GroupAnalyzer: A System for Dynamic Analysis of Group Interaction

Marcial Losada

Shaul Markovitch

EDS Center for Machine Intelligence
2001 Commonwealth Blvd.
Ann Arbor, MI 48105

Abstract

The importance of coding and analysis of group
interaction in order to better understand collaborative
work has long been recognized. It has been also
acknowledged that using such analysis for feedback
purposes can enhance collaborative behavior.
However, current applications of such methodologies
suffer from two major drawbacks: a large time gap
between the actual behavior and feedback, and the
loss of temporal information arising from the static
nature of existing analysis methods. In this paper,
we introduce GroupAnalyzer, a computerized system
for coding and analysis of group meetings. Some of
the features that GroupAnalyzer provides are: fast
and accurate coding, accurate timing, fast feedback,
integrated numerical and graphical representation,
and comprehensive dynamic analysis. We conclude
by pointing to the potential of GroupAnalyzer for
facilitating collaborative behavior.

Introduction

The field of computer-supported collaborative
work has received tremendous attention during the
last four years [1, 2, 3]. Most of the research done in
the field has been concerned with supplying the
collaborators with computers in order to improve
their collaboration. Relatively few works exist outside
of this framework, mostly those concerned with
using the computer as a tool to facilitate meetings [4].

In this paper we introduce a concept and a system
that expands the scope of the field: using computer
technology to code meetings, analyze them and give
feedback to meeting participants in order to support a
better collaboration between them. The idea of using
analyses of coded group behaviors for feedback is not
new. A vast amount of research has been done in
this area, notably the work of Bales and his associates
at Harvard University [5, 6, 7, 8].

However, there are two major limitations with the

existing coding and analysis methods. The first
limitation is the large time gap between the actual

0073-1129/90/0000/0101$01.00 © 1990 IEEE

101

behavior and feedback which stems from the manual
method used for coding. The second is the loss of
temporal information arising from the static nature
of existing analysis methods.

In order to overcome these limitations we
designed and implemented GroupAnalyzer, a
computerized system which allows efficient coding of
meetings following the SYMLOG formalism [8] (and
other formalisms in future versions), comprehensive
analyses of coded protocols and prompt feedback to
the meeting participants on their interactive
behavior.

In the next section we will give the background
which includes a description of the collaboration
laboratory where GroupAnalyzer was implemented
and tested, an overview of SYMLOG and a
discussion of the limitations of its traditional
application. To address these limitations, we will
present an overview of the GroupAnalyzer system.
Then we will proceed to a detailed description of the
coding and analysis modules. We will emphasize the

dynamic features of the analysis module, which
make it a unique system in terms of providing a
kinematic display of group interaction, allowing
participants to see the evolution of their behavior
through the entire meeting instead of just one overall
static picture. We will end with a discussion of some
results obtained using GroupAnalyzer to study group
dynamics and argue how these findings point to the
potel?tial of GroupAnalyzer to support collaborative
work.

Background

Two events have preceded and become a driving
force in the development of the GroupAnalyzer
system. The first is the surge of computer-supported
collaborative work which led to the creation of the
Capture Lab at the Center for Machine Intelligence
in Ann Arbor, Michigan. The second is the
development of SYMLOG by Bales and his associates
at Harvard University which initiated a resurgence
in group dynamics [9].

The Capture Lab

The Capture Lab is a computer-supported
collaborative environment where participants can
have fast and easy access to a publicly shared big
screen by simply pressing a key on their personal
workstations. In addition, they can use these
personal workstations to transfer and receive
information from the public screen. These
workstations are embedded in a conference table in
order to facilitate face-to-face interaction [10]. Three
video cameras are unobtrusively located behind
mirrors and their output is transferred to a
monitoring control console in the observation room.
This room is separated from the Lab by a one-way
From this room behavioral scientists can

mirror. > :
observe and code meetings using personal
workstations.

When the Capture Lab was created, one of its
purposes was to have a state-of-the-art laboratory that
would allow us to observe, capture, understand and
improve behavior in meetings. In addition to the
sophisticated hardware necessary to achieve these
objectives, there was a requirement for software that
would capture as much of the ongoing group
dynamics as possible.

SYMLOG

SYMLOG (a system for the multiple level
observation of groups) has been used extensively in
several countries for a number of years with excellent
results [11]. Computer programs to facilitate the
analysis, once the data gathered manually have been
entered into the computer, have been developed
mainly by Polley (see appendix U in [81). In his
seminal review on group research, McGrath has
referred to Bales' research as "among the most
consistent and robust findings in the field." [9, p.145].

In this section we will only focus on the essential
concepts of SYMLOG necessary to understand
GroupAnalyzer. For a comprehensive description of
SYMLOG, the reader is referred to [8]. SYMLOG's
coding scheme operates within a three-dimensional
space. The three spatial dimensions map into three
corresponding psychological dimensions. 1) Up-
Down (U-D dimension) whose psychological correlate
is represented by dominant vs. submissive behavior;
2) Positive-Negative (P-N dimension), psychologically
mapped into friendly vs. unfriendly behavior; and 3)
Forward-Backward (F-B dimension), whose
psychological correlate is task-oriented vs.
emotionally expressive behavior.

SYMLOG uses these three dimensions to code
interactions at two levels: the behavioral level and the
image level (which addresses the issue of the
meaning conveyed by behavioral acts and,
consequently, is more interpretative than
descriptive). In this paper we will focus on the
behavioral level. The behavioral level comprises both
overt and non-verbal behavior.

102

A SYMLOG coder must enter by hand the
following information: a) the time of the event
(approximated to minutes); b) who is the actor or
sender; c¢) who is the receiver of the action; d) a
specification of whether the observed behavior was
overt or nonverbal; e) the behavioral code; f) a
comment describing the behavior briefly. An
example of a coded event is:

10 JHN MAR N B

This code means that 10 minutes after the
meeting started, John smiled to Mary. The N stands
for nonverbal behavior. The B is the code for
emotional behavior.

smiles"

The main output of a SYMLOG coded session is a
"field diagram" which summarizes the average
group behavior by representing each participant as a
circle whose radius conveys the level of dominance.
The larger the circle, the more dominant the person.
The circle is located in a two-dimensional plane
whose vertical axis is the F-B dimension and whose
horizontal axis is the P-N dimension. Bales argues
that this graphical representation of group behavior
is more powerful than numerical information: "The
visual diagrams seem to allow members to
'externalize' their observations of group process and
group relationships in a concrete and observable
manner and to speak about them much more easily
and directly than they generally can about numerical
data" [8, p. 320].

The next two sections will point to two classes of
problems with manual SYMLOG coding and
analysis.

Coding problems

Slow Coding: Under the traditional manual
coding methods, observers produce no more than one
or two codes per minute [8]. A slow coding rate is a
limitation for two reasons. The obvious one is that
less of the meeting's activity is being captured. The
less obvious is that a positive correlation between the
rate of recording codes and the qualitative goodness of
the scoring has been reported [8].

Imprecise Timing: One problem of manual
coding is the loss of accuracy in recording time. A
description of how time is measured under
traditional paper and pencil SYMLOG scoring will
convey to the reader this loss of precision: "A digital
clock should be visible to all observers for best
results... The teacher of the observation team should
explain which digits on the clock are to be recorded.
The observers may then begin their observation. The
observer looks at the group and, when a new person
speaks, tries to recall the person's name, checking
with the diagram on the back of the sheet if
necessary. The observer then looks at the clock and
writes the time on the message form..." [8, p. 311].

Difficulty in recalling names: The above quote
reveals another limitation of the traditional scoring
method; that is, the need to recall the names of the
participants in order to enter the three letter code
necessary to identify senders and receivers in the
scoring sheet. This is Bales' prescription: "The
remedy is simple. The observer should look at this
person and recall the name repeatedly until the
memory sticks..." [8, p. 312]. This imposes a
cognitive load on the scorer that can interfere with
her or his coding speed.

Analysis Problems

Long delay in feedback: One of the most important
limitations of manual SYMLOG scoring is the delay
in providing feedback on the group interaction to the
participants. At the Harvard Social Relations
Laboratory, where SYMLOG was originated and
used to train students in group dynamics, it typically
required two days to produce a field diagram and give
feedback to the group participants [8]. Considering
what we know from the literature on behavior
modification, for feedback to be most effective it
should be given as close to the event as possible [12].

Static analysis: Another important limitation of
the traditional scoring system of SYMLOG is that it
cannot provide dynamic analysis: one that captures
the flow of the meeting and reflects the changes in
group members' interactive patterns over time. Such
analysis is important for both the researcher and the
meeting participants to fully understand the
complexity of the interaction patterns that occur in a
meeting.

The GroupAnalyzer system was built as an
attempt to overcome all of these limitations. The next
sections will describe the GroupAnalyzer system by
presenting first an overall description of the system
and then a more detailed view of its coding and
analysis modules.

Coding
Module

Meeting
Protocol

System Overview

In this section we will give an overview of the
main components of the GroupAnalyzer system. The
GroupAnalyzer system consists of two main
modules: the coding module and the analysis
module. The coding module is the part of the system
that enables the coder to create entries in the meeting
protocol together with a set of tools for manipulating
meeting protocols. The analysis module consists of a
set of tools for analysis of meeting protocols. The two
modules are independent (see Figure 1). We could
disconnect the two modules to create two separate
systems, however merging them together into one
system allows us to analyze meeting protocols at any
stage of their creation.

The Coding Module

The coding module is a system that enables coders
to easily transform their observations to processable
protocol entries. The interface to the coding module
is implemented by a screen which stays on through
the whole coding session (see Figure 2). The
interface was designed to reflect the physical layout of
the meeting room. The big gray rectangle in the
middle represents the meeting table while the eight
button groups around it represent the participants.
The coding screen contains a button for each of the
participants. At the beginning of the meeting the
coders fill those buttons with the participants names.
In addition, each participant button has two arrow
buttons attached. The arrow directed toward the
participant button represent an action toward that
participant. The arrow pointing away from the
participant represents an action initiated by that
person. Many times an action taken by a participant
is aimed at the whole group. In such a case the coder
can press the To Group button which is equivalent to
pressing all the participants To buttons.

|

Exporter

OR0J0

Y Y

Excel MacSpin

Analysis
Module
Field Diagram ‘{ Field Diagram ’
Generator
Dynamic Field » [Field Diagram
Diagram % Sequences
Generator
Meeting Split
9zl:;gph:| 3 w. [Meeting Splits
Generator raphs
Acti
Tacbll\e;es ‘(Active Data)
Generator labies
Systat

Figure 1. GroupAnalyzer system design.

Observer Robert .. _Date 5/15/89
(End Sesaion)
e
QO Pro
& ton
@7
sereviorll 8 T e AL 1 [OseL
®:SEL
@48 O oTH
QO Non O GRP
@ SsIT
O soC
[] Help OFAN
e
0
(Export) e Jim‘& ('save Protocol '
Description:
@ [T don't intend to change | C:Z:)

Figure 2. Coding screen.

In the middle of the rectangle that represents the
table there is a cube partitioned into three slices. The
cube represents SYMLOG's three dimensional space.
A cube was originally used by Bales to describe the
SYMLOG space. We have borrowed the idea, but
sliced the cube so that each of the points in the three
dimensional space can be accessed by the coders.

To code an interaction the coder must select at
least three buttons. One button for the originator of
the interaction, one button for the recipient, and one
of the buttons in the cube for the behavioral act. The
buttons can be selected in any order. The coder
signals the system that an entry is completed by
pressing the Done button.

At the bottom of the screen there is a box for
entering a short line of text to describe the coded
event. This line is not processed by any of the
statistical tools and is optional. However, many
times we have found the comment line to be helpful
when trying to understand specific moments within
meetings.

The product of a coding session is a meeting
protocol. An example of a portion of a meeting
protocol is shown in Figure 3.

1115,Pedro,G,a,
players
1118, Bob Vern,Pedro,n,PF,Deb:attentive
1125,Don,G,a,F,PAM:writes foxr gp
1130,Don,G,n,F,Deb:types
1131,Bob,G,a, F,PAM:
1133,Pedro,G,a,DF,Gio:
1139,Bob,G,a,UF,PAM:
1144,Bob,G,a,N,Deb:nobody talks to J. S
1151,Bob,G,a,F,Deb:
1154,Bob,G,a,UF,Gio:we need to...
1156,Ken,G,a,UN,PAM:interrupts

F,Gio:people know the

Figure 3. Excerpt from a meeting protocol.

104

For example, after 1156 seconds have elapsed
since the beginning of the meeting, Ken addressed
the group (G), it was an overt act (a), coded as UN
(dominant and negative), the coder first initials are
PAM, and the comment is "interrupts.”

The meeting protocol is gsimilar to the one
produced by hand in traditional SYMLOG coding.
There are two features of the GroupAnalyzer
generated protocol that are different from the
manually generated protocol. The time stamps in
traditional protocols are specified in minutes,
whereas GroupAnalyzer uses seconds, automatically
time-stamped by the computer. This feature proves to
be very useful when fine grain time series analysis is
needed. The other feature is the names of the coders
at the comment part of each code. The names are
added automatically by the program. The reason for
including the coders name is that the protocol in
figure 3 is the merged protocol - the product of
merging the protocols of the three coders. This
merged protocol is the raw data used for all the
analysis. In manual SYMLOG coding it is impossible
to get the merged protocol without extensive work.

Meeting protocols can be viewed, stored, loaded
and printed. The program can also merge protocols
of different coders according to the time stamps. In
addition, meeting protocols can be exported in a
format that is recognized by most statistical packages
for further processing.

Normal use of SYMLOG requires three or more
coders for coding a meeting. GroupAnalyzer
supports multiple coders in two ways. If the
computers are not networked together, the utility for
merging protocols can be used for generating the
merged protocol that is used for the analysis. In our
lab we use a networked configuration, with a
merging and analysis server. In this setup the
coding machines send all their codes to the merger

machine as they are entered. The merger machine
merges the code and performs ongoing analysis so
that feedback can be given to the group at any
moment. In addition, the networked configuration
performs automatic synchronization of the meeting
timers of the three coders.

The Analysis Module

The analysis module contains a set of tools for
analyzing meetings based on the meeting protocol
produced by the coding module. The analysis tools
can be categorized into two classes: static analysis
tools and dynamic analysis tools. The static analysis
tools provide the researcher and participants with the
means for looking at the average behavior of the
meeting participants in a similar manner to that of
the traditional SYMLOG analysis. The dynamic
analysis tools help the researcher and participants to
understand the dynamics of the meeting: how the
behavior of the participants evolved during the
meeting.

Static Analysis

GroupAnalyzer provides two tools for static
analysis of meeting protocols. The first tool is the
field diagram generator. This tool automatically
computes and draws the field diagram as described
in [8]. The researcher can either produce a field
diagram of the whole meeting or produce a field
diagram of a selected portion of the meeting protocol.
Figure 4 shows an example of a field diagram
produced by GroupAnalyzer. In addition to the
traditional field diagram which appears at the center
of the screen, the researcher can get more
information by clicking on various parts of the
screen. Clicking on a participant name causes the
program to display the numbers that are associated

H

(3

with the circle of that participant. Clicking on the
time stamp takes the user to the meeting protocol's
line that corresponds to that time stamp. It is also
possible to hide the participants names. This facility
allowed us to print a version of the field diagram
without the names and ask the group members to
guess which circle belongs to which name,
permitting us to observe what is the participant's
perception of her or himself and of other people in the
group.

Another tool for static analysis of meetings is the
active tables generator. The tool produces a table that
shows the number of activities of each type that each
of the participants has been involved in. The table is
active: clicking on any number within the table
displays a list of all the entries in the protocol in
which the selected participant exhibits the selected
behavior. Figure 5 shows an example of a table
produced by this tool.

Dynamic Analysis

The traditional analysis of the SYMLOG data
provides the researcher with a view into the average
behavior of meeting participants. The problem with
such an approach is that it does not show the
dynamics of the meetings. GroupAnalyzer supports
three methods of looking into the dynamics of
meetings.

1) Animated sequences of field diagrams. The
dynamic field diagram generator provides the means
for the generation, manipulation, and animation of
sequences of field diagrams. Figure 6 shows the
commands screen for creating field diagrams and
field diagram sequences. A sequence is determine by
two parameters: window size and window sliding
rate. The window size is the length (in seconds) of
the segment of the meeting that is used for each of the

T MR B)

A=

LA T T

N -
& u

Larry Matt
o8 S 3 R W Litrgfie

{re]

=3

o
WNaaNTaN v ol©

-

Jim

TTTTTTTT

[titebata_]

Figure 4. Field diagram.

105

SOEE
*:0bs =425

Pedro

Bob

Yern

Vol 244

Ken
Larry
Jim
Dan

Total

Figure 5. Active table: clicking on any number gives a listing of all related protocol entries.

field diagrams in the meeting. The sliding rate
indicates how much the initial point of the segment is
increased from one field diagram to the next one. 1,
for example, the window size is 600 seconds and the
sliding rate is 15 seconds, the first field diagram is an
average of the first 600 seconds of the meeting, the
second field diagram is the average of a window that
starts at second 15 and ends at second 615, etc.
Smaller sliding rates reduce the effects of new
activities on the moving average and make the
animation smoother.

2) Meeting splits graphs. While the animated
sequences of field diagrams help the researcher (or
the meeting participants) to get an intuitive feeling
for the dynamics of the meeting, the meeting splits
graphs generator provides quantitative information
about the flow of the meeting. Figure 7 shows the
command screen for producing the graphs. There
are three parameters that determine what will be
displayed in the graph: the Participants; the
Dimensions to be included, and the Meeting Splits
which specifies the number of segments into which
the meeting will be divided.

Field
Diagrams
.Commands

Create Sequence

Go To Sequence

(SRS GRS

QO Selected Observations
@® Whole Protocol

ﬁreate Field Diagram |

Seconds

KRR KR S RI KR KIKEY

ding Fats

Ijl Seconds

Figure 6. Control screen for sequence generation and animation of field diagrams.

106

Data
Analysis
Commands

[X] Pedro
< Bob
X vern
D4 Mett
DX ken
X Lerry
X Jim
X pon

Coran [AT]

General Export

Create Table

Figure 7. Control screen for meeting splits graphs and generation of active tables.

Figure 8 shows an example of an output produced
by the meeting splits graphs generator. One can
quickly see an interesting pattern: while Pedro's
dominant behavior increases over time, Ken's
dominant behavior decreases. The meeting has been
split into four segments, each of 9 minutes and 29
seconds. For each meeting split, the mean value for
the dimension over the group was calculated. The
ordinate is given in z-scores; i.e., the mean over the
group for a segment has been subtracted from the
raw score and divided by the standard deviation. The
graph is active: pointing to a bar displays the
statistics for the selected participant.

3) Time Series Analysis. The most sophisticated
dynamic analysis that GroupAnalyzer supports is
time series analysis. The information contained in
the temporal organization of behavior is critical to
understand interaction patterns between group
members. Simply looking at behavior without any
consideration for their temporal order would be like
trying to understand music by counting how many
different types of notes are there in a score. Behavior
is like music, you need to preserve the flow in order to
make sense of it. There is today an increasing
understanding of the importance of using the
appropriate time series analysis tools in order to

Name : Pedro
u=g8
D=1

Mean = 3.25
STD = 3.284
Z2=1.141

Split = 3/4
Duration = 9' 29"
Observations = 111

12/9/88 8:40 PM
Merged

U-D Pedro
U-D Bob

U-D Vern
U-D Matt

U-D Ken
U-D Larry
U-D Jim
U-D Don

I
]
B
A

S 25 4.125
7.356 4911
93 108

4.621
113

X pisplay Stats

<@ Qnmﬂm!m

D QAR

Figure 8. Meeting splits graph with four equitemporal splits.

107

detect interactive behavioral patterns [13,14,15,16]. In
this paper, we do not have space to include even a
brief introduction to time series analysis. Excellent
introductory textbooks are those of Gottman [17] and
Chatfield [18]. An advanced presentation of time
series analysis within the general framework of
regression methods can be found in Shumway [19],
which includes an IBM disk with data and
programs.

The use of models to describe the temporal
organization of behavior has steadily increased over
the last two decades [20]. Still the number of papers
with applications of time series analysis to group
behavior is practically nil. Probably, the reason is
that in order to obtain time series in group research
there are difficult technological barriers to overcome;
i.e., it is necessary to code behavior fairly frequently
and over an extended period of time. GroupAnalyzer
solves this problem by providing both a fast coding
system that generates a sufficient number of
observations and a systematic way to control the
sampling interval of the time series which gives the
level of granularity at which one can observe
interaction patterns.

Currently, GroupAnalyzer can export the
generated time series to an external program
(SYSTAT). However, we are planning to have
GroupAnalyzer generate its own time series analyses
including detrending filters, autocorrelation
function, partial autocorrelation function, and
crosscorrelation function in the time domain. In
addition, we expect GroupAnalyzer to do cross-
spectral analysis with coherency and phase
estimation in the frequency domain.

Discussion

We tested GroupAnalyzer by coding 65 meetings
held at the Capture Lab. Some of these meetings
were held by high level executives doing strategic
planning tasks, others by engineering and business
students from the University of Michigan doing
typical managerial and planning tasks.

After a few minor corrections for the first few
meetings, the GroupAnalyzer system ran smoothly.
We were able to provide instantaneous feedback to
participants at the end of the meetings. In one of the
experimental conditions, group members were given
feedback on their group behavior between tasks in
order to assess the impact of feedback on their
interactive behavioral patterns. We contrasted this
with a control condition in which feedback was not
given between tasks. In addition, we contrasted
groups using computer-supported collaborative
technology versus groups working without it.

The time series analysis results of these
experiments are beyond the scope of this paper and
are reported elsewhere [21]. We can briefly state here
that the effect of feedback on groups that used
technology was highly significant in terms of

108

changing interactive behaviors considered more
conducive to collaborative work. These interactive
behaviors were detected using crosscorrelation
function analyses of the time series generated by the
GroupAnalyzer system. It is important to emphasize
that these interactive patterns are not detectable
using traditional methods. One of the most powerful
features of the GroupAnalyzer is its ability to
generate time series data at sampling rates which
allow the detection of patterns that otherwise would
pass unnoticed.

To conclude, we can affirm that the
GroupAnalyzer system offers a series of advantages
over manual SYMLOG coding and analyses
methods. We now list these advantages,
differentiating between coding related advantages
and analysis related advantages.

Coding related advantages

Fast coding: With GroupAnalyzer, a fast coder
can enter a maximum of one observation in 4 seconds
and, on the average, over 6 observations per minute.
This is two to three times the rate of coding by hand.

Accurate timing: The GroupAnalyzer coder does
not have to worry about entering the time a
behavioral event occurs. The computer takes care of
it by time-stamping the number of seconds that have
elapsed since the meeting started. The clocks in all of
the coders' computers are synchronized so that
everybody has the same time reading.

Visual mapping of group seating layout: The one-
to-one mapping of seating arrangements with the

coding display relieves coders of the cognitive load of
having to memorize the names of the participants.

Accurate coding: Coders using GroupAnalyzer
have the sliced coding cube displayed continuously in
front of them, thus constantly reminding them of all
the permissible behavioral codes and their position in
the three-dimensional space. The program will do
error checking on the legitimacy and completeness of
the required code line. If an error occurs, it will
prompt the coder to enter the missing item.

Analysis related advantages

Fast feedback to meeting participants:
GroupAnalyzer generates a field diagram which
includes the observations from all the coders
instantaneously. This contrasts with the several
hours it takes to enter data manually and then to
calculate and draw a field diagram under traditional
SYMLOG methods.

Fast feedback to individual coders: Once coders
end a GroupAnalyzer session, the computer
automatically generates an overall field diagram in
each of the coder's screen. This allows coders to
compare their scorings and correct their biases in
future sessions. This capability was in Bales' wish
list: "Ideally one would like to have a field diagram
produced from the scores of each observer separately,

and these diagrams could then be compared with
each other..." [8, p. 344].

Integrated numerical and graphical
representation: Our general philosophy in designing
GroupAnalyzer has been to produce both graphical
and numerical information. All the graphical
information is displayed by default. In addition, one
has always intuitively easy and fast access to
numerical information. For example, in a field
diagram one can get all the group numerical data by
clicking on the button "Show Data." In addition,
individual data can be obtained by clicking on the
name of each participant.

Dynamic analysis: GroupAnalyzer supports
three ways of presenting dynamic information to
meeting participants: a) Animated sequences of field
diagrams; b) Meeting splits graphs; ¢) Group
interaction diagrams generated by time series
analyses of the meeting and representing the cross-
correlational links between participants' interactive
behaviors [21]. All of these representations convey
the flow of interaction in a way that allows the
participants to easily see critical moments and
patterns in their interactive behavior that are either
conducive or detrimental to collaboration.

To recapitulate and conclude, we have highlighted
in this paper a dynamic view of group interaction
which allows a deeper understanding of the flow of
behavioral streams in a meeting. If this
understanding is properly fedback to meeting
participants, it could prove to be useful in promoting
collaboration. This deeper understanding of group
interaction was possible because we were able to
generate fine grain time series of the interactive
behaviors that occur in a meeting, uncovering
otherwise hidden patterns in the behavior streams of
group dynamics. When we take into account the
temporal ordering of behavior, we are able to
discover lead-lag relationships between behaviors
that can illuminate questions of social influence,
collaborative interaction, and other questions about
interactive behavioral patterns, in a way that is not
possible with static analysis methods [21]. In our
research, the GroupAnalyzer system has proven to be
a fundamental instrument in achieving this deeper
understanding.

References

[11 CSCW (1986). Proceedings of the Conference on
Computer-Supported Cooperative Work. Austin,
TX.

[2] CSCW (1988). Proceedings of the Conference on
Computer-Supported Cooperative Work.
Portland, OR.

[3] Greif, 1. (Ed.). (1988). Computer-Supported
Cooperative Work: A Book of Readings. San
Mateo, CA: Morgan Kaufmann Publishers,

109

[4] Cook, P. G., Ellis, C. A., & Rein, G. L. (1988).
Meetings Research - A Nick Retrospective
ﬁ‘gchnical Rep. No. STP-048-88). Austin, TX:

¢

Bales, R. F. (1950). Interaction Process
Analysis: A Method for the Study of Small
Groups. Cambridge, MA: Addison-Wesley.

Bales, R. F. (1983). SYMLOG: A practical
approach to the study of groups. In H. H.
Blumberg, A. P. Hare, V. Kent, & M. Davies
(Eds.), Small Groups and Social Interaction (pp.
499-523). New York, NY: Wiley.

Bales, R. F. (1985). The new field theory in social
psychology. International Journal of Small
Group Research, 1,1-18.

Bales, R. F., & Cohen, S. P. (1979). SYMLOG: A
System for the Multiple Level Observation of
Groups. New York, NY: Free Press.

McGrath, J. E. (1984). Groups: Interaction and
Performance. Englewood Cliffs, NJ: Prentice-
Hall.

Mantei, M. M. (1988). Capturing the Capture
Lab Concepts: A Case Study in the Design of
Computer-Supported Meeting Environments. In
Proceedings of the Conference on Computer-
Supported Cooperative Work. Portland, OR.

Polley, R. B., Hare, A. P, & Stone, P. S. (1988).
The SYMLOG Practitioner: Applications of
Small Group Research. New York, NY:
Praeger.

Bandura, A. (1986).
Thought and Action.
Prentice-Hall.

[5]

(6]

(7]

(8]

[9]

[10]

[11]

[12] Social Foundations of

Englewood Cliffs, NJ:

[13] Bakeman, R., & Gottman, J. M. (1986).

Observing Interaction: An Introduction to

Sequential Analysis. Cambridge, MA:
Cambridge University Press.
[14] Iacobucci, D., & Wasserman, S. (1988). A

General Framework for the Statistical Analysis
of Sequential Dyadic Interaction Data.
Psychological Bulletin, 103, 379-390.

McGrath, J. E., & Kelly, J. R. (1986). Time &
Human Interaction: Toward a Social
Psychology of Time. New York, NY: The
Guilford Press.

Newtson, D., Hairfield, J., Bloomingdale, J., &
Cutino, S. (1987). The structure of action and
interaction. Social Cognition, 5,191-237.

[15]

[16]

[17] Gottman, J. M. (1981). Time Series Analysis: A
Comprehensive Introduction for Social
Scientists. Cambridge, MA: Cambridge

University Press.

[18] Chatfield, C. (1984). The Analysis of Time Series:
An Introduction (3rd ed.). London & New York:
Chapman and Hall.

[19] Shumway, R. H. (1988). Applied Statistical Time
Series Analysis. Englewood Cliffs, NJ: Prentice
Hall.

[20] Faraone, S. V., & Dorfman, D. D. (1987). Lag
sequential analysis: Robust statistical methods.
Psychological Bulletin, 101, 312-323.

[21] Losada, M., Sanchez, P., & Noble, E. E. (1989).
Effect of Collaborative Technology and Feedback
on Interactive Sequences in Meetings (Tech.
Rep. No. CMI-89-019). Ann Arbor, MI: EDS
Center for Machine Intelligence. ‘

Acknowledgements

We gratefully acknowledge Marjorie Horton,
Joyce Massey, Paul Scott, Ashby Woolf and two
anonymous reviewers for useful comments on an
earlier draft of this paper.

We are also indebted to the University of Michigan
team of researchers and coders who helped us test
GroupAnalyzer, and to Pedro Sdnchez for help with
the final manuscript.

110

