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Abstract

We present Brahms, an algorithm for sampling random nodes ina large dynamic system prone to
malicious behavior. Brahms stores small membership views at each node, and yet overcomes Byzantine
attacks by a linear portion of the system. Brahms is composedof two components. The first is an attack-
resilient gossip-based membership protocol. The second component extracts independent uniformly
random node samples from the stream of node ids gossiped by the first. We evaluate Brahms using
rigorous analysis, backed by simulations, which show that our theoretical model captures the protocol’s
essentials. We study two representative attacks, and show that with high probability, an attacker cannot
create a partition between correct nodes. We further prove that each node’s sample converges to an
independent uniform one over time. To our knowledge, no suchproperties were proven for gossip
protocols in the past.
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1 Introduction

We consider the problem of sampling random nodes (sometimes called peers)in a large dynamic system
subject to adversarial (Byzantine) attacks. Random node sampling is important for many scalable dynamic
applications, including neighbor selection in constructing and maintaining overlay networks [23, 32, 35, 37],
selection of communication partners in gossip-based protocols [13, 18, 21], data sampling, and choosing
locations for data caching, e.g., in unstructured peer-to-peer networks[34].

Typically, in such applications, each node maintains a set of random node ids that is asymptotically
smaller than the system size. This set is called the node’slocal view. We consider a dynamic system, subject
to churn, whereby the set of active nodes changes over time. Local views in such a system must continuously
evolve to incorporate new active nodes and to remove ones that are no longer active. By using small local
views, the maintenance overhead is kept small. In the absence of malicious behavior, small local views can
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be effectively maintained with gossip-based membership protocols [1, 21, 22, 26, 43], which were proven
to have a low probability for partitions, including under churn [1].

Nevertheless, adversarial attacks present a major challenge for small local views. Previous Byzantine-
tolerant gossip protocols either considered static settings where the full membership is known to all [19, 33,
39], or maintained (almost) full local views [9, 28] (i.e., views that include all the nodes in the system), where
faulty nodes cannot push correct ones out of the view (please seeSection 2for more detailed discussion of
previous work). In contrast, small local views are susceptible to poisoning with entries (node ids) originating
from faulty nodes; this is because in a dynamic system, nodes must inherentlyaccept new ids and store them
in place of old ones in their local views. InSection 3, we illustrate that traditional gossip-based membership
is highly vulnerable to adversary attacks, which can quickly poison the entire views of correct nodes.

It is even more challenging to provideindependent uniform samplesin such a setting. Even without
Byzantine failures, gossip-based membership only ensures that eventually the averagerepresentation of
nodes in local views is uniform [1, 22, 26], and not thatevery nodeobtains an independent uniform random
sample. Faulty nodes may attempt to skew the system-wide distribution, as well as the individual local view
of a given node.

This paper addresses these challenges. InSection 4, we present Brahms, a membership service that
stores a sub-linear number of ids (e.g.,Θ( 3

√
n) in a system of sizen) at each node, and provides each node

with independent random node samples that converge to uniform ones over time. The main ideas behind
Brahms are (1) to use gossip-based membership with some extra defenses tomake it viable (in the sense
that local views are not solely composed of faulty ids) in an adversarial setting; (2) to recognize that such a
solution is susceptible to attacks that maybias the views, i.e., cause certain nodes to be over-represented in
views while others are under-represented (we precisely quantify the extent of this bias mathematically); and
(3) to correct this bias at each node. Specifically, each node maintains, inaddition to the gossip-based local
view, an unbiasedsample listof nodes.

To achieve the latter, we introduceSampler, a component that obtains uniform samples out of a data
stream in which elements recur with an unknown bias. Sampler uses min-wise independent permuta-
tions [14], and stores one element of the stream at a time. In Brahms, the data stream iscomprised of
gossiped ids, from which Samplers obtain independent uniformly random idsamples, and store them in the
sample list. By using suchhistory samplesfrom the sample list to update part of the local view, Brahms
achievesself-healingfrom partitions that may occur with gossip-based membership. In particular,nodes
that have been active for sufficiently long (we quantify how long) cannot be isolated from the rest of the
system, with high probability. The use of history samples is an example ofamplification, whereby even a
small healthy sample of the past can boost the resilience of a constantly evolving view. We note that only a
small portion of the view is updated with history samples, e.g.,10%. Therefore, the protocol can still deal
effectively with churn.

In Section 5, we define the attacker’s goals and the corresponding attack strategies,under which we
evaluate Brahms. We consider two possible goals for an attacker. First, westudy attacks that attempt
to maximize the representation of faulty ids in local views at any given time. This goal is achieved by
a uniform attack, whereby the attacker equally divides its power among all correct nodes. Second, we
consider an attacker that aims to partition the network. The easiest way to do so is by isolating one node
from the rest [1]. Since samples help prevent isolation, we analyze the most adverse circumstances, where
an attack is launched on a new node that joins the system when its samples are still empty, and when it does
not yet appear in views or samples of other nodes. We further assume that such atargetedattack on the new
node occurs in tandem with an attack on the entire system, as described above.

One of the important contributions of this paper is our mathematical analysis, which provides insights
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to the extent of damage that an attacker can cause and the effectivenessof various mechanisms for dealing
with them. Extensive simulations of Brahms with up to4000 nodes validate the few simplifying assump-
tions made in the analysis. We first show (inSection 6) that whenever the set of nodes remains connected,
the sample lists converge to independent uniformly random selections from among all nodes. We further
show that if views are of sizeΩ( 3

√
n), then the convergence rate is bounded independently of the system

size. Section 7then analyzes the local views generated by the gossip process and shows that under certain
circumstances, they preserve the connectivity required for uniform samples.

Specifically, for the attack goal of maximizing the representation of faulty ids (Section 7.1), we show
that under certain conditions on the adversary, even without using history samples, the portion of faulty ids
in local views generated by Brahms’s gossip process is bounded by a constant smaller than one. (Recall that
the over-representation of faulty ids is later fixed by Sampler; the upper bound on faulty ids in local views
ensures Sampler has good ids to work with).

Next, we consider the goal of isolating a node (Section 7.2). The key to proving that Brahms prevents,
with high probability, an attacked node’s isolation is in comparing how long it takes for two competing
processes to complete: on the one hand, we provide a lower bound on the expected time to poison the entire
view of the attacked node, assuming there are no history samples at all. On theother hand, we provide an
upper bound on how fast history samples are expected to converge, under the same attack. Whenever the
former exceeds the latter, the attacked node is expected to become immune to isolation before it is isolated.
We prove that with appropriate parameter settings, this is indeed the case.

Finally, we simulate the complete system (Section 8), and measure Brahms’s resilience to the combi-
nation of both attacks. Our results show that, indeed, Brahms prevents the isolation of attacked nodes, its
views never partition, and the membership samples converge to perfectly random ones over time.

2 Related Work

We are not familiar with any previous work explicitly dealing with random node sampling in a Byzantine
setting. We next review previous work on Byzantine membership (Section 2.1), node sampling and sampling
from data streams in benign settings (Section 2.2), and on the related problem of Byzantine-resilient overlay
construction (Section 2.3).

2.1 Byzantine Membership

Most previous Byzantine-tolerant gossip based protocols have either considered static settings where the
full membership is known to all [19, 33, 39] or focused on maintaining full local views [9, 28] rather than
partial samples. The only exception we are aware of is theSecure peer sampling service (SPSS)[27].

This paper considers an attack on gossip-based membership, whereby the attackers send many faulty
ids to correct nodes. The proposed service, SPSS, mitigates such attacks by gathering statistics about over-
represented node ids. Over-represented ids are deemed faulty, and are removed from views. However, as
the authors show, the effectiveness of this approach is limited to a small number of malicious nodes (in the
order of the view size). In contrast, Brahms toleratesΘ(n) Byzantine failures with views of sizeΘ( 3

√
n).

Moreover, SPSS is only evaluated in simulations and no formal proofs of its properties are given.

2.2 Node Sampling and Sampling from Streams

Gossip-based membership [1, 21, 22, 26, 43] is a robust and efficient technique for maintaining small,
(typically logarithmic-size) local views in the presence of benign failures, ensuring a low probability for
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partitions [1], and an eventual uniform average representation of nodes in local views [1, 22, 26]. However,
even in benign settings, it does not ensure that every node eventually obtains a uniform random sample as
Brahms does. Furthermore, as we show inSection 3, it is vulnerable to Byzantine failures.

Proven near-uniform node samples can be obtained using a Random Walk(RW). Random walks are
often used for peer sampling and counting in peer-to-peer networks; their outcome is used for overlay
construction and for the maintenance of partial local membership views [23, 32, 36, 10]. RWs have also
been recently proposed to combat Sybil attacks [44] (in which malicious nodes forge identities in order
to impose as multiple nodes). However, the correctness of RW-based sampling depends on the network
topology. If the actual topology is different from the assumed one, then the sample produced by the RW
may be far from uniform [23]. In contrast, Brahms does not assume any specific network topology. Its sole
assumption is that the graph formed by correct nodes is connected. Moreover, using RWs in a Byzantine
setting is problematic, because a faulty node anywhere along the path of a random walk can render the
information obtained in this walk useless.

King and Saia [31] present a method for (proven) uniform sampling in a distributed hash table(DHT)
like Chord, which is not resilient to Byzantine attacks [15].

Uniform sampling is related to the problem of load-balancing data over nodesin a DHT [29, 30], which
strives to achieve the following: given a data item, the node that stores it should be chosen uniformly at
random. Typically in DHTs, all nodes use the same hash function for mappingdata to nodes, in order to
facilitate data location. This approach results in an unbalanced load, which can be improved by creating
multiple virtual nodes for each real node [29], or by dynamic re-balancing of the key space [30]. In contrast,
our application does not require all nodes to agree on a common hash function. Brahms ensures balanced
sampling (i.e., that every correct node appears with the same probability in every sample of a correct node),
by using random (or pseudo-random) hash functions, picked independently by each node.

Various previous works have dealt with benign sampling, e.g., from unbiased data streams [42] or from
biased data streams with aknown bias[8, 17]. Other works have focused on unbiasing data samples from a
random accessmedium rather than a stream [11], or counting the number of distinct elements in a (possibly
biased) stream, e.g., [2, 12]. However, we are not aware of previous work providing uniform samples from
a data stream with an unknown bias, as our Sampler component does.

2.3 Byzantine Resilient Overlays

One application of Brahms is Byzantine-tolerant overlay construction. Brahms’s sampling allows each node
to connect with some random correct nodes, thus constructing an overlay in which the sub-graph of correct
nodes is connected. As noted above, previous Byzantine-tolerant gossip-based membership solutions have
maintained (almost) full local views [9, 28] or withstood only weak attacks [27].

Several recent works have focused explicitly on securing overlays,mostly structured ones, also attempt-
ing to ensure that all correct nodes may communicate with each other using theoverlay, i.e., to prevent the
eclipse attack[40, 41], where routing tables of correct nodes are gradually poisoned with links to adversarial
nodes. These works typically assume that faulty nodes cannot control their ids, which is implemented by
using mechanisms such as a CA [28, 15, 40] or a cryptographic random number generator [5]. Brahms also
assumes that the number of ids controlled by faulty nodes is bounded, but does allow faulty nodes to control
their own ids.

Singh et al. [40, 41] proposed a defense against eclipse attacks in structured overlays, based on the
observation that when an eclipse attack is launched, the in-degree of faulty nodes is likely to be higher than
the average in-degree of correct nodes. The idea is, therefore, to audit node degrees, and choose neighbors
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whose degree is below some threshold. Unlike Brahms, this does not resultin a uniform random selection
of neighbors. Finally, this approach is not appropriate for unstructured overlays.

Other solutions for Byzantine-tolerant structured overlays maintainconstrainedrouting tables, where
faulty nodes are not over-represented, in addition to the regular routingtables, in which faulty nodes might
by over-represented [15, 16]. This approach resembles our unbiasing of the local views. However,the
constrained table is not proven to be a uniform sample of the nodes. Moreover, unlike Brahms, these
solutions require either frequent id re-assignment [16] or a secure way of measuring network distances [15].

Awerbuch and Schiedeler propose Byzantine-tolerant structured overlay constructions [4, 6, 7], with
logarithmic-size views. However, unlike Brahms, they either require constant re-joining [4] or employ a
complex cryptographic random-number generator [5] and need id re-distributions upon every join [6, 7].
Moreover, these solutions are much more complex than Brahms.

Finally, unlike the works mentioned above, we present ageneralsampling technique, one application of
which is building Byzantine-resilient unstructured overlays.

3 Model, Goal, and Challenges

We describe the system model, outline our design goal, and illustrate the challenges in achieving it.

3.1 System Model

We consider a collectionU of nodes, each identified by a unique id. We do not constrain the way in which
node ids are chosen. Nevertheless, nodes are not allowed to use multiple ids, which rules out massive Sybil
attacks [20] (where one faulty node can impersonate as many nodes). Such an assignment of identifiers can
be implemented, e.g, by a certification authority. Individual nodes do not know the entire set of nodesU .
Rather, each node has some initial knowledge of a small set of other nodes, so that the graph induced by this
knowledge is connected.

The system is subject to churn, i.e., nodes can join and leave (or crash) dynamically. A node that has
joined and did not leave or crash isactive. A correct active node follows the protocol, whereas faulty active
nodes may exploit the protocol to attack other nodes. Every pair of nodescan communicate with each
other directly through bidirectional reliable links, provided that they know each other’s ids. We assume a
mechanism, which we calllimited send, that limits the rate of sent messages by incuring a cost to the sender.
This can be implemented in different ways, e.g., computational challenges like Merkle’s puzzles [38], virtual
currency, etc. A node can determine the source of every incoming message, and cannot intercept messages
addressed to other nodes (this is the standard ”unauthenticated“ Byzantine model [3]). For simplicity of the
analysis, we assume a synchronous model with a discrete global clock, zero processing times, and message
latencies of a single time unit.

3.2 Design Goal

Each node maintains a list of node ids calledsample list. Intuitively, each entry in the sample list should
converge to an independent uniform random sample of the active nodes. However, the notion of a uniform
sample is only meaningful when applied to a fixed set, and not to an ever-changing one. Therefore, for the
sake of specifying our protocol’s goal, we assume that there is a timeT0 at which churn ceases, and require
each entry in the sample list to converge to an independent uniform randomsample of the nodes that are
active from timeT0 onward.
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Similarly to some previous works, for the sake of the analysis we assume that churn ceases at timeT0.
However, in a real deployed system, the churn may actually never cease.Although we do not define sample
distribution under churn formally, intuitively, we expect that nodes that have been around in the system
“long enough” would be uniformly represented in other node’s samples. New nodes can be expected to be
under-represented.

3.3 Design Challenges - Vulnerabilities of Gossip-Based Membership

Gossip-based protocols (e.g., [1, 26]) are a well-known mechanism for membership information dissemina-
tion in the presence of churn. These protocols maintain at each node a smallsubset of active node ids, called
view. The primary goal of a gossip-based membership service is to preserve connectivity of the overlay in-
duced by the nodes’ views; that is, to avoid network partitions. Note that connectivity is also a prerequisite
for random sampling, since nodes in distinct connected components have zero probability for learning about
each other.

Nodes propagate membership information through two primitives,push– unsolicited sending of a node’s
id to some other node in the sender’s view, andpull – request-reply retrieval of another node’s view. Pushes
allow new active nodes to become represented in other nodes’ views, whereas pulls spread knowledge
about active nodes throughout the system. Allavena et al. [1] have shown that both are needed in order
to avoid partitions and star-like topologies with high probability. They have further shown that in benign
gossip that uses both pull and push, network partitions are unlikely. Thatis, the expected time until a
partition is exponential in the view size and the isolated component’s size. Thus, sufficiently large views
guarantee negligible partition probability. Extensive empirical studies [21, 26] have validated that gossip-
based protocols maintain connectivity in benign setting in practice.

We now illustrate that traditional gossip is not resilient to adversarial pushes and pulls. For example, an
adversary can choose to over-represent the faulty ids in the views of some correct nodes. We illustrate how
both push and pull can be abused so as to lead to rapid poisoning of views at all correct nodes.

For clarity of illustration, we first demonstrate simple attacks on push-only gossip and on pull-only
gossip separately. We then comment on how the attack on a combined push-pull algorithm also results in a
rapid poisoning.

Push flooding. The adversary can flood correct nodes with pushes of faulty ids, andthus to cause all
views of correct nodes to quickly become poisoned with faulty ids. To mitigate push flooding, we use the
limited send mechanism for push messages (described inSection 3.1). Although employing limited send is
necessary, it is not sufficient: while such rate-limiting prevents the adversary from flooding all correct nodes
in parallel, an attacker can still target correct nodes one by one. When anode is attacked by push flooding,
its view becomes fully poisoned, and as a result, this node stops pushing its id toother correct nodes.
Subsequently, the representation of the attacked node in correct nodes’ views is exponentially decaying, and
the node is isolated in time which is logarithmic in the view size.

This process is illustrated inFigure 1: first, the attacker focuses on one nodeu, and leads to complete
poisoning of its view (Figure 1(a)). For simplicity,Figure 1(a) shows the effect of this attack on a push-only
protocol; when pull and push are combined, a similar degradation occurs,although it might take longer, as
we show inSection 7. Once the attacker succeeds in poisoningu’s entire view, all ofu’s pushes are sent to
faulty nodes (Figure 1(b)), and consequently,u disappears from the views of other correct nodes. Once this
occurs,u is isolated from the system, and the attacker can proceed to attack additional nodes.

Skewed pull responses.Faulty nodes can return only faulty ids in response to pull requests. Sincepulls
from correct nodes return faulty ids as well as correct ids, this behavior leads to exponential decay in the
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(a) Push flooding: poisoning the view (100% faulty ids).
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(d) Skewed pulls: after one round,75% faulty ids.

Figure 1: Malicious attacks on traditional gossip protocols using push and pullrequests. (a) Faulty
nodes flood a correct nodeuwith pushes, and totally poison its view. (b) Nodeuwith a totally poisoned
view sends pushes only to faulty nodes, and ceases being represented in the views of other correct
nodes. (c) Nodeu pulls views from two correct nodes with50% correct ids, and two faulty nodes. (d)
The faulty nodes return only faulty ids, thus poisoning75% of u’s view.

representation of correct nodes in the system.
The effect of this attack on a purely pull-based gossip protocol is illustrated in Figures 1(c) and1(d).

In this example, the system begins a gossip round in a state where50% of ids in all views are faulty,
(Figure 1(c)), and we see that at the end of the same round,75% of the ids in a typical node’s view are faulty
(Figure 1(d)).

Push-Pull gossip. Unlike in push-only gossip where the whole view is updated with pushes only,in push-
pull gossip a constant part of each view is updated with pushes, while the other part is updated with pulls.
Despite the fact that only a part of the view is updated with pushes, push flooding in push-pull gossip will
take a logarithmic time in the view size to poison the view. This effect is even worsened, since the other part
of the view is updated with pulls, suffering from an adverse effect of skewed pulls.

These scenarios demonstrate that an adversary can exploit traditional gossip to bias the distribution of
ids in the views of correct nodes. In the long run, an attacker can disintegrate the entire overlay, thus
precluding peer sampling completely. Brahms adopts a two-layer approach tothis problem. As a first step,
we guarantee, with high probability, that the attacker cannot isolate correct nodes, that is, the maximum bias
to their views is bounded. As a second step, we correct the incurred biasthrough local uniform sampling.
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1: function Sampler.init()
2: h← randomPRF(); q ← ⊥

3: function Sampler.next(elem)
4: if q = ⊥ ∨ h(elem) < h(q) then
5: q ← elem

6: function Sampler.sample()
7: return q

Sampler Sampler Sampler Sampler

Id stream

sample()

next()

Validator

init()

Validator Validator Validator

Figure 2:Uniform sampling from an id stream in Brahms. (a) Sampler’s pseudo-code. (b) Sampling
and validation of ℓ2 ids.

4 The Brahms Protocol

Brahms has two components. The local sampling component maintains asample listS – a tuple of uniform
samples from the set of ids that traversed the node (Section 4.1). The gossipcomponent is a distributed
protocol that spreads ids across the network (Section 4.2), and maintains a dynamicviewV. We denote the
size ofV by ℓ1 and the size ofS by ℓ2. Each node has some initialV (e.g., received from some bootstrap
server or peer node).V andS may contain duplicates, and some entries inS may be undefined (denoted⊥).

4.1 Sampling

Sampler is a building block for uniform sampling of unique elements from a data stream. The input
stream may be biased, that is, some values may appear in it more than others. Sampler accepts one element
at a time as input, produces one output, and stores a single element at a time. The output is a uniform random
choice of one of the unique inputs witnessed thus far. For example, assumesome id,id1, appears only once
in a certain input stream, while another id,id2, appears 1000 times in the same stream; Sampler’s output on
this stream has an equal probability of beingid1 as for beingid2.

Sampler usesmin-wise independentpermutations [14]. A family of permutationsH over a range
[1 . . . |U |] is min-wise independent if for any setX ⊂ [1 . . . |U |] and anyx ∈ X, if h is chosen at ran-
dom fromH, thenPr(min{h(X)} = h(x)) = 1

|X| . That is, all the elements of any fixed setX have an
equal chance to have the minimum image underh. Pseudo-random functions (e.g., [24]) are considered an
excellent practical approximation of min-wise independent permutations, provided that|U | is large, e.g.,
2160.

The pseudo-code of Sampler appears inFigure 2(a). It selects a random min-wise independent function
h upon initialization, and applies it to all input values (in thenext() function). The input with the smallest
image value encountered thus far becomes the output returned by thesample() function. The property of
uniform sampling from the set of unique observed ids follows directly fromthe definition of a min-wise
independent permutation family.

Brahms maintains a tuple ofℓ2 sampled elements in a vector ofℓ2 Sampler blocks (seeFigure 2(b)),
which select hashes independently. The same stream of ids observed bythe node is input to all Samplers.
Sampled ids are periodically probed (e.g., using pings), and a sampler that holds an inactive node is invali-
dated (re-initialized). Thus, when churn ceases, each sample converges to an independent uniform random
selection from among the active nodes.

4.2 Gossip
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1: V : tuple[ℓ1] of Id
2: S : tuple[ℓ2] of Sampler

3: Initialization (V0):
4: V ← V0

5: for all 1 ≤ i ≤ ℓ2 do
6: S[i].init()
7: updateSample(V0)

8: {Stale sample invalidation}
9: periodically do

10: for all 1 ≤ i ≤ ℓ2 do
11: if probe(S[i].sample()) fails then
12: S[i].init()

13: {Auxiliary functions}
14: function updateSample(V)
15: for all id ∈ V, 1 ≤ i ≤ ℓ2 do
16: S[i].next(id)

17: function rand(V, n)
18: return n random choices fromV

19: {Gossip}
20: while true do
21: Vpush ← Vpull ← ∅
22: for all 1 ≤ i ≤ αℓ1 do
23: {Limited push}
24: send lim 〈“push request“〉 to rand(V, 1)
25: for all 1 ≤ i ≤ βℓ1 do
26: send 〈“pull request“〉 to rand(V, 1)

27: wait(1)

28: for all received 〈“push request“〉 from id do
29: Vpush ← Vpush ◦ {id}
30: for all received 〈“pull request“〉 from id do
31: send 〈“pull reply“,V〉 to id
32: for all received 〈“pull reply“,V ′〉 from id do
33: if I sent the request, and this is the first replythen
34: Vpull ← Vpull ◦ V

′

35: if (|Vpush| ≤ αℓ1 ∧ Vpush 6= ∅ ∧ Vpull 6= ∅) then
36: V ← rand(Vpush, αℓ1) ◦ rand(Vpull, βℓ1) ◦ rand(S, γℓ1)
37: updateSample(Vpush ◦ Vpull)

Figure 3:The pseudo-code of Brahms.

Brahms’s view is maintained by a gossip protocol as shown inFigure 3. We denote list concatenation by
◦. By slight abuse of notation, we denote both the vector of samplers and theiroutputs (the sample list) by
S. Brahms executes in (unsynchronized) rounds. It uses two means forpropagation: (1)push– sending the
node’s id to some other node, and (2)pull – retrieving the view from another node. These operations serve
two different purposes: pushes are required to reinforce knowledge about nodes that are under-represented
in other nodes’ views (e.g., newborn nodes), whereas pulls are needed to spread existing knowledge within
the network [1].

Brahms uses parametersα > 0, β > 0, andγ > 0 that satisfyα+ β + γ = 1, to control the portion of
pushed ids, pulled ids, and history samples in the new view, respectively. In a single round, a correct node
issuesαℓ1 push requests andβℓ1 pull requests to destinations randomly selected from its view, possibly
with repetitions (Lines 22-26). At the end of each round,V andS are updated with fresh ids. While all
received ids are streamed toS (Line 37), re-computingV requires extra care, to protect against poisoning of
the views with faulty ids. Brahms offers the following set of techniques to mitigatethis problem.

Limited pushes. Since pushes arrive unsolicited, an adversary with an unlimited capacity could swamp
the system with push requests. Then, correct ids would be propagated mainly through pulls, and their
representation would decay exponentially [1]. The protocol employs limited sending of push messages
(performed bysend lim), hence the system-wide fraction of faulty pushes is constrained.

Attack detection and blocking. While using limited pushes prevents a simultaneous attack on all correct
nodes, it provides no solace against an adversary that floods a specific node. Brahms protects against such
a targeted attackby blocking the update ofV. Namely, if more than the expectedαℓ1 pushes are received
in a round, Brahms does not updateV in that round (Line 35). Although this policy slows down progress,
its expected impact in the absence of attacks is bounded (nodes recomputeV in most rounds). Thanks to
limited pushes, the adversary cannot block all correct nodes simultaneously, i.e., some nodes make progress
even under an attack.

Controlling the contribution of pushes versus pulls. As most correct nodes do not suffer from targeted
attacks (due to limited pushes), their views are threatened by pulls from neighbors more than by adversarial
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Figure 4:View re-computation in Brahms.

pushes. This is because whereas all pushes from correct nodes are correct, a pull from a random correct
node may contribute some faulty ids. Hence, the contribution of pushes and pulls to V must be balanced:
pushes must be constrained to protect the targeted nodes, while pulls must be constrained to protect the rest.
Brahms updatesV with randomly chosenαℓ1 pushed ids andβℓ1 pulled ids (Line 36).

History samples. The attack detection and blocking technique can slowdown a targeted attack,but not
prevent it completely. Note that if the adversary succeeds to increase its representation in a victim’s view
through targeted pushes, it subsequently causes this victim to pull more datafrom faulty nodes. As the
attacked node’s view deteriorates, it sends fewer pushes to correct nodes, causing its system-wide represen-
tation to decrease. It then receives fewer correct pushes, openingthe door for more faulty pushes1. Brahms
overcomes such attacks using a self-healing mechanism, whereby a portionγ of V reflects thehistory, i.e.,
previously observed ids (Line 36). A direct use of history does not help since the latter may also be biased.
Therefore, we use feedback fromS to obtain unbiased history samples. Once some correct id becomes
the attacked node’s permanent sample (or the node’s id becomes a permanent sample of some other correct
node), the threat of isolation is eliminated.Figure 4illustrates the view re-computation procedure.

Parameter settings. Brahms’s parameters control a tradeoff between performance in a benign setting and
resilience against Byzantine attacks. For example,γ must not be too large since the algorithm needs to deal
with churn; on the other hand, it must not be so small as to make the feedbackineffective. We show in
Section 8thatγ = 0.1 is enough for protectingV from partitions. The choice ofℓ1 andℓ2 is crucial for
guaranteeing that a targeted attack can be contained until the attacked node’s sample stabilizes. We study
their impact inSection 7, where we show that choosingℓ1, ℓ2 = Θ( 3

√
n) suffices to protect even nodes that

are attacked immediately upon joining the system.

5 Analysis Structure

In this section, we first present the definitions and the assumptions used in the analysis of our protocol, and
then discuss the attack models and analysis structure.

5.1 Definitions

We study the asymptotical properties of a system ofn active nodes, after a pointT0 at which churn ceases.
The subset of correct nodes is denotedC. The faulty nodes comprise less than some fractionf < 1 of n. We

1This avalanche process can be started, e.g., by opportunistically sending the target a slightly higher number of pushes than
expected. Since correct pushes are random, a round in which sufficiently few correct pushes arrive, such that Brahms does not
detect an attack, is expected to happen soon.
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assume that the system-wide fraction of pushes that all faulty nodes can jointly send (using limited send) in
a single round (time unit) is at mostp, for somep < 1.

We denote the view and the sample list at nodeu at timet byVu(t) andSu(t), respectively. We define the
overlay graphN (t), induced by the union ofV andS at all correct nodes, which captures their knowledge
about each other at timet as follows:

N (t) , {C,
⋃

u∈C

{(u, v)|v ∈ (Vu(t) ∪ Su(t)) ∩ C}}.

We also defineV(t), a subgraph ofN (t) induced byV of correct nodes (edges induced byS are omitted):

V(t) , {C,
⋃

u∈C

{(u, v)|v ∈ Vu(t) ∩ C}}.

For a nodeu, the number of its incoming edges in a graph is called itsin-degree, and the number of outgoing
edges is called itsout-degree. For example the in-degree of nodeu in V(t) is the number of instances ofu
in views of correct nodes, and its out-degree is the number of correct ids in its view. Thedegreeof u is the
sum of its in-degree and out-degree.

Analysis Assumptions.Brahms’s resilience depends on the connectivity of the overlay graphN (t). We
assume a necessary condition for initial connectivity, namely, that the view of every joining correct node
contains some correct ids (though the ratio of faulty ids in the view is not necessarily bounded byf ). We
further assume that before an attack starts, the in-degrees and out-degrees of all correct nodes are (roughly)
equal. This property is an approximation of reality – Jelasity et al. [26] have shown that benign gossip leads
to a low variance in in-degrees. Our simulations demonstrate that our results,which use this assumption,
are valid.

5.2 Attack Models and Analysis Structure

We start our analysis by evaluating two important properties of Brahms. First, we show an upper bound on
the time for a correct node’s sample to permanently contain at least one correct id. Second, we show a lower
bound on the time to isolate a correct node from all other correct nodes inV(t).

The key resilience property achieved by Brahms is that under certain conditions onℓ1, ℓ2 andp, the
upper bound is smaller than the lower bound. Thus, an attacked node will bepermanently connected to
at least one correct node sooner than it can be isolated by the attack. Since the easiest way an adversary
can cause a partition inN (t) is by isolating one correct node from the rest [1], this property of Brahms
implies that an adversary cannot cause a partition inN (t). Notice that the lower bound is shownwithout
any utilization of the sample lists by correct nodes.

The upper bound. AssumingN (t) is connected, inSection 6.1, we show that eventually, the sampleSu

is a uniform random sample. InSection 6.2, we analyze the time it takes forSu to permanently include
at least one correct id, and inSection 6.3we show that there existℓ1 andℓ2 that guarantee this time to be
independent of the system size.

The lower bound. In Section 7we analyze the time to isolate a correct node inV(t). In order for some
node to be partitioned from the rest, its view needs to be filled solely with ids of faulty nodes. Thus, we
assume that faulty nodes always prefer to increase their representationin the views of correct nodes rather
than decrease it. That is, they push only faulty ids to correct nodes and always return faulty ids in pulls.
Likewise, faulty nodes always respond to probe requests, to avoid invalidation.
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Due to the use of limited send in push messages, the number of pushes each faulty node is able to send in
a single communication round is limited. InAppendix B.1we prove that the best strategy of faulty nodes for
maximizing their representation in the views of correct nodes is to distribute theirpushes evenly among all
correct nodes. We call this abalanced attack. Section 7.1analyzes this attack and evaluates the system-wide
portion of faulty ids in the views of correct nodes as a function of time. We show that this portion converges
to a fixed-point, i.e., after some time it remains a constant smaller than 1.

The use of blocking makes it counter-productive for faulty nodes to flood a single victim node with too
many pushes. Thus, while some of the pushes sent by faulty nodes are devoted to isolating the victim, other
pushes are used to increase the representation of faulty nodes in the views of all correct nodes in the system.
Hence, in order to isolate a correct node, faulty nodes should focus their pushes on a single target node as
much as possible (i.e., without triggering blocking at that node) and at the same time, perform a balanced
attack on the other correct nodes in the system. We call this atargeted attack. Section 7.2presents the
analysis of this attack.

The correctness of Brahms, i.e., that the shown upper bound is smaller thanthe lower bound, is main-
tained only under certain conditions onℓ1, ℓ2 andp. On one hand, whenℓ1 andℓ2 grow as 3

√
n, the time

for a correct node’s sample to permanently contain a correct id is constant, as proven inSection 6.3. On the
other hand, the lower bound proven inSection 7.2depends only onα, β, ℓ1 andp. Thus, we can chooseℓ1
so that the time to isolate a correct node becomes arbitrarily large, independently of n. Section 8illustrates
concrete values ofℓ1 andℓ2 that meet these requirements.

6 Analysis - Sampling

In this section we analyze the properties of a sampleSu of a correct nodeu. Let s = Su[i] be a sampler
element for some correctu and somei. Recall thats employs a permutations.h, chosen independently at
random. Lets(t) denote the output ofs at timet. We define theperfectid corresponding tos, s∗, to be
the id with the minimal value ofs.h among alln ids (we neglect collisions for the sake of the definition).
Note thats∗ can be either a correct or a faulty id. InSection 6.1we show thats eventually converges to an
independent uniform random sample. InSection 6.2we analyze how fast a node obtains at least one correct
perfect sample, as needed for self-healing.Section 6.3discusses scalability, namely, how to choose view
sizes that ensure a constant convergence time, independent of systemsize. For readability, some formal
proofs are deferred toAppendix A, while this section overviews the proof approach.

6.1 Eventual Convergence to Uniform Sample

Consider a samplers ∈ Su of nodeu. The perfect id ofs, s∗, samples ids uniformly at random by definition
of min-wise independent family of hash functions. Thus, our goal is to prove thats eventually holdss∗.
Obviously, fors to be able to sample some correct nodev, the id ofv has to reachu. To allow for such
reachability between all the correct nodes, we require the overlay graph N (t) to remainweakly connected
after T0. That is, the undirected graph, obtained fromN (t) by replacing all of its directed edges with
undirected ones, is connected for allt ≥ T0. The following theorem shows that under this assumption each
id eventually has the same probability to be sampled bys.

Theorem 6.1 If N (t) remains weakly connected for eacht ≥ T0, then, for allv ∈ C,

Pr(s(t) = v) →t→∞
1

n
.
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Proof : Let u be an active node at timeT0. Then all active nodes send pushes in every round> T0 (recall
that we assume this also for faulty nodes, seeSection 5). We now consider a timet0 > T0, and study the
number of ids observed byu as a random process from timet0 onward. We denote byVisitedu(t) the union
of ids were included inu’s local view between timet0 and timet. That is,

Visitedu(t) ,

t
⋃

t′=t0

Vu(t′).

We will show that eventually,Visitedu(t) includes all active nodes.

Proposition 6.2 For everyt ≥ t0, if Visitedu(t) does not already contain all active nodes, there is a proba-
bility, bounded from below by some positive constantb, for Visitedu(t + 3) to include a node that is not in
Visitedu(t).

Proof : By connectivity ofN (t), there is a path inN (t) from every node inVisitedu(t) to every node that is
not inVisitedu(t). Consider an edge between someu1 ∈ Visitedu(t) and someu2 /∈ Visitedu(t).

There is a positive probability foru1 to be inVu(t) The probability thatu is the perfect sample of every
sampler is1/n, and hence, onceu1 is included inVu(t′), for somet0 ≤ t′ ≤ t, it has a nonzero probability
of being sampled inSu(t′). Since a perfect id remains inSu forever,u1 has a nonzero probability of being
added back toVu(t) as a history sample.

We now show thatu2 has a positive probability to be added toVisitedu within at most 3 rounds. That is,
Pr(u2 ∈ Visitedu(t + 3)) > b. There are 4 possible cases, depending on the type of edge betweenu1 and
u2.

1. u2 ∈ Vu1
(t). As we have shown earlier,u1 has a nonzero probability of being inVu(t). Thus, there

is a positive probability foru to pull from u1 at roundt, and sinceu2 ∈ Vu1(t), u2 has a nonzero
probability of being returned in the pull and included intoVu(t+ 1), and we are done.

2. u1 ∈ Vu2
(t). There is a positive probability foru2 to push tou1 at roundt, leading tou2 being in

Vu1(t+ 1), and the proof continues as case 1.

3. u2 ∈ Su1
(t). There is a positive probability foru2 to be added toVu1(t+ 1) as a history sample, and

the proof continues as case 1.

4. u1 ∈ Su2
(t). There is a positive probability foru1 to be added toVu2(t+ 1) as a history sample, and

the proof continues as case 2.

Let the probability of the least probable event (or a sequence of at most3 events) to beb. We conclude that
for everyu and everyt > t0, Visitedu(t + 3) contains a new id that was not included inVisitedu(t) with
probability at leastb. �

FromProposition 6.2, it follows immediately that with probability at leastbn, Visitedu(t+ 3n) contains
all active nodes. That is, for every nodeu, and at every timet in the run of the protocol afterT0, there is
a positive probability foru to observe every other node’s id in its stream by timet + 3n. Since the event
of u observing all the other ids by timet + 3n has nonzero, bounded from below, probability of occurring
starting from every timet > T0, eventually, with probability 1, there will be somet when this even will
occur. Then, by sampler properties, each id is sampled with probability1/n. �

Recall that we assumed (Section 5) that faulty active nodes always seek to maximize their representation,
and therefore, send pushes to correct nodes and respond to invalidation probes. Therefore, they appear in
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Figure 5: Growth of the probability to observe at least one correct perfect sample (Perfect Sample
Probability - PSP) with the stream size, for1000 nodes,f = 0.2, and ρ = 0.4.

the gossip streams, and are sampled with the same probability as correct nodes. In a system where this
assumption does not hold, and faulty active nodes may refrain from responding to pings, the probability
that a correct id is sampled converges to the range[ 1

n
, 1

(1−f)n ] or [ 1
n
, 1
|C| ], instead of exactly to1/n as stated

above.
The next lemma discusses the convergence rate of samples.

Lemma 6.3 FromT0 onward, for each correct nodeu, the expected fraction of samplers inSu that output
their perfect ids grows linearly with the fraction of unique ids observed byu.

Proof : LetD(t) be the set of ids observed byu until time t, for t > T0. Note thatD(t) contains only ids
that are active afterT0, since inactive ids are invalidated and no invalidations happen afterT0 (recall that at
time T0 churn ceases). Then, for eachu’s samplers, Pr(s∗ ∈ D(t)) = |D(t)|

n
. Since for eachs such that

s∗ ∈ D(t), s(t′) = s∗ for eacht′ ≥ t, the lemma follows. �

6.2 Convergence to First Perfect Sample

We show a lower bound on the probability thatSu containsat least oneperfect id of an active correct node,
as a function of the set of ids thatu observes, and system parameters. This provides an upper bound on the
time it takesSu to ensure self-healing and preventu’s isolation. For the sake of proving the lower bound, we
made worst-case assumption: we assume thatu joins the system at timeT0, with an empty sample. LetΛ(t)
be the number of correct ids observed byu from timeT0 to time t. Our analysis depends on the number
of unique ids observed byu, rather than directly onΛ. Obviously, it is unrealistic to expect our gossip
protocol to produce independent uniform random samples (cf. [26]). Indeed, achieving this property is the
goal of sampler. In order to capture the bias inΛ, we define astream deficiency factor, 0 ≤ ρ ≤ 1, so that a
stream of lengthΛ(t) produced by our gossip mechanism includes as many random unique ids asa stream
of lengthρΛ(t) in which correct ids are independent and distributed uniformly at random.This is akin to
the clustering coefficient of gossip-based overlays [26]. We empirically measuredρ to be about0.4 with our
gossip protocol (seeSection 7.2).

In the following lemma we study the dependency between the probability of a sampler to output its
correct perfect id, the numberΛ(t) of (non-unique) correct ids streamed into the sampler, and the stream
deficiency factorρ.
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Proposition 6.4 Lets be a sampler. Then, for|C| ≫ 1 and for eacht > T0,

Pr(s(t) 6= s∗|s∗ ∈ C) = e
−

ρΛ(t)
|C| .

Proof idea. A sampler does not output its correct perfect id only if that id did not occur in the stream.
We calculate the probability of this event as a function of the effective number ρΛ(t) of independent and
uniformly distributed correct ids in the stream by timet. The full proof appears inAppendix A.1.

We define theperfect sample probabilityPSPu(t) as the probability thatSu(t) contains at least one
correct perfect id. The convergence rate ofPSP is captured by the following lemma:

Lemma 6.5 Letu be a random correct node. Then, fort > T0,

PSPu(t) ≥ 1 −
(

(1 − f)e
−

ρΛ(t)
|C| + f

)ℓ2

.

Proof : Sinceu hasℓ2 independent samplers, the probability of each one to have a correct perfect id is
Pr(s∗ ∈ C) ≥ 1−f . Similarly,Pr(s∗ /∈ C) ≤ f . Based onProposition 6.4, the probability ofs(t) not being
a correct perfect id is

Pr(s(t) 6= s∗ ∨ s∗ /∈ C) = Pr(s(t) 6= s∗|s∗ ∈ C) Pr(s∗ ∈ C) + Pr(s∗ /∈ C)

≤ (1 − f)e
−

ρΛ(t)
|C| + f.

The perfect sample probabilityPSPu(t) equals1 minus the probability of each ofℓ2 samplers not outputting
a correct perfect id, that is:

PSPu(t) ≥ 1 −
(

(1 − f)e
−

ρΛ(t)
|C| + f

)ℓ2

.

�

Figure 5illustrates the dependence ofPSP on the stream sizeΛ(t) and onℓ2. For example, we see that
when the sample size is40 = 4 3

√
n (for n = 1000, f = 0.2), and the portion of unique ids in the stream is

ρ = 0.4, a correct perfect sample is obtained, with probability close to1, after300 ids traverse the node.

6.3 Scalability

From Lemma 6.5, we see thatPSP depends onΛ andℓ2. To get a higherPSP , we can increase either
of them. While increasingΛ is achieved by increasingℓ1, and consequently the network traffic, increasing
ℓ2 has only a memory cost. We now study the asymptotic behavior ofPSPu(t) as the number of nodes,
n, increases. When a node hasℓ2 samplers, andf is fixed,Ω(ℓ2) of them have correct perfect sample,s∗,
with high probability. Therefore, byProposition 6.4, the probability at least one of theseΩ(ℓ2) samplers
outputting its perfect id satisfies, with high probability

PSPu(t) ≥ Ω(1 − (e−
ρΛ(t)

n )ℓ2) = Ω(1 − e−
ρΛ(t)ℓ2

n ).

For a constantt, Λ(t) = Ω(ℓ21) since there areΩ(ℓ1) pulls, obtainingΩ(ℓ1) ids each. Thus,PSPu(t) ≥
Ω(1 − e−

ℓ21·ℓ2
n ). For scalability, it is important that for a givent, PSPu(t) will be bounded by a constant

independent of the system size. This condition is satisfied whenℓ21 · ℓ2 = Ω(n), e.g., whenℓ2 = ℓ1 =
Ω( 3

√
n), or whenℓ1 = Ω( 4

√
n) andℓ2 = Ω( 2

√
n). To reduce network traffic at the cost of a higher memory

consumption, one can setℓ1 = Ω(log n) andℓ2 = Ω( n
log2 n

). When choosing parameter values for our

simulations later in the paper, we useℓ2 = ℓ1 = c 3
√
n for c = 2 andc = 3.
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Correct nodeu Random correct node Semantics

number/fraction number/fraction
xu(t)/x̃u(t) x(t)/x̃(t) faulty ids in the node’s view (complement to out-degree)
yu(t)/ỹu(t) occurrences of the node in views of correct nodes (in-degree)
gpush

u (t)/g̃push
u (t) gpush(t)/g̃push(t) correct ids pushed to the node

rpush
u (t)/r̃push

u (t) rpush(t)/r̃push(t) faulty ids pushed to the node
gpull

u (t)/g̃pull
u (t) gpull(t)/g̃pull(t) correct ids pulled by the node

rpull
u (t)/r̃pull

u (t) rpull(t)/r̃pull(t) faulty ids pulled by the node

Table 1:Random variable definitions.

7 Analysis – Overlay Connectivity

We now prove that Brahms, with appropriate parameter settings, maintains overlay connectivity despite the
attacks defined in Section5, satisfying the prerequisite forTheorem 6.1.

We study two possible adversary targets. The first target, addressed inSection 7.1, is increasing the
global representation of faulty ids. We prove that in any single round, abalancedattack, which spreads
faulty pushes evenly among correct nodes, maximizes the expected system-wide fraction of faulty ids at the
end of the round, among all strategies. (A similar approach of analyzing theadversary’s damage in a single
round was taken, e.g., in [33].) We proceed by analyzing the effect of this attack, namely the evolution ofthe
system-wide fraction of faulty ids at the end of each round. We further show that under certain conditions
this fraction converges to a value that is strictly smaller than 1. That is, this attack alone can not partition
the network.

We next consider an attack that attempts to partition the network (rather than increase the faulty nodes’
representation) by targeting a subset of nodes with more pushes than in a balanced attack. Without prior
information about the overlay’s topology, attacking a single node can be most damaging, since the sets of
edges adjacent to single nodes are likely to be the sparsest cuts in the overlay. Section 7.2shows that had
Brahms not used history samples, correct nodes could have been isolated in this manner. However, Brahms
withstands suchtargetedattacks, even if they start immediately upon a node’s join, when the node is not
represented in other views and has no history. The key property we prove is that Brahms’s gossip prevents
isolation long enough for history samples to become effective. This section employs stochastic analysis
backed by simulations.

Notation. We study time-varying random variables, listed inTable 1. A local variable at a specific correct
nodeu is subscripted byu. When used without subscript, a variable corresponds to a random correct node.
The variablex denotes the number of faulty ids in the node’s view (1 − x is the node’s out-degree in the
overlay of correct nodes) andy denotes the number of occurrences of node’s id in the views of correct
nodes (the node’s in-degree). Their fractions in views are denoted with˜above. Correct (resp., faulty)
ids propagated through pushes and pulls are denotedg (for green) (resp.,r (for red)), with appropriate
superscripts for push and pull.

For example,xu(t) is the number of faulty ids in nodeu’s view at timet, whereas̃x(t) is the system-
wide fraction of faulty ids in all views at timet. gpush

u (t) is the number of correct ids pushed to the nodeu,
whereas̃gpush(t) is the system-wide fraction of correct ids pushed to all views at timet.

Simulation setup. We validate our assumptions using simulations withn = 1000 nodes or more. Each
data point is averaged over 100 runs. For simplicity, we always usep = f . A different subset of faulty nodes
push their ids to a given correct node in each round, using a round-robin schedule.
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Figure 6:Fixed point analysis illustration.

7.1 Balanced Attack - Increasing Global Representation of Faulty Ids

We study the balanced attack, which shares the adversarial pushes evenly among all correct nodes.Lemma B.1
in Appendix B.1shows that this attack is most efficient in maximizing the system-wide representation of
faulty ids in a single round. Intuitively, this result is explained as follows. The probability for an adversary’s
message to be accepted, (i.e., selected inrand on line 36 inFigure 3), in a given round is maximized when
the message reaches a node that receives a minimal number of pushes in that round; over-loading nodes only
reduces the adversary’s messages chances of being accepted. However, the adversary has no information
about the number of correct pushes received by any particular correct node. Moreover, the expected number
of received pushes is the same at all the correct nodes. Therefore,the adversary maximizes the number of
faulty pushes expected to be accepted in a round by distributing them evenlyamong correct nodes.

We now proceed and study the system dynamics when a balanced attack is applied over multiple rounds.
The analysis makes two simplifying assumptions. First, we ignore the effect ofview blocking (Figure 3,
Line 35). Note that this is a worst-case assumption, which only accelerates the deterioration of correct
views. Second, we assume that the balanced attack preserves the in-degrees and out-degrees of all correct
nodes equal over time, since it does not distinguish between correct nodes. Formally,

Assumption 7.1 For all u ∈ C and all t ≥ T0: xu(t) = x(t), andyu(t) = ℓ1 − xu(t).

Our extensive simulations closely validate the theoretical results obtained using these two assumptions.
Throughout this section we assume0 < p < 1. The other cases (all pushes are faulty or no faulty pushes at
all) are not interesting.

7.1.1 The evolution ofx̃(t)

We study the evolution of the ratio of faulty node ids in views,x̃(t), over time. We show the existence of a
parameter-dependent fixed point ofx̃(t) and the system’s convergence to it. Since the focus is on asymptotic
behavior, we assumet≫ T0.

The following functionψ describes the evolution of the expectation ofx̃(t) with time: if at timet, the
system-wide portion of faulty ids in views is̃x(t) = x, then at timet+ 1, the expected portion of faulty ids
in views will beψ(x).”

Definition 7.1 Assuming a fixedp ∈ (0, 1) we define:

ψ(x) , α
p

p+ (1 − p)(1 − x)
+ β((1 − x)x+ x) + γf.
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Notice thatψ is the sum of three terms. The first, with coefficientα, captures the contribution of faulty
pushes. The second, with coefficientβ, captures faulty ids arriving in pull messages. Finally, the term
with coefficientγ captures the faulty ids returned by history samples. The following lemma proves thatψ
describes the evolution of̃x(t) with time.

Lemma 7.2 For t≫ T0, andp ∈ (0, 1), the expected system-wide fraction of faulty ids evolves as

E(x̃(t+ 1)) = E(ψ(x̃(t))).

Proof : Consider the re-computation ofV at a correct nodeu at timet. The weights of pushes, pulls, and
history samples in the recomputed view areα, β andγ, respectively. Since the random selection process
(Figure 3, Lines 36 and 17–18) preserves the distribution of faulty ids in each data source, the probability of
a push- (resp., pull)-originated entry being faulty is equal to the probabilityof receiving a faulty push (resp.,
pulling a faulty id).

Figure 6(a) illustrates the analysis of̃rpush(t), the probability of a received push to be faulty. Each
correct node wastes an expected fractionx̃(t) of its αℓ1 pushes because they are sent to faulty nodes. The
rest are sent with an equal probability over each outgoing edge inV(t). Since out-degrees and in-degrees are
equal among all correct nodes (Assumption 7.1), each correct nodeu receives the same expected number
of correct pushes:E(gpush

u (t)) = (1 − x̃(t))αℓ1. The variablegpush
u (t) is binomially distributed, with the

number of trials equal to the total number of pushes among all nodes with an outgoing edge tou (i.e., nodes
v s.t. u ∈ Vv(t)). Since this number is large, the number of received correct pushes is approximately equal
to its expectation at all correct nodes, i.e.,gpush

u (t) ≈ (1 − x̃(t))αℓ1, for all u.
The total number of correct pushes isαℓ1|C|, which is a portion1− p out of all pushes (by definition of

p). Hence, the total number of pushes isαℓ1
1−p

|C|, and the number of faulty pushes ispαℓ1
1−p

|C|. Since faulty

pushes are perfectly balanced among the correct nodes,u receives exactlyrpush
u (t) = p

1−p
αℓ1 faulty pushes,

and their fraction among all received pushes is:

r̃push
u (t) =

rpush
u (t)

rpush
u (t) + gpush

u (t)
=

p
1−p

αℓ1
p

1−p
αℓ1 + (1 − x̃(t))αℓ1

=
p

p+ (1 − p)(1 − x̃(t))
.

Out of all push-received idsu stores a fraction ofα in its view. Hence, the expected ratio of push-originated
faulty ids inVu is α p

p+(1−p)(1−x̃(t)) .

Figure 6(b) depicts the evolution of pull-originated faulty ids. Since all correct nodes have an equal out-
degree (Assumption 7.1), a correct node is pulled with probability1−x̃(t), while a faulty node is pulled with
probability x̃(t). A pulled id is faulty with probabilitỹx(t) if it comes from a correct node, and otherwise,
it is always faulty. Hence, the expected fraction of pull-originated faulty ids isβ((1 − x̃(t))x̃(t) + x̃(t)).

Finally, sincet ≫ T0, all history samples are perfect (the ratio of faulty ids in them isf ). Hence, their
expected contribution tõx(t+ 1) is γf , and the claim follows. �

7.1.2 Fixed point existence

We now show that the system has a stable state. A valuex̂ is called afixed pointof x̃(t) if ψ(x̃(t)) = x̃(t) =
x̂. To find the potential fixed points, we substitute this into the equation fromLemma 7.2. The following
Claim immediately follows from our definitions.

Claim 7.3 For α, β, γ, f ∈ [0, 1] andp ∈ (0, 1), every real root0 ≤ x̂ ≤ 1 of the equationψ(x̃(t)) = x̃(t)
is a fixed point of̃x(t).
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Figure 7:Fixed point x̂ of the system-wide fraction of faulty ids in local views, as a functionof p, under
a balanced attack.

To shed more light on the balanced attack’s dynamics, we study the fixed point values under specific com-
binations ofα, β andγ. Simplifying the equationψ(x) = x, we geth(x) = 0, where:

h(x) = β(1 − p)x3 + (2βp− 3β − p+ 1)x2 + (γfp− γf + 2β − 1)x+ αp+ γf.

By Claim 7.3, the fixed pointx̂ is a root ofh(x̃). We first establish a number of useful observations
regarding the functionsψ(x) andh(x) that will be used throughout our analysis, here and inAppendix B.2.
They can be shown by straightforward calculus.

Observations:

O.1 ψ(x̃) is monotonically increasing for̃x ∈ [0, 1], since both p
p+(1−p)(1−x̃) andx̃+ (1 − x̃)x̃ = 2x̃− x̃2

are monotonically increasing in this interval.

O.2 The absolute value of the first derivative ofψ(x̃) for x ∈ [0, 1] is bounded by a constantK.

O.3 limx→−∞ h(x) = −∞, h(0) = αp + γf ≥ 0, h(x̂) = 0, h(1) = p(α + β + γf − 1) ≤ 0, and
limx→+∞ h(x) = +∞. h(x) has a single feasible root0 < x̂ < 1 (sinceh(x) is continuous and the
other two roots lie outside[0, 1]). In addition,h(x) is increasing in(0, x̂) and decreasing in(x̂, 1).

O.4 ψ(x) > x for x ∈ (0, x̂) andψ(x) < x for x ∈ (x̂, 1). This is a straightforward application of the
previous observation.

We focus on valid roots0 ≤ x̂ ≤ 1. A fixed pointx̂ = 1 is calledtrivial (any other value is nontrivial).
The existence of a nontrivial fixed point means that there is a stable systemstate in which the representation
of correct ids is nonzero. On the other hand, if the system is at the trivialfixed pointx̂ = 1, it means the
views of all correct nodes hold only faulty ids.

Fixed points with history samples. If γ > 0 (i.e., history samples are used), a trivial fixed point does not
exist (1 is not a root) and a single nontrivial fixed point always exists. This is sinceh(0) ≥ 0 andh(1) < 0
and by Observation O.3 a single feasible root lies in0 ≤ x̂ < 1.

Fixed points without history samples. If γ = 0 (no history samples), then̂x = 1 is a root, i.e., a trivial
fixed point exists. This is easily explainable, since if the views of all the correct nodes are totally poisoned,
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then neither pulls nor pushes can help. By Observation O.3 there is also a single feasible root0 ≤ x̂ < 1.

For example, ifα = β = 1
2 andγ = 0, thenx̂ =

p+
√

4p−3p2

2(1−p) , for 0 ≤ p ≤ 1
3 . In contrast, if the fraction of

faulty pushes exceeds13 , the only fixed point is 1.
Two more parameter combinations deserve special interest:

1. β = 1, α = γ = 0 (pull only, no history samples). Both rootŝx = 0 and x̂ = 1 exist, for allp.
This can be easily explained by considering the initial conditions. Since faultynodes cannot push
their own ids, if none of the views initially contain a faulty id, correct nodes pull only from correct
nodes and the faulty nodes will remain unrepresented. On the other hand,as shown inFigure 1(c,d),
if x̃(T0) > 0 (faulty nodes are initially represented) the views collapse tox̂ = 1.

2. α = 1, β = γ = 0 (push only, no history samples). The only valid root isx̂ = p
1−p

, for p ≤ 1
2 (recall

thatp > 0). That is, a nonzero fraction of correct ids can be maintained iff the majority of pushes
are correct. This follows from the fact that a single correct push and asingle faulty push equally
contribute to the view.

These results highlight the importance of using history samples.Figure 7depicts a fixed point of̃x(t)
for two combinations ofα, β, andγ and for various values ofp. We see a perfect match between theoretical
analysis and simulations.

7.1.3 Convergence to the fixed point

We conclude the analysis by showing convergence to a nontrivial fixed point, if one exists.

The idea. We show (Appendix B.2) that the sequence of expected values ofx̃(t), {E(x̃(T0+k))} for k ≥ 0,
can be approximated by an auxiliary sequence{ψk(x̃(T0))}. The latter sequence converges tox̂, i.e., so does
the expected value of̃x(t). We exploit the properties ofψ and use well-known calculus techniques.

7.2 Targeted Attack

We study a targeted attack on a single correct nodeu, which starts uponu’s join, which occurs at timeT0.
We prove thatu is not isolated from the overlay by showing a lower bound on the expected timeto isolation,
which exceeds the upper bound on the time to a perfect correct sample shown in Section 6(a sufficient
condition for non-isolation).

Lower bound on expected isolation time. As we seek a lower bound, we make a number of worst-case
assumptions (formally stated inAppendix C). First, we assume that the protocol does not employ history
samples (i.e.,γ = 0), so thatS does not correctV ’s bias. Next, we assume an unrealistic adaptive adversary
that observes the exact number of correct pushes tou, gpush

u (t), and complements them withαℓ1 − gpush
u (t)

faulty pushes – the most that can be accepted without blocking. At the same timethe adversary maximizes
its global representation through a balanced attack on all correct nodesv 6= u, thus minimizing the fraction
of correct ids thatu pulls from correct nodes. Finally, we assume thatu is not represented in the system
initially, andu’s initial view is taken from a random correct node. Hence, the ratio of faulty ids in this view
is at the fixed point, i.e., higher thanp (Section 7.1).

Clearly, the time to isolation inV(t) is a lower bound on that inN (t). We study the dynamics ofu’s
degree inV(t), i.e., the sum of the out-degree (the number of correct ids in view),ℓ1 − xu(t), and the
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Figure 8: Targeted attack without history samples: node degree dynamics.n = 1000, p = 0.2,
α = β = 0.5, γ = 0. Without history samples a targeted attack isolatesu in logarithmic time in
ℓ1.

in-degree,yu(t). We show inAppendix C.2that for every two values ofxu(t) andyu(t), the expected
out-degree and in-degree values att+ 1 are

(

ℓ1 − E(xu(t+ 1))

E(yu(t+ 1))

)

= A2×2 ×
(

ℓ1 − xu(t)

yu(t)

)

,

where

A2×2 =

(

β(1 − x̂) α

α 1−p
p+(1−p)(1−x̂) β(1 − x̂)

)

.

Note that the coefficient matrix does not depend onxu(t) or yu(t), and the sum of entries in each row is
smaller than 1. This implies that once the in-degree and the out-degree are close, they both decay exponen-
tially (initially, this does not hold becauseu is not represented, i.e.,yu(T0) = 0, but within a few rounds,
u becomes represented andℓ1 − xu andyu are close). Hence, the expected time to isolation is logarithmic
with ℓ1. Note that this process does not depend on the number of nodes, since blocking bounds the potential
attacks onu independently of the system-wide budget of faulty pushes. Had blocking not been employed,
the top right coefficient would have been0 instead ofα, because the adversary would have completely poi-
soned the push-originated entries inVu. The decay rate would have been much larger, leading to almost
immediate isolation.

Figure 8(a) depicts the dynamics ofu’s expected degree (the sum ofu’s in- and out-degrees) until it
becomes smaller than 1. Simulation results closely follow our analysis. The temporary growth inu’s degree
att = 1 occurs becauseu becomes represented in the system after the first round. When the degree becomes
1, the node is isolated. For example, the average time to isolation forℓ1 = 2 3

√
n is 10 rounds.Figure 8(b)

depicts the same results in log-scale, emphasizing the exponential decay ofu’s degree and the logarithmic
dependency betweenℓ1 and time to isolation.

Upper bound on expected time to perfect correct sample.For given values of the non-unique stream
sizeΛ(t) and the deficiency factorρ (Section 6), Lemma 6.5boundsPSPu(t), the probability for a perfect
sample at timet, from below. The expected number of correct ids observed byu till the end of roundT is
Λ(t) =

∑T0+T−1
t=T0

(E(gpush
u (t)) + E(gpull

u (t))); the expected values ofgpush
u (t) andgpull

u (t) are by-products
of the analysis inAppendix C. Figure 9(a) depicts the deficiency factorρ measured by our simulations,
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Figure 9:Dynamics within a targeted node (n = 1000, p = 0.2, α = β = 0.5 and γ = 0): (a) Fraction
of unique ids in the stream of correct ids, which is an upper bound on the deficiency factorρ. (b)
Growth of Perfect Sample Probability (PSP) with time,ρ = 0.4. PSP becomes high quickly enough to
prevent isolation.

which behaves similarly for all values ofℓ1: ρ ≥ 0.4 for all t. The deficiency factorρ was estimated as a
fraction of unique ids in the stream of correct ids. This is actually an upperbound onρ, by its definition.

Figure 9(b) depicts the progress of the upper bound ofLemma 6.5with time, with Λ(t) computed as
explained above andρ = 0.4. The corresponding simulation results show, for each timet, the fraction of
runs in which at least one correct id inSu is perfect. Forℓ2 ≥ 40, the PSP becomes close to 1 in a few
rounds, much faster than isolation happens (Figure 8(b)). For ℓ1 = 20, it stabilizes at0.5. The growth
stops because we run the protocol without history samples, thusu becomes isolated, and ceases observing
new correct ids. A higher PSP can be achieved by independently increasing ℓ2, e.g., if ℓ2 is 40, then the
PSP grows to0.8 (seeFigure 5). Note that perfect samples only provide an upper bound on self-healing
time, asSu contains imperfect correct ids, andu also becomes sampled by other correct nodes, with high
probability. These factors coupled with history samples (γ > 0) completely preventu’s isolation, as shown
in Section 8.
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Figure 10:Targeted attack: degree dynamics of an attacked node inN (t), n = 1000, p = 0.2, α = β =
0.45 and γ = 0.1.
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Figure 11: Balanced attack: fraction of perfect samples (a) and faulty nodes (b) in S, for f = 0.2,
n = 1000, . . . , 4000, and ℓ2 = 2 3

√
n.

8 Putting it All Together

In previous sections we analyzed each of Brahms’s mechanisms separately. We now simulate the entire
system.Figure 10depicts the degree of nodeu in N (t) under a targeted attack. Nodeu remains connected
to the overlay, thanks to history samples (γ = 0.1). The actual degree ofu in N (t) is higher than the lower
bound shown inSection 7.2, due to the pessimistic assumptions made in the analysis (no history samples,
no imperfect correct ids, etc.).

We now demonstrate the convergence ofS in the correct nodes. We simulate systems with up ton =
4000 nodes;ℓ1 andℓ2 are set to2 3

√
n. To measure the quality of sampleS under a balanced attack, we depict

the fraction of ids inS that are indeed the perfect sample over time inFigure 11(a). Note that this criterion is
conservative, since missing a perfect sample does not automatically lead to abiased choice. More than50%
of perfect samples are achieved within less than 15 rounds; forℓ2 = ℓ1 = 3 3

√
n, the convergence is twice as

fast.Figure 11(b)depicts the evolution of the fraction of faulty ids inS. Initially, this fraction equalsf , and
at first increases, up to approximately the fixed point’s value. This is to be expected, since the first observed
samples are distributed like the original (biased) data stream. Subsequently,as the node encounters more
unique ids, the quality ofS improves, and the fraction of faulty ids drops fast tof . The protocol exhibits
almost perfect scalability, as the convergence rate is the same forn ≥ 2000.

9 Conclusions

We presented Brahms, a Byzantine-resilient membership sampling algorithm. Brahms stores small views,
and yet resists the failure of a linear portion of the nodes. It ensures that every node’s sample converges to
a uniform one, which was not achieved before by gossip-based membership even in benign settings. We
presented extensive analysis and simulations explaining the impact of various attacks on the membership,
as well as the effectiveness of the different mechanisms Brahms employs.
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A Analysis - sampling

A.1 Convergence to First Perfect Sample

Proposition 6.4(restated) Lets be a sampler. Then, for|C| ≫ 1 and for eacht > T0,

Pr(s(t) 6= s∗|s∗ ∈ C) = e
−

ρΛ(t)
|C| .

Proof : A sampler outputs its perfect ids∗ once that id occurs in the sampler’s input stream. So the proba-
bility of s(t) 6= s∗ is the probability thats∗ did not appear in the stream of during the roundsT0 ≤ t′ ≤ t.
Recall thatΛ(t) is the number of correct ids observed by the sampler from timeT0 to t, and that a stream
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of lengthΛ(t) includes as many random unique ids as a stream of lengthρΛ(t) in which correct ids are in-
dependent and distributed uniformly at random. LetG denote a random correct id observed by the sampler,
and note that for eachv ∈ C, Pr(G = v) = 1

|C| . Then,

Pr(s(t) 6= s∗|s∗ ∈ C) = Pr(G 6= s∗|s∗ ∈ C)ρΛ(t) =

(1 − Pr(G = s∗|s∗ ∈ C))ρΛ(t) =
(

1 − 1

|C|

)ρΛ(t)

.

Since 1
|C| ≪ 1, we use1 − x ≈ e−x (1 − x is the first order Taylor expansion ofe−x, and is a good

approximation for a smallx), and approximate the above as follows:

Pr(s(t) 6= s∗|s∗ ∈ C) ≈
(

e
− 1

|C|

)ρΛ(t)
= e

−
ρΛ(t)
|C| .

From now on, we assume1|C| is small enough, so we use equality. That is,

Pr(s(t) 6= s∗|s∗ ∈ C) = e
−

ρΛ(t)
|C| .

�

B Balanced Attack Analysis

B.1 Short-term Optimality

We now prove that in any single round, a balanced attack maximizes the expected system-wide fraction of
faulty ids,x̃(t), among all strategies. Consider a scheduleR : C → N that assigns a number of faulty pushes
to each correct node at roundt. A schedule isbalancedif for every two correct nodesu andv, it holds that
|R(u) − R(v)| ≤ 1. Otherwise, the schedule isunbalanced. We prove that every unbalanced schedule is
suboptimal. All balanced schedules are equally optimal, for symmetry considerations.

Lemma B.1 If scheduleR is unbalanced, then there exists another schedule that leads to a larger expected
ratio of faulty ids thanR in roundt+ 1.

Proof : Since a schedule of faulty pushes in roundt does not affect the pulls or history samples in this
round, it is enough to prove the claim for the push-originated ids. Consider two nodes,u andv, such that
R(u) > R(v) + 1. Consider an alternative scheduleR′ that differs fromR in moving a single push fromu
to v. Consider the change in the expected cumulative fraction of push-originated faulty ids inVu(t+ 1) and
Vv(t+ 1) following this shift (in the other nodes, the ratio of faulty ids does not change).

The probability of a push-originated view entry at nodeu being faulty, provided thatR(u) faulty pushes
were received, is equal to the expected fraction ofR(u) among all pushes received byu. Note thatR(u) is
set in advance, i.e., without knowing the number of received correct pushes,gpush

u (t). The expected number
of faulty pushes accepted depends on the latter as follows:

E(r̃push
u |rpush

u = R(u)) =

|C|
∑

G=1

Pr[gpush
u (t) = G] · R(u)

R(u) +G
.

27



We need to show that

E(r̃push
u |rpush

u = R(u)−1)+E(r̃push
v |rpush

v = R(v)+1) > E(r̃push
u |rpush

u = R(u))+E(r̃push
v |rpush

v = R(v)),

i.e.,
|C|
∑

G=1

Pr[gpush
u (t) = G] · R(u) − 1

R(u) − 1 +G
+

|C|
∑

G=1

Pr[gpush
v (t) = G] · R(v) + 1

R(v) + 1 +G

≥
|C|
∑

G=1

Pr[gpush
u (t) = G] · R(u)

R(u) +G
+

|C|
∑

G=1

Pr[gpush
v (t) = G] · R(v)

R(v) +G
.

Since all correct nodes have the same in-degree inV(t) (Assumption 7.1), gpush
u (t) andgpush

v (t) have iden-
tical (binomial) distributions. Hence, it is enough to show that for allG ≥ 0 and allR(u) > R(v) + 1 > 0:

R(u) − 1

R(u) − 1 +G
+

R(v) + 1

R(v) + 1 +G
≥ R(u)

R(u) +G
+

R(v)

R(v) +G
.

We simplify by switching sides:
(

R(u) − 1

R(u) − 1 +G
− R(u)

R(u) +G

)

+

(

R(v) + 1

R(v) + 1 +G
− R(v)

R(v) +G

)

≥ 0.

−G
(R(u) +G)(R(u) − 1 +G)

+
G

(R(v) +G)(R(v) + 1 +G)
≥ 0.

SinceR(u) − 1 ≥ R(v) + 1 > 0 andR(u) − 2 ≥ R(v) > 0, indeed

−G
(R(u) +G)(R(u) − 1 +G)

+
G

(R(v) +G)(R(v) + 1 +G)

≥ −G
(R(u) +G)(R(u) − 1 +G)

+
G

(R(u) − 2 +G)(R(u) − 1 +G)

≥ G

R(u) − 1 +G
·
(

1

R(u) − 2 +G
− 1

R(u) +G

)

=
G

R(u) − 1 +G
· 2

(R(u) +G)(R(u) − 2 +G)
> 0.

As needed. �

We conclude by showing that all balanced schedules are equally optimal for the adversary.

Proposition B.2 Every two balanced schedules lead to the same expected fraction of faulty idsin round
t+ 1.

Proof : Consider two balanced scheduleR andR′. R can be transformed intoR′ by a sequence of moves
of a single push message from nodeu to nodev, such thatR(u) = R(v) + 1 whereasR′(v) = R′(u) + 1.
For symmetry reasons, neither of these moves alters the expected cumulativefraction of faulty ids received
by u andv. Hence, each transformation produces a schedule that implies the samex̃(t+ 1) as the previous
one. �
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B.2 Convergence to the fixed point

To capture the dynamics of̃x(t), we define the sequence{ak}, the expected system-wide fractions of faulty
ids at timeT0 + k, as follows:

ak =

{

x̃(T0) k = 0,

E(x̃(T0 + k)) = E(ψ(x̃(T0 + k − 1))) k > 0

We next define{bk}, which we use to approximate{ak}. {bk} is defined as follows:

bk = ψk(x̃(T0)),∀k ≥ 0.

Equivalently,bk = ψk(bk−1). That is,{bk} is a sequence of applyingψ on the expected system-wide
fractions of faulty ids in every cycle.

In order to prove convergence of{bk}, we define an auxiliary sequence{ck} below. We prove that{bk}
is bounded between̂x and{ck}. Finally, we show that the latter sequence converges tox̂, implying that so
does{bk}. Since{bk} approximates{ak}, {ak} converges tôx as well.

We now explain why{bk} can be used to approximate{ak}. Consider an elementak of {ak}. Since
ak is the expectation of a random variable (namelyx̃(T0 + k)), it can be written asak =

∑

pixi, where
∀i : pi = Pr[x̃(T0 + k) = xi]. By Lemma 7.2, ak+1 can be written asak+1 =

∑

piψ(xi).
Sincex̃ is obtained as a combination of binomial distributions with many trials (we assumen to be very

large), it has a small variance, and therefore all the significant contributors to this sum are very close to
each other, i.e., they all lie within a small segment. Moreover, sinceψ is continuous, monotonic, and has
a bounded derivative in(0, 1), in small segments, it can be approximated by a linear function. Therefore,
ak+1 =

∑

piψ(xi) ≈ ψ(
∑

pixi) = ψ(ak).
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Figure 12:System-wide fraction of faulty ids in local views, under a balanced attack. Convergence to
a fixed point x̂: n = 1000, p = 0.2, α = β = 0.5 and γ = 0. The theory depicts the sequence{bk}.

Figure 12depicts the evolution of{bk} as a function of time for various initial values ofx̃(T0). The
figure also depicts the actual ratio of the faulty ids in the views in the simulation study. We can see that{bk}
well approximates the actual faulty ids fraction.{bk}’s convergence is slightly faster because the analysis
ignores blocking.
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We next prove that{ck} converges tôx. This is done by applying Hillam’s theorem [25]. We conclude
by showing that{bk} is bounded between̂x and{ck}, thus proving the convergence of{bk}.

Preliminary B.3 Liphschitz condition (simplified) [25]:
The functionf : [a, b] → [a, b] satisfies the Liphschitz condition with constant K iff for allx, y ∈ [a, b] it
holds that|f(x) − f(y)| ≤ K|x− y|.

Preliminary B.4 Hillam’s theorem [25]:
If f : [a, b] → [a, b] satisfies the Liphschitz condition with constant K, then the iteration scheme{xn+1 =
λxn + (1 − λ)f(xn)}, whereλ = 1

K+1 , converges to a fixed point off .

Lemma B.5 The sequence{ck} converges to the fixed point ofψ(x̃).

Proof : Based on Observations O.1 and O.2 and by the mean value theorem, for allx̃1, x̃2 ∈ [0, 1] (x̃1 ≤ x̃2),
there exists̃x′ ∈ [x̃1, x̃2] such that

ψ(x̃2) − ψ(x̃1) =
δψ

δx
(x′) · (x̃2 − x̃1).

We can therefore find a constantK satisfying the Lipschitz condition forψ in [0, 1]. LetK be such a
constant, and letλ = 1

K+1 . We are now ready to define{ck}, as follows:

ck =

{

x̃(T0) k = 0,

λck−1 + (1 − λ)ψ(ck−1) k > 0

Therefore, by Hillam’s theorem (Preliminary B.4), the iteration scheme{ck = λck−1+(1−λ)ψ(ck−1)},
whereλ = 1

K+1 , converges to a fixed point ofψ(x) for eachc0 = x̃(T0) ∈ [0, 1].
�

From now on, we separate the proof into 2 cases:

1. x̂ ≤ x̃(T0) = a0 = b0 = c0 < 1.

2. 0 ≤ x̃(T0) = a0 = b0 = c0 < x̂.

Lemma B.6 If x̃(T0) < 1, then{ck} converges tôx (and not tox̂ = 1).

Proof : For the first case, recall that̂x is a single nontrivial fixed point. By Observation O.4,ψ(x) < x
for x ∈ (x̂, 1). For an arbitraryx ∈ (x̂, 1), it holds thatλx + (1 − λ)ψ(x) < x, i.e, the sequence{ck}
is monotonically decreasing witht. Hence, this sequence cannot converge to the trivial fixed point (if one
exists), i.e., it converges tôx. The proof for the second case is symmetrical. �

Lemma B.7 {bk} is bounded between̂x and{ck}.

Proof : For the first part of the claim we need to prove thatx̂ ≤ bk ≤ ck (the second part’s proof is
symmetrical). We prove by induction ont. The basis is immediate by definition ofb0 andc0. Assume that
x̂ ≤ bk ≤ ck for k > 0. Consider the following statements:

1. ψ(ck) < ck+1. We know thatck+1 = λck +(1−λ)ψ(ck) > ψ(ck) sinceψ(ck) < ck (by Observation
O.4,ψ(x) < x for x ∈ (x̂, 1) and indeedck ∈ (x̂, 1)).
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2. ψ(bk) ≤ ψ(ck), sinceψ is monotonically increasing forx ∈ [0, 1] (Observation O.1) and based on
the induction hypothesis (bk ≤ ck).

3. ψ(bk) = bk+1 by definition ofbk+1.

4. ψ(x̂) ≤ ψ(bk), sinceψ is monotonically increasing forx ∈ [0, 1] (Observation O.1) and based on the
induction hypothesis (̂x ≤ bk).

5. x̂ = ψ(x̂) by definition ofx̂.

Combining the above statements we getx̂ = ψ(x̂) ≤ bk+1 = ψ(bk) ≤ ψ(ck) < ck+1, thus concluding
the induction step.

�

Since the balanced attack does not distinguish between correct nodes, the same result holds for̃xu(t),
for each correct nodeu.

C Targeted Attack Analysis

This section analyzes the dynamics of a targeted attack on a single correct node.

C.1 Assumptions

We use the following assumptions on the environment in order to bound the time to isolation from below.

Assumption C.1 (no history samples)γ = 0, which is equivalent to the worst-case assumption that the
expected ratio of faulty ids inS at all times is equal to that in the id stream observed by the node (i.e.,
history samples are ineffective).

Assumption C.2 (unrealistically strong adversary) In each roundt ≥ T0, the adversary observes the exact
number of correct pushes received byu, gpush

u (t), and complements it with faulty pushes toαℓ1 (i.e., the
maximal number of faulty ids that can be accepted without blocking). Formally, rpush

u (t) , max(αℓ1 −
gpush
u (t), 0).

Assumption C.3 (background attack on the rest of the system) The adversary maximizes its global rep-
resentation through a balanced attack on all correct nodesv 6= u. At timeT0, the system-wide expected
fraction of faulty ids is at the fixed point̂x. (Note that this attack minimizes the fraction of correct ids thatu
can pull from correct nodes).

Assumption C.4 (fresh attacked node)u joins the system atT0. It is initially not represented in any correct
node’s view andu’s initial view is taken from a random correct node.

We assume that the effect ofu on the entire system’s dynamics is negligible. Hence, we assume that
the out-degrees and the in-degrees of all correct nodes exceptu are equal at all times (Assumption 7.1), and
these nodes do not block (Section 7.1showed that the system-wide effect of blocking is marginal).
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C.2 Node Degree Dynamics

We study the dynamics of the degree of the attacked nodeu V(t). Consider a set of triples{(X,Y, t)}, each
standing for a state{xu(t) = X ∧ yu(t) = Y }, forX ∈ {0, . . . , ℓ1}, Y ∈ {0, . . . , |C|ℓ1}. Eacht defines a
probability space, i.e.,

∑

X,Y Pr[(X,Y, t)] = 1. Sinceu is initially not represented, the only states that have
non-zero probability fort = T0 are those for whichY = 0. The probability distribution over these states is
identical to the distribution ofxu(T0). Sinceu borrows its initial view from a random collection of correct
nodes,xu(T0) ∼ Bin(ℓ1, x̂).

We now develop probability spaces for eacht > T0. The notationPr[(X ′, Y ′, t + 1)|(X,Y, t)] stands
for the probability of transition from state(X,Y, t) to state(X ′, Y ′, t). That is,Pr[(X ′, Y ′, t + 1)] =
∑

X,Y Pr[(X ′, Y ′, t + 1)|(X,Y, t)] · Pr[(X,Y, t)]. To analyzePr[(X ′, Y ′, t + 1)|(X,Y, t)] we separately
consider four independent random variables: the number of push- and pull-originated entries inVu, (denoted
x
push
u (t) andxpullu (t)), and the number of push- and pull-propagated instances ofu in the views of correct

nodes (denotedypushu (t) andypullu (t)). The first two affectX ′ whereas the last two affectY ′. We now
demonstrate how conditional probability distributions for these variables arecomputed. For convenience,
we omit the conditioning on(X,Y, t) from further notation.

y
pull
u (t): Since the system is at the fixed point, the probability of pulling from some othercorrect node

is (1 − x̂). Hence,ypullu (t + 1) is a binomially distributed variable, with the number of trials equal to
the total number of correct pulls,(1 − x̂)βℓ1|C|, and the probability of success equal to the chance of an
entry in a random node’s view beingu, namely Y

ℓ1|C|
: ypullu (t + 1) ∼ Bin((1 − x̂)βℓ1|C|, Y

ℓ1|C|
). Note that

E(y
pull
u (t+ 1)) = β(1 − x̂)Y .
y
push
u (t): By Lemma 7.2, the number of pushes that reach correct nodes isαℓ1|C| (1−x̂)(1−p)+p

1−p
. Denote

the number of pushes fromu to correct nodes in roundt by zu(t). This is a binomially distributed variable
with αℓ1 trials and probability of success equal to1− X

ℓ1
: zu(t) ∼ Bin(αℓ1, 1− X

ℓ1
). For a givenzu(t) = Z,

since the total number of push-originated entries isαℓ1|C|, the number of push-propagated instances ofu is
y
push
u (t + 1|Z) ∼ Bin (αℓ1|C|, Z

αℓ1|C|((1−x̂)+ p
1−p

)
). Note thatE(y

push
u (t + 1|Z)) = Z 1−p

p+(1−p)(1−x̂) . Hence,

sinceZ is independent onp andx̂,

E(ypushu (t+ 1)) = E(Z)
1 − p

p+ (1 − p)(1 − x̂)
= α(ℓ1 −X) · 1 − p

p+ (1 − p)(1 − x̂)
.

x
pull
u (t): A pull from a faulty node (which happens with probabilityX

ℓ1
) produces a faulty id with

probability 1, otherwise the probability to receive a faulty id isx̂. Hence, the probability of pulling a faulty
id is X

ℓ1
+ (1 − X

ℓ1
)x̂. That is, the number of pull-originated faulty ids inu’s view is xpullu (t + 1) ∼

Bin(βℓ1,
X
ℓ1

+ (1 − X
ℓ1

)x̂) (i.e.,E(x
pull
u (t+ 1)) = β(X + (ℓ1 −X)x̂)).

We also compute the expected number of correct ids (with duplicates) pulled by u, which we need for
estimating the size of the id stream that traverses this node (Section 7.2). Sinceu performsβℓ1 pulls, and
the expected number of correct ids pulled from a random node is(1 − x̂)ℓ1,

E(gpull
u (t)) = (1 − X

ℓ1
) · βℓ1 · (1 − x̂)ℓ1 = (1 − x̂)ℓ1(ℓ1 −X).

x
push
u (t): The number of push-originated ids,xpushu (t + 1), depends on the number of correct pushes

received byu, gpush
u (t). The latter is a binomially distributed variable, with the number of trials equal to

the total number of correct pushes,αℓ1|C|, and the probability of success equal to the chance of an entry in
a random node’s view beingu, namely Y

ℓ1|C|
: gpush

u (t) ∼ Bin(αℓ1|C|, Y
ℓ1|C|

) (Note thatE(gpush
u (t)) = αY .

This value is of independent use for evaluating the size of the id stream thattraversesu (Section 7.2)).
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An expected representation of a correct node different fromu in the system is(1 − x̂)ℓ1. Sinceu is
under-represented (Y < (1 − x̂)ℓ1 with high probability), the probability of receiving aboveαℓ1 correct
pushes is low, and hence, we ignore the case ofu being blocked by exceedingly many correct pushes. On
the other hand, faulty pushes cannot blocku either (AssumptionC.2), and therefore, we assume thatu never
blocks. IfG ≤ αℓ1 correct pushes are received, the adversary complements the number of pushes to the
maximum allowed (AssumptionC.2), i.e., the fraction of faulty pushes tou is 1 − G

αℓ1
. Hence, the number

of push-originated faulty ids inu’s view isxpushu (t+ 1|G) ∼ Bin(αℓ1, 1 − G
αℓ1

). In other words,

E(xpushu (t+ 1)) = αℓ1(1 − E(gpush
u (t))

αℓ1
) = αℓ1(1 − αY

αℓ1
) = α(ℓ1 − Y ).

Putting it all together. Summing up, the expected values of in-degree and out-degree can be written as

(

ℓ1 − E(xu(t+ 1))

E(yu(t+ 1))

)

=

(

ℓ1 − (E(x
push
u (t+ 1)) + E(x

pull
u (t+ 1)))

E(y
push
u (t+ 1)) + E(y

pull
u (t+ 1))

)

=

=

(

ℓ1 − (α(ℓ1 − Y ) + β(X + (ℓ1 −X)x̂))

α(ℓ1 −X) 1−p
p+(1−p)(1−x̂) + β(1 − x̂)

)

=

=

(

β(1 − x̂) α

α 1−p
p+(1−p)(1−x̂) β(1 − x̂)

)

·
(

ℓ1 − xu(t)

yu(t)

)

Since we have shown thatu does not block with high probability, andSection 7.1demonstrated that the
effect of blocking on the rest of correct nodes is negligible, we assumethat all views are recomputed in each
round. That is,

Pr[xu(t+ 1) = X ′|(X,Y, t)] =
∑

X′
1+X′

2=X′

Pr[xpushu (t) = X ′
1|(X,Y, t)] · Pr[xpullu (t) = X ′

2|(X,Y, t)],

and

Pr[yu(t+ 1) = Y ′|(X,Y, t)] =
∑

Y ′
1+Y ′

2=Y ′

Pr[ypushu (t) = Y ′
1 |(X,Y, t)] · Pr[ypullu (t) = Y ′

2 |(X,Y, t)].

Since the computations ofX ′ andY ′ are independent, we conclude:

Pr[(X ′, Y ′, t)|(X,Y, t)] = Pr[xu(t+ 1) = X ′|(X,Y, t)] · Pr[yu(t+ 1) = Y ′|(X,Y, t)].
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