is the only view in
Front. Since some iteration during T chooses w in lines 50 and 51, which has bigger
size than w′, it must be that w′ is removed from Front. This happens only if some
ReadInView(w′) during T returns ChangeSets �= ∅. After w′ is removed from Front, for
every c ∈ ChangeSets, w′∪c is added to Front, and thus, the established view succeeding
w′ in E is added to Front (by Lemma 4.4 and the definition of E). The arguments above
hold for every established view w′ such that initView ≤̇ w′ <̇ w, since a bigger view w
is chosen from Front during T . During the iteration when WriteInView(w, ∗) is invoked,
ReadInView(w) completes in line 56 and returns ∅, which completes the proof of (a).

Suppose that T reaches line 65 with desiredView = w′′. By Lemma 5.6, w during the
last iteration of the loop equals to w′′. Observe the condition in line 64, which requires
that ChangeSets = ∅ for the loop to end. Notice that ChangeSets is assigned either in
line 56 or line 63. If it was assigned in line 63, then WriteInView(w, ∗) was executed
which completes the proof of (b). Otherwise, ReadInView(w) returns ChangeSets = ∅
in line 56, which causes line 63 to be executed. Then, since this is the last iteration,
WriteInView(w, ∗) returns ∅.

5.5.2. Atomicity. We say that WriteInView writes a timestamp ts if tsmax
i sent in the REQ

message by ContactQ(W, *) equals ts. Similarly, a ReadInView reads timestamp ts if at
the end of ContactQ(R, *) invoked by the ReadInView, tsmax

i is equal to ts.

LEMMA 5.10. Let W be a WriteInView(w, *) that writes timestamp ts and returns C,
and R be a ReadInView(w) that reads timestamp ts′ and returns C ′. Then, either ts′ ≥ ts
or C ′ ⊆ C. Moreover, if R is invoked after W completes, then ts′ ≥ ts.

PROOF. Because both operation invoke ContactQ in w, there exists a process p in
w.members from which both W and R get a REPLY message before completing their
ContactQ, that is, p’s answer counts towards the necessary majority of replies for both
W and R. If p receives the 〈REQ, W, . . .〉 message from W with timestamp ts before the
〈REQ, R, . . .〉 message from R, then by lines 85 and 88 it responds to the message from R
with a timestamp at least as big as ts. By lines 77-80, when R completes ContactQ(R,
w.members), tsmax

i is set to be at least as high as ts, and thus ts′ ≥ ts. It is left to show
that if p receives the 〈REQ, R, . . .〉 message from R before the 〈REQ, W, . . .〉 message from
W , then C ′ ⊆ C.

Suppose that p receives the 〈REQ, R, . . .〉 message from R first. Then, when this mes-
sage is received by p, ContactQ(W, w.members) has not yet completed at W , and thus
W has not yet invoked scan(w) in line 43. On the other hand, since R has started Con-
tactQ(R, w.members), it has already completed its scan(w) in line 34, which returned
C ′. When W completes its ContactQ it invokes scan(w), which then returns C. By
Lemma 4.3, it holds that C ′ ⊆ C.

Notice that if R is invoked after W completes then it must be the case that p receives
the 〈REQ, W, . . .〉 message from W first, and thus, in this case, ts′ ≥ ts.

LEMMA 5.11. Let T be an execution of Traverse that completes returning w and upon
completion its tsmax

i is equal to ts, and T ′ be an execution of Traverse that reaches line 65
with tsmax

i equal to ts′ and its desiredView equal to w′. If w <̇ w′, then ts ≤ ts′.
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PROOF. Consider the prefix of E up to w′: V0, V1, . . . , Vl such that V0 = Init, Vl = w′,
and w = Vi where i ∈ {0, . . . , l − 1}. Moreover, let w′′ be the view from which T ′ starts
the traversal (w′′ is established by Lemma 5.8).

First, consider the case that w′′ ≤̇ w. By Lemma 5.9, since T returns w, it completes
WriteInView(w, ∗) which returns C = ∅. Since T ′ starts from w′′ ≤̇ w and reaches line 65
with desiredView = w′ such that w <̇ w′, by Lemma 5.9 it completes a ReadInView(w)
that returns C ′ �= ∅ (notice that ReadInView(w) might be executed in two consecutive
iterations of T ′, in which case during the first iteration ReadInView(w) returns ∅; we
then look on the next iteration, where a non-empty set is necessarily returned). Since
C ′ �⊆ C, by Lemma 5.10, we have that tsmax

i upon the completion of the ReadInView(w)
by T ′ is at least as big as tsmax

i upon the completion of WriteInView(w, ∗) by T , which
equals to ts. Since tsmax

i does not decrease during T ′ and ts′ is the value of tsmax
i when

T ′ reaches line 65, we have that ts′ ≥ ts.
The second case to consider is w <̇ w′′, which implies that w′′ �= Init. In this case,

there exists a traversal T ′′ that starts from a view w′′′ <̇ w′′ and reaches line 65 before
T begins, with desiredView = w′′ (T ′′ is either an earlier execution of Traverse by
the same process that executes T ′, or by another process, in which case T ′′ completes
and sends a NOTIFY message with w′′ which is then received by the process executing
T ′ before T ′ starts). Let ts′′ be the tsmax

i when T ′′ reaches line 65. Notice that T ′′
completes WriteInView(w′′, ∗) before T ′ starts ReadInView(w′′), and by Lemma 5.10
when ReadInView(w′′) completes at T ′ its tsmax

i is at least ts′′. Since tsmax
i at T ′ can

only increase from that point on, we get that ts′ ≥ ts′′. It is therefore enough to show
that ts′′ ≥ ts in order to complete the proof. In order to do this, we apply the arguments
above recursively, considering T ′′ instead of T ′, w′′ instead of w′ and ts′′ instead of ts′
accordingly (recall that w <̇ w′′). Notice that since the prefix of E up to w′ is finite, and
since w′′′ <̇ w′′, that is, the starting point of T ′′ is before that of T ′ in E , the recursion
is finite and the starting point of the traversal we consider gets closer to Init in each
recursive step. Therefore, the recursion will eventually reach a traversal that starts
from an established view α and reaches line 65 with desiredView equal to an established
view β such that α ≤̇ w and w <̇ β, which is the base case we consider.

By definition of E , if w is an established view then for every established view w′
in the prefix of E before w (not including), some scani(w′) returns a non-empty set.
However, the definition only says that such a scani(w′) exists, and not when it occurs.
The following lemma shows that if w is returned by a Traverse T at time t, then some
scan on w′ returning a non-empty set must complete before time t. Notice that this
scan might be performed by a different process than the one executing T .

LEMMA 5.12. Let T be an execution of Traverse that reaches line 65 at time t with
desiredView equal to w such that w �= Init, and consider the prefix of E up to w:
V0, V1, . . . , Vl such that V0 = Init and Vl = w. Then for every k = 0, . . . , l − 1, some
scan(Vk) returns a non-empty set before time t.

PROOF. Since w �= Init there exists a traversal T ′ that starts from Vi <̇ w and reaches
line 65 with desiredView = w no later than t. Notice that T ′ can be T if T starts from
a view different than w, or alternatively T ′ can be a traversal executed earlier by the
same process, or finally, a traversal at another process that completes before T begins.
By Lemma 5.9, a ReadInView(Vj) performed during T ′ returns a non-empty set for
every j = i, . . . , l − 1. If i = 0, we are done. Otherwise, Vi �= Init and we continue the
same argument recursively, now substituting Vl with Vi. Since the considered prefix of
E is finite and since each time we recurse we consider a subsequence starting at least
one place earlier than the previous starting point, the recursion is finite.
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COROLLARY 5.13. Let T be an execution of Traverse that returns a view w and let
T ′ be an execution of Traverse invoked after the completion of T , returning a view w′.
Then, w ≤̇ w′.

PROOF. First, note that by Lemma 5.8 both w and w′ are established. Suppose for
the purpose of contradiction that w′ <̇ w. By Lemma 5.12, some scan(w′) completes
returning a non-empty set before T completes. Since T ′ returns w′, its last iteration
performs a scan(w′) that returns an empty set. This contradicts Lemma 4.3 since T ′
starts after T completes.

COROLLARY 5.14. Let T be an execution of Traverse that returns a view w and let T ′
be an execution of Traverse invoked after the completion of T . Then, T ′ does not invoke
WriteInView(w′, ∗) for any view w′ <̇ w.

PROOF. First, by Lemma 5.8, WriteInView is always invoked with an established view
as a parameter. Suppose for the sake of contradiction that WriteInView(w′, ∗) is invoked
during T ′ for some view w′ <̇ w. Since T returns w and w′ <̇ w, by Lemma 5.12, some
scan(w′) completes returning a non-empty set before T completes. Since T ′ invokes
WriteInView(w′, ∗), by Lemma 5.9 a ReadInView(w′) returned ∅ during T ′. Thus, during
the execution of this ReadInView(w′), a scan(w′) returned ∅ during T ′. This contradicts
Lemma 4.3 since T ′ starts after T completes.

We associate a timestamp with read and write operations as follows:

Definition 5.15 (Associated Timestamp). Let o be a read or write operation. We de-
fine ats(o), the timestamp associated with o, as follows: if o is a read operation, then
ats(o) is tsmax

i upon the completion of Traverse during o; if o is a write operation, then
ats(o) equals to tsmax

i when its assignment completes in line 40.

Notice that not all operations have associated timestamps. The following lemma
shows that all complete operations as well as writes that are read-from by some com-
plete read operation have an associated timestamp.

LEMMA 5.16. We show three properties of associated timestamps: (a) for every com-
plete operation o, ats(o) is well defined; (b) if o is a read operation that returns v �= ⊥,
then there exists o′ = write(v) operation, ats(o′) is well defined, and it holds that
ats(o) = ats(o′); (c) if o and o′ are write operations with associated timestamps, then
ats(o) �= ats(o′) and both are greater than (0,⊥).

PROOF. There might be several executions of Traverse during a complete operation,
but only one of these executions completes. Therefore, ats(o) is well defined for every
complete read operation o. If o is a complete write, then notice that pickNewTSi = TRUE

until it is set to FALSE in line 40, and therefore the condition in line 39 is TRUE until such
time. Thus, for a write operation, line 40 executes at least once – in WriteInView which
completes right before the completion of a Traverse during o (notice that WriteInView
might be executed earlier as well). Once line 40 executes for the first time, pickNewTSi
becomes FALSE. Thus, this line executes at-most once in every write operation and
exactly once during a complete write operation, which completes the proof of (a).

To show (b), notice that vmax
i equals to v upon the completion of o. Moreover, since

v �= ⊥, v is not the initial value of vmax
i . Observe the first operation o′ that sets vmax

i to v
during its execution, and notice that vmax

i is assigned only in lines 80 and 40. Suppose
for the purpose of contradiction that the process executing o′ receives v in a REPLY

message from another process and sets vmax
i to v in line 80. A process pi sending a REPLY

message always includes vi in this message, and vi is set only to values received by pi
in 〈REQ, W, . . .〉 messages. Thus, some process sends a 〈REQ, W, . . .〉 message with v before
o′ sets its vmax

i to v. Since a 〈REQ, W, . . .〉 message contains the vmax
i of the sender, we
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conclude that some process must have vmax
i = v before o′ sets its vmax

i to v, contradiction
to our choice of o′. Thus, it must be that o′ sets vmax

i to v in line 40. We conclude that
o′ is a write(v) operation which executes line 40. As mentioned above, this line is not
executed more than once during o′ and therefore ats(o′) is well-defined.

Recall our assumption that only one write operation can be invoked with v. Thus,
o′ is the operation that determines the timestamp with which v later appears in the
system (any process that sets vi to v, also sets tsi to the timestamp sent with v by o′, as
the timestamp and value are assigned atomically together in line 85). This timestamp
is ats(o′), determined when o′ executes line 40. When o sets vmax

i to v, it also sets tsmax
i to

ats(o′), as the timestamp and value are always assigned atomically together in line 80.
Thus, ats(o) = ats(o′).

Finally, notice that the associated timestamp of a write operation is always of the
form (tsmax

i . num+ 1, i), which is strictly bigger than (0,⊥). Since i is a unique process
identifier, if o and o′ are two write operations executed by different processes, ats(o) �=
ats(o′). If they are executed by the same process, since tsmax

i pertains its value between
operation invocations, increasing the first component of the timestamp by one makes
sure that ats(o) �= ats(o′), which completes the proof of (c).

LEMMA 5.17. Let o and o′ be two complete read or write operations such that o
completes before o′ is invoked, Then, ats(o) ≤ ats(o′) and if o′ is a write operation, then
ats(o) < ats(o′).

PROOF. Denote the complete execution of Traverse during o by T , and let w be the
view returned by T and ts be the value of tsmax

i when T returns. Note that ats(o) ≤ ts,
since tsmax

i only grows during the execution of o, and if o is a read operation then
ats(o) = ts. Notice that there might be several incomplete traversals during o′ which
are restarted, and there is exactly one traversal that completes.

There are two cases to consider. The first is that o′ executes a ReadInView(w) that
returns. Before this ReadInView(w) is invoked, T completes a WriteInView(w, ∗), writ-
ing a value with timestamp ts. By Lemma 5.10, after the ReadInView(w) completes
during o′, tsmax

i ≥ ts ≥ ats(o) and thus, when o′ completes tsmax
i ≥ ats(o). If o′ is a read

operation then ats(o′) is equal to this tsmax
i , which proves the lemma. Suppose now that

o′ is a write operation. Then during o′, pickNewTSi = TRUE until it is set to FALSE in
line 40. By Corollary 5.14, no traversal during o′ invokes WriteInView for any estab-
lished view α <̇ w. Thus, ReadInView(w) completes during o′ before any WriteInView
is invoked. By Lemma 5.16, ats(o′) is well defined and therefore exactly one traversal
during o′ executes line 40. As explained, since ReadInView(w) has already completed
when line 40 executes, tsmax

i ≥ ats(o) and then, tsmax
i is assigned (tsmax

i .num + 1, i),
implying that ats(o′) > ats(o).

The second case is that no ReadInView(w) completes during o′. Let T ′ be the traversal
which determines ats(o′). Let w′ be the view from which T ′ starts, and notice that since
T ′ sets ats(o′), it completes ReadInView(w′). By Lemma 5.8, w′ is an established view.
We claim that w <̇ w′. First, if o′ is a read, then T ′ completes and returns some view
w′′. By Corollary 5.13, w ≤̇ w′′ and by Lemma 5.9, T ′ performs a ReadInView on all
established views between w′ and w′′. Since o′ does not complete ReadInView(w), it
must be that w <̇ w′, which shows the claim. Now suppose that o′ is a write. By
Corollary 5.14, T ′ does not invoke WriteInView(α, ∗) for any view α <̇ w. It is also
impossible that T ′ invokes WriteInView(w, ∗) as it does not complete ReadInView(w).
Thus, it must be that T ′ sets ats(o′) when it invokes WriteInView(α, ∗) where w <̇ α.
By Lemma 5.9, T ′ performs a ReadInView on all established views between w′ and α.
Since it does not complete ReadInView(w), it must be that w <̇ w′, which shows the
claim.
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Since w <̇ w′, w′ �= Init. Moreover, since curViewi = w′ when T ′ starts, there exists
a traversal T ′′, which reaches line 65 with desiredView equal to w′ before T ′ begins.
Let ts′′ be the tsmax

i when T ′′ reaches line 65. By Lemma 5.11, since w <̇ w′, it holds
that ts ≤ ts′′ and thus ats(o) ≤ ts′′. Since T ′′ performs WriteInView(w′, ∗) and after it
completes, T ′ invokes and completes ReadInView(w′), by Lemma 5.10 we get that tsmax

i
when ReadInView(w′) completes is at least as high as ts′′. If o′ is a read, then ats(o′)
equals to tsmax

i when T ′ completes, and since tsmax
i only grows during the execution of

T ′, we have that ats(o′) ≥ ts′′ ≥ ats(o). If o′ is a write, then ats(o′) is determined when
line 40 executes. Since this occurs only after ReadInView(w′) completes, tsmax

i is already
at least as high as ts′′. Then, line 40 sets ats(o′) to be (tsmax

i .num + 1, i) and therefore
ats(o′) > ts′′ ≥ ats(o), which completes the proof.

THEOREM 5.18. Every history σ corresponding to an execution of DynaStore is lin-
earizable.

PROOF. We create σ ′ from σRW by completing operations of the form write(v) where
v is returned by some complete read operation in σRW . By Lemma 5.16 parts (a) and
(b), each operation which is now complete in σ ′ has an associated timestamp. We
next construct π by ordering all complete read and write operations in σ ′ according
to their associated timestamps, such that a write with some associated timestamp
ts appears before all reads with the same associated timestamp, and reads with the
same associated timestamp are ordered by their invocation times. Lemma 5.16 part (c)
implies that all write operations in π can be totally ordered according to their associated
timestamps.

First, we show that π preserves real-time order. Consider two complete operations o
and o′ in σ ′ such that o′ is invoked after o completes. By Lemma 5.17, ats(o′) ≥ ats(o). If
ats(o′) > ats(o) then o′ appears after o in π by construction. Otherwise, ats(o′) = ats(o)
and by Lemma 5.17 this means that o′ is a read operation. If o is a write operation,
then it appears before o′ since we placed each write before all reads having the same
associated timestamp. Finally, if o is a read, then it appears before o′ since we ordered
reads having the same associated timestamps according to their invocation times.

To prove that π preserves the sequential specification of a MWMR register we must
show that a read always returns the value written by the closest write which appears
before it in π , or the initial value of the register if there is no preceding write in π .
Let or be a read operation returning a value v. If v = ⊥, then since vmax

i and tsmax
i are

always assigned atomically together in lines 80 and 40, we have that ats(or) = (0,⊥),
in which case or is ordered before any write in π by Lemma 5.16 part (c). Otherwise,
v �= ⊥ and by part (b) of Lemma 5.16 there exists a write(v) operation, which has the
same associated timestamp, ats(or). In this case, this write is placed in π before or, by
construction. By part (c) of Lemma 5.16, other write operations in π have a different
associated timestamp and thus appear in π either before write(v) or after or.

5.5.3. Liveness. Recall that all active processes take infinitely many steps. As ex-
plained in Section 2, termination has to be guaranteed only when certain conditions
hold. Thus, in our proof we make the following assumptions:

A1 At any time t, fewer than |V (t).members|/2 processes
out of V (t).members ∪ P(t). join are in F(t) ∪ P(t).remove.

A2 The number of different changes proposed in the execution is finite.

LEMMA 5.19. Let ω be any change such that ω ∈ desiredView at time t. Then, a
reconfig(c) operation was invoked before t such that ω ∈ c.

PROOF. If ω ∈ Init, the lemma follows from our assumption that a reconfig(Init)
completes by time 0. In the remainder of the proof we assume that ω �∈ Init. Let T ′
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be a traversal that adds ω to its desiredView at time t′ such that t′ is the earliest time
when ω ∈ desiredView for any traversal in the execution. Thus, t′ ≤ t. Suppose for
the purpose of contradiction that ω is added to desiredView in line 60 during T ′. Then
ω ∈ c, such that c is in the set returned by a scan in line 34. By property PR1, an
update completes before this time with c as parameter. By line 54, ω ∈ desiredView at
the traversal that executes the update, which contradicts our choice of T ′ as the first
traversal that includes ω in desiredView. The remaining option is that ω is added to
desiredView in line 47 during T ′. Since no traversal includes ω in desiredView before t′,
and since ω �∈ Init, we conclude that ω �∈ curViewi. Thus, ω ∈ cng. This means that T ′
is executed during a reconfig(c) operation invoked before time t, such that ω ∈ c, which
is what we needed to show.

LEMMA 5.20. (a) If w is an established view, then for every change ω ∈ w, a reconfig(c)
operation is invoked in the execution such that ω ∈ c;

(b) If w is a view such that w ∈ Front at time t then for every change ω ∈ w, a reconfig(c)
operation is invoked before t such that ω ∈ c.

PROOF. We prove the claim by induction on the position of w in E . If w = Init, then
the claim holds by our assumption that a reconfig(Init) completes by time 0. Assume
that the claim holds until some position k ≥ 0 in E . Let w be the kth view in E
and observe w′, the k + 1th established view. By definition of E , there exists a set of
changes c such that w′ = w ∪ c, where c was returned by some scan(w) operation in
the execution. By integrity (property PR1), some update(w, c) operation is invoked. By
line 54, c ⊆ desiredView at the traversal that executes the update. (a) then follows
from Lemma 5.19. (b) follows from Lemma 5.19, since by Lemma 5.2, we have that
w ⊆ desiredView and therefore ω ∈ desiredView at time t.

COROLLARY 5.21. The sequence of established view E is finite.

PROOF. By Lemma 5.20, established views contain only changes proposed in the
execution. Since all views in E are totally ordered by the “⊂” relation, and by assumption
A2, E is finite.

Definition 5.22. We define tf ix to be any time such that ∀t ≥ tf ix the following
conditions hold:

(1) V (t) = V (tf ix)
(2) P(t) = P(tf ix)
(3) (V (t).join ∪ P(t).join) ∩ F(t) = (V (tf ix).join ∪ P(tf ix).join) ∩ F(tf ix)

(i.e., all processes in the system that crash in the execution have already crashed
by tf ix).

The next lemma proves that tf ix is well defined.

LEMMA 5.23. There exists tf ix as required by Definition 5.22.

PROOF. V (t) contains only changes that were proposed in the execution (for which
there is a reconfiguration proposing them that completes). Since no element can leave
V (t) once it is in this set, V (t) only grows during the execution, and from assumption A2
there exists a time tv starting from which V (t) does not change. No reconfig operation
proposing a change ω �∈ V (t) can complete from tv onward, and therefore no element
leaves the set P from that time and P can only grow. From assumption A2 there exists
a time tp starting from which P(t) does not change. Thus, from time tvp = max(tv, tp)
onward, V and P do not change. By assumption A2, V (tvp).join ∪ P(tvp).join is a finite
set of processes. Thus, we can take tf ix to be any time after tvp such that all processes
from this set that crash in the execution have already crashed by tf ix.
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Recall that an active process is one that did not fail in the execution, whose Add was
proposed and whose Remove was never proposed.

LEMMA 5.24. If w is a view in Front such that V (tf ix) ⊆ w, then at least a majority
of w.members are active.

PROOF. By Lemma 5.20, all changes in w were proposed in the execution. Since all
changes proposed in the execution are proposed by time tf ix, w ⊆ V (tf ix) ∪ P(tf ix).
Denote the set of changes w \ V (tf ix) by AC. Notice that AC ⊆ P(tf ix). Each element in
AC either adds or removes one process. Observe the set of members in w, and let us
build this set starting with M = V (tf ix).members and see how this set changes as we
add elements from AC. First, consider changes of the form (+, j) in AC. Each change
of this form adds a member to M, unless j ∈ V (tf ix).remove, in which case it has no
effect on M. A change of the form (−, k) removes pk from M. According to this, we can
write w.members as follows: w.members = (V (tf ix).members ∪ Jw) \ Rw, where Jw ⊆
P(tf ix).join \ V (tf ix).remove and Rw ⊆ P(tf ix).remove. We denote V (tf ix).members ∪ Jw

by L and we will show that a majority of L is active. Since Rw contains only processes
that are not active, when removing them from L (in order to get w.members), it is still
the case that a majority of the remaining processes are active, which proves the lemma.

We next prove that a majority of L are active. By definition of tf ix, all processes
proposed for removal in the execution have been proposed by time tf ix. Notice that
no process in V (tf ix).members ∪ Jw is also in V (tf ix).remove by definition of this set,
and thus, if the removal of a process in L was proposed by time tf ix, this process is in
P(tf ix).remove. Since L ⊆ V (tf ix).join ∪ P(tf ix).join, by definition of tf ix every process
in L that crashes in the execution does so by time tf ix. Thus, F(tf ix) ∪ P(tf ix).remove
includes all processes in L that are not active. Assumption A1 says that fewer than
|V (tf ix).members|/2 out of V (tf ix).members ∪ P(tf ix).join are in F(tf ix) ∪ P(tf ix).remove.
Thus, fewer than |V (tf ix).members|/2 out of V (tf ix).members ∪ Jw, which equals to L,
are in F(tf ix) ∪ P(tf ix).remove. This means that a majority of the processes in L are
active.

LEMMA 5.25. Let pi be an active process and w be an established view such that
i ∈ w.members. Then i ∈ w′.members for every established view w′ such that w ≤̇ w′.

PROOF. Since w ⊆ w′ and i ∈ w.members, we have that (+, i) ∈ w′. Since pi is active, no
reconfig(c) is invoked such that (−, i) ∈ c, and by Lemma 5.20, we have that (−, i) �∈ w′.
Thus, i ∈ w’.members.

LEMMA 5.26. If a reconfig operation o completes such that Traverse returns the view
w, then every active process pj such that j ∈ w.members eventually receives a message
〈NOTIFY, w̃〉 where w ≤̇ w̃.

PROOF. Since o completes, there is at least one complete reconfig operation in the
execution. Let wmax be a view returned by a Traverse during some complete reconfig
operation, such that no reconfig operation completes in the execution during which
Traverse returns a view w′ where wmax <̇ w′. wmax is well defined since every view
returned from Traverse is established (Lemma 5.8), and E is finite by Corollary 5.21.
Notice that w ≤̇ wmax. We next prove that V (tf ix) ⊆ wmax. Suppose for the purpose
of contradiction that there exists a change ω ∈ V (tf ix) \ wmax. Since ω ∈ V (tf ix), a
reconfig(c) operation completes where ω ∈ c. By Lemma 5.7, Traverse during this
operation returns a view w′ containing ω. By Lemma 5.8 w′ is established, and recall
that all established views are totally ordered by the “⊂” relation. Since ω ∈ w′ \ wmax
it must be that wmax <̇ w′. This contradicts the definition of wmax. We have shown that
V (tf ix) ⊆ wmax, which implies that a majority of wmax are active, by Lemma 5.24.
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Since a reconfig operation completes where Traverse returns wmax, a 〈NOTIFY, wmax〉
message is sent in line 29, and it is received by a majority of wmax.members. Each
process receiving this message forwards it in line 92. Since a majority of wmax are
active, and every two majority sets intersect, one of the processes that forwards this
message is active. By Lemma 5.25, since w ≤̇ wmax, every active process pj such that
j ∈ w.members is also in wmax.members. Since links are reliable and, by definition, an
active process does not crash in the execution, every such pj eventually receives this
message.

LEMMA 5.27. Consider an operation executed by an active process pi that invokes
Traverse at time t0 starting from curViewi = initView. If no 〈NOTIFY, newV iew〉 messages
are received by pi from time t0 onward such that initView ⊂ newView then Traverse
eventually returns and the operation completes.

PROOF. Since operations are enabled at pi only once i ∈ curViewi.join (lines 11 and
96) and curViewi only grows during the execution, i ∈ initView.join. By Lemma 5.4, for
every view w which appears in Front during the traversal it holds that initView ⊆ w
and therefore i ∈ w.join. Since pi is active, no reconfig(c) is invoked such that (−, i) ∈ c.
By Lemma 5.20 we have that (−, i) �∈ w and therefore i ∈ w.members. This means that
pi does not halt in line 52, and since links are reliable pi receives every message sent
to it by active processes in w.

Let w be any view that appears in Front during the execution of Traverse. Notice
that w is not necessarily established, however we show that V (tf ix) ⊆ w. Suppose
for the purpose of contradiction that there exists ω ∈ V (tf ix) \ w. Since initView ⊆
w, ω ∈ V (tf ix) \ initView. Since ω ∈ V (tf ix), a reconfig(c) operation completes where
ω ∈ c, and by Lemma 5.7 this operation returns a view w′ such that ω ∈ w′. By
Lemma 5.8, both initView and w′ are established, and since ω ∈ w′ \ initView, we get
that initView <̇ w′. Since i ∈ initView.members and pi is active, by Lemma 5.25, we
have that i ∈ w’.members. By Lemma 5.26, a 〈NOTIFY, w′′〉 message where w′ ≤̇ w′′ is
eventually received by pi. Since initView <̇ w′′, this contradicts the assumption of our
lemma.

We have shown that V (tf ix) ⊆ w, and from Lemma 5.24 there exists an active majority
Q of w.members. Since links are reliable, all messages sent by pi to w.members are
eventually received by every process in Q, and every message sent to pi by a process in
Q is eventually received by pi. Thus, all invocations of ContactQ(∗, w.members), which
involves communicating with a majority of w.members, eventually complete, and so
do invocations of scani and updatei by property PR5. Given that all such procedures
complete during a Traverse and it is not restarted (this follows from the statement
of the lemma since no NOTIFY messages that can restart Traverse are received at pi
starting from t0), it is left to prove that the termination condition in line 64 eventually
holds. After Traverse completes, NotifyQ(w) is invoked where w is a view returned from
Traverse. By Lemma 5.6, Front = {w} when Traverse returns, and therefore NotifyQ(w)
completes as well since there is an active majority in w.members, as explained above.

By assumption A2 and Lemma 5.20, the number of different views added to Front in
the execution is finite. Suppose for the purpose of contradiction that Traverse does not
terminate and consider iteration k of the loop starting from which views are not added
to Front unless they have been already added before the kth iteration (notice that by
Lemma 5.5, when a view is removed from Front, it can never be added again to Front;
thus, from iteration k onward views can only be removed from Front and the additions
have no affect in the sense that they can add views that are already present in Front
but not new views or views that have been removed from Front). We first show that
in some iteration k′ ≥ k, |Front| = 1. Consider any iteration where |Front| > 1, and let
w be the view chosen from Front in line 51 in this iteration. By Lemma 5.2, in this
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case w �= desiredView, as desiredView contains the changes of all views in Front, and
|Front| > 1 means that there is at least one view in Front which contains changes that
are not in w. Then, line 54 executes, and by Lemma 4.2, ReadInView returns a non-
empty set. Next, the condition in line 57 evaluates to true and w is removed from Front
in line 58. Since no new additions are made to Front starting with the kth iteration
(i.e., only a view that is already in Front can be added in line 61), the number of views
in Front decreases by 1 in this iteration. Thus, there exists an iteration k′ ≥ k where
only a single view remains in Front.

Observe iteration k′, where |Front| = 1, and let w be the view chosen from Front in
line 51 in this iteration. Suppose for the purpose of contradiction that the condition on
line 57 evaluates to true. Then, w is removed from Front, and the loop on lines 59–61
executes at least once, adding views to Front. By Lemma 5.5, the size of these views is
bigger than w, and therefore every such view is different than w, contradicting the fact
that starting from iteration k only views that are already in Front can be added to Front
(recall that k′ ≥ k). Thus, starting from iteration k′ the condition on line 57 evaluates to
false, and WriteInView is invoked in iteration k′. Assume for the sake of contradiction
that WriteInView does not return ∅. In this case, the loop would continue and w (the
only view in Front) is chosen again from Front in iteration k′ +1. Then, ReadInView(w)
returns a non-empty set by Lemma 4.3 and the condition in line 57 evaluates to true,
which cannot happen, as explained above. Thus, in iteration k′, the condition in line 57
evaluates to false, WriteInView(w, ∗) returns ∅, and the loop terminates.

THEOREM 5.28. DynaStore preserves Dynamic Service Liveness (Definition 3.2).
Specifically: (a) Eventually, the enable operations event occurs at every active process
that was added by a complete reconfig operation. (b) Every operation o invoked by an
active process pi eventually completes.

PROOF

(a) Let pi be an active process that is added to the system by a complete reconfig
operation. If i ∈ Init.join then the operations at pi are enabled from the time it starts
taking steps (line 11). Otherwise, a reconfig adding pi completes, and let w be the view
returned by Traverse during this operation. By Lemma 5.7, (+, i) ∈ w. Since pi is active,
no reconfig(c) operation is invoked such that (−, i) ∈ c. By Lemma 5.20, we get that
(−, i) �∈ w, which means that i ∈ w.members. By Lemma 5.26, pi eventually receives a
〈NOTIFY, w′〉 message such that w ≤̇ w′. By Lemma 5.25, (+, i) ∈ w′, that is, i ∈ w′.join.
This causes operations at pi to be enabled in line 96 (if they were not already enabled
by that time).

(b) Every operation o invokes Traverse and during its execution, whenever a 〈NOTIFY,
newView〉 message is received by pi such that curViewi ⊂ newView, curViewi be-
comes newView in line 95, and Traverse is restarted. By Corollary 5.21, E is finite.
By Lemma 5.8, only established views are sent in NOTIFY messages. Thus, the number
of times a Traverse can be restarted is finite and at some point in the execution, no more
〈NOTIFY, newView〉 messages can be received s.t. curViewi ⊂ newView. By Lemma 5.27,
Traverse eventually returns and the operation completes.

6. CONCLUSIONS

We defined a dynamic R/W storage problem, including an explicit liveness condition
stated in terms of user interface and independent of a particular solution. The definition
captures a dynamically changing resilience requirement, corresponding to reconfigu-
ration operations invoked by users. Our approach easily carries to other problems, and
allows for cleanly extending static problems to the dynamic setting.

We presented DynaStore, which is the first algorithm we are aware of to solve
the atomic R/W storage problem in a dynamic setting without consensus or stronger
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primitives. In fact, we assumed a completely asynchronous model where fault-tolerant
consensus is impossible even if no reconfigurations occur. This implies that atomic
R/W storage is weaker than consensus, not only in static settings as was previously
known, but also in dynamic ones. Our result thus refutes a common belief, manifested
in the design of all previous dynamic storage systems, which used agreement to handle
configuration changes. Our main goal in this article was to prove feasibility; future
work may study the performance tradeoffs between consensus-based solutions and
consensus-free ones.
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