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Abstract

We present Brahms, an algorithm for sampling random nodeslémge dynamic system prone to
malicious behavior. Brahms stores small membership viéwaeh node, and yet overcomes Byzantine
attacks by a linear portion of the system. Brahms is compo&&do components. The first is an attack-
resilient gossip-based membership protocol. The secontbeoent extracts independent uniformly
random node samples from the stream of node ids gossipedebfirsh We evaluate Brahms using
rigorous analysis, backed by simulations, which show thatleeoretical model captures the protocol’'s
essentials. We study two representative attacks, and $tawith high probability, an attacker cannot
create a partition between correct nodes. We further prioaedach node’s sample converges to an
independent uniform one over time. To our knowledge, no quadperties were proven for gossip
protocols in the past.

Keywords: Random sampling, gossip, membership, Byzantine faults.

1 Introduction

We consider the problem of sampling random nodes (sometimes called pearirge dynamic system
subject to adversarial (Byzantine) attacks. Random node sampling istanpfor many scalable dynamic
applications, including neighbor selection in constructing and maintaininégggueetworks 3, 32, 35, 37],
selection of communication partners in gossip-based protot8|slB, 21], data sampling, and choosing
locations for data caching, e.g., in unstructured peer-to-peer nety&sks

Typically, in such applications, each node maintains a set of random nedbatis asymptotically
smaller than the system size. This set is called the ndalegd view We consider a dynamic system, subject
to churn whereby the set of active nodes changes over time. Local viewsliressisstem must continuously
evolve to incorporate new active nodes and to remove ones that areger kctive. By using small local
views, the maintenance overhead is kept small. In the absence of maliclaxsdyesmall local views can
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be effectively maintained with gossip-based membership prototp&l] 22, 26, 43], which were proven
to have a low probability for partitions, including under chuth [

Nevertheless, adversarial attacks present a major challenge for so#hlViews. Previous Byzantine-
tolerant gossip protocols either considered static settings where the full msdmgbis known to all 19, 33,
39|, or maintained (almost) full local view®[28] (i.e., views that include all the nodes in the system), where
faulty nodes cannot push correct ones out of the view (pleasBesgi®n 2for more detailed discussion of
previous work). In contrast, small local views are susceptible to poigamiit entries (node ids) originating
from faulty nodes; this is because in a dynamic system, nodes must inhexrecelyt new ids and store them
in place of old ones in their local views. Bection 3we illustrate that traditional gossip-based membership
is highly vulnerable to adversary attacks, which can quickly poison theeanéws of correct nodes.

It is even more challenging to providedependent uniform samplé@s such a setting. Even without
Byzantine failures, gossip-based membership only ensures that disetitesaveragerepresentation of
nodes in local views is uniforni[ 22, 26|, and not thatvery nodebtains an independent uniform random
sample. Faulty nodes may attempt to skew the system-wide distribution, as weliadittidual local view
of a given node.

This paper addresses these challengesSdction 4 we present Brahms, a membership service that
stores a sub-linear number of ids (e®(,/n) in a system of size) at each node, and provides each node
with independent random node samples that converge to uniform opesime. The main ideas behind
Brahms are (1) to use gossip-based membership with some extra defensasetd viable (in the sense
that local views are not solely composed of faulty ids) in an adversatithg; (2) to recognize that such a
solution is susceptible to attacks that nagsthe views, i.e., cause certain nodes to be over-represented in
views while others are under-represented (we precisely quantify taatexX this bias mathematically); and
(3) to correct this bias at each node. Specifically, each node maintasulition to the gossip-based local
view, an unbiasedample listof nodes.

To achieve the latter, we introdu@ampler a component that obtains uniform samples out of a data
stream in which elements recur with an unknown bias. Sampler uses min-wisgeimdent permuta-
tions [14], and stores one element of the stream at a time. In Brahms, the data streampssed of
gossiped ids, from which Samplers obtain independent uniformly randsamighles, and store them in the
sample list. By using suchistory samplesrom the sample list to update part of the local view, Brahms
achievesself-healingfrom partitions that may occur with gossip-based membership. In particddgs
that have been active for sufficiently long (we quantify how long) cateoisolated from the rest of the
system, with high probability. The use of history samples is an exam@enpfification whereby even a
small healthy sample of the past can boost the resilience of a constantlyngvalew. We note that only a
small portion of the view is updated with history samples, €.¢f%4. Therefore, the protocol can still deal
effectively with churn.

In Section 5 we define the attacker’'s goals and the corresponding attack strategces, which we
evaluate Brahms. We consider two possible goals for an attacker. Firstiud attacks that attempt
to maximize the representation of faulty ids in local views at any given time. Tdas$ ig achieved by
a uniform attack whereby the attacker equally divides its power among all correct noSesond, we
consider an attacker that aims to partition the network. The easiest way wigddy isolating one node
from the rest1]. Since samples help prevent isolation, we analyze the most adversmsiences, where
an attack is launched on a new node that joins the system when its sampliésergsy, and when it does
not yet appear in views or samples of other nodes. We further assuhseitiieetargetedattack on the new
node occurs in tandem with an attack on the entire system, as described abov

One of the important contributions of this paper is our mathematical analysish wtovides insights



to the extent of damage that an attacker can cause and the effectisénassus mechanisms for dealing
with them. Extensive simulations of Brahms with upt@0 nodes validate the few simplifying assump-
tions made in the analysis. We first show 8action § that whenever the set of nodes remains connected,
the sample lists converge to independent uniformly random selections frmmgaall nodes. We further
show that if views are of siz(+/n), then the convergence rate is bounded independently of the system
size. Section 7then analyzes the local views generated by the gossip process arsltbladwnder certain
circumstances, they preserve the connectivity required for unifornples.

Specifically, for the attack goal of maximizing the representation of faulty$éstjon 7.), we show
that under certain conditions on the adversary, even without usingyh&tamples, the portion of faulty ids
in local views generated by Brahms’s gossip process is bounded mstaobsmaller than one. (Recall that
the over-representation of faulty ids is later fixed by Sampler; the upperdon faulty ids in local views
ensures Sampler has good ids to work with).

Next, we consider the goal of isolating a no&e¢tion 7.2. The key to proving that Brahms prevents,
with high probability, an attacked node’s isolation is in comparing how long itstdée two competing
processes to complete: on the one hand, we provide a lower bound otptwerl time to poison the entire
view of the attacked node, assuming there are no history samples at all. Otiéinénand, we provide an
upper bound on how fast history samples are expected to converggy, thhe same attack. Whenever the
former exceeds the latter, the attacked node is expected to become immunetimniswfore it is isolated.
We prove that with appropriate parameter settings, this is indeed the case.

Finally, we simulate the complete syste®egtion §, and measure Brahms'’s resilience to the combi-
nation of both attacks. Our results show that, indeed, Brahms prevent®ligois of attacked nodes, its
views never partition, and the membership samples converge to perfecttymames over time.

2 Related Work

We are not familiar with any previous work explicitly dealing with random naal®sling in a Byzantine
setting. We next review previous work on Byzantine membersdgg{ion 2.}, node sampling and sampling
from data streams in benign settin@e¢tion 2.2, and on the related problem of Byzantine-resilient overlay
construction ection 2.3.

2.1 Byzantine Membership

Most previous Byzantine-tolerant gossip based protocols have eilnsidered static settings where the
full membership is known to all1[9, 33, 39] or focused on maintaining full local view9,[28] rather than
partial samples. The only exception we are aware of iSémure peer sampling service (SPES).

This paper considers an attack on gossip-based membership, wheeedityaitkers send many faulty
ids to correct nodes. The proposed service, SPSS, mitigates sucls diyegithering statistics about over-
represented node ids. Over-represented ids are deemed faulty,earsemved from views. However, as
the authors show, the effectiveness of this approach is limited to a small nefnipalicious nodes (in the
order of the view size). In contrast, Brahms toleratgs) Byzantine failures with views of siz®(¥/n).
Moreover, SPSS is only evaluated in simulations and no formal proofs afipepies are given.

2.2 Node Sampling and Sampling from Streams

Gossip-based membership, R1, 22, 26, 43] is a robust and efficient technique for maintaining small,
(typically logarithmic-size) local views in the presence of benign failuraspyeng a low probability for
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partitions [l], and an eventual uniform average representation of nodes in lmves {1, 22, 26]. However,
even in benign settings, it does not ensure that every node eventuin®oh uniform random sample as
Brahms does. Furthermore, as we showattion 3it is vulnerable to Byzantine failures.

Proven near-uniform node samples can be obtained using a RandonRVd)k Random walks are
often used for peer sampling and counting in peer-to-peer networkis;diliieome is used for overlay
construction and for the maintenance of partial local membership viegys8R, 36, 10]. RWs have also
been recently proposed to combat Sybil attagkd [in which malicious nodes forge identities in order
to impose as multiple nodes). However, the correctness of RW-based saurdepiends on the network
topology. If the actual topology is different from the assumed one, thesdmple produced by the RW
may be far from uniform23]. In contrast, Brahms does not assume any specific network topoksgole
assumption is that the graph formed by correct nodes is connected oworesing RWs in a Byzantine
setting is problematic, because a faulty node anywhere along the path efi@mwavalk can render the
information obtained in this walk useless.

King and Saia 31] present a method for (proven) uniform sampling in a distributed hash (Bibl&)
like Chord, which is not resilient to Byzantine attack§j

Uniform sampling is related to the problem of load-balancing data over no@BHT [29, 30], which
strives to achieve the following: given a data item, the node that storesttdshe chosen uniformly at
random. Typically in DHTSs, all nodes use the same hash function for majpigitsagto nodes, in order to
facilitate data location. This approach results in an unbalanced load, waichecimproved by creating
multiple virtual nodes for each real nod2d], or by dynamic re-balancing of the key spa8€][ In contrast,
our application does not require all nodes to agree on a common haglofurBrahms ensures balanced
sampling (i.e., that every correct node appears with the same probabilitgriy gmple of a correct node),
by using random (or pseudo-random) hash functions, picked indepéy by each node.

Various previous works have dealt with benign sampling, e.g., from uatbidata streamglP] or from
biased data streams wittkaown biagd8, 17]. Other works have focused on unbiasing data samples from a
random accesmedium rather than a streahl], or counting the number of distinct elements in a (possibly
biased) stream, e.g2,[12]. However, we are not aware of previous work providing uniformmpkes from
a data stream with an unknown bias, as our Sampler component does.

2.3 Byzantine Resilient Overlays

One application of Brahms is Byzantine-tolerant overlay constructiorhrBs& sampling allows each node
to connect with some random correct nodes, thus constructing anyirerdiich the sub-graph of correct
nodes is connected. As noted above, previous Byzantine-tolerasipgmssed membership solutions have
maintained (almost) full local view®] 28] or withstood only weak attack27].

Several recent works have focused explicitly on securing ovenagstly structured ones, also attempt-
ing to ensure that all correct nodes may communicate with each other usiogethay, i.e., to prevent the
eclipse attack40, 41], where routing tables of correct nodes are gradually poisoned with ion&dversarial
nodes. These works typically assume that faulty nodes cannot corgioldl, which is implemented by
using mechanisms such as a (8|15, 40] or a cryptographic random number generafr Brahms also
assumes that the number of ids controlled by faulty nodes is boundedydmiatiow faulty nodes to control
their own ids.

Singh et al. §0, 41] proposed a defense against eclipse attacks in structured over&sex] bn the
observation that when an eclipse attack is launched, the in-degredtgfrfades is likely to be higher than
the average in-degree of correct nodes. The idea is, thereforeditonade degrees, and choose neighbors



whose degree is below some threshold. Unlike Brahms, this does notireawihiform random selection
of neighbors. Finally, this approach is not appropriate for unstrudtoverlays.

Other solutions for Byzantine-tolerant structured overlays mairgairstrainedrouting tables, where
faulty nodes are not over-represented, in addition to the regular raatihes, in which faulty nodes might
by over-representedlp, 16]. This approach resembles our unbiasing of the local views. Howéwer,
constrained table is not proven to be a uniform sample of the nodes. Wuwramlike Brahms, these
solutions require either frequent id re-assignmést r a secure way of measuring network distandés. [

Awerbuch and Schiedeler propose Byzantine-tolerant structurethgveonstructions4, 6, 7], with
logarithmic-size views. However, unlike Brahms, they either require cohstajoining |] or employ a
complex cryptographic random-number generafprajnd need id re-distributions upon every joi [7].
Moreover, these solutions are much more complex than Brahms.

Finally, unlike the works mentioned above, we presegeaeralsampling technique, one application of
which is building Byzantine-resilient unstructured overlays.

3 Model, Goal, and Challenges

We describe the system model, outline our design goal, and illustrate the dgealli@rachieving it.

3.1 System Model

We consider a collectiofy of nodes, each identified by a unique id. We do not constrain the way irhwhic
node ids are chosen. Nevertheless, nodes are not allowed to use mugtjpidich rules out massive Sybil
attacks RQ] (where one faulty node can impersonate as many nodes). Such amnassigf identifiers can
be implemented, e.g, by a certification authority. Individual nodes do mmw khe entire set of nodds.
Rather, each node has some initial knowledge of a small set of other, sodést the graph induced by this
knowledge is connected.

The system is subject to churn, i.e., nodes can join and leave (or crasundtally. A node that has
joined and did not leave or crashdstive A correct active node follows the protocol, whereas faulty active
nodes may exploit the protocol to attack other nodes. Every pair of noategommunicate with each
other directly through bidirectional reliable links, provided that they knasheother’s ids. We assume a
mechanism, which we cdimited sendthat limits the rate of sent messages by incuring a cost to the sender.
This can be implemented in different ways, e.g., computational challengesdikdes puzzles3g], virtual
currency, etc. A node can determine the source of every incoming negssatjcannot intercept messages
addressed to other nodes (this is the standard "unauthenticated” Byzanddel B]). For simplicity of the
analysis, we assume a synchronous model with a discrete global cloolproeessing times, and message
latencies of a single time unit.

3.2 Design Goal

Each node maintains a list of node ids calkainple list Intuitively, each entry in the sample list should
converge to an independent uniform random sample of the active .nddegever, the notion of a uniform
sample is only meaningful when applied to a fixed set, and not to an evegidigeone. Therefore, for the
sake of specifying our protocol’s goal, we assume that there is dffjrag which churn ceases, and require
each entry in the sample list to converge to an independent uniform rasdmple of the nodes that are
active from timeT;, onward.



Similarly to some previous works, for the sake of the analysis we assumehtinait ceases at timg,.
However, in a real deployed system, the churn may actually never osl#seugh we do not define sample
distribution under churn formally, intuitively, we expect that nodes thaeHhazeen around in the system
“long enough” would be uniformly represented in other node’s samples: dhbdes can be expected to be
under-represented.

3.3 Design Challenges - Vulnerabilities of Gossip-Based Meralship

Gossip-based protocols (e.dL, 6]) are a well-known mechanism for membership information dissemina-
tion in the presence of churn. These protocols maintain at each node asbsat of active node ids, called
view. The primary goal of a gossip-based membership service is to presemeadtivity of the overlay in-
duced by the nodes’ views; that is, to avoid network partitions. Note thatesziivity is also a prerequisite
for random sampling, since nodes in distinct connected componentséraverabability for learning about
each other.

Nodes propagate membership information through two primitjmesh— unsolicited sending of a node’s
id to some other node in the sender’s view, antl — request-reply retrieval of another node’s view. Pushes
allow new active nodes to become represented in other nodes’ viewseashpulls spread knowledge
about active nodes throughout the system. Allavena etlhhdve shown that both are needed in order
to avoid partitions and star-like topologies with high probability. They havéhéurshown that in benign
gossip that uses both pull and push, network partitions are unlikely. ih#te expected time until a
partition is exponential in the view size and the isolated component’s size., $tffisiently large views
guarantee negligible partition probability. Extensive empirical studés46] have validated that gossip-
based protocols maintain connectivity in benign setting in practice.

We now illustrate that traditional gossip is not resilient to adversarial pushe pulls. For example, an
adversary can choose to over-represent the faulty ids in the vievesra sorrect nodes. We illustrate how
both push and pull can be abused so as to lead to rapid poisoning of vialks@rect nodes.

For clarity of illustration, we first demonstrate simple attacks on push-onlgig@nd on pull-only
gossip separately. We then comment on how the attack on a combined pualygnithm also results in a
rapid poisoning.

Push flooding. The adversary can flood correct nodes with pushes of faulty idstfaredto cause all
views of correct nodes to quickly become poisoned with faulty ids. To mitigasé flooding, we use the
limited send mechanism for push messages (describ8ddtion 3.1 Although employing limited send is
necessary, it is not sufficient: while such rate-limiting prevents the aaweii®m flooding all correct nodes
in parallel, an attacker can still target correct nodes one by one. Whedeais attacked by push flooding,
its view becomes fully poisoned, and as a result, this node stops pushing itoibetocorrect nodes.
Subsequently, the representation of the attacked node in correct wigtesis exponentially decaying, and
the node is isolated in time which is logarithmic in the view size.

This process is illustrated iRigure 1 first, the attacker focuses on one nadeand leads to complete
poisoning of its view Figure Xa)). For simplicity,Figure Xa) shows the effect of this attack on a push-only
protocol; when pull and push are combined, a similar degradation o@tivaugh it might take longer, as
we show inSection 7 Once the attacker succeeds in poisonifggentire view, all ofu’s pushes are sent to
faulty nodes Figure b)), and consequently, disappears from the views of other correct nodes. Once this
occurs,u is isolated from the system, and the attacker can proceed to attack addiboiesl n

Skewed pull responses.Faulty nodes can return only faulty ids in response to pull requests. Budlse
from correct nodes return faulty ids as well as correct ids, this behbeads to exponential decay in the
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(a) Push flooding: poisoning the view0% faulty ids). (b) All pushes from a poisoned view are lost.

(c) Skewed pulls: initiallyp0% faulty ids. (d) Skewed pulls: after one rounth% faulty ids.

Figure 1: Malicious attacks on traditional gossip protocols using push and pullequests. (a) Faulty
nodes flood a correct node: with pushes, and totally poison its view. (b) Node: with a totally poisoned
view sends pushes only to faulty nodes, and ceases being reprdednin the views of other correct
nodes. (c) Node: pulls views from two correct nodes with50% correct ids, and two faulty nodes. (d)
The faulty nodes return only faulty ids, thus poisoning75% of u’s view.

representation of correct nodes in the system.

The effect of this attack on a purely pull-based gossip protocol is illustiat&igures 1c) and1(d).
In this example, the system begins a gossip round in a state ih&feof ids in all views are faulty,
(Figure Xc)), and we see that at the end of the same rousid, of the ids in a typical node’s view are faulty

(Figure 1d)).

Push-Pull gossip. Unlike in push-only gossip where the whole view is updated with pushesiargysh-
pull gossip a constant part of each view is updated with pushes, whildgtieemart is updated with pulls.
Despite the fact that only a part of the view is updated with pushes, pustiripin push-pull gossip will
take a logarithmic time in the view size to poison the view. This effect is even wedssince the other part
of the view is updated with pulls, suffering from an adverse effect eivad pulls.

These scenarios demonstrate that an adversary can exploit traditims#b ¢o bias the distribution of
ids in the views of correct nodes. In the long run, an attacker can disatéethe entire overlay, thus
precluding peer sampling completely. Brahms adopts a two-layer appro#tub fwoblem. As a first step,
we guarantee, with high probability, that the attacker cannot isolate towdes, that is, the maximum bias
to their views is bounded. As a second step, we correct the incurrethbéagh local uniform sampling.
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Figure 2:Uniform sampling from an id stream in Brahms. (a) Sampler’'s pseudoeode. (b) Sampling
and validation of /5 ids.

4 The Brahms Protocol

Brahms has two components. The local sampling component maintsamse listS — a tuple of uniform
samples from the set of ids that traversed the n&@bztjon 4.). The gossipcomponent is a distributed
protocol that spreads ids across the netw&&cfion 4.2, and maintains a dynamigew ). We denote the
size ofV by ¢; and the size of by ¢,. Each node has some initigl (e.g., received from some bootstrap
server or peer node). andS may contain duplicates, and some entrie§ imay be undefined (denoted.

4.1 Sampling

Sampler is a building block for uniform sampling of unique elements from a degams. The input
stream may be biased, that is, some values may appear in it more than ottmepterSaccepts one element
at atime as input, produces one output, and stores a single element at a téeeitdit is a uniform random
choice of one of the unique inputs witnessed thus far. For example, assuneeid,id,, appears only once
in a certain input stream, while anotherid;, appears 1000 times in the same stream; Sampler’s output on
this stream has an equal probability of beidgas for beingds.

Sampler usesnin-wise independerpiermutations 14]. A family of permutations{ over a range
[1...]U]] is min-wise independent if for any sé&f C [1...|U|] and anyz € X, if h is chosen at ran-
dom fromH, thenPr(min{h(X)} = h(z)) = ﬁ That is, all the elements of any fixed s€thave an
equal chance to have the minimum image urfidePseudo-random functions (e.q24]) are considered an
excellent practical approximation of min-wise independent permutationsided that|U]| is large, e.g.,
2160_

The pseudo-code of Sampler appearBigure Za). It selects a random min-wise independent function
h upon initialization, and applies it to all input values (in tiext () function). The input with the smallest
image value encountered thus far becomes the output returned bgitipe e() function. The property of
uniform sampling from the set of unique observed ids follows directly ftbendefinition of a min-wise
independent permutation family.

Brahms maintains a tuple @¢f sampled elements in a vector &f Sampler blocks (seEigure Zb)),
which select hashes independently. The same stream of ids obsertteel tigde is input to all Samplers.
Sampled ids are periodically probed (e.g., using pings), and a samplepttiatam inactive node is invali-
dated (re-initialized). Thus, when churn ceases, each sample cesvergn independent uniform random
selection from among the active nodes.

4.2 Gossip



1: V :tupleft,] of Ia 19: {Gossig

2: S :tuple[l2] of Sampler 20: while true do

3: Initialization (V): 21 Vpush « Vpun < 0

4: V<YV 22: forall 1 <i<afydo

5. forall 1 <i<¢ydo 23: {Limited push

6 Sli].init() 24: send_lim (“push_request*) to rand(V, 1)

7:  updateSample(Vy) 25: forall 1 <i< B¢ do

8: {Stale sample invalidatign 26: send (“pull_request“) to rand(V, 1)

9: periodically do 27 wait(1)
10: forall 1 < < ¢y do 28: for all received (“push_request®) from id do
11 if probe(S[i].sample()) fails then 29: Vpush < Vpush © {id}
12: S[i].init() 30: forall received (“pull_request*) from id do
13: {Auxiliary functiong 3L send (“pull_reply*,V) to id
14: function updateSample()) 32:  for all received (“pull_reply“, V') from id do
15: forall id e V,1<i < ¢ do 33: if 1 sent the request, and this is the first reghign
16: Sli].next(id) 34: Voutt <= Vpun 0 V'
17: function rand(V, n) 35: if ([Vpusn| <l A Vpusn 0 A Vpuu # 0) then
18:  return n random choices frory 36: V — rand(Vpush, al1) o rand(Vpuu, $1) o rand(S, v41)

37: updateSample(Vpush © Vpuir)

Figure 3:The pseudo-code of Brahms.

Brahms'’s view is maintained by a gossip protocol as shovwigare 3 We denote list concatenation by
o. By slight abuse of notation, we denote both the vector of samplers anathiputs (the sample list) by
S. Brahms executes in (unsynchronized) rounds. It uses two meapsofmgation: (1push— sending the
node’s id to some other node, and (R)Il — retrieving the view from another node. These operations serve
two different purposes: pushes are required to reinforce knowlatigut nodes that are under-represented
in other nodes’ views (e.g., newborn nodes), whereas pulls are chémdpread existing knowledge within
the network 1].

Brahms uses parameters> 0, 6 > 0, andy > 0 that satisfya + 3 + v = 1, to control the portion of
pushed ids, pulled ids, and history samples in the new view, respectivedysihgle round, a correct node
issuesal; push requests and/;, pull requests to destinations randomly selected from its view, possibly
with repetitions (Lines 22-26). At the end of each routdand S are updated with fresh ids. While all
received ids are streameddqLine 37), re-computing’ requires extra care, to protect against poisoning of
the views with faulty ids. Brahms offers the following set of techniques to mititpggeoroblem.

Limited pushes. Since pushes arrive unsolicited, an adversary with an unlimited capacily sacvamp

the system with push requests. Then, correct ids would be propagately t@ough pulls, and their
representation would decay exponentially. [ The protocol employs limited sending of push messages
(performed bysend_l i nm), hence the system-wide fraction of faulty pushes is constrained.

Attack detection and blocking. While using limited pushes prevents a simultaneous attack on all correct
nodes, it provides no solace against an adversary that floodsificpede. Brahms protects against such
atargeted attacly blocking the update df. Namely, if more than the expected; pushes are received

in a round, Brahms does not updaten that round (Line 35). Although this policy slows down progress,
its expected impact in the absence of attacks is bounded (nodes recariputeost rounds). Thanks to
limited pushes, the adversary cannot block all correct nodes simultslggioel, some nodes make progress
even under an attack.

Controlling the contribution of pushes versus pulls. As most correct nodes do not suffer from targeted
attacks (due to limited pushes), their views are threatened by pulls frombweggimore than by adversarial
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Figure 4:View re-computation in Brahms.

pushes. This is because whereas all pushes from correct nadesregct, a pull from a random correct
node may contribute some faulty ids. Hence, the contribution of pushesuisd@) must be balanced:
pushes must be constrained to protect the targeted nodes, while pullsermestdirained to protect the rest.
Brahms update¥ with randomly chosen/; pushed ids an@/; pulled ids (Line 36).

History samples. The attack detection and blocking technique can slowdown a targeted ditaakot
prevent it completely. Note that if the adversary succeeds to increaspitssentation in a victim’s view
through targeted pushes, it subsequently causes this victim to pull moré&aatdaulty nodes. As the
attacked node’s view deteriorates, it sends fewer pushes to cooaes,causing its system-wide represen-
tation to decrease. It then receives fewer correct pushes, optieinipor for more faulty push&sBrahms
overcomes such attacks using a self-healing mechanism, whereby a pootfiohreflects thehistory, i.e.,
previously observed ids (Line 36). A direct use of history does nigt $iace the latter may also be biased.
Therefore, we use feedback frafto obtain unbiased history samples. Once some correct id becomes
the attacked node’s permanent sample (or the node’s id becomes a petrsanple of some other correct
node), the threat of isolation is eliminatdeigure 4illustrates the view re-computation procedure.

Parameter settings. Brahms’s parameters control a tradeoff between performance in anbsstighg and
resilience against Byzantine attacks. For examplaust not be too large since the algorithm needs to deal
with churn; on the other hand, it must not be so small as to make the feetisfdctive. We show in
Section 8that~ = 0.1 is enough for protectingy from partitions. The choice of; and/, is crucial for
guaranteeing that a targeted attack can be contained until the attackesisadple stabilizes. We study
their impact inSection 7 where we show that choosifg, /2 = ©(/n) suffices to protect even nodes that
are attacked immediately upon joining the system.

5 Analysis Structure

In this section, we first present the definitions and the assumptions usetdndlysis of our protocol, and
then discuss the attack models and analysis structure.
5.1 Definitions

We study the asymptotical properties of a system attive nodes, after a poiffty at which churn ceases.
The subset of correct nodes is denafed he faulty nodes comprise less than some fracfien 1 of n. We

1This avalanche process can be started, e.g., by opportunisticallingehe target a slightly higher number of pushes than
expected. Since correct pushes are random, a round in whichiesuifficfew correct pushes arrive, such that Brahms does not
detect an attack, is expected to happen soon.
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assume that the system-wide fraction of pushes that all faulty nodes cty $&ind (using limited send) in
a single round (time unit) is at mogt for somep < 1.

We denote the view and the sample list at no@e timet by V,,(¢) andS,,(¢), respectively. We define the
overlay graphV\/(t), induced by the union of andS at all correct nodes, which captures their knowledge
about each other at timeas follows:

N () 2 e | {(u,v)lv € (Vu(t) USL(6) N CY.

ueC

We also define’(t), a subgraph o/ (¢) induced byV of correct nodes (edges induced®yre omitted):

V() 2 ¢, [J{(wv)lv € Vu(t) nC}}.

ueC

For a node:, the number of its incoming edges in a graph is callethidegree and the number of outgoing
edges is called itsut-degree For example the in-degree of noden V() is the number of instances of
in views of correct nodes, and its out-degree is the number of cor®at its view. Thedegreeof u is the
sum of its in-degree and out-degree.

Analysis Assumptions.Brahms’s resilience depends on the connectivity of the overlay ghagh. We
assume a necessary condition for initial connectivity, namely, that the Vieweoy joining correct node
contains some correct ids (though the ratio of faulty ids in the view is notssadéy bounded by). We
further assume that before an attack starts, the in-degrees and oeg¢slefall correct nodes are (roughly)
equal. This property is an approximation of reality — Jelasity ePé].iave shown that benign gossip leads
to a low variance in in-degrees. Our simulations demonstrate that our reshith, use this assumption,
are valid.

5.2 Attack Models and Analysis Structure

We start our analysis by evaluating two important properties of Brahmd, Wiesshow an upper bound on
the time for a correct node’s sample to permanently contain at least ometidirSecond, we show a lower
bound on the time to isolate a correct node from all other correct nodégjn

The key resilience property achieved by Brahms is that under certaditioos on/;, ¢, andp, the
upper bound is smaller than the lower bound. Thus, an attacked node vpéirb@anently connected to
at least one correct node sooner than it can be isolated by the attade tBineasiest way an adversary
can cause a partition iV (¢) is by isolating one correct node from the re$}, [this property of Brahms
implies that an adversary cannot cause a partitiaW{in). Notice that the lower bound is showvithout
any utilization of the sample lists by correct nodes.

The upper bound. Assuming/\/(t) is connected, irBection 6.1we show that eventually, the samdig

is a uniform random sample. I8ection 6.2 we analyze the time it takes fdf, to permanently include
at least one correct id, and Bection 6.3ve show that there exigy and/, that guarantee this time to be
independent of the system size.

The lower bound. In Section 7we analyze the time to isolate a correct nod@’{i). In order for some
node to be partitioned from the rest, its view needs to be filled solely with idsuttf/faodes. Thus, we
assume that faulty nodes always prefer to increase their representatinviews of correct nodes rather
than decrease it. That is, they push only faulty ids to correct nodeslamagisareturn faulty ids in pulls.
Likewise, faulty nodes always respond to probe requests, to avoilidatian.
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Due to the use of limited send in push messages, the number of pushesuyatoide is able to send in
a single communication round is limited. Appendix B.1we prove that the best strategy of faulty nodes for
maximizing their representation in the views of correct nodes is to distributephsies evenly among all
correct nodes. We call thiskalanced attackSection 7.Janalyzes this attack and evaluates the system-wide
portion of faulty ids in the views of correct nodes as a function of time. Vidaghat this portion converges
to a fixed-point, i.e., after some time it remains a constant smaller than 1.

The use of blocking makes it counter-productive for faulty nodes talftosingle victim node with too
many pushes. Thus, while some of the pushes sent by faulty nodesvatedi isolating the victim, other
pushes are used to increase the representation of faulty nodes in tlseo¥ighcorrect nodes in the system.
Hence, in order to isolate a correct node, faulty nodes should focingptishes on a single target node as
much as possible (i.e., without triggering blocking at that node) and at the 8me, perform a balanced
attack on the other correct nodes in the system. We call thesgeted attack Section 7.2presents the
analysis of this attack.

The correctness of Brahms, i.e., that the shown upper bound is smalleghthbkwer bound, is main-
tained only under certain conditions én ¢, andp. On one hand, whefy and/, grow as+/n, the time
for a correct node’s sample to permanently contain a correct id is canasgoroven irSection 6.30n the
other hand, the lower bound provenS3ection 7.2epends only on, 3, /1 andp. Thus, we can choogg
so that the time to isolate a correct node becomes arbitrarily large, indepilgnafen. Section 8llustrates
concrete values af; and/; that meet these requirements.

6 Analysis - Sampling

In this section we analyze the properties of a sandfl®f a correct node:.. Lets = S, [i] be a sampler
element for some correatand some. Recall thats employs a permutationh, chosen independently at
random. Lets(¢) denote the output of at timet. We define theerfectid corresponding ta, s*, to be

the id with the minimal value of.» among alln ids (we neglect collisions for the sake of the definition).
Note thats* can be either a correct or a faulty id. 8ection 6..we show that eventually converges to an
independent uniform random sample.Saction 6.2ve analyze how fast a node obtains at least one correct
perfect sample, as needed for self-healiggction 6.3discusses scalability, namely, how to choose view
sizes that ensure a constant convergence time, independent of syagent-or readability, some formal
proofs are deferred tAppendix A while this section overviews the proof approach.

6.1 Eventual Convergence to Uniform Sample

Consider a sampler € S, of nodeu. The perfectid ok, s*, samples ids uniformly at random by definition
of min-wise independent family of hash functions. Thus, our goal is teeptbats eventually holdss*.
Obviously, fors to be able to sample some correct nadehe id ofv has to reach:.. To allow for such
reachability between all the correct nodes, we require the overlay gvdp) to remainweakly connected
after 7p. That is, the undirected graph, obtained fravi{¢) by replacing all of its directed edges with
undirected ones, is connected forialk Ty. The following theorem shows that under this assumption each
id eventually has the same probability to be sampled.by

Theorem 6.1 If N(t) remains weakly connected for eack Tj, then, for allv € C,

Pr(s(t) = v) =1 %
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Proof : Let u be an active node at tinig). Then all active nodes send pushes in every rourif}, (recall

that we assume this also for faulty nodes, Seetion §. We now consider a tim&, > Tj, and study the
number of ids observed hyas a random process from timieonward. We denote byisited, (¢) the union
of ids were included in/'s local view between time, and timet. That is,

Visited, (t) £ ] Vu(t).

t'=tg
We will show that eventuallyyisited, () includes all active nodes.

Proposition 6.2 For everyt > t, if Visited, (¢) does not already contain all active nodes, there is a proba-
bility, bounded from below by some positive constarfior Visited, (¢ + 3) to include a node that is not in
Visited, (t).

Proof : By connectivity of /' (¢), there is a path iV (¢) from every node invisited, (¢) to every node that is
not in Visited, (¢). Consider an edge between somec Visited,(¢) and some, ¢ Visited, ().

There is a positive probability far; to be in), (¢) The probability that: is the perfect sample of every
sampler isl /n, and hence, once, is included inV, (t'), for somety, < ¢’ < ¢, it has a nonzero probability
of being sampled i5, (¢'). Since a perfect id remains &, forever,u; has a nonzero probability of being
added back td,(t) as a history sample.

We now show thati, has a positive probability to be addedMiisited, within at most 3 rounds. That s,
Pr(ug € Visited,(t + 3)) > b. There are 4 possible cases, depending on the type of edge betyeaed
ug.

1. uz € Vy, (t). As we have shown earlier; has a nonzero probability of being 1,(¢). Thus, there
is a positive probability for: to pull from w; at roundt, and sinceus € V,, (t), u2 has a nonzero
probability of being returned in the pull and included iMg(t + 1), and we are done.

2. uy € Vy,(t). There is a positive probability fars to push tou; at roundt, leading tous being in
Vu, (t + 1), and the proof continues as case 1.

3. uz € Sy, (t). There is a positive probability far, to be added td/,,, (¢ + 1) as a history sample, and
the proof continues as case 1.

4. u; € Sy, (t). Thereis a positive probability far; to be added t®,, (¢t + 1) as a history sample, and
the proof continues as case 2.

Let the probability of the least probable event (or a sequence of at3re&nts) to bé. We conclude that

for everyu and everyt > t, Visited, (¢ + 3) contains a new id that was not included\iisited, () with

probability at leasb. O
FromProposition 6.2it follows immediately that with probability at least, Visited, (¢ + 3n) contains

all active nodes. That is, for every nodeand at every time in the run of the protocol aftery, there is

a positive probability for to observe every other node’s id in its stream by timie 3n. Since the event

of v observing all the other ids by time+ 3n has nonzero, bounded from below, probability of occurring

starting from every time > Tj, eventually, with probability 1, there will be someavhen this even will

occur. Then, by sampler properties, each id is sampled with probabjlity O
Recall that we assume8éction 9 that faulty active nodes always seek to maximize their representation,

and therefore, send pushes to correct nodes and respond to itigalipeobes. Therefore, they appear in
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Figure 5: Growth of the probability to observe at least one correct perfect ample (Perfect Sample
Probability - PSP) with the stream size, for1000 nodes,f = 0.2, and p = 0.4.

the gossip streams, and are sampled with the same probability as correst modesystem where this
assumption does not hold, and faulty active nodes may refrain fronomdspy to pings, the probability
that a correct id is sampled converges to the ra{%gw] or -, m}, instead of exactly ta/n as stated

above.

The next lemma discusses the convergence rate of samples.

Lemma 6.3 From T, onward, for each correct node, the expected fraction of samplersSy that output
their perfect ids grows linearly with the fraction of unique ids observed.by

Proof : Let D(¢) be the set of ids observed byuntil time ¢, for ¢ > Tj. Note thatD(¢) contains only ids
that are active aftef}, since inactive ids are invalidated and no invalidations happen&ft@gecall that at
time T, churn ceases). Then, for eacls samplers, Pr(s* € D(t)) = DOI  since for eacts such that

n .

s* € D(t), s(t') = s* for eacht’ > ¢, the lemma follows. O

6.2 Convergence to First Perfect Sample

We show a lower bound on the probability tifat containsat least onegperfect id of an active correct node,
as a function of the set of ids thatobserves, and system parameters. This provides an upper boural on th
time it takesS,, to ensure self-healing and prevert isolation. For the sake of proving the lower bound, we
made worst-case assumption: we assumeti@hs the system at timé, with an empty sample. Let(t)
be the number of correct ids observeddbjrom time Tj to time¢. Our analysis depends on the number
of unique ids observed by, rather than directly om\. Obviously, it is unrealistic to expect our gossip
protocol to produce independent uniform random samples Z€f).[Indeed, achieving this property is the
goal of sampler. In order to capture the bias\inve define astream deficiency factpd < p < 1, so thata
stream of length\(¢) produced by our gossip mechanism includes as many random uniqueadsraam
of lengthpA(¢) in which correct ids are independent and distributed uniformly at randidrs is akin to
the clustering coefficient of gossip-based overl&@g}.[We empirically measuredto be abou®.4 with our
gossip protocol (seSection 7.2

In the following lemma we study the dependency between the probability of alesatopoutput its
correct perfect id, the numbéx(¢) of (non-unique) correct ids streamed into the sampler, and the stream
deficiency factop.
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Proposition 6.4 Lets be a sampler. Then, fa€| > 1 and for eacht > Ty,

PA(t)

Pr(s(t) #s"[s"€C) =€ T .

Proof idea. A sampler does not output its correct perfect id only if that id did not patuhe stream.
We calculate the probability of this event as a function of the effective numbg) of independent and
uniformly distributed correct ids in the stream by timel' he full proof appears idppendix A.1

We define theperfect sample probability’SP,(t) as the probability thas,(¢) contains at least one
correct perfect id. The convergence rateRff P is captured by the following lemma:

Lemma 6.5 Letwu be a random correct node. Then, for- T,

A(t L2
PSP,(t) > 1 - <(1 _ e 4 f> .

Proof : Sincewu has/y independent samplers, the probability of each one to have a corrdettpier is
Pr(s* € C) > 1— f. Similarly, Pr(s* ¢ C) < f. Based orProposition 6.4the probability ofs(¢) not being
a correct perfectid is
Pr(s(t) #s* Vs ¢C) = Pr(s(t) #s*|s*€C)Pr(s" €C) + Pr(s* ¢ ()
A(t)
<(1—f)e T 1t
The perfect sample probabilifyS P, (¢) equalsl minus the probability of each é§ samplers not outputting
a correct perfect id, that is:

A(t 2
PSP,(t) > 1 <(1 — e 4 f) .

O
Figure 5illustrates the dependence BS P on the stream siz&(¢) and on/,. For example, we see that
when the sample size ) = 4¥/n (for n = 1000, f = 0.2), and the portion of unique ids in the stream is
p = 0.4, a correct perfect sample is obtained, with probability closk &dter300 ids traverse the node.

6.3 Scalability

FromLemma 6.5 we see tha’S P depends om\ and/;. To get a highelP?S P, we can increase either
of them. While increasing is achieved by increasing, and consequently the network traffic, increasing
/5 has only a memory cost. We now study the asymptotic behaviét P, (¢) as the number of nodes,
n, increases. When a node Wassamplers, and is fixed, {2(¢2) of them have correct perfect sampié,
with high probability. Therefore, bfProposition 6.4the probability at least one of the§¥/,) samplers
outputting its perfect id satisfies, with high probability

PSP,(1) > Q(1 — (¢~ 55)2) = (1 — e 202,
For a constant, A(t) = Q(¢?) since there ar€(¢;) pulls, obtaining)(¢;) ids each. ThusPSP,(t) >

D)

Q(1 — e~ "= ). For scalability, it is important that for a given PSP, (t) will be bounded by a constant
independent of the system size. This condition is satisfied vﬂflenfg = Q(n), e.g., wheny = ¢ =
Q(¥/n), orwhent; = Q({/n) andly, = Q(Yn). To reduce network traffic at the cost of a higher memory
consumption, one can sét = Q(logn) and/y = Q(log#n). When choosing parameter values for our

simulations later in the paper, we use= ¢; = ¢/n for ¢ = 2 andc = 3.

15



Correct node u Random correct node  Semantics

number/fraction number/fraction

Zu(t)/Zu(t) x(t)/z(t) faulty ids in the node’s view (complement to out-degree)
Yu(t)/Tu (t) occurrences of the node in views of correct nodes (in-degree)
GRS (1) /gRUh () PSR (t) /gPush (¢) correct ids pushed to the node

rRush () /ppush () ppush(y) jppush faulty ids pushed to the node

g2 () /gEM () gP(t) /5P (¢) correct ids pulled by the node

R ) /R () P () /P (2 faulty ids pulled by the node

Table 1:Random variable definitions.

7 Analysis — Overlay Connectivity

We now prove that Brahms, with appropriate parameter settings, maintairgyovennectivity despite the
attacks defined in Sectids satisfying the prerequisite f@heorem 6.1

We study two possible adversary targets. The first target, addres&s=tiion 7.1 is increasing the
global representation of faulty ids. We prove that in any single rourizhlancedattack, which spreads
faulty pushes evenly among correct nodes, maximizes the expected syiterimaction of faulty ids at the
end of the round, among all strategies. (A similar approach of analyzirgpersary’s damage in a single
round was taken, e.g., iB8].) We proceed by analyzing the effect of this attack, namely the evolutitreof
system-wide fraction of faulty ids at the end of each round. We furthewghat under certain conditions
this fraction converges to a value that is strictly smaller than 1. That is, thikattace can not partition
the network.

We next consider an attack that attempts to partition the network (rather theaseche faulty nodes’
representation) by targeting a subset of hodes with more pushes tharlanadd attack. Without prior
information about the overlay’s topology, attacking a single node can bedaosaging, since the sets of
edges adjacent to single nodes are likely to be the sparsest cuts in ttag.o08ection 7.2hows that had
Brahms not used history samples, correct nodes could have beendsnl#tes manner. However, Brahms
withstands suchargetedattacks, even if they start immediately upon a node’s join, when the node is not
represented in other views and has no history. The key property we @ohat Brahms’s gossip prevents
isolation long enough for history samples to become effective. This seatipiogs stochastic analysis
backed by simulations.

Notation. We study time-varying random variables, listedlable 1 A local variable at a specific correct
nodeuw is subscripted by,. When used without subscript, a variable corresponds to a randosttaode.
The variablex denotes the number of faulty ids in the node’s view x is the node’s out-degree in the
overlay of correct nodes) angldenotes the number of occurrences of node’s id in the views of correct
nodes (the node’s in-degree). Their fractions in views are denoted alitbve. Correct (resp., faulty)
ids propagated through pushes and pulls are denptddr green) (resp.r (for red)), with appropriate
superscripts for push and pull.

For exampleg,,(t) is the number of faulty ids in node's view at timet, whereast(¢) is the system-
wide fraction of faulty ids in all views at time ¢"*"(¢) is the number of correct ids pushed to the nade
whereagi®*" (¢) is the system-wide fraction of correct ids pushed to all views at time

Simulation setup. We validate our assumptions using simulations with= 1000 nodes or more. Each
data point is averaged over 100 runs. For simplicity, we alwayp usg. A different subset of faulty nodes
push their ids to a given correct node in each round, using a rowid-sohedule.
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Figure 6:Fixed point analysis illustration.

7.1 Balanced Attack - Increasing Global Representation of Falty Ids

We study the balanced attack, which shares the adversarial pushsaweng all correct nodekemma B.1
in Appendix B.1shows that this attack is most efficient in maximizing the system-wide representétio
faulty ids in a single round. Intuitively, this result is explained as followse probability for an adversary’s
message to be accepted, (i.e., selectethird on line 36 inFigure 3, in a given round is maximized when
the message reaches a node that receives a minimal number of pushéesouaridaover-loading nodes only
reduces the adversary’s messages chances of being accepteedveraive adversary has no information
about the number of correct pushes received by any particularaterode. Moreover, the expected number
of received pushes is the same at all the correct nodes. Thereferadversary maximizes the number of
faulty pushes expected to be accepted in a round by distributing them ewraalyg correct nodes.

We now proceed and study the system dynamics when a balanced attagled aper multiple rounds.
The analysis makes two simplifying assumptions. First, we ignore the effagéwfblocking Figure 3
Line 35). Note that this is a worst-case assumption, which only acceleraetetarioration of correct
views. Second, we assume that the balanced attack preserves thedasdaigd out-degrees of all correct
nodes equal over time, since it does not distinguish between corress.nedrmally,

Assumption 7.1 For all w € C and allt > Tjy: x,,(t) = x(t), andy,(t) = {1 — z,(t).

Our extensive simulations closely validate the theoretical results obtaineglthsse two assumptions.
Throughout this section we assume p < 1. The other cases (all pushes are faulty or no faulty pushes at
all) are not interesting.

7.1.1 The evolution ofz(t)

We study the evolution of the ratio of faulty node ids in view§,), over time. We show the existence of a
parameter-dependent fixed pointidf) and the system’s convergence to it. Since the focus is on asymptotic
behavior, we assume> Tj.

The following functiony) describes the evolution of the expectationz¢f) with time: if at timet, the
system-wide portion of faulty ids in views igt) = z, then at time + 1, the expected portion of faulty ids
in views will be(z).”

Definition 7.1 Assuming a fixed € (0, 1) we define:

AO[ P — )T X .
Vi) 2o A1 - e ) 0
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Notice thaty is the sum of three terms. The first, with coefficientcaptures the contribution of faulty
pushes. The second, with coefficighit captures faulty ids arriving in pull messages. Finally, the term
with coefficienty captures the faulty ids returned by history samples. The following lemma gthaé)
describes the evolution af(t) with time.

Lemma 7.2 For t > Tj, andp € (0, 1), the expected system-wide fraction of faulty ids evolves as
E(z(t +1)) = E(y(2(1)))-

Proof : Consider the re-computation dfat a correct node at timet. The weights of pushes, pulls, and
history samples in the recomputed view are8 and~, respectively. Since the random selection process
(Figure 3 Lines 36 and 17-18) preserves the distribution of faulty ids in each dataes the probability of

a push- (resp., pull)-originated entry being faulty is equal to the probabfiityceiving a faulty push (resp.,
pulling a faulty id).

Figure a) illustrates the analysis aP""(¢), the probability of a received push to be faulty. Each
correct node wastes an expected fractigt) of its a/; pushes because they are sent to faulty nodes. The
rest are sent with an equal probability over each outgoing edgé in Since out-degrees and in-degrees are
equal among all correct node&Agsumption 7.}, each correct node receives the same expected number
of correct pushesE(gh"" (t)) = (1 — &(t))at;. The variabley}™" (¢) is binomially distributed, with the
number of trials equal to the total number of pushes among all nodes with@goirmgiedge ta: (i.e., nodes
v S.t.u € V,(t)). Since this number is large, the number of received correct pushppriexémately equal
to its expectation at all correct nodes, i€ (¢) ~ (1 — &(t))aty, for all u.

The total number of correct pushesié; |C|, which is a portionl — p out of all pushes (by definition of

p). Hence, the total number of pushe&“@p[c , and the number of faulty pushes%%_%|€\. Since faulty

pushes are perfectly balanced among the correct nadesgives exactly;"" (¢) = 12, aly faulty pushes,

and their fraction among all received pushes is:

h _p_
fpush(t) o Tgus (t) 1—pa£1 p

TR g ) e+ (L-3()al p+ (1—p)(1—2(t)
Out of all push-received ids stores a fraction odv in its view. Hence, the expected ratio of push-originated

o . »
faulty ids in), is A =70

Figure @b) depicts the evolution of pull-originated faulty ids. Since all correctesduhve an equal out-
degree Assumption 7.}, a correct node is pulled with probability- Z(¢), while a faulty node is pulled with
probability z(¢). A pulled id is faulty with probabilityz(¢) if it comes from a correct node, and otherwise,
it is always faulty. Hence, the expected fraction of pull-originated faukyisd((1 — z(¢))Z(t) + Z(¢)).

Finally, sincet >> Tp, all history samples are perfect (the ratio of faulty ids in therfijisHence, their
expected contribution td(¢ + 1) is v f, and the claim follows. O

7.1.2 Fixed point existence

We now show that the system has a stable state. A vialsiealled dixed pointof z(¢) if ¢(z(t)) = Z(t) =
z. To find the potential fixed points, we substitute this into the equation fremma 7.2 The following
Claim immediately follows from our definitions.

Claim 7.3 For «, 3,7, f € [0,1] andp € (0, 1), every real rooD) < & < 1 of the equation)(z(t)) = z(t)
is a fixed point oft(¢).
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Figure 7:Fixed point z of the system-wide fraction of faulty ids in local views, as a functiomf p, under
a balanced attack.

To shed more light on the balanced attack’s dynamics, we study the fixetvatiles under specific com-
binations ofa, 8 and~. Simplifying the equation)(z) = z, we geth(x) = 0, where:

h(z) = B(1 —p)az® + (28p — 38 —p+ D)a* + (vfp—vf + 28— D)a +ap++f.

By Claim 7.3 the fixed pointz is a root of h(z). We first establish a number of useful observations
regarding the functions(z) andh(x) that will be used throughout our analysis, here andppendix B.2
They can be shown by straightforward calculus.

Observations:

0.1 () is monotonically increasing fa¥ € [0, 1], since bothm andz + (1 — 2)% = 2% — &2
are monotonically increasing in this interval.

0.2 The absolute value of the first derivativewfz) for « € [0, 1] is bounded by a consta#f.

0.3 lim, o h(x) = —o00, h(0) = ap+~vf > 0, h(z) = 0, h(1) = pla+ B+ ~vf —1) <0, and
lim, o h(x) = 4+00. h(x) has a single feasible robt< & < 1 (sinceh(z) is continuous and the
other two roots lie outsidf, 1]). In addition,k(z) is increasing in0, &) and decreasing i, 1).

0.4 (z) > zforxz € (0,2) andy(x) < z for z € (z,1). This is a straightforward application of the
previous observation.

We focus on valid root8 < & < 1. A fixed pointz = 1 is calledtrivial (any other value is nontrivial).
The existence of a nontrivial fixed point means that there is a stable sg&&nn which the representation
of correct ids is nonzero. On the other hand, if the system is at the ffixgal pointz = 1, it means the
views of all correct nodes hold only faulty ids.

Fixed points with history samples. If v > 0 (i.e., history samples are used), a trivial fixed point does not
exist (L is not a root) and a single nontrivial fixed point always exists. This isesif@¢) > 0 andh(1) < 0
and by Observation O.3 a single feasible root lie8 1 < 1.

Fixed points without history samples. If 4+ = 0 (no history samples), thet = 1 is a root, i.e., a trivial
fixed point exists. This is easily explainable, since if the views of all theecbriodes are totally poisoned,
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then neither pulls nor pushes can help. By Observation O.3 there is alsglafeiasible rood < z < 1.
For example, itx = 8 = £ andy = 0, theni = pEVAP— 9P V4f;)3pQ, for0 < p < 1. In contrast, if the fraction of

2(1
faulty pushes exceec§ the only fixed point is 1.
Two more parameter combinations deserve special interest:

1. 3 = 1,a = ~v = 0 (pull only, no history samples). Both roois= 0 andz = 1 exist, for allp.
This can be easily explained by considering the initial conditions. Since faaligs cannot push
their own ids, if none of the views initially contain a faulty id, correct nodel griy from correct
nodes and the faulty nodes will remain unrepresented. On the otherdsasldown irFigure Xc,d),
if 2(Tp) > 0 (faulty nodes are initially represented) the views collapse to1.

2. a=1,8 =~ =0 (push only, no history samples). The only valid rootis- %p, forp < % (recall
thatp > 0). That is, a nonzero fraction of correct ids can be maintained iff the iajofr pushes
are correct. This follows from the fact that a single correct push asitigle faulty push equally
contribute to the view.

These results highlight the importance of using history samiggire 7depicts a fixed point of:(¢)
for two combinations o, 3, and~ and for various values gf. We see a perfect match between theoretical
analysis and simulations.

7.1.3 Convergence to the fixed point
We conclude the analysis by showing convergence to a nontrivial fieied, if one exists.

The idea. We show Appendix B.J that the sequence of expected values(@f, {E(z(Ty+k))} for k > 0,
can be approximated by an auxiliary sequefiek(z(7y))}. The latter sequence convergesiae., so does
the expected value af(t). We exploit the properties af and use well-known calculus techniques.

7.2 Targeted Attack

We study a targeted attack on a single correct ngdehich starts upom’s join, which occurs at timdy,.

We prove that: is not isolated from the overlay by showing a lower bound on the expecteddiisalation,
which exceeds the upper bound on the time to a perfect correct sampla #h&ection 6(a sufficient
condition for non-isolation).

Lower bound on expected isolation time. As we seek a lower bound, we make a number of worst-case
assumptions (formally stated Appendix Q. First, we assume that the protocol does not employ history
samples (i.e;y = 0), so thatS does not correcy’s bias. Next, we assume an unrealistic adaptive adversary
that observes the exact number of correct pushesgB™" (¢), and complements them with/; — g5"*" (¢)
faulty pushes — the most that can be accepted without blocking. At the samihéradversary maximizes
its global representation through a balanced attack on all correct modas thus minimizing the fraction
of correct ids that, pulls from correct nodes. Finally, we assume thas not represented in the system
initially, and«’s initial view is taken from a random correct node. Hence, the ratiowfyfads in this view
is at the fixed point, i.e., higher than(Section 7.1

Clearly, the time to isolation iV(¢) is a lower bound on that i (¢). We study the dynamics af's
degree inV(t), i.e., the sum of the out-degree (the number of correct ids in viéw); z,(t), and the
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Figure 8: Targeted attack without history samples: node degree dynamicsn = 1000, p = 0.2,
a = [ = 0.5, v = 0. Without history samples a targeted attack isolates: in logarithmic time in
4.

in-degree,y, (t). We show inAppendix C.2that for every two values aof,,(¢) andy,(t), the expected
out-degree and in-degree values at1 are

(e ) =4 (" 0")

where
A ( pl-2z) « >
2x2 — 1— ~ .
pripis A0 %)

Note that the coefficient matrix does not dependwi¥) or v, (t), and the sum of entries in each row is
smaller than 1. This implies that once the in-degree and the out-degree seethley both decay exponen-
tially (initially, this does not hold becauseis not represented, i.ey,, (7y) = 0, but within a few rounds,
u becomes represented afi\d— xz,, andy,, are close). Hence, the expected time to isolation is logarithmic
with ¢;. Note that this process does not depend on the number of nodes, Isickiad bounds the potential
attacks onu independently of the system-wide budget of faulty pushes. Had blockingeen employed,
the top right coefficient would have be@rnnstead ofw, because the adversary would have completely poi-
soned the push-originated entriesMip. The decay rate would have been much larger, leading to almost
immediate isolation.

Figure &a) depicts the dynamics afs expected degree (the sum @6 in- and out-degrees) until it
becomes smaller than 1. Simulation results closely follow our analysis. The teamgoowth inu’s degree
att = 1 occurs becausebecomes represented in the system after the first round. When the thegmmes
1, the node is isolated. For example, the average time to isolatigh fer2/n is 10 rounds.Figure §b)
depicts the same results in log-scale, emphasizing the exponential decaydefjree and the logarithmic
dependency betweéh and time to isolation.

Upper bound on expected time to perfect correct sample.For given values of the non-unique stream
sizeA(t) and the deficiency factgr (Section §, Lemma 6.5boundsPS P, (t), the probability for a perfect
sample at time, from below. The expected number of correct ids observed ty the end of round!” is
A(t) = SR HE(GR™(1) + B9 (¢))); the expected values gf"™"(t) andg}™ (t) are by-products
of the analysis iPAppendix C Figure 9a) depicts the deficiency factermeasured by our simulations,
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Figure 9:Dynamics within a targeted node ¢ = 1000, p = 0.2, « = 8 = 0.5 and v = 0): (a) Fraction
of unique ids in the stream of correct ids, which is an upper bound ontte deficiency factorp. (b)
Growth of Perfect Sample Probability (PSP) with time,p = 0.4. PSP becomes high quickly enough to
prevent isolation.

which behaves similarly for all values éf: p > 0.4 for all t. The deficiency factop was estimated as a
fraction of unique ids in the stream of correct ids. This is actually an uppend onp, by its definition.
Figure 9b) depicts the progress of the upper bound-efnma 6.5with time, with A(¢) computed as
explained above and = 0.4. The corresponding simulation results show, for each tijibe fraction of
runs in which at least one correct id &, is perfect. Forls > 40, the PSP becomes close to 1 in a few
rounds, much faster than isolation happefgre §b)). For/; = 20, it stabilizes at).5. The growth
stops because we run the protocol without history samplesthesomes isolated, and ceases observing
new correct ids. A higher PSP can be achieved by independently &irgea, e.g., if /5 is 40, then the
PSP grows t®.8 (seeFigure §. Note that perfect samples only provide an upper bound on self-gealin
time, asS, contains imperfect correct ids, amdalso becomes sampled by other correct nodes, with high
probability. These factors coupled with history samptes-(0) completely prevent’s isolation, as shown
in Section 8

4 100t
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Figure 10:Targeted attack: degree dynamics of an attacked node iN/(¢), n = 1000,p = 0.2, = 3 =
0.45and~y = 0.1.

22



© 0.4/ -0-n=1000
gos 0.35 48 ~* n=2000
g 3 k ' +n=3000
5, > 03 -=-n=4000
L+ E —E
= ~e-n=1000 E 0.25 xpected
f_’-o ~#:n=2000 B o
o 0. = c
= n_3000 S 015
2 —-#-n=4000 S
%o. ¢ L 01
T !

[ 0.05

0 50 1_60 150 200 % 50 100 150

Time Time
(a) Perfect samples vs time (b) Faulty ids vs. time
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8 Putting it All Together

In previous sections we analyzed each of Brahms’s mechanisms sgpaviieenow simulate the entire
system.Figure 10depicts the degree of nodein A/ (¢) under a targeted attack. Nodeemains connected
to the overlay, thanks to history samples=t 0.1). The actual degree af in N/(¢) is higher than the lower
bound shown irBection 7.2due to the pessimistic assumptions made in the analysis (no history samples,
no imperfect correct ids, etc.).

We now demonstrate the convergenceSah the correct nodes. We simulate systems with up te
4000 nodesy; and/, are set t®/n. To measure the quality of sam@feunder a balanced attack, we depict
the fraction of ids inS that are indeed the perfect sample over timEigure 11(a) Note that this criterion is
conservative, since missing a perfect sample does not automatically leaéhsed choice. More tha%
of perfect samples are achieved within less than 15 rounds; fer/; = 3/n, the convergence is twice as
fast. Figure 11(b)depicts the evolution of the fraction of faulty idséh Initially, this fraction equalg’, and
at first increases, up to approximately the fixed point’s value. This is tajpecéed, since the first observed
samples are distributed like the original (biased) data stream. Subseqasritiy node encounters more
unique ids, the quality of improves, and the fraction of faulty ids drops fastftoThe protocol exhibits
almost perfect scalability, as the convergence rate is the same>az000.

9 Conclusions

We presented Brahms, a Byzantine-resilient membership sampling algorittahmBistores small views,

and yet resists the failure of a linear portion of the nodes. It ensuresvbey node’s sample converges to
a uniform one, which was not achieved before by gossip-based mghib@&ven in benign settings. We
presented extensive analysis and simulations explaining the impact of vatiacks on the membership,
as well as the effectiveness of the different mechanisms Brahms employs.
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A Analysis - sampling

A.1 Convergence to First Perfect Sample

Proposition 6.4 (restated) Let s be a sampler. Then, fo€| > 1 and for eacht > Tj,

PA(t)

Pr(s(t) # s*|s* € C) =e eI .
Proof : A sampler outputs its perfect i once that id occurs in the sampler’s input stream. So the proba-

bility of s(t) # s* is the probability thas* did not appear in the stream of during the roufigs< ¢’ < ¢.
Recall thatA(¢) is the number of correct ids observed by the sampler from fin® ¢, and that a stream
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of lengthA(¢) includes as many random unique ids as a stream of length) in which correct ids are in-
dependent and distributed uniformly at random. Gedenote a random correct id observed by the sampler,

and note that for each e C, Pr(G = v) = ﬁ Then,

Pi(s(t) £ 575" €C) = Pr(G £ s7]s" € CPAO) =
(1-Pr(G = s*|s* € €))PA® =

1 PA(2)
1—— .
()

Sinceﬁ < 1, weusel —z =~ e * (1 — z is the first order Taylor expansion ef*, and is a good
approximation for a smalt), and approximate the above as follows:

pPA(t)

_ 1\ PA(Y) _
Pr(s(t) # s*|s* € C) ~ (e \él)p = e T,

From now on, we assun%| is small enough, so we use equality. That is,

PA(t)

Pr(s(t) # s*[s*€C)=e T .

B Balanced Attack Analysis

B.1 Short-term Optimality

We now prove that in any single round, a balanced attack maximizes thetedgsstem-wide fraction of
faulty ids,z(¢), among all strategies. Consider a scheduteC — N that assigns a number of faulty pushes
to each correct node at roundA schedule i$alancedif for every two correct nodes andu, it holds that
|R(u) — R(v)| < 1. Otherwise, the schedule ismbalanced We prove that every unbalanced schedule is
suboptimal. All balanced schedules are equally optimal, for symmetry coatmles.

Lemma B.1 If scheduleR is unbalanced, then there exists another schedule that leads to a laggectex
ratio of faulty ids thanR in round¢ + 1.

Proof : Since a schedule of faulty pushes in roundoes not affect the pulls or history samples in this
round, it is enough to prove the claim for the push-originated ids. Consigenodesu andwv, such that
R(u) > R(v) + 1. Consider an alternative schedutéthat differs fromR in moving a single push from
to v. Consider the change in the expected cumulative fraction of push-aedifeulty ids inV, (¢t 4+ 1) and
V,(t + 1) following this shift (in the other nodes, the ratio of faulty ids does not chng

The probability of a push-originated view entry at nadeeing faulty, provided thaR () faulty pushes
were received, is equal to the expected fractio®of) among all pushes received by Note thatR(u) is
set in advance, i.e., without knowing the number of received correxttqngSHSh(t). The expected number

of faulty pushes accepted depends on the latter as follows:

C]
B = R(u) = Y Prlgl™ (1) = G] -
G=1
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We need to show that
E(FSrR = R(u)—1)+B(F" r2"" = R(v)+1) > E(F" rP"" = R(u))+E("" |[rP™" = R(v)),

i.e.,

Ic| IC]
R(u R(v) +1
P push P PUSh P S,
Z tl =4 7w —1+G+Z tlg =% worira

Ic| [C]
, R(u) R(v)
> P push _ A P puah _ . )
_Z rlgn">(t) = G] ()+G+GZI rlgy" (1) = G R0+ G
Since all correct nodes have the same in-degragi (Assumption 7.1, ¢7™" (¢) andgb™" (¢) have iden-
tical (binomial) distributions. Hence, it is enough to show that focalk 0 and allR(u) > R(v) +1 > 0:

R(u)—1 R(v) +1 R(u) R(v)
Ru)—1+C R +1+G - Rw+G R0+ G

We simplify by switching sides:

R(u) —1 R(u) R(v)+1 R(v)
<R(u)—1+G a R(u)+G) i <R(v)+1+G a R(v)+G) 2 0.
-G . G >0
(R(u) + G)(R(u) =1+ G)  (R(v)+G)(Rv)+1+G) —
SinceR(u) — 1> R(v) +1 > 0andR(u) —2 > R(v) > 0, indeed

_G G
R +OEBW-1+6) " RO +OEBO) +1+0)

-G G
= (R(u) + G)(R(u) — 1+ Q) N (R(u) =2+ G)(R(u) —1+G)

G 1 1 G 2
= Ru)—1+G <R(u)—2+G B R(u)+G> T Ru)—-1+G (Ru)+G)(Ru)—2+G) >0
As needed. O
We conclude by showing that all balanced schedules are equally optintaEfadversary.

Proposition B.2 Every two balanced schedules lead to the same expected fraction of fauityralsd
t+ 1.

Proof : Consider two balanced scheduteand R’. R can be transformed int&’ by a sequence of moves
of a single push message from nadé nodev, such that?(u) = R(v) + 1 whereask'(v) = R'(u) + 1
For symmetry reasons, neither of these moves alters the expected cunfudatiice of faulty ids received
by « andv. Hence, each transformation produces a schedule that implies thezéame) as the previous
one. 0
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B.2 Convergence to the fixed point

To capture the dynamics a@f¢), we define the sequende,, }, the expected system-wide fractions of faulty
ids at timeT}, + k, as follows:

) k=0,
"TNEGT k) = B@GETy+k—1)) k>0

We next defing b, }, which we use to approximate: }. {bx} is defined as follows:
by, = ¥ (&(Ty)), Yk > 0.

Equivalently,b, = *(by_1). Thatis, {b;} is a sequence of applying on the expected system-wide
fractions of faulty ids in every cycle.

In order to prove convergence {f; }, we define an auxiliary sequen¢e; } below. We prove thafb; }
is bounded betweef and{c }. Finally, we show that the latter sequence converges tmplying that so
does{by }. Since{b} approximateqay}, {ar} converges ta: as well.

We now explain why{b;.} can be used to approximafe,}. Consider an elemeni, of {ax}. Since
ay, 1s the expectation of a random variable (name{{f, + &)), it can be written as, = >_ p;z;, where
Vi : p; = Pr[z(Ty + k) = z;]. By Lemma 7.2a.; can be written ag;1 = > pitp(z;).

Sincez is obtained as a combination of binomial distributions with many trials (we assumbe very
large), it has a small variance, and therefore all the significant cotdribto this sum are very close to
each other, i.e., they all lie within a small segment. Moreover, sihgecontinuous, monotonic, and has
a bounded derivative if0, 1), in small segments, it can be approximated by a linear function. Therefore,

a1 = Y, piv(xi) =YY piri) = Y(ag).
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Figure 12:System-wide fraction of faulty ids in local views, under a balanced aack. Convergence to
a fixed pointz: n = 1000, p = 0.2, « = = 0.5 and v = 0. The theory depicts the sequencéby }.

Figure 12depicts the evolution ofb,} as a function of time for various initial values 6{7). The
figure also depicts the actual ratio of the faulty ids in the views in the simulatiog.Stéelcan see thgty, }
well approximates the actual faulty ids fractioffy, }'s convergence is slightly faster because the analysis
ignores blocking.
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We next prove thafc, } converges ta:. This is done by applying Hillam’s theorer@]. We conclude
by showing thaf b, } is bounded between and{c}, thus proving the convergence gf;. }.

Preliminary B.3 Liphschitz condition (simplified2B):
The functionf : [a,b] — |a, b] satisfies the Liphschitz condition with constant K iff forally € [a,b] it
holds that| f(x) — f(y)| < K|z — y|.

Preliminary B.4 Hillam’s theorem R5:
If f:]a,b] — [a,b] satisfies the Liphschitz condition with constant K, then the iteration scheme =
Az, + (1= X)f(zn)}, whered = =, converges to a fixed point ¢f

Lemma B.5 The sequencéc; } converges to the fixed point of z).

Proof : Based on Observations O.1 and O.2 and by the mean value theoremgforzalle [0, 1] (Z1 < ),
there exists’ € [Z1, Z2] such that

_ %
oz

We can therefore find a constaht satisfying the Lipschitz condition fap in [0, 1]. Let K be such a

constant, and lex = ﬁ We are now ready to defirfey, }, as follows:

() - (Z2 — 7).

Y(T2) — P(71)

__ [am) k=0,
T Ak + (1= Nb(ep1) k>0

Therefore, by Hillam’s theorenPfeliminary B.4, the iteration schemgry, = Aci—1+(1—MN)¢(ck—1)},
where\ = K%rl converges to a fixed point @f(x) for eachey = #(Tp) € [0, 1].
U

From now on, we separate the proof into 2 cases:
1. 2 <z(Ty) =ap=by =co < 1.
2.0<2(Ty) =ap=by=cp < .
Lemma B.6 If Z(Ty) < 1, then{c;} converges ta: (and not toz: = 1).

Proof : For the first case, recall thatis a single nontrivial fixed point. By Observation O®(z) < x
for x € (#,1). For an arbitraryr € (z,1), it holds that\z + (1 — \)¢(z) < =z, i.e, the sequencéey }
is monotonically decreasing with Hence, this sequence cannot converge to the trivial fixed point ¢if on
exists), i.e., it converges to. The proof for the second case is symmetrical. O

Lemma B.7 {b;} is bounded betweetand{c;}.

Proof : For the first part of the claim we need to prove that< b, < c¢; (the second part’s proof is
symmetrical). We prove by induction @n The basis is immediate by definition af andcy. Assume that
T < by < ¢, for k > 0. Consider the following statements:

1. Y(ck) < cpr1- We know thatey 1 = A + (1 — M) (cr) > () sincey(cx) < ¢ (by Observation
0.4,y(x) < zforz € (z,1) and indeedy, € (z,1)).
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2. YP(br) < ¥(ek), sincet is monotonically increasing for € [0, 1] (Observation O.1) and based on
the induction hypothesi${ < c).

3. ¥(by) = by by definition ofby ;.

4. (z) < (bg), sincey is monotonically increasing for € [0, 1] (Observation O.1) and based on the
induction hypothesisi( < by).

5. & = ¢(z) by definition ofz.

Combining the above statements we get (z) < by = ¥ (br) < ¥(ck) < cx+1, thus concluding
the induction step.
O
Since the balanced attack does not distinguish between correct noelegtle result holds far,, (),
for each correct node.

C Targeted Attack Analysis

This section analyzes the dynamics of a targeted attack on a single cardect n

C.1 Assumptions

We use the following assumptions on the environment in order to bound the tinwatias from below.

Assumption C.1 (no history samplesy = 0, which is equivalent to the worst-case assumption that the
expected ratio of faulty ids i at all times is equal to that in the id stream observed by the node (i.e.,
history samples are ineffective).

Assumption C.2 (unrealistically strong adversary) In each round> Tj, the adversary observes the exact
number of correct pushes received 1Iayg5“5h(t), and complements it with faulty pushesaté, (i.e., the
maximal number of faulty ids that can be accepted without blocking). &ym®™"(t) £ max(al; —

gEUSh(t), 0)

Assumption C.3 (background attack on the rest of the system) The adversary masiitszglobal rep-
resentation through a balanced attack on all correct nodeg u. At timeTy, the system-wide expected
fraction of faulty ids is at the fixed point (Note that this attack minimizes the fraction of correct ids that
can pull from correct nodes).

Assumption C.4 (fresh attacked node) joins the system &ffy. It is initially not represented in any correct
node’s view and.’s initial view is taken from a random correct node.

We assume that the effect afon the entire system’s dynamics is negligible. Hence, we assume that

the out-degrees and the in-degrees of all correct nodes exe@gptequal at all timesAssumption 7.}, and
these nodes do not blocB¢ction 7.1showed that the system-wide effect of blocking is marginal).
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C.2 Node Degree Dynamics

We study the dynamics of the degree of the attacked modg). Consider a set of triple§( X, Y, t) }, each
standing for a statéz, (t) = X A y,(t) =Y}, forX € {0,...,0:},Y € {0,...,|C|¢1}. Eacht defines a
probability space, i.e} "y Pr[(X,Y,t)] = 1. Sinceu is initially not represented, the only states that have
non-zero probability for = ~ T} are those for which” = 0. The probability distribution over these states is
identical to the distribution of, (7). Sinceu borrows its initial view from a random collection of correct
nodesx,(1y) ~ Bin(¢y, ).

We now develop probability spaces for eacty Tj. The notatiorPr[(X’,Y’,t + 1)|(X,Y,t)] stands
for the probability of transition from stateX,Y,t) to state(X’, Y’ t). Thatis,Pr[(X', Yt + 1)] =
Yoy Pri(X Y t 4+ 1)|(X,Y,t)] - Pr[(X,Y,t)]. To analyzePr[(X', Y’ ¢t + 1)|(X,Y,t)] we separately
consider four independent random variables: the number of pudipidiroriginated entries iw,,, (denoted
25%°%(¢) and2E™* (1)), and the number of push- and pull-propagated instancesrothe views of correct
nodes (denoteg?™" (¢) and 45 (¢)). The first two affectX’ whereas the last two affedt’. We now
demonstrate how conditional probability distributions for these variables@mputed. For convenience,
we omit the conditioning o.X, Y, ¢) from further notation.

y‘u’“ll( t): Since the system is at the fixed point, the probability of pulling from some cthreect node
s (1 — &). Hence,y2™*(t + 1) is a binomially distributed variable, with the number of trials equal to
the total number of correct pull$]l — )3¢1|C|, and the probability of success equal to the chance of an
entry in a random node’s view being namelyz e DR (t 4+ 1) ~ Bin((1 — &)84,(C), ﬁ). Note that
E(yR (t+1)) = B(1 - 2)Y.

y2""(t): By Lemma 7.2the number of pushes that reach correct nodeﬁﬂﬁiprp)ﬂ’ Denote
the number of pushes fromto correct nodes in roundby z,(¢). Thisis a blnomlally distributed variable
with «/; trials and probability of success equalite- %: zu(t) ~ Bin(aly, 1 7 ). For a giverz,(t) = Z,
since the total number of push-originated entriesdgC|, the number of push-propagated instances isf

YRR (t 4+ 11Z) ~ Bin (aty|C|, a£1|C|((1i:ﬂ)+1%7))' Note thatB(y5**"(t 4+ 12)) = Zm. Hence,

sinceZ is independent op andz,

1—p —all — X)) 1-p
A pi-n X iy

25" (t): A pull from a faulty node (which happens with probabilify) produces a faulty id with
probability 1, otherwise the probability to receive a faulty id:isHence, the probability of pulling a faulty
id is f + (1 - f)x That is, the number of pull-originated faulty ids irs view is xpull(t +1) ~
Bin(51, % + (1 - 1)) (e, B@E™ (t + 1)) = BX + (6 — X)),

We also compute the expected number of correct ids (with duplicates) pylledvshich we need for
estimating the size of the id stream that traverses this n8detipn 7.2 Sinceu performsg/; pulls, and
the expected number of correct ids pulled from a random no@le-isz) ¢y,

E(yf*=(t + 1)) = E(Z)

E(gh" (1) = (1—f> Bly- (1= @)y = (1— @) (6L — X).

25""(t): The number of push-originated idsl**" (¢ + 1), depends on the number of correct pushes
received byu, ¢g5™"(t). The latter is a binomially distributed variable, with the number of trials equal to
the total number of correct pusheg; \C! and the probability of success equal to the chance of an entry in
a random node’s view being, namely 1 gb**" () ~ Bin(a1|C|, 725;) (Note thatE(g7™™" (1)) = a".

This value is of independent use for evaluatlng the size of the id strearabetses: (Section 7.2).
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An expected representation of a correct node different froim the system i1 — 2)¢;. Sinceu is
under-represented’( < (1 — z)¢; with high probability), the probability of receiving above’; correct
pushes is low, and hence, we ignore the case leéing blocked by exceedingly many correct pushes. On
the other hand, faulty pushes cannot blackither (AssumptiorC.2), and therefore, we assume thatever
blocks. If G < «f; correct pushes are received, the adversary complements the nuhpheshes to the

maximum allowed (Assumptio@.2), i.e., the fraction of faulty pushes iois 1 — a% Hence, the number

of push-originated faulty ids in's view is 25**" (¢ + 1|G) ~ Bin(afy,1 — a%). In other words,

push
M) = aly(1— %) =a(l; —Y).

push _ -
E(@P™*(t+1)) = aly(1 ol ol

Putting it all together. Summing up, the expected values of in-degree and out-degree can ba asitte

(el — E(zu(t + 1))> B (El — (Bt + 1)) + B (¢ + 1)))) B
E(u(t+1) ) Byt + 1)) + E(h™ (t + 1)) ;

B <el ~ (ot = Y) + BX + (02 - X)fc)))

1—
ol = X) o + A0

- Q“ ﬁ(la— fc>> ' (gl ;ftg(t»

Since we have shown thatdoes not block with high probability, arfBlection 7.1demonstrated that the
effect of blocking on the rest of correct nodes is negligible, we asshatell views are recomputed in each
round. That s,

Prizy(t+1) = X'|(X,V,0)] = ) PrlaB™(t) = X{|(X,Y,1)] - PrlaB™(t) = X3|(X, Y, 1)),
X|+X4=X"
and
Priy,(t+ 1) =Y'[(X,Y,t)] = > PryE*"(t) = Y/|(X,Y,8)] - Pr[yB™(t) = Y5|(X, Y, 1)].
Y{+Y)=Y'

Since the computations df’ andY” are independent, we conclude:

Pr[(X', Y, £)[(X,Y,t)] = Prlzy(t + 1) = X'|(X,Y,8)] - Prlya(t + 1) = Y'|(X, Y, t)].
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