
TELAVIVUNIVERSITY@אוניברסיטתתל-אביב
The Raymond and Beverly Sackler Faculty of Exact Sciences

The Blavatnik School of Computer Science

Automatic Reasoning for Pointer Programs

Using Decidable Logics

Thesis submitted for the degree of Doctor of Philosophy

by

Shachar Itzhaky

This work was carried out under the supervision of

Professor Mooly Sagiv

Submitted to the Senate of Tel Aviv University

August 2014

c© 2014

Copyright by Shachar Itzhaky

All Rights Reserved

Acknowledgements

I would like to extend my gratitude to all those who contributed to this work.

First and foremost, to my supervisor, Prof. Mooly Sagiv, without whose insightful

and dedicated guidance none of what you are about to read would have come to pass.

For his great ideas and and inspired intuition. For maintaining a patient, optimistic

and positive attitude all along the way, providing kind encouragement, support, and

understanding. Working with him has been a privilege, and a great experience towards

academic research.

To Prof. Anindya Banerjee and Dr. Aleksandar Nanevski from IMDEA Institute

in Madrid, for a fruitful and years-long collaboration as well as hospitality. To my US

collaborators, Prof. Thomas Reps and Aditya Thakur of the University of Wisconsin-

Madison, and Nikolaj Bjørner of Microsoft Research in Redmond, WA.

To Prof. Neil Immerman, a celebrated scholar, a true expert from head to toe,

and above all a caring and gentle human being, for his immense treasure of knowledge

which is always available for sharing with any who seek it.

To the Israeli Academy of Science and to the European Research Council, for their

generous financial support.

Also, to my academic colleagues here at the programming languages group of Tel

Aviv university. They had to listen to my talks over and over again and at least pretend

to like them.

Abstract

This thesis proposes a novel method addressing the verification problem for programs

manipulating linked-list data structures and list-like variants such as reversed trees. It

makes use of a restricted subset of first-order logic that is decidable, yet effective to

support reasoning about paths of pointer-links in the program’s dynamic heap. Such

properties are essential for proving program termination, correctness of data structure

invariants, and other safety properties. The core of the thesis is a complete axiom-

atization of transitive closure over uninterpreted functions embedded in effectively-

propositional (EPR) first-order logic, such that existing SAT solvers can be harnessed

to prove validity, or produce a concrete counterexample that falsifies a verification con-

dition. Since this solution is logically complete and resides completely in a decidable

set of first-order formulas, one of these two results is guaranteed — the procedure never

diverges or returns an imprecise result.

We present techniques for modular reasoning. In a program with procedures, we

address the problem of “global effect”: a subroutine that changes a small area of the

heap may affect reachability properties anywhere in the heap, because its operations

remove existing paths and create new paths. This leads to some restrictions over what

the callee may or may not do. Then, an adaptation rule is applied to incorporate

mutations made by the callee into the caller’s heap space.

Both analyses require the user to provide an appropriate inductive invariant for

loops and for recursive procedures. The invariants may be nontrivial, and in partic-

ular, more complex than the specification of the program as a whole. To alleviate

this problem, we employed an iterative refinement algorithm for automatic inference

of inductive invariants over a set of abstraction predicates; The algorithm gradually

constructs an over-approximation of the reachable states until it finds an inductive in-

variant that is sufficient to prove a desired safety property. This approach is known

as “property-directed reachability”. We showed that our implementation is capable of

producing correct invariants for a set of benchmark programs and correctness proper-

ties.

Contents

1 Introduction 1

1.1 Main Results . 6

1.1.1 Deterministic Transitive Closure 6

1.1.2 Idempotent Functions in EPR . 8

1.1.3 Procedural Reasoning with Adaptation 9

1.1.4 Template-based Verification with Induction 10

2 Preliminaries 12

2.1 Hoare-style Verification . 12

2.2 Completeness and Weakest-Precondition 14

2.3 Decidability . 17

2.4 Effectively-propositional Logic . 19

3 Pointer Manipulations 24

3.1 Recursive Data Structures: The Need for Transitive Closure 24

3.2 Deterministic Transitive Closure in FOL 27

3.3 Updating Deterministic Transitive Closure 32

3.4 Extending wlp for Pointer Expressions in Linked Lists 34

3.5 Empirical Results . 37

3.6 Related Work for Chapter 3 . 43

4 Loop Invariants 44

4.1 Property-Directed Reachability: the IC3 Algorithm for Invariant Inference 48

4.2 A Useful Predicate Abstraction Domain for Linked Lists 54

4.3 Empirical Results . 58

4.4 Related Work for Chapter 4 . 62

vii

5 Modular Analysis of Procedures 65

5.1 The Problem with Global State . 67

5.1.1 A Running Example . 67

5.1.2 Working Assumptions . 68

5.1.3 Non-Local Effects . 70

5.2 An Adaptation Rule for Deterministic Transitive Closure 71

5.2.1 An FO(TC) Adaptation Rule . 71

5.2.2 An Adaptation Rule in a Restricted Logic 73

5.2.3 Adaptable Heap Reachability Logic 77

5.3 Extending wlp for Procedure Calls . 78

5.3.1 Modular Specifications of Procedure Behaviours 78

5.3.2 Generating Verification Condition for Procedure With Sub-calls

in AEAR . 81

5.3.3 Verification Condition for the Entire Procedure 85

5.4 Empirical Results . 86

5.4.1 Implementation Details . 86

5.4.2 Verification Examples . 86

5.4.3 Buggy Examples . 87

5.5 Related Work for Chapter 5 . 88

6 Discussion 90

6.1 On the Expressivity Limitations of AFR 90

6.1.1 Inversion yielding a non-AFR formula 90

6.1.2 Formulas not expressible in AFR 90

6.2 Extensions . 92

7 Conclusion 96

A Logical Proofs 99

A.1 Reductions between Logics . 99

A.2 Program Semantics . 100

A.3 Relative Completeness of IC3 with Predicate Abstraction 103

A.4 Simulation of an Idempotent Function in EPR 104

B Code Examples 108

List of Tables

2.1 Hoare rules for the basic While-language ([67]). 13

2.2 Standard rules for computing weakest liberal preconditions for While-

language procedures annotated with loop invariants and postconditions.

I denotes the loop invariant, [[B]] is the semantics of Boolean program

conditions, and Q is the postcondition — all are expressed as first-order

formulas. 15

2.3 Standard rules for computing VCs using weakest liberal preconditions for

procedures annotated with loop invariants and pre/postconditions. The

rules for computing wlp[[]] appear in Table 2.2. The auxiliary function

VCaux accumulates a conjunction of VCs for the correctness of loops. . 18

3.1 AFR invariants for reverse (shown in Fig. 3.1). Note that n,n0 are

function symbols while α〈n∗〉β, α〈n∗0〉β are atomic propositions on the

reachability via directed paths from α to β consisting of n, n0 edges. . . 26

3.2 ΓlinOrd says all points reachable from a given point are linearly ordered. 30

3.3 Rules for computing weakest liberal preconditions for an extension

of While-language to support heap updates, memory allocation, and

pointer dereference. 35

3.4 Description of some linked list manipulating programs verified by our tool. 41

3.5 Implementation Benchmarks; P,Q — program’s specification given as

pre- and post-condition, I — loop invariant, VC — verification condition,

— number of atomic formulas, ∀ — quantifier nesting depth 42

3.6 Information about benchmarks that demonstrate detection of several

kinds of bugs in pointer programs. In addition to the previous measure-

ments, the last column lists the size of the generated counterexample in

terms of the number of vertices, or linked-list nodes. 42

ix

4.1 Example run with Init := y 6= null ∧ x〈n+〉y, Bad := x 6= y ∧ x = null,

and ρ := (x′ = n(x)). Intermediate counterexample models are written

as (x, y)E where (x, y) is the interpretation of the constant symbols x,y

and E are the n-links. The output invariant is R[1] = R[2] = x〈n∗〉y. . . 51

4.2 Predicates for expressing various properties of linked lists whose elements

hold data values. x and y denote program variables that point to list

elements or null. f and b are parameters that denote pointer fields. (The

mnemonics are referred to later in Table 4.5.) 55

4.3 AFR formulas for the derived predicates shown in Table 4.2. f and b

denote pointer fields. dle is an uninterpreted predicate that denotes a

total order on the data values. The intention is that dle(α, β) holds

whenever α->d ≤ β->d, where d is the data field. We assume that the

semantics of dle are enforced by an appropriate total-order background

theory. 56

4.4 A revised set of basic wlp[[]] rules for invariant inference. y〈f〉α is the

universal formula defined in Eq (3.6). alloc stands for a memory location

that has been allocated and not subsequently freed. 57

4.5 Experimental results. Column A signifies the set of predicates used

(blank = only the top part of Table 4.2; S = with the addition of the

sorted predicate family; R = with the addition of the rev family; A =

with the addition of the stable family, where alloc conjuncts are added in

wlp rules). Running time is measured in seconds. N denotes the highest

index for a generated element R[i]. The number of clauses refers to the

inferred loop invariant. 59

4.6 Some correctness properties that can be verified by the analysis proce-

dure. For each of the programs, we have defined suitable Pre and Post

formulas in AFR. 60

4.7 Results of experiments with buggy programs. Running time is measured

in seconds. N denotes the highest index for a generated element R[i].

“C.e. size” denotes the largest number of individuals in a model in the

counterexample trace. 60

5.1 The specifications of atomic commands. s is a local constant denoting

the f -field of y. Ef is the inversion formula defined in Eq (3.6). 79

5.2 Computing the weakest (liberal) precondition for a statement containing

a procedure call. r is a local variable that is assigned the return value;

a are the actual arguments passed. f
a

is a fresh function symbol. 82

5.3 Description of some pointer manipulating programs verified by our tool. 87

5.4 Implementation Benchmarks; P,Q — program’s specification given as

pre- and post-condition, mod— mod-set, VC — verification condition,

— number of atomic formulas/intervals, ∀ — quantifier nesting The

tests were conducted on a 1.7GHz Intel Core i5 machine with 4GB of

RAM, running OS X 10.7.5. The version of Z3 used was 4.2, complied

for 64-bit Intel architecture (using gcc 4.2, LLVM). The solving time

reported is wall clock time of the execution of Z3. 87

5.5 Information about benchmarks that demonstrate detection of several

kinds of bugs in pointer programs. In addition to the previous measure-

ments, the last column lists the size of the generated counterexample in

terms of the number of vertices — linked-list or tree nodes. 88

6.1 Properties of a list of cyclic lists expressed in AFR 93

6.2 The specifications of atomic commands for resource allocations in a C-

like language. 94

List of Figures

1.1 A classical program that performs in-place reversal of a list, adapted

from [55] . 3

1.2 The state of the memory during the execution of the list reversal pro-

gram: (i) initial state; (ii) an intermediate state; (iii) final state. 3

1.3 The view update problem, naturally occurring in databases but also

applies to heap reachability. 5

1.4 The effect of an assignment statement on the heap viewed as a directed

graph. 8

1.5 An example of a cutpoint into a linked list. 9

3.1 A simple Java program that reverses a list in-place. 26

3.2 Binary relation P as a directed graph. 33

3.3 A simplified Java program that removes elements from a list according to

some predicate; for simplicity, we assume that the head is never removed. 39

3.4 Sample counterexample generated for a buggy version of insert for a

sorted list. Here, the loop invariant required that ∀α : (h〈n∗〉α ∧
¬i〈n∗〉α) → α <val e (where <val is an ordering on nodes according to

their values), but the loop condition is true, therefore loop will execute

one more time, violating this. 41

4.1 A procedure to insert the element pointed to by e into the non-empty,

(unsorted) singly-linked list pointed by h, just before the element x

(which must not be first). The while-loop uses the trailing-pointer idiom:

q is always one step behind p. 45

5.1 Reversing a list pointed to by a head h with many shared nodes accessible

from outside the local heap (surrounded by a rounded rectangle). 65

xii

5.2 An annotated implementation of Union-Find in Java. f is the backbone

field denoting the parent of a tree node. 68

5.3 An example scenario of running find . 69

5.4 An example scenario of running union. 69

5.5 A case where changes made by find have a non-local effect. 70

5.6 . 71

5.7 Memory states with non-unique pointers where global reasoning about

reachability is hard. 72

5.8 The function enmod maps every node σ to the first node in mod reachable

from σ. Notice that for any α ∈ mod, enmod(α) = α by definition. . . . 74

5.9 Construction of a modified path from three segments 74

5.10 A simple function that swaps two adjacent elements following x in a

singly-linked list. Dotted lines denote the new state after the swap. The

notation e.g. Ef (x, f1x) denotes the single edge from x to f1x following

the f field. 75

5.11 A subtle situation occurs when the path from σ passes through multiple

exit-points. In such a case, the relevant exit-point for σ〈f∗〉τ1 is t1,

whereas for σ〈f∗〉τ2 and τ1〈f∗〉τ2 it would be t2. 76

5.12 An example of a procedure where the mod-set is not (essentially) convex. 76

5.13 Paths that go entirely untouched. enmod(σ1) = α, whereas enmod(σ2) =

null. 77

5.14 Specification of proc with placeholders. 82

5.15 An example invocation of find inside union. 83

5.16 The inner enmod is constructed from the outer one by composing with

an auxiliary function enB|A. 84

6.1 A simple Java program that creates two correlated lists. 91

6.2 A program that flattens a hierarchical structure of lists into a single

cyclic list. 94

Chapter 1

Introduction

This thesis develops means for automated reasoning for the purpose of proving the

correctness of computer programs making excessive use of pointers. These include

programs manipulating linked data structures, such as linked lists, doubly-linked lists,

nested lists, and reverse trees. For automation we use industry-standard tools whose

efficiency has been proven in practice. The proposed logical frameworks reduces verifi-

cation problems into logical queries. We show that the set of queries thus generated is

a decidable one, so a definite answer (“yes” or “no”) is guaranteed.

The problem of software verification is about as old as software, perhaps even older.

Floyd and Hoare [19, 29] proposed logical frameworks to construct correctness proofs for

programs with respect to formal specifications—full correctness proofs, which contain

a proof for the program’s termination on its designated set of input, as well as the

adherence of its behavior to the one registered in the specification; and the more popular

partial correctness proofs, which relax the termination requirement. A continued effort

to mechanize the construction of such proofs existed ever since. Cousot and Cousot [10]

brought the advancement of abstract interpretation, providing a multitude of techniques

used to analyze software in various domains. Simple abstract interpretation techniques

are employed day-to-day by compilers due to their elegance, ease of implementation,

and good performance. Naturally, there is a trade-off between resource usage and

accuracy of the analysis; as a consequence such analyses, which are based on simple

abstractions, mostly provide approximate results.

Within the problem space of software verification, a particularly interesting subset

of programs is those making heavy use of pointers. In C and the C-style programming

languages that emerged as a result of its success, pointers are basic working tools

1

2 CHAPTER 1. INTRODUCTION

just like arithmetic operators and control structures, combining expressivity and low-

level efficiency. Separation logic, mostly due to Reynolds [55] and O’Hearn [35, 50],

has evolved to address this challenging aspect of programming. Challenges arise, by-

and-large, by the occurrence of aliasing in pointer programs: the situation where two

pointers contain the same address, hence a change in data stores at that address is

visible at once in two places in the program. Consider the simple number-incrementing

procedure (written in C):

void go_up(int *x, int *y) {
(*x)++; (*y)++;

}

The programmer’s intention is to increase both counters. However, in the corner

case where the parameters x and y store the same address (are aliased), the result

would be increasing one counter by two. If the programmer did not plan this scenario,

it could lead to intricate hard-to-find bugs at runtime. An attempt to formally prove the

correctness of this procedure would immediately give rise to a candidate specification,

such as the one expressed by the equations:

[x] = [x] + 1

[y] = [y] + 1

Here we employ a somewhat standard notation where x denotes the input value

of the program variable x, and plain x denotes its output value. The square brackets

indicate that the equation holds on the values stored in the address given by the variable,

not on the addresses themselves.

From here it is plain to see the defect: in the case where x = y (aliasing) the

specification contradicts the program. This is because the specification is declarative,

so the order of equations is insignificant and in fact the two equalities state the same

property: that the memory location referenced by both x and y has its value increased

by one. In the program’s operational semantics, however, the fact that the assignment

repeats itself is, of course, significant—the value will be increased by two. Using a

formal semantics of the language would systematically reveal this discrepancy.

Complex composition of pointers leads to more involved reasoning. The program

shown in Fig. 1.1 is an early example used by Reynolds. The program reverses the

3

j := null ; while i 6= null do

(k := i.next ; i.next := j ; j := i ; i := k)

Figure 1.1: A classical program that performs in-place reversal of a list, adapted
from [55]

1i 2 3 4 5

1 2

j

3

i

4 5

1 2 3 4 5 j

(i)

(ii)

(iii)

Figure 1.2: The state of the memory during the execution of the list reversal program:
(i) initial state; (ii) an intermediate state; (iii) final state.

order of elements in a linked list: its input is a linked list whose head is pointed to

by i and each node contains a field next holding a pointer to the next node (or null

to signify the last node). The program outputs a list of the same structure, only that

the elements occur in reversed order. The reversal is done in-place, so that the original

input list is overwritten by the output.

Reynolds identified an acute problem when reasoning with programs that traverse

such recursive data structures: the pointer i serving as the iterator is advanced at

each step, and the number of steps is not bounded. Therefore there is always a risk

that a value written on one iteration will be overwritten in subsequent iterations. In

particular, to make sure that the list remains acyclic in this example, one must obtain

that there is no next-path from j to i, otherwise the addition of the edge 〈i, j〉 introduces

a cycle.

We approach this problem by a careful construction of appropriate loop invariants

for iterative programs, and comprehensive summaries for recursive programs. Observ-

ing a typical run of reverse (Fig. 1.2), an important property of it can be noticed: the

pointer variables i and j always point into the beginning of two disjoint list segments.

Either segment may be empty (as in (i) and (iii)), but the segments never share el-

ements. It turns out that this property is crucial to prove the correctness of the list

reversal program. Formulating this property in logic is more involved than the previ-

ous, simpler aliasing conditions. To address this issue, we define reachability logics and

4 CHAPTER 1. INTRODUCTION

support reasoning to check the validity of implications. In this approach, we would

write an invariant such as

∀α : i〈next∗〉α ∧ j〈next∗〉α→ α = null (1.1)

The concern raised by Reynolds was that such an approach would never scale. To

alleviate this, we suggest breaking the program down into small pieces where the prop-

erties are simple enough, then combining the sub-proofs to verify the whole program.

We show that for many naturally occurring instances the invariants are quite man-

agable and automatic reasoning is tractable. To scale up we continue to develop logical

tools for modular reasoning. We return to discuss the reverse example in much detail

in Section 3.

In this thesis, we draw primarily on the development of Hoare logic and its exten-

sions, generally referred to as “Hoare-style verification”. Hoare logic is a proof system

for reasoning about programs with respect to their specifications, given as assertions—

generally pre-condition and post-condition—written in a logical language of choice.

While complete systems exist for Turing-complete imperative programming languages

(one example is presented in the preliminaries of this thesis), the problem of proof

search is a primary obstacle to implementing automated verification and program rea-

soning systems. This is true even for very small programs, since a proof is required to

use formulas (assertions) that do not occur in the specification or in the program itself

(such as Eq (1.1) above). Even when these are given, verifying that they construct a

valid proof is an undecided problem, in general, since it requires proving the validity of

formulas in the assertion language. The problem is especially difficult when programs

include loops. A loop in the program can cause a code block to be executed arbitrarily

many times, so that the number of states a program visits during its execution is dis-

proportionate to the size of the program. Reasoning about sets of states is, in general,

a higher-order problem.

This thesis attempts to greatly simplify reasoning by reducing the proof obligations

that need to be checked to proving validity of sentences in propositional calculus. Thus

we show that the program’s assertions are correct if and only if some propositional

formula is valid—or equivalently, its negation is unsatisfiable. Boolean satisfiability

is a decidable problem, which is usually solved by dedicated software known as SAT

5

state
database-update //

query

��

state

query

��
qstate

query-update // qstate

Figure 1.3: The view update problem, naturally occurring in databases but also applies
to heap reachability.

solvers. A lot of engineering effort went into this kind of software over the years, and

in practice, such instances are solved very efficiently and effectively.

Two central observations underpin our method. (i) In programs that manipulate

singly- and doubly-linked lists it is possible to express the ‘next’ pointer in terms of the

reachability relation between list elements. This permits direct use of recent results in

descriptive complexity [28]: we can maintain reachability with respect to heap mutation

in a precise manner. Moreover, we can axiomatize reachability using quantifier-free

formulas. (ii) In order to handle statements that traverse the heap, we allow verification

conditions (VCs) with ∀∗∃∗ formulas so that they can be discharged by SAT solvers

(as we explain shortly). However, we allow the programmer to only write assertions in

a restricted fragment of FOL that disallows formulas with quantifier alternations but

allows reflexive transitive closure. The main reason is that invariants occur both in the

antecedent and in the consequent of the VC for loops; thus the assertion language has

to be closed under negation, although the verification conditions are not required to

have this property.

The appeal to descriptive complexity stems from the fact that previously it has

been applied to the view-update problem in databases. This problem has a pleasant

parallel to the heap reachability update problem we are considering. In the view-update

problem, the logical complexity of updating a query w.r.t. database modifications is

lower than computing the query for the updated database from scratch (depicted in

Fig. 1.3). Indeed, the latter uses formulas with transitive closure, while the former

uses quantifier-free formulas without transitive closure. In our setting, we compute

reachability relations instead of queries. We exploit the fact that the logical complexity

of adapting the (old) reachability relation to the updated heap is lower than computing

the new reachability relation from scratch. The solution we employ is similar to the use

of dynamic graph algorithms for solving the view-update problem, where directed paths

between nodes are updated when edges are added/removed (e.g., see [13]), except that

6 CHAPTER 1. INTRODUCTION

our solution is geared towards verification of heap-manipulating programs with linked

data structures.

Another aspect that complicates programmatic reasoning, especially with complex

states as is the case when pointer-based data structures are present, is procedures.

Programs are usually factored into several sub-programs in the interest of readability

and code reuse. This common idiom causes one code block to be executed in different

contexts, and it is highly desirable for reasons of scalability not to have to verify it

for each context separately. The challenge is to be able to express the view-update

that summarizes the effect of a procedure call in an arbitrary context, where some

of the elements are not reachable by the procedure, and therefore essentially remain

unmodified. This may be seen as an instance of the frame problem.

The rest of this thesis introduces reachability logics, a formal definition of logical

fragments found useful for the systematic reasoning over programs containing pointer

structures. As a primary technique, the semantics of such logics are embedded in

first-order logic for the use of automated solvers. While a severe limitation on the

expressivity of the defined logic, automated proof techniques prove to be so effective

compared to manual proofs, even for small, seemingly-obvious examples, that there is

much benefit to using them whenever possible.

The results in this thesis were published in [36], [38], and [37].

1.1 Main Results

1.1.1 Deterministic Transitive Closure

A key to the reasoning techniques presented in this thesis is the concept of deterministic

transitive closure and its introduction into first-order logic. We begin by defining the

notation 〈next∗〉, which denotes the reflexive transitive closure of a unary function

symbol next . The semantics are that x〈next∗〉y is true iff there is a sequence of

successive applications next to x that results in y (next(next(· · ·x · · ·)) = y). The

restriction that transitive closure can only be applied to functions is what makes it

deterministic. As we will see, this form of transitive closure is much simpler to handle.

This has been noticed before, in other contexts, e.g. in [34].

It is then shown that 〈next∗〉 can be axiomatized in pure first-order logic, in the

same way that first-order logic with equality can be axiomatized in first-order logic

1.1. MAIN RESULTS 7

(without equality) by adding the equality axioms. One important restriction, however,

is that once the transitive closure is introduced, the original function cannot be used in

logical terms anymore— because the relationship between next and next∗ is not first-

order-expressible. While this seems severe, it turns out that many useful properties

of linked lists and some other linked data structures can be expressed this way. It

is analogous to reasoning about natural numbers without using succ (the successor

function) but with the relation ≤. In fact, it is easy to see that using quantification

one can define succ in terms of ≤:

succ(x) = y ⇔ ∀α : (x ≤ α ∧ α 6= x)↔ y ≤ α (1.2)

This leads to a second restriction: the axiomatization of 〈next∗〉 that we construct in

Section 3.2 is complete, but only for finite structures; hence, it is essential that the logic

used for reasoning has the finite model property : if a formula in the logic has a model,

then it also has a finite model. This is not true in general, of course, for first-order

formulas. One fragment of first-order logic that does have this property will receive

a lot of attention throughout this thesis is the Bernays-Schönfinkel-Ramsey class—

also referred to as effectively propositional (EPR). It is characterized by a relational

vocabulary, that is, only relation symbols and constants may occur in the signature

and no non-nullary function symbols, and a quantifier prefix limited to ∃∗∀∗ so that all

existential quantifiers precede the universal ones. Again, we show a range of benchmarks

demonstrating specifications that fall well within this restriction. In fact, most of the

time, just universal formulas suffice to express desired properties.

In particular, it is very important to be able to express in a precise manner the

effect of heap mutations performed by the program. A commonly used solution is to

model the heap as a long array of pointers and to use McCarthy’s axioms defining

the update of an array a at index i to the value e as a{i ← e}. However, the use of

transitive closure will lead us to expressions of the form 〈(next{i← e})∗〉, which cannot

be handled using the decidable logical fragment that we are interested in.

The proposed solution is to model the heap abstractly as a directed graph, and

the transitive closure of the edges as a view of this graph. It is then our task to

maintain the view across changes to the edge set of the graph. As a very basic ex-

ample, Fig. 1.4(i) shows a snapshot of a heap containing two linked lists. The next

edge set is {〈1, 2〉, 〈3, 4〉, 〈4, 5〉} and the transitive closure next∗ is the binary relation

8 CHAPTER 1. INTRODUCTION

1 2

i

3

j

4 5

1 2

i

3

j

4 5

(i)

(ii)

i.next := j

Figure 1.4: The effect of an assignment statement on the heap viewed as a directed
graph.

{〈1, 2〉, 〈3, 4〉, 〈3, 5〉, 〈4, 5〉}. The depicted assignment statement i.n := j causes the in-

sertion of a new edge 〈2, 3〉, which materializes many new paths in the view of next∗,

in particular: 〈1, 3〉, 〈1, 4〉, 〈1, 5〉, 〈2, 3〉, 〈2, 4〉, 〈2, 5〉 (as shown in Fig. 1.4(ii)); that is, all

the pairs where the first element belongs to the first list 1→ 2 and the second element

belongs to the second list 3→ 4→ 5. This can be formulated in logic as a view update:

α〈next∗〉β := α〈next∗〉β ∨
(
α〈next∗〉i ∧ j〈next∗〉β

)
(1.3)

This shows that next∗ can be updated using only previous values of next∗. More-

over, this particular update is quantifier-free, which plays well with the quantifier prefix

limitations of EPR explained before. Chapter 3 and Chapter 5 extensively investigate

the capability to express various kinds of view updates in a logic with restricted vocab-

ulary and quantifiers.

1.1.2 Idempotent Functions in EPR

The use of EPR strictly rules out any function symbols other than constants. As a

corollary, we point out an interesting case where the use of a function is benign—in the

case where there is only one function symbol, and this function is idempotent , that is,

it is deducible from the axioms that ∀α : f(f(α)) = f(α). In this case we show that

there is a reduction from the satisfiability problem of formulas in the language that

includes f to satisfiability of EPR formulas without functions, but with the addition of

a finite number of constants and variables. The increase in formula size is linear in the

number of symbols used. Therefore, adding such a function symbol f does not break

the decidability property of the logical fragment. This extension can be used to write

formulas in a more natural way.

1.1. MAIN RESULTS 9

i

2 5 4 1 3

Figure 1.5: An example of a cutpoint into a linked list.

1.1.3 Procedural Reasoning with Adaptation

When dealing with a procedure that manipulates a linked-list segment or several linked-

list segments, the most difficult issue is the existence of cutpoints [56], which are pointers

from other areas of the heap that reach nodes of the list being manipulated. Such

pointers are represented in our abstraction of the heap as edges, which the procedure

does not modify and in fact may not even be able to observe, but may participate in

paths that are being connected or disconnected by it. As an example, assume that the

numbered list in Fig. 1.5 is being sorted by some sorting procedure. The node pointed

to by i is connected to the node 4 by a pointer field. Before the sorting, the set of nodes

reachable from i is, as seen in the figure, {4, 1, 3}. However, once the list is reordered

according to the numbering, the reachable set would become {4, 5}. This is despite the

fact that the sorting routine does not change i or the outgoing edge.

To support such reasoning, we define the notion of a mod-set , which is the area

of the heap being directly mutated by the procedure, and an entry function used to

describe the cutpoints by associating every “foreign” node from outside the mod-set

with the first location in the mod-set that is reachable from that node. This allows us to

formulate an adaptation rule that determines how the reachable set is modified for every

node outside the mod-set, essentially providing a complete, precise characterization of

the reachability relation 〈next∗〉 for the entire heap.

Having observed the behavior of several heap-manipulating procedures, we found

that they share a common desirable property: the amount of shared location introduced

by a single function call is bounded, and this bound can be known at compile time.

We take advantage of this property in order to produce modular verification conditions

that do not contain quantifier alternation, thus supporting our propositional reasoning

based on the small-model property.

We use the fact that the entry function is idempotent to support decidable reason-

ing using the adaptation rule within the scope of EPR as explained in the previous

10 CHAPTER 1. INTRODUCTION

paragraph. Thanks to this property, verification rules generated for the modular case

are still decidable for validity.

1.1.4 Template-based Verification with Induction

The downside of essentially every Floyd-Hoare verification technique is that it requires

analyzed programs to be annotated with a loop invariant for every loop that occurs in

the program. Furthermore, the supplied invariants should satisfy the restriction that

they are inductive, that is, any single loop iteration should preserve their validity by

induction: if invariant I holds at iteration k, we must be able to conclude that it holds

at iteration k+ 1 (if such an iteration exists, of course) without knowing anything else

about the state. This puts a heavy burden on a programmer who wishes to verify her

program using such a method, since the discovery of an appropriate inductive invariant

is usually not very intuitive. Furthermore, a small change in the program or in its

specifications may require considerable change in the loop invariant.

We address the problem of inductive invariant inference by proposing a set of logical

templates to serve as building blocks for a space of candidate invariants. For example,

the following formulas are among the ones used as templates:

x = y x〈next〉y x〈next∗〉y ∀α : x〈next∗〉α ∧ y〈next∗〉α→ α = null

The symbols x and y serve as placeholders to be replaced by program variables.

Based on our experiment, we constructed the search space as all possible Boolean com-

binations of template instances. In the example program reverse, there are 4 program

variables; therefore 16 different assignments for x and y, giving a total of 64 instances.

To take into account Boolean combinations of these, each of them may occur positive or

negated (¬), so the basic “literals” are 128, from which 2128 disjunctive clauses may be

formed. The number of combinations is therefore the number of possible conjunctions,

22
128

.

Undoubtedly, this search space is much too vast for a näıve generate-and-test ap-

proach. Fortunately, there are search techniques far superior. Recent developments in

model checking have given rise to the IC3 algorithm for inferring inductive invariants

given safety properties, which are usually non-inductive; IC3 can be used to find a

stronger property—that is, one that entails safety—that is inductive. It is much more

1.1. MAIN RESULTS 11

efficient than an explicit exploration of the state space needed in order to discover all

the reachable states. Although originally developed to verify hardware systems, such

as Boolean circuits, where the state is represented as a string of bits of a known length,

we have found that it combines well with predicate abstraction, which allows to extend

its use to software systems with unbounded state resulting in infinitely many states.

We have effectively applied IC3 with predicate abstraction for the domain of linked-

list programs containing loops. The IC3 routine requires a theory solver, and the EPR-

based encoding of deterministic transitive closure makes a perfect match. To use it,

we made sure that all the abstraction predicates are expressible as universal formulas

in the language containing 〈next∗〉, and by careful construction of the two-vocabulary

formula ρ(X,X ′), where X is a set of “state symbols”, which are all the program

variables + the special symbol next∗, and X ′ are primed versions of all these symbols,

we obtained an instance of IC3 where all the satisfiability queries encountered during

its execution are of EPR formulas. This ensures termination and relative completeness

of the implementation. That is, if an inductive strengthening of the safety property

exists and is expressible as a Boolean combination of the abstraction predicates, the

algorithm is guaranteed to find it.

Consequently, we were able to automatically infer invariants for all the loops for

which we initially had to write inductive invariants manually. It should be noted that

invariants are restricted to a “weak” language, and that the results discovered by the

algorithm are very different than the ones a programmer would write naturally.

The above techniques proved effective for many naturally occurring programs. Suc-

cessful benchmarks include examples from the TVLA shape analysis framework [42]

using singly- and doubly-linked lists and nested lists, as well as some textbook al-

gorithm implementations: several sorting routines and the union-find data structure

developed by Tarjan [62].

Chapter 2

Preliminaries

2.1 Hoare-style Verification

Summary

• Computer programs represent transitions from an input state to an output state • Hoare logic

is a formal framework for reasoning about properties • Hoare triples define preconditions and

postconditions • Using proof rules, claims written as Hoare triples can be proven •

This section presents a formal proof system for proving properties of imperative pro-

grams, based on proof rules for individual language constructs. Historically R.W.Floyd

invented rules for reasoning about flow charts [19], and later C.A.R.Hoare modified and

extended these to treat programs written as code in an imperative programming lan-

guage [29]. To demonstrate this approach, consider a simplistic programming language

called “While-language” with the following abstract syntax:

a ::= n | X | a+ a | a− a | a× a

b ::= true | false | a = a | ¬b | b ∧ b | b ∨ b

c ::= skip | X := a | c; c | if b then c else c | while b do c

Here, n ranges over integer literals, and X ranges over program variables (occa-

sionally called locations). The syntactic group a represents arithmetic expressions; b

represents Boolean expressions; and c represents commands. We rely on the reader’s

intuitive model for understanding the behavior of programs written in While.

Definition 1 (Hoare triple). A partial correctness assertion (also referred to as a Hoare

12

2.1. HOARE-STYLE VERIFICATION 13

{A}skip{A} {Q[a/X]}X := a{Q}

{P}c1{C} {C}c2{Q}
{P}c1; c2{Q}

{P ∧ [[B]]}c1{Q} {P ∧ ¬[[B]]}c2{Q}
{P}if B then c1 else c2{Q}

{P ∧ [[B]]}c{P}
{P}while B do c{P ∧ ¬[[B]]}

|= P → P ′ {P ′}c{Q′} |= Q′ → Q

{P}c{Q}

Table 2.1: Hoare rules for the basic While-language ([67]).

triple) has the form

{P} c {Q}

where c is a command and P , Q are assertions. We do not formally define the language

of assertions here, but assume they are written in some form of logic.

A partial correctness assertion is said to be valid (written |= {P} c {Q}) when every

successful computation of c from a state satisfying P results in a state satisfying Q.

For example,

|= {X > 3} X := X + 1 {X > 4}

Table 2.1 contains a set of inference rules for proving validity of partial correctness

assertions. The notation [[B]] is used for the semantics of a Boolean condition, expressed

as a logical formula. The proof rules are often called Hoare rules and the collection of

rules constitutes a proof system called Hoare logic.

The last rule (bottom right), called the consequence rule, is special because the

premises include validity of logical implications. Such implications may be hard to

prove for their own worth, and may require, for example, arithmetical reasoning. This

is the most complicated rule in the system, and is definitely required; indeed, without

it we would not even be able to prove some trivial assertion such as—

{X > 1} skip {X > 0}

Of course, this makes reasoning as hard as any logical reasoning in the logical

language of the assertions.

Proposition 1 (Soundness of Hoare logic). If an assertion {P}c{Q} is provable using

the proof system of Table 2.1, then |= {P}c{Q}.

14 CHAPTER 2. PRELIMINARIES

The proof of this proposition is carried out by systematic induction on the proof

tree. It is covered in detail in [67].

2.2 Completeness and Weakest-Precondition

Summary

• The weakest (liberal) precondition wlp is defined over a program c and a post-condition

formula Q • It is the weakest condition that must hold for an input state such that after

running c, the output state would satisfy Q • It was shown that wlp can be defined recursively

for many programming languages • This means that Hoare logic can prove any valid assertion,

given a complete proof system for the underlying assertion logic •

As Proposition 1 of the previous section shows, Hoare logic can only prove true

assertions. Is the converse also true—that every true assertion is provable in Hoare

logic? Clearly, this depends heavily on the nature of the assertion language: the logical

language used to describe P and Q. In particular, two important factors come into

play:

• Our ability to prove valid implications within the assertion logic; this is required

by the consequence rule.

• The capacity of the assertion language to express inductive loop invariants. This

is a subtle point and will be addressed later.

The completeness property of Hoare logic with respect to some assumed complete-

ness of the assertion language is known as relative completeness. To show it, we first

introduce a new concept.

Definition 2 (Weakest liberal precondition). The weakest liberal precondition of an

assertion Q with respect to a command c is defined as the set of states σ ∈ Σ where

every execution of c starting at state σ either diverges or terminates at a state σ′ such

that σ′ |= Q.

The term “liberal” refers to the possibility of divergence (non-termination) of c, and

is used to distinguish this term from a more strict variant where termination of c must

2.2. COMPLETENESS AND WEAKEST-PRECONDITION 15

wlp[[skip]](Q)
def
= Q

wlp[[x := a]](Q)
def
= Q[a/x]

wlp[[c1 ; c2]](Q)
def
= wlp[[c1]](wlp[[c2]](Q))

wlp[[if B then c1 else c2]](Q)
def
= [[B]] ∧ wlp[[c1]](Q) ∨
¬[[B]] ∧ wlp[[c2]](Q)

wlp[[while B {I} do c]](Q)
def
= I

Table 2.2: Standard rules for computing weakest liberal preconditions for While-
language procedures annotated with loop invariants and postconditions. I denotes
the loop invariant, [[B]] is the semantics of Boolean program conditions, and Q is the
postcondition — all are expressed as first-order formulas.

be preserved. In the remainder of the text, we omit the word “liberal” and just write

“weakest precondition”, but the intention is always “weakest liberal precondition”.

For the claim of relative completeness we would like to show that wlp[[c]](Q) is

expressible in the logical language of assertions. If the assertion language is closed

under Boolean connectives and syntactic substitution, and if the command c is loop-

free, then this is certainly the case, and explicit formulas for constructing it are given

in the first four lines of Table 2.2. Winskell [67] shows that for such c, it holds that

|= {P}c{Q} if and only if |= P → wlp[[c]]Q.

Inductive Loop Invariants

In the presence of loops, where the length of the program’s execution is not bounded,

the situation becomes more difficult, since these programs require reasoning on the

sets of reachable states from an arbitrary starting state—which may be infinite. This

usually requires the use of high-order logic. A common alternative is to require that

loops are annotated with an appropriate inductive loop invariant .

A loop invariant is a condition that holds at the beginning and at the end of

every loop iteration. An inductive loop invariant is a loop invariant with an additional

restriction: satisfaction of the invariant at iteration i of the loop (for i > 1) has to

follow solely from its satisfaction at iteration i− 1; it cannot be based on any previous

iterations.

To illustrate this subtle, but crucial, difference, consider the example program:

X := 2 ; while Y > 0 do (X := 2X − 1 ; Y := Y − 1)

16 CHAPTER 2. PRELIMINARIES

Regardless of the value of Y , it is easy to see that X > 0 is a valid loop invariant.

X is about to receive the sequence of values 2, 3, 5, 9, . . . until at some point the loop

terminates. However, it is not an inductive invariant: for example, if at iteration i− 1,

X would have the value 1
2 , then at iteration i the value will become 0, violating the

condition. The corresponding inductive invariant needed to show that X is positive in

this case would be X > 1 (since X > 1 =⇒ 2X − 1 > 1).

Assume that all loops are annotated with appropriate inductive loop invariants.

Then, for each loop, apply the Hoare rule for while:

{P ∧ [[B]]}c{P}
{P}while B do c{P ∧ ¬[[B]]}

with P as the inductive loop invariant. This effectively splits the given program

into loop-free segments, for which we know Hoare logic to be complete, so we can finish

the proof as before.

For example, take the previous program with the following annotations:

{true} X := 2 ; {X > 1} while Y > 0 do (X := 2X − 1 ; Y := Y − 1) {X > 0}

Here, the pre-condition is true, the post-condition is X > 0, and the loop invariant

is X > 1. Thus the proof obligations are

(i) {true} X := 2 {X > 1}

(ii) {X > 1 ∧ Y > 0} X := 2X − 1 ; Y := Y − 1 {X > 1}

(iii) {X > 1 ∧ ¬(Y > 0)} skip {X > 0}

which may be discharged by proving the following implications in the theory of real

numbers:

(i) true→ wlp[[X := 2]](X > 1)

(ii) (X > 1 ∧ Y > 0)→ wlp[[X := 2X − 1 ; Y := Y − 1]](X > 1)

(iii) (X > 1 ∧ ¬(Y > 0))→ wlp[[skip]](X > 0)

2.3. DECIDABILITY 17

We can now state a completeness theorem for Hoare logic.

Theorem 1 (Hoare logic—completeness). Let c be a While-language command where

every loop is annotated with a loop invariant. If |= {P}c{Q} and, furthermore, all loop

invariants are valid and inductive, then there exists a Hoare proof for {P}c{Q}.

2.3 Decidability

Summary

• Transforming a Hoare triple into a formula also provides the other direction • If a logic has a

decision procedure for valid formulas, one can also decide the validity of a Hoare triple • Thus

effectively checking whether a program meets its specification • In many cases, you can get a

counterexample when the specification is violated • Examples of decidable logical languages

include Persburger arithmetic, real arithmetic, uninterpreted functions, and EPR •

Generating Verification Conditions Table 2.3 provides the standard rules for

computing first-order verification conditions corresponding to Hoare triples using weak-

est liberal preconditions. An auxiliary function VCaux is used for defining the set of

side conditions for the loops occurring in the program. These rules are standard and

their soundness and relative completeness have been discussed elsewhere (e.g. see [20]).

The rule for while loop is split into two parts: in the wlp we take just the loop

invariant, where VCaux asserts that loop invariants are inductive and implies the post-

condition for each loop.

Verification conditions allow to completely reduce checking the validity of (anno-

tated) partial correctness assertions to checking validity of logical formulas. To check

whether |= {P}c{Q} as a partial correctness assertion, under the assumption that

the inductive loop invariants have been chosen correctly, it is enough to verify that

|= VCgen({P}c{Q}) as a logical statement.

Remark. The rules may generate formulas of exponential size due to the extensive use

of syntactic substitution. Another solution can be implemented either by using a set

of symbols for every program point, or through the method of Flanagan and Saxe [18].

Such size optimization techniques are not discussed in this thesis.

18 CHAPTER 2. PRELIMINARIES

VCaux(S,Q)
def
= ∅ (for any atomic command S)

VCaux(S1;S2, Q)
def
= VCaux(S1,wlp[[S2]](Q)) ∪VCaux(S2, Q)

VCaux(if B then S1 else S2, Q)
def
= VCaux(S1, Q) ∪VCaux(S2, Q)

VCaux(while B {I} do S,Q)
def
= VCaux(S, I) ∪

{I ∧ [[B]]→ wlp[[S]](I), I ∧ ¬[[B]]→ Q}
VCgen({P}S{Q}) def

=
(
P → wlp[[S]](Q)

)
∧∧VCaux(S,Q)

Table 2.3: Standard rules for computing VCs using weakest liberal preconditions for
procedures annotated with loop invariants and pre/postconditions. The rules for com-
puting wlp[[]] appear in Table 2.2. The auxiliary function VCaux accumulates a con-
junction of VCs for the correctness of loops.

Of course, the problem of checking whether a Hoare triple is valid is undecidable

(for example, |= {true}c{false} iff c never terminates), so we can not hope to solve

it by reducing it to checking validity of logical formulas. Indeed, checking whether

a formula is valid is also undecidable in general; for first-order logic, the problem is

recursively enumerable (since one can enumerate all possible proofs and check them),

but not recursive. For first-order logic over finite structures, the problem is not even

r.e., and there is no complete proof system.

However, some subsets of logic are nicely behaved, in the sense that the problem

of checking whether a given formula is valid is decidable. Consequently, if one is able

to define a language with axiomatic semantics and corresponding wlp[[]] such that the

verification conditions are defined in such a logic, then the verification problem for

the set of programs expressible in that language becomes decidable by reduction to

checking of logical validity.

We give a few examples of decidable logics:

• Presburger arithmetic is the logic of natural numbers with only addition. The

language contains the constants 0 and 1, and the binary operator +, from which

all the natural numbers can be constructed. The only relation symbol is = for

equality. This is enough to express linear equations over natural numbers, as

multiplication by a natural constant can be expressed by successive applications

of +.

• Real arithmetic contains the real constants 0 and 1, equality, an order relation

≤, and the operations +, −, ·. It was shown by Tarski that the theory of real

closed fields can be axiomatized in first-order logic. Furthermore, this theory

2.4. EFFECTIVELY-PROPOSITIONAL LOGIC 19

admits quantifier elimination, so the problem is still decidable if the formulas

have quantifiers, even though the complexity becomes non-elementary.

• Quantifier-free with uninterpreted functions is the logic where languages are al-

lowed to contain any function and relation symbols, and where these symbols

may have any interpretation (in contrast with +, for example, which must be

interpreted as addition in all structures); the only designated symbol is = for

equality. Formulas must be quantifier-free and contain no variable symbols.

• Effectively-propositional logic is a subset of relational logic. It is introduced in

the next sub-section.

2.4 Effectively-propositional Logic

Summary

• Careful use of quantifiers leads to a decidable fragment of first-order logic • Avoid function

symbols and preserve a quantifier prefix of ∃∗∀∗ • For this family, it is known that satisfiablity

is reducable to Boolean SAT • Hence, it is also decidable • Despite the exponential complexity,

modern solvers solve it efficiently in practice •

In propositional logic, atomic formulas are just predicate symbols. When viewed as a

subset of first-order logic, it means that all predicates are nullary— take no arguments—

and therefore there are no terms: no function symbols, no variables, and no quantifiers.

The satisfiability problem for propositional formulas is widely known as SAT and is

NP-complete.

A slight extension would be to allow arbitrary arity of the predicates, and have

nullary function symbols (constants). Formulas are closed by nature and take the form

of a Boolean combination of shallow atoms such as:

ϕ = P (a)→ P (b) ∨Q(c, a)

It is easy to convince oneself that if this formula has a model, then it also has

one where a, b, and c are all different elements of the domain. This suggest that we

20 CHAPTER 2. PRELIMINARIES

substitute every ground atom with a fresh nullary predicate symbol and get:

ϕ′ = Pa → Pb ∨Qca

Which is equi-satisfiable to the previous one; that is, ϕ′ is satisfiable iff ϕ is satisfi-

able. So, we have effectively reduced the satisfiability of ground formulas in this slight

extension to regular Boolean SAT.

A more interesting extension involves variables and quantification. Consider a lan-

guage like the one used to express ϕ, but with variables and with a quantifier prefix

(that is, all the quantifiers must occur at the beginning of the formula) of only universal

quantifiers.

ψ = ∀α : P (a)→ P (α) ∨Q(c, α)

For this type of formula we employ a basic theorem of first-order logic, known as

Herbrand’s theorem.

Definition 3. Let Γ(x) be a quantifier-free formula over a vocabulary Σ with free

variables x = x1, . . . , xk. A closed instance of Γ is any closed formula Γ(t) where

t = t1, . . . , tk are ground terms over Σ.

Theorem 2 (Herbrand’s Theorem). Let ψ = ∀x : Γ(x). Then ψ is satisfiable iff every

finite set of closed instances of Γ is satisfiable as a propositional formula—i.e., with ev-

ery atomic formula substituted by a distinct predicate symbol (and multiple occurrences

of the same atom substituted by the same symbol).

In the above example of ψ, we have Γ(α) = P (a) → P (α) ∨ Q(c, α). Since the

vocabulary contains only two constants and no other functions, the closed instances of

Γ are only Γ(a) and Γ(c):

P (a)→ P (a) ∨Q(c, a)

P (a)→ P (c) ∨Q(c, c)

Now these are ground formulas similar to ϕ before, so again these formulas can be

reduced to an equi-satisfiable propositional theory:

Pa → Pa ∨Qca

Pa → Pc ∨Qcc

2.4. EFFECTIVELY-PROPOSITIONAL LOGIC 21

Clearly this theory is satisfiable, e.g. by the assignment {P1, P2, Q1, Q2 7→ false}.
This means that ψ is also satisfiable. To construct its model, we take the Herbrand

universe, which is the set of terms over the vocabulary Σ, in this case {a, c}, and make

it the domain; then we set the truth values of the predicates according to the satisfying

Boolean assignment:

P

a false

c false

Q a b

a X X

c false false

The X’s are “don’t-care” values, which may be either true or false.

Using Herbrand’s theorem, the satisfiability of every universal formula over a re-

lational vocabulary (with only predicate symbols, constants, and variables) reduces

to SAT. In fact, for any formula of the form ∃x∀y : Γ(x, y) we can apply first-order

Skolemization, introducing only new constants, because the existential variables x oc-

cur only on the outer level and are not nested inside universals. This means that the

vocabulary remains relational, and we can carry on with the reduction.

Definition 4 (EPR). Formulas of the form ∃x∀y : Γ(x, y) are called Effectively Propo-

sitional formulas.

The name comes from the fact that they can be simulated, as shown above, by a

propositional theory.

We should note that the size of the reduction is clearly exponential. The exponent

comes from the number of nested universal quantifiers in the formula, since every

universally quantified variable has to be instantiated with all possible constants. Hence,

if a large formula can be factored into many small formulas with a small degree of

nesting, this exponent can be reduced.

Logic with Equality

The reduction to SAT discusses only uninterpreted relation symbols. It is possible to

add a designated equality relation = by the usual technique of encoding the equality

22 CHAPTER 2. PRELIMINARIES

axioms:

∀α : α = α (reflexivity)

∀α, β : α = β → β = α (symmetry)

∀α, β, γ : α = β ∧ β = γ → α = γ (transitivity)

∀x1, x2 : x1 = x2 → P (x1)↔ P (x2)

for every predicate symbol P ∈ Σ

where x1, x2 are lists of distinct variables with length corresponding to the arity of P .

The formula x1 = x2 is a shorthand for a conjunction of pointwise equalities.

Since the theory of equality is relational and universal, it can be added to any

EPR formula and the reduction explained above would work just the same. The only

difference is that to construct a model where the interpretation of = is indeed equality,

some elements need to be merged; for example, if we get the following truth table for

=:

= a b c

a true false false

b false true true

c false true true

then the elements b and c should be merged, because b = c holds in the model. The

axioms of equality make sure that = is always interpreted as a congruence, and that

the merging is always possible because substituting b for c in any predicate results in

the same truth value.

Implementation in SAT/SMT Solvers

Seemingly, using the aforementioned reduction to solve the satisfiability problem for

EPR requires a preprocessing phase where all ground instances are generated. Since

there are exponentially many such instances—where the exponent is a quantifier

“depth”, that is, how many universal quantifiers are nested—such preprocessing would

inevitably require exponential time even in the best case. Modern first-order solvers,

however, manage to avoid this thanks to the fact that in many cases, only a small

number of these is needed to find a refutation (and so prove that the formula is un-

satisfiable). The SMT solver Z3 [12] uses model-based quantifier instantiation (MBQI,

2.4. EFFECTIVELY-PROPOSITIONAL LOGIC 23

explained e.g. in [23]) where variables in quantifiers are instantiated according to par-

tial candidate models for the input formula. This heuristic results in much less than

the exponential number of actual ground instances of the input formula, and leads to

very good running times in practice.

In the presence of an underlying theory, such as arithmetic or arrays, the power

of SMT (satisfiability modulo theory) solvers can be combined to solve even more

complicated formulas. Z3 also supports this form of reasoning.

Chapter 3

Pointer Manipulations

This chapter is based on the results published in [36].

3.1 Recursive Data Structures: The Need for Transitive

Closure

Summary

• The concept of pointers in data structures lends itself to first-order axiomatization • A pointer

field is thought of as a function mapping one object to another • Problems arise when the two

objects are of the same kind • The function can then be applied multiple types • Interesting

properties require reasoning about paths between objects, thus naturally requiring the use of

transitive closure •

Composite data structures are a desirable feature of a programming language. They

allow the programmer to reuse code by combining multiple entities and to define a hi-

erarchy of objects. For example, an object representing a book may contain a reference

to an object representing an author.

class Author {
String firstName;

String lastName;

}

class Book {

24

3.1. RECURSIVE DATA STRUCTURES: THE NEED FOR TRANSITIVE CLOSURE25

String title;

Author author;

}

In this example, every Book instance is linked to at most one Author instance. The

heap space may then be described as two disjoint sets of objects, Book and Author ,

and a mathematical function author : Book → Author representing the pointer field.

In this case, if there are no more types defined, then a program having k variables of

type Author and m variables of type Book can manipulate at most k + 2m distinct

objects at any given time.

The situation becomes more complicated with the introduction of collections, which

require the use of recursive types. For example, a typical definition of a list looks like

the following:

class Node {
String data;

Node next;

}

Fig. 3.1 presents a Java program for in situ reversal of a linked list. It is a type-safe

version of Fig. 1.1. Every node of the list has a next field that points to its successor

node in the list. Thus, we can model next as a function next : Node → Node that

maps a node in the list to its successor. Because we are going to use this function a

lot in this chapter and the following, we employ the abbreviation n for next in order

to keep formulas short and readable. Now, assume, for simplicity of the example, that

the program reverse manipulates the entire heap, that is, the heap consists of just the

nodes in the linked list, where the head of the input list is given as a formal parameter

h. To describe the heap that is reachable from h, we use the formula

∀α : h〈n∗〉α (3.1)

Where the special notation 〈n∗〉 means zero or more applications of n. In this case,

since the range of this function is the same as its domain, an unbounded number of

26 CHAPTER 3. POINTER MANIPULATIONS

Node reverse(Node h) {
0: Node c = h;

1: Node d = null;

2: while 3: (c != null) {
4: Node t = c.next;

5: c.next = null;

6: c.next = d;

7: d = c;

8: c = t;

}
9: return d;

}

Figure 3.1: A simple Java program that reverses a list in-place.

I0
def
= ac ∧ ∀α : h〈n∗〉α

I3
def
= ac ∧ ∀α, β 6= null :

{
α〈n∗〉β ⇔ β〈n∗0〉α d〈n∗〉α
c〈n∗〉α ∧ (α〈n∗〉β ⇔ α〈n∗0〉β) ¬d〈n∗〉α

}
I9 = ac ∧ ∀α : d〈n∗〉α ∧ (∀α, β : α〈n∗〉β ⇔ β〈n∗0〉α)

Table 3.1: AFR invariants for reverse (shown in Fig. 3.1). Note that n,n0 are function
symbols while α〈n∗〉β, α〈n∗0〉β are atomic propositions on the reachability via directed
paths from α to β consisting of n, n0 edges.

elements can be accessed by repeated application — even for a program with only one

variable.

We also assume, for this chapter, that the heap is acyclic, i.e., the formula ac below

is a precondition of reverse.

ac
def
= ∀α, β : α〈n∗〉β ∧ β〈n∗〉α→ α = β (3.2)

Table 3.1 shows the invariants I0, I3 and I9 that describe a precondition, a loop

invariant, and a postcondition of reverse. They are expressed in AFR which permits use

of function symbols (e.g. n) in formulas only to express reachability (cf. n∗); moreover,

quantifier alternation is not permitted. The notation

 f b

g ¬b

 is shorthand for the

conditional (b ∧ f) ∨ (¬b ∧ g).

Note that I3 and I9 refer to n0, the value of n at procedure entry. The postcondi-

tion I9 says that reverse preserves acyclicity of the list and updates n so that, upon

procedure termination, the links of the original list have been reversed. It also says

3.2. DETERMINISTIC TRANSITIVE CLOSURE IN FOL 27

that all the nodes are reachable from d in the reversed list. I3 says that at loop entry

c is non-null and moreover, the original list is partially reversed. That is, the part of

the list reachable from d has its links reversed wrt. the original list, whereas any node

not reachable from d is reachable from c and keeps its original link.

The formulas represented so far are not first-order, due to the use of 〈n∗〉. This

puts these formulas in the class FOTC of f irst-order logic with transitive closure. This

is a very rich logic, which is undecidable [34].

Observe that I3 and I9 only refer to n∗ and never to n alone. A more natural way

to express I9 would be

I ′9
def
= ac ∧ ∀α : d〈n∗〉α ∧ (∀α, β : n(α) = β ⇔ n0(β) = α) (3.3)

But this mix of n∗ and n is risky in this context. We shall immediately see why.

3.2 Deterministic Transitive Closure in FOL

Summary

• It is known that FOTC cannot be embedded fully in first-order logic • Some properties of

transitive closure may be written as axioms, but the result would never be complete • However,

when the transitive closure is of a f unction f (in which case it is referred to as deterministic

transitive closure, DTC), there is some hope • By carefully expressing properties of f∗, while

removing the explicit symbol f from the signature, a precise axiomatization is obtained • Still

— it is only complete w.r.t. finite structures, hence a finite-model property is required to ensure

correctness •

A natural approach to expressing reachability with the transitive closure operator :

Definition 5 (TC). Let ϕ(x, x′) be a first-order formula with two free variables x

and x′. We write (TCx,x′ ϕ) to denote the reflexive, transitive closure of the binary

relation expressed by ϕ. Let FOTC be the logic comprising of all first-order formulas

with arbitrary occurrences of TC.

It is easy to see that 〈n∗〉 is but a special case of TC:

s〈n∗〉t ≡
(
TCxy n(x) = y

)
(s, t)

28 CHAPTER 3. POINTER MANIPULATIONS

FOTC is strictly more expressive than first-order logic. As a particular, fundamental

example, it is well-known that, according to the compactness theorem of first-order

logic, the set N of natural numbers is not first-order expressible. This means that

for every first-order theory whose theorems are valid over N, there must also be non-

standard models. Indeed, from the Löwenheim-Skolem theorem, it follows that it would

have models of any infinite cardinality. In contrast, the following FOTC theory [2]:

∀x : S(x) 6= 0

∀x, y : S(x) = S(y)→ x = y

∀x : (TCxy S(x) = y)(0, x)

∀x : x+ 0 = x

∀x : x+ S(y) = S(x+ y)

(3.4)

has only models that are isomorphic to N, where S is interpreted as the successor

function and + is interpreted as addition. Notice that (TCxy S(x) = y) evaluates to

≤, the less-than-or-equals relation. The axiomatization would not be complete if we

replaced it by the standard equivalent x ≤ y ⇔ ∃z : x+ z = y, which is first-order.

It has been shown, however, that adding TC, even with various restrictions of the

first-order language, leads immediately to an undecidable logic (that is, the satisfiabil-

ity/validity check for formulas in this language is undecidable); this can be shown by

reducing the satisfiability problem of universal FOTC formulas to tiling problems [33].

Attempts have been made to use first-order reasoning to mechanically prove prop-

erties of formulas with transitive closure. [44] suggests that we add the axiom

T1[f] ≡ ∀u, v : ftc(u, v)↔ (u = v) ∨ ∃w : f(u,w) ∧ ftc(w, v)

Where ftc is a new binary relation symbol used to denote the transitive closure of

an existing binary relation whose symbol is f . While sound, it does not suffice to prove

many valid FOTC-theorems, and an induction principle is required, which goes beyond

first-order logic. This is not surprising, since FOTC could never be fully axiomatized

via a first-order theory.

We therefore try to find a fragment of FOTC that would be expressive enough to

describe interesting properties of pointer data structures, yet not too powerful as to

3.2. DETERMINISTIC TRANSITIVE CLOSURE IN FOL 29

become undecidable. As a first step to exploring the decidability of formulas containing

the transitive closure operator, we define names for several limited classes of formulas.

Definition 6. Let t1, t2, . . . tn be logical variables or constant symbols. We define four

types of atomic propositions:

1. true / false

2. t1 = t2 denoting equality

3. R(t1, t2, . . . , tr) denoting the application of relation symbol R of arity r

4. t1〈f∗〉t2 denoting the existence of k ≥ 0 such that fk(t1) = t2, where f0(t1)
def
= t1,

and fk+1(t1)
def
= f(fk(t1))

We say that t1〈f∗〉t2 is a reachability constraint between t1 and t2 via the func-

tion f .

• Quantifier-free formulas with Reachability (QFR) are Boolean combina-

tions of such formulas without quantifiers.

• Alternation-free formulas with Reachability (AFR) are Boolean combina-

tions of such formulas with additional quantifiers of the form ∀∗:ϕ or ∃∗:ϕ where

ϕ is a QFR formula.

• Forall-Exists Formulas with Reachability (AER) are Boolean combinations

of such formulas with additional quantifiers of the form ∀∗∃∗:ϕ where ϕ is a QFR

formula.

In particular, QFR ⊂ AFR ⊂ AER.

Inverting Reachability Constraints

A crucial step in moving from arbitrary FOTC formulas to AER or AFR formulas

is eliminating explicit uses of functions such as the “next” function, n. While this

may be difficult for a general graph, we show that it can be done for programs that

manipulate singly- and doubly-linked lists. In this section, we informally demonstrate

this elimination for acyclic lists. We observe that if n is acyclic, we can construct n+

from n∗ by

α〈n+〉β ⇔ α〈n∗〉β ∧ α 6= β (3.5)

30 CHAPTER 3. POINTER MANIPULATIONS

ΓlinOrd
def
= ∀α, β : n̂∗(α, β) ∧ n̂∗(β, α)↔ α = β ∧
∀α, β, γ : n̂∗(α, β) ∧ n̂∗(β, γ)→ n̂∗(α, γ) ∧
∀α, β, γ : n̂∗(α, β) ∧ n̂∗(α, γ)→ (n̂∗(β, γ) ∨ n̂∗(γ, β))

Table 3.2: ΓlinOrd says all points reachable from a given point are linearly ordered.

Also, since n is a function, the set of nodes reachable from a node α is totally

ordered by n∗. Therefore, n(α) is the minimal node in this order that is not α. The

minimality is expressed using extra universal quantification in

n(α) = β ⇔ α〈n+〉β ∧ ∀γ : α〈n+〉γ → β〈n∗〉γ (3.6)

This “inversion” shows that n can be expressed using AFR formulas. However,

caution must be practiced when using the elimination above, because it may introduce

unwanted quantifier alternations (see Section 6.1.1). Nevertheless our experiments

demonstrate that in a number of commonly occurring examples, the alternation can be

removed or otherwise avoided, yielding an equivalent AER/AFR formula.

Decidability of AER

Reachability constraints written as α〈n∗〉β are not directly expressible in FOL. How-

ever, AER formulas can be reduced to first-order ∀∗∃∗ formulas without function sym-

bols (which are decidable; see Section 2.4) in the following fashion: Introduce a new

binary relation symbol n̂∗ with the intended meaning that n̂∗(α, β) ↔ α〈n∗〉β. Even

though n̂∗ is an uninterpreted relation, we will consistently maintain the fact that it

models reachability. Every formula ϕ is translated into

ϕ′ def= ϕ[n̂∗(t1, t2)/t1〈n∗〉t2] (3.7)

For example, the acyclicity relation shown in Eq (3.2) is translated into:

âc
def
= ∀α, β : n̂∗(α, β) ∧ n̂∗(β, α)→ α = β (3.8)

We add the consistency rule ΓlinOrd shown in Table 3.2, which requires that n̂∗ is

a total order. This leads to the following propositions:

Proposition 2 (Simulation of AER). Consider an AER formula ϕ over vocabulary V =

3.2. DETERMINISTIC TRANSITIVE CLOSURE IN FOL 31

〈C, {n},R〉. Let ϕ′ def
= ϕ[n̂∗(t1, t2)/t1〈n∗〉t2]. Then ϕ′ is a FO formula over vocabulary

V ′ = 〈C, ∅,R∪ {n̂∗}〉 and ϕ is simulated by ΓlinOrd → ϕ′ where ΓlinOrd is the formula

in Table 3.2.

By “simulate” we mean that the constructed first-order formula is valid iff the

given AER formula ϕ is valid. Appendix A.1 contains a proof of this proposition.

The proof constructs real models from “simulated” FO models using the reachability

inversion (Eq (3.6)).

Finite Model Property One thing to point out regarding the proof of Proposition 2,

is that it relies on the finiteness of the domain to reconstruct n from n̂∗. To illustrate,

consider the domain Q of rational numbers with the order ≤. This interpretation

satisfies all the properties due to ΓlinOrd, but for every two numbers x ≤ y, x 6= y,

there exists a number z such that x ≤ z ≤ y, z 6= x, z 6= y. In this case no element has

a successor, and we cannot use Eq (3.6) to reconstruct a function n such that n∗ = ≤.

This is the main reason for requiring the ∀∗∃∗ quantifier prefix for our formulas; without

it, not only does the logic become undecidable, but it is also not complete: not every

model of the “simulated” formula has a corresponding model of the original formula in

AER.

Expressivity of AER

Although Æ is a relatively weak logic, it can express interesting properties of lists. Typ-

ical predicates that express disjointness of two lists and sharing of tails are expressible

in Æ. For example, for two singly-linked lists with headers h, k, disjoint(h, k) ↔ ∀α :

α 6= null→ ¬(h〈n∗〉α ∧ k〈n∗〉α).

Another capability still within the power of Æ is to relax the earlier assumption

that the program manipulates the whole memory. We describe a summary of reverse

on arbitrary acyclic linked lists in a heap that may contain other linked data structures.

Realistic programs obey ownership requirements, e.g., the head h of the list owns the

input list which means that it is impossible to reach one of the list nodes without

passing through h. That is,

∀α, β : α 6= null→ (h〈n∗〉α ∧ β〈n∗〉α)→ h〈n∗〉β (3.9)

32 CHAPTER 3. POINTER MANIPULATIONS

This requirement is conjoined to the precondition, ac, of reverse. Its postcondition is

the conjunction of ac, the fact that h0 and d reach the same nodes, (i.e., ∀α : h0〈n∗0〉α↔
d〈n∗〉α) and

∀α, β : α〈n∗〉β ↔

β〈n∗0〉α ∧ β 6= null h0〈n∗0〉α ∧ h0〈n∗0〉β

α〈n∗0〉β ¬h0〈n∗0〉α ∧ ¬h0〈n∗0〉β

false h0〈n∗0〉α ∧ ¬h0〈n∗0〉β

α〈n∗0〉h0 ∧ β = h0 ¬h0〈n∗0〉α ∧ h0〈n∗0〉β

(3.10)

Here, the bracketed formula should be read as a four-way case, i.e., as disjunction of

the formulas h0〈n∗0〉α ∧ h0〈n∗0〉β ∧ β〈n∗0〉α ∧ β 6= null; ¬h0〈n∗0〉α ∧ ¬h0〈n∗0〉β ∧ α〈n∗0〉β;

h0〈n∗0〉α∧¬h0〈n∗0〉β∧false; and, ¬h0〈n∗0〉α∧h0〈n∗0〉β∧α〈n∗0〉h0∧β = h0. Intuitively, this

summary distinguishes between the following four cases: (i) both the source (α) and the

target (β) are in the reversed list (ii) both source and target are outside of the reversed

list (iii) the source is in the reversed list and the target is not, and (iv) the source is

outside and the target is in the reversed list. Cases (i)–(iii) are self-explanatory. For

(iv) reachability can occur when there exists a path from α to h0 = β. Eq (3.10) is

a universal formula with 〈n∗0〉, so it is in AFR. In terms of [56], this means that we

assume that the procedure is cutpoint-free, that is, there are no pointers directly into

the middle of the list.

The more general case where arbitrary cutpoints occur requires more quantifiers. A

non-AFR formula also arises when we want to specify the behavior of this function in

this case (such an attempt is discussed in Section 6.1.2). We defer the issue of cutpoints

and handle it extensively in Section 5.

3.3 Updating Deterministic Transitive Closure

Summary

• The problem of view update is to maintain some view over a relation, while the underlying

relation changes • In context of TC, it means how paths change when edges are added or removed

• Recent results in descriptive complexity show that for DTC, the update is expressible in FOL

without quantifiers •

3.3. UPDATING DETERMINISTIC TRANSITIVE CLOSURE 33

Boston New York

Amherst

Philadelphia Pittsburgh

Baltimore

Figure 3.2: Binary relation P as a directed graph.

An interesting development comes from the field of data systems and databases.

It is not uncommon for a database application to need the use of transitive closure as

part of its functionality. A famous example is the trip planner application: a relation

(table) contains available transportation links between major cities or sites:

E =

from to

Boston New York

Boston Amherst

Amherst Pittsburgh

New York Philadelphia

Philadelphia Pittsburgh

Philadelphia Baltimore

E is a binary relation; for example, E(Boston,Amherst) (the column heads are

inessential). It can be conceptualized as a directed graph, as shown in Fig. 3.2. One may

then be interested in the following query: is there a path, using edges of E, from Boston

to Baltimore? Or, using logical notation, is the value of E∗(Boston,Baltimore) true?

Instead of having to scan the graph every time such a query needs to be answered, a

database can store an auxiliary table P containing all the pairs 〈x, y〉 such that E∗(x, y),

and then for every incoming query one look-up suffices.

Besides the space trade-off needed to store the table, which may be manageable,

there exists the conceptual and computational cost of keeping the auxiliary table P up

to date with respect to an ever-changing table E. Changes to E come in the form of

two operations: ins — insert a new pair, del – delete an existing pair.

It has been long known ([32]) that the updates required to P = E∗ in order to

34 CHAPTER 3. POINTER MANIPULATIONS

compensate for these operations on E, where E is acyclic (in the sense that there are

no cycles in the graph of Fig. 3.2) can be expressed by first-order formulas:

ins(a, b, E) : P ′(x, y) ≡ P (x, y) ∨
(
P (x, a) ∧ P (b, y)

)
del(a, b, E) : P ′(x, y) ≡ P (x, y) ∧

[
¬
(
P (x, a) ∧ P (b, y)

)
∨

∃u, v :
(
P (x, u) ∧ E(u, v) ∧ P (v, y)

∧ P (u, a) ∧ ¬P (v, a) ∧ (a 6= u ∨ b 6= v)
)]

(3.11)

The first equivalence in Eq (3.11) is very convenient as it describes a quantifier-free

correlation between P and P ′. The second one is a bit trickier:

• It uses an existential quantifier, which limits the context in which it may be used,

when the interest is AER formulas.

• It uses both P and E intermixed.

Fortunately, according to recent results in dynamic complexity ([28]), when the

relation E is deterministic—that is, at every given time, for every element x there is

at most one y such that E(x, y)— The definition for del can be greatly simplified (ins

is unchanged and is brought here again for completeness):

ins(a, b, E) : P ′(x, y) ≡ P (x, y) ∨
(
P (x, a) ∧ P (b, y)

)
del(a, b, E) : P ′(x, y) ≡ P (x, y) ∧ ¬

(
P (x, a) ∧ P (b, y)

) (3.12)

3.4 Extending wlp for Pointer Expressions in Linked Lists

Summary

• To handle programs with pointers, we need to address program statements involving pointers

•Writes are analogous to edge addition or deletion • Reads are edge traversals • This provides

axiomatic semantics for programs based on TC •

In this section we show how to express the weakest liberal preconditions of atomic

heap manipulating statements using AER formulas, for programs that manipulate

3.4. EXTENDING WLP FOR POINTER EXPRESSIONS IN LINKED LISTS 35

wlp[[x.n := null]](Q)
def
= Q[α〈n∗〉β ∧ (¬α〈n∗〉x ∨ β〈n∗〉x)/α〈n∗〉β]

wlp[[x.n := y]](Q)
def
= ¬y〈n∗〉x ∧

Q[α〈n∗〉β ∨ (α〈n∗〉x ∧ y〈n∗〉β)/α〈n∗〉β]

s〈n+〉t def
= s〈n∗〉t ∧ s 6= t

s〈n〉t def
= s〈n+〉t ∧ ∀γ : s〈n+〉γ → t〈n∗〉γ

wlp[[x := y.n]](Q)
def
= ∀α : x〈n〉α→ Q[α/x]

wlp[[x := new]](Q)
def
= ∀α :

(∧
p∈Pvar∪{null} ¬p〈n∗〉α

)
→ Q[α/x]

Table 3.3: Rules for computing weakest liberal preconditions for an extension of While-
language to support heap updates, memory allocation, and pointer dereference.

acyclic singly-linked lists. Table 3.3 shows standard wlp computation rules (top part)

and the corresponding rules for field update, field read and dynamic allocation (bottom

part).

Destructive Update. The correctness of the rule for destructive field update is

according to Eq (3.12). The statement x.n := y corresponds to ins, and x.n := null

corresponds to del. This latter one requires some adaptation because in the update rule

for del both ends of the deleted edge (a, b) are used, whereas the statement x.n := null

only explicates the source of the edge. Under the assumption that n is deterministic

and acyclic, though, the two are equivalent.

Notice the requirement ¬y〈n∗〉x in wlp[[x.n := y]](Q): it makes sure that an edge

(x, y) being added does not introduce a cycle into the list. So in fact, the wlp asserts

both the required post-condition Q and the absence of cycles throughout the run of

the program.

Field Dereference. The rationale behind the formula for wlp[[x := y.n]](Q) is that

if y has a successor, then the formula Q should be satisfied when x is replaced by this

successor. The natural way to specify this is using the Hoare assignment rule

wlp[[x := y.f]](Q)
def
= Q[f(y)/x]

However, this rule uses the function n and does not directly express reachability. Instead

we will construct a relation rf such that rf (α, β) ↔ f(α) = β and then use universal

36 CHAPTER 3. POINTER MANIPULATIONS

quantifications to “access” the value

wlp[[x := y.f]](Q)
def
= ∀α : rf (y, α)→ Q[α/x]

Since, for regular singly-linked lists, n is acyclic, we do not need a symbol for rn —

we can express rn in terms of n∗ as follows. First we observe that n(α) 6= α. Also, since

n is a function, the set of nodes reachable from α is totally ordered by n∗. Therefore,

similarly to Eq (3.6), we can express rn(α, β) as the minimal node β in this order where

β 6= α. Expressing minimality “costs” one extra universal quantification.

In Table 3.3, formula s〈n〉t expresses rn(s, t) in terms of n∗: s〈n〉t holds if and only if

there is a path of length 1 between s and t (source and target). Thus, y〈n〉α is satisfied

exactly when α = n(y). If y does not have a successor, then y〈n〉α can only be true if

α = null, hence Q should be satisfied when x is replaced by null, which is in line with

the concrete semantics.

Lemma 3 in Appendix A.1 shows that the formula Pn correctly defines n as a

relation.

Dynamic allocation. The rule wlp[[x := new]](Q) expresses the semantic uncertainty

caused by the behavior of the memory allocator. We want to be compatible with any

run-time memory management, so we do not enforce a concrete allocation policy, but

instead require that the allocated node meets some reasonable specifications, namely,

that it is different from all values stored in program variables, and that it is unreachable

from any other node allocated previously (Note: for programs with explicit free(),

this assumption relies on the absence of dangling pointers, which can be verified by

introducing appropriate assertions; this is, however, beyond the scope of this thesis).

It should be noted that the rules for field dereference and for allocation admit an

additional level of quantifier nesting. As explained in Section 2.4, the number of nested

universal quantifiers in an EPR formula contributes an exponential component to the

complexity of solving it. This is usually not a scalability problem because the program

is broken down into its loop-free code segments, which are typically small. If there is

a long loop-free block, it can be broken down by (manually) adding assertions in the

middle of it.

3.5. EMPIRICAL RESULTS 37

Closure of AER

Notice that Table 2.3 only uses weakest liberal preconditions in a positive context

without negations. Therefore, the following proposition (proof in Appendix A.2) holds.

Proposition 3 (VCs in AER). For every program S whose precondition P , postcon-

dition Q, branch conditions, loop conditions, and loop invariants are all expressed as

AFR formulas, VCgen({P}S{Q}) ∈ AER.

Optimization remark. The size of the VC can be significantly reduced if in-

stead of syntactic substitution, we introduce a new predicate symbol for each sub-

stituted atomic formula, axiomatizing its meaning as a separate formula. For example,

Q[P (α, β)/α〈n∗〉β] (where P is some formula with free variables α, β), can be written

more compactly as Q[r1(α, β)/α〈n∗〉β]∧ ∀α, β : r1(α, β)⇔ P (α, β), where r1 is a fresh

predicate symbol. When Q contains many applications of 〈n∗〉 and P is large, this may

save a lot of formula space; roughly, it reduces the order of the VC size from quadratic

to linear.

Another way to reduce the VC’s size is to define an entirely new set of symbols for

each program point. Our original implementation employed this optimization, which is

also nice for finding bugs — when the program violates the invariants the SAT solver

produces a counterexample with the concrete states at every program point. A similar

approach by [18] is also applicable in this case.

3.5 Empirical Results

Summary

• Implemented wlp[[]] for While-language with pointers • Proved validity of VC using Z3 as

solver for EPR • Our tool was able to verify a collection of naturally-occurring programs •

Details

We have implemented a VC generator, according to Tables Table 3.3 and Table 2.3,

in Python, and PLY (Python Lex-Yacc) is employed at the front-end to parse While-

language programs annotated with AFR assertions. The tool verifies that invariants

are in the class AFR and have reachability constraints along a single field (of the form

38 CHAPTER 3. POINTER MANIPULATIONS

f∗). The assertions may refer to the store and heap at the entry to the procedure via

x0, f0, etc. SMT-LIB v2 [5] standard notation is used to format the VC and to invoke

Z3. The validity of the VC can be checked by providing its negation to Z3. If Z3

exhibits a satisfying assignment then that serves as counterexample for the correctness

of the assertions. If no satisfying assignment exists, then the generated VC is valid,

and therefore the program satisfies the assertions.

The output model/counterexample (S-Expression), if one is generated, is then also

parsed, so that we have the truth table of n∗. This structure represents the state of the

program either at entry or at the beginning of a loop iteration: running the program

from this point will violate one or more invariants. To provide feedback to the user, n

is recovered by computing Eq (3.6), and then the pygraphviz tool is used to visualize

and present to the user a directed graph, whose vertices are nodes in the heap, and

whose edges are the n pointer fields.

We also implemented two procedures for generating VCs: the first one implements

the standard rules shown in Table 2.3 and a second one uses a separate set of (predicate

and constant) symbols per program point as a way to reduce the size of the generated

VC formula, as explained in the optimization remark above. We only report data on

the former since it exhibited shorter running times, through the latter may scale better.

Verification Examples

We have written AFR loop invariants and procedure pre- and postconditions for 13

example procedures shown in Table 3.5. These are standard benchmarks and what they

do can be inferred either from their names or from Table 3.4. We are encouraged by

the fact that it was not difficult to express assertions in AFR for these procedures. The

annotated examples and the VC generation tool are publicly available from bitbucket.

org/tausigplan/epr-verification.

For an example of the annotations used in the benchmarks, see Table 3.1, listing the

precondition, loop invariant, and postcondition of reverse. More examples are given in

Appendix B.

As expected, Z3 is able to verify all the correct programs. Table 3.5 shows statistics

for size and complexity of the invariants and the running times for Z3. The tests were

conducted on a 1.7GHz Intel Core i5 machine with 4GB of RAM, running OS X 10.7.5.

The version of Z3 used was 4.2, compiled for 64-bit Intel architecture (using gcc 4.2,

bitbucket.org/tausigplan/epr-verification
bitbucket.org/tausigplan/epr-verification

3.5. EMPIRICAL RESULTS 39

Node filter(Node h) {
Node i = h, j = null;

while (i != null) {
if (i!=h && C(i)) j.n := i.n;

else j := i;

i := i.n;

}
return h;

}

Figure 3.3: A simplified Java program that removes elements from a list according to
some predicate; for simplicity, we assume that the head is never removed.

LLVM). The solving time reported is wall clock time of the execution of Z3.

To give some account of the programs’ sizes, we observe the program summary

specification given as pre- and postcondition, count the number of atomic formulas in

each of them, and note the depth of quantifier nesting; all our samples had only universal

quantifiers. We did the same for each program’s loop invariant and for the generated

VCgen. Naturally, the size of the VC grows rapidly —approximately at a quadratic

rate. This can be observed in the result of the measurements for “SLL: merge”, where

(i) the size of the invariant and (ii) the number of if-branches and heap manipulating

statements, was larger than those in other examples. Still, the time required by Z3 to

prove that the VC is valid is short.

For comparison, the size of the formula generated by the alternative implementation,

using a separate set of symbols for each program location, was about 10 times shorter

— 239 atomic formulas. However, Z3 took a significantly longer time, at 1357ms. We

therefore preferred to use the first implementation.

Thanks to the fact that FOL-based tools, and in particular SAT solvers, permit

multiple relation symbols we were able to express ordering properties in sorted lists,

and so verify order-aware programs such as “insert” and “merge”. This situation can

be contrasted with tools like Mona ([39],[27]) which are based on monadic second-order

logic, where multiple relation symbols are disallowed.

Composing Procedure Summaries

Additionally, we performed experiments in composing summaries of filter (Fig. 3.3) and

reverse (Fig. 3.1). In this case, we wrote the formulas manually and ran Z3 on them,

to get a proof of the validity of the equivalences. We found that AFR-postconditions

40 CHAPTER 3. POINTER MANIPULATIONS

of procedure summaries can be sequentially composed for this purpose.

Illustrating reverse(reverse h) = h. Let n∗1 denote the reachability after running

the inner reverse, and let n∗2 denote the reachability after running the outer reverse.

We can express the equivalence of reverse(reverse h) and h using the following AFR

implication:

(∀α, β : α〈n∗1〉β ⇔ β〈n∗0〉α) ∧ (∀α, β : α〈n∗2〉β ⇔ β〈n∗1〉α)

=⇒ ∀α, β : α〈n∗2〉β ⇔ α〈n∗0〉β
(3.13)

The second conjunct of the implication’s antecedent describes the effect of the inner

reverse on the initial state while the third conjunct describes the effect of the outer

reverse on the state resulting from the first. The consequent of the implication states

that the initial and final states are equivalent.

Illustrating filter(C, reverse(h)) = reverse(filter(C, h)). The program filter takes a

unary predicate C on nodes, and a list with head h, and returns a list with all nodes

satisfying C removed. The postcondition of filter is: ∀α, β : α〈n∗〉β ⇔ ¬C(α)∧¬C(β)∧
α〈n∗0〉β. It says that β is reachable from α in the filtered list provided neither α nor

β satisfies C and β was reachable from α initially. We show that the equivalence

of filter(C, reverse(h)) and reverse(filter(C, h)) can be expressed using an AFR-

theorem:

(∀α, β : α〈n∗1〉β ⇔ β〈n∗0〉α) ∧

(∀α, β : α〈n∗2〉β ⇔ ¬C(α) ∧ ¬C(β) ∧ α〈n∗1〉β) ∧

(∀α, β : α〈n∗1′〉β ⇔ ¬C(α) ∧ ¬C(β) ∧ α〈n∗0〉β) ∧

(∀α, β : α〈n∗2′〉β ⇔ β〈n∗1′〉α)

=⇒

∀α, β : α〈n∗2〉β ⇔ α〈n∗2′〉β

Here n∗1 denotes the reachability after running reverse on the input list (first conjunct

of the implication’s antecedent) and n∗2 denotes the reachability after running filter on

this reversed list (second conjunct). Similarly n∗1
′ denotes the reachability after running

filter on the input list (third conjunct) and n∗2
′ denotes the reachability after running

3.5. EMPIRICAL RESULTS 41

SLL: insert — Adds a node into a sorted list, preserving order.

SLL: find — Locates the first item in the list with a given value.

SLL: last — Returns the last node of the list.

SLL: merge — Merges two sorted lists into one, preserving order.

SLL: swap — Exchanges the first and second element of a list.

DLL: fix — Directs the back-pointer of each node towards the pre-
vious node, as required by data structure invariants.

DLL: splice — Splits a list into two well-formed doubly-linked lists.

Table 3.4: Description of some linked list manipulating programs verified by our tool.

Node insert(Node h, Node e) {
Node i = h, j = null;

while (i != null && e.val >= i.val) {
j = i; i = i.n;

}
if (j != null) { j.n = e; e.n = i; }
else { e.n = h; h = e; }
return h;

}

v v

v

n

ih

e

Figure 3.4: Sample counterexample generated for a buggy version of insert for a
sorted list. Here, the loop invariant required that ∀α : (h〈n∗〉α ∧ ¬i〈n∗〉α) → α <val e
(where <val is an ordering on nodes according to their values), but the loop condition
is true, therefore loop will execute one more time, violating this.

reverse on this filtered list (fourth conjunct). The consequent of the implication states

that the reachability after performing the first execution path (first reverse, then fil-

ter) is equivalent to that after performing the second execution path (first filter, then

reverse).

Buggy Examples

We also applied the tool to erroneous programs and programs with incorrect assertions.

The results, including run-time statistics and formula sizes, are reported in Table 3.6.

In addition, we measured the size of the model generated, by observing the size of the

generated domain—which reflects the number of nodes in the heap. As expected, Z3

was able to produce a concrete counterexample of a small size. Since these are slight

variations of the correct programs, size and running time statistics are similar.

An example of generated output when a program fails to verify can be seen, for the

insert program, in Fig. 3.4. The tool reports, as part of its output, that a counterex-

ample occurs when j = null and h.val = i.val = e.val.

42 CHAPTER 3. POINTER MANIPULATIONS

Benchmark

Formula size Solving

P,Q I VC time

∀ # ∀ # ∀ (Z3)

SLL: reverse 2 2 11 2 133 3 57ms

SLL: filter 5 1 14 1 280 4 39ms

SLL: create 1 0 1 0 36 3 13ms

SLL: delete 5 0 12 1 152 3 23ms

SLL: deleteAll 3 2 7 2 106 3 32ms

SLL: insert 8 1 6 1 178 3 17ms

SLL: find 7 1 7 1 64 3 15ms

SLL: last 3 0 5 0 74 3 15ms

SLL: merge 14 2 31 2 2255 3 226ms

SLL: rotate 6 1 - - 73 3 22ms

SLL: swap 14 2 - - 965 5 26ms

DLL: fix 5 2 11 2 121 3 32ms

DLL: splice 10 2 - - 167 4 27ms

Table 3.5: Implementation Benchmarks; P,Q — program’s specification given as pre-
and post-condition, I — loop invariant, VC — verification condition, # — number of
atomic formulas, ∀ — quantifier nesting depth

Benchmark Nature of Defect

Formula size Solving C.e.

P,Q I VC time size

∀ # ∀ # ∀ (Z3) (|L|)
SLL: find null pointer dereference. 7 1 7 1 64 3 18ms 2

SLL: deleteAll Loop invariant in annota-
tion is too weak to prove the
desired property.

3 2 5 2 68 3 58ms 5

SLL: rotate Transient cycle introduced
during execution.

6 1 - - 109 3 25ms 3

SLL: insert Unhandled corner case when
an element with the same
value already exists in the
list — ordering violated.

8 1 6 1 178 3 33ms 4

Table 3.6: Information about benchmarks that demonstrate detection of several kinds
of bugs in pointer programs. In addition to the previous measurements, the last column
lists the size of the generated counterexample in terms of the number of vertices, or
linked-list nodes.

3.6. RELATED WORK FOR CHAPTER 3 43

3.6 Related Work for Chapter 3

Decidable Logic. The results in this chapter show that reachability properties of

programs manipulating linked lists can be verified using a simple decidable logic AER.

Many recent decidable logics for reasoning about linked lists have been proposed [7,

46, 48, 70]. In comparison to these works we drastically restrict the way quantifiers

are allowed but permit arbitrary use of relations. Thus, strictly speaking our logic is

incomparable to the above logics. We show that relations are used even in programs

like reverse to write procedure summaries such as the one in (3.10) and for expressing

numeric orders in sorting programs.

Employing Theorem Provers. The seminal paper on pointer verification [49] pro-

vides useful axioms for verifying reachability in linked data structures using theorem

provers and conjectures that these axioms are complete for describing reachability. Lev-

Ami et al. [44] show that no such axiomatization is possible. This thesis sidesteps the

above impossibility results by restricting first-order quantifications and by using the

fact that Bernays-Schönfinkel formulas have the finite model property.

Lahiri and Qadeer [40] provide rules for weakest of preconditions for programs

with circular linked lists. The formulas are similar to Hesse’s [28] but require that the

programmer explicitly break the cycle—by annotating the code in a way that designates

one edge per cycle as the “closing link”. Our framework can be used both with and

without the help of the programmer. In practice it may be beneficial to require that the

programmer break the cycle in certain cases in order to allow invariants that distinguish

between segments in the cycle.

Descriptive Complexity. Descriptive complexity was recently incorporated into the

TVLA shape analysis framework [54]. In this chapter we pioneer the use of descriptive

complexity for guaranteeing that if the programmer writes AFR assertions and if the

program manipulates singly- and doubly-linked lists, then the VCs are guaranteed to

be expressible as AER formulas.

Chapter 4

Loop Invariants

This chapter is based on the results published in [38].

Summary

• Direct Hoare verification has one critical flaw • A human programmer has to provide loop

invariants for the loops occurring in the program • The invariant not only has to hold at every

iteration, but also needs to be inductive • It means that just by knowing the invariant holds at

iteration i, one can prove it would hold at i+ 1 • It is often very difficult to come up with such

a suitable loop invariant • Using recent techniques, though, some invariants can be inferred

automatically •

As is well known by anyone who ever taught or practiced Hoare logic, an especially

intricate part of every Hoare proof, when the program in question involves a loop, is to

come up with the loop invariant .

The goal of our work is to automatically generate quantified invariants for pro-

grams that manipulate singly-linked and doubly-linked list data structures. For a

correct program, the invariant generated ensures that the program has no memory-

safety violations, such as null-pointer dereferences, and that data structure invariants

are preserved. For a program in which it is possible to have a memory-safety viola-

tion or for a data-structure invariant to be violated, the algorithm produces a concrete

counterexample.

To illustrate the problem and proposed solution, consult the example procedure

insert, shown in Fig. 4.1, which inserts a new element pointed to by e into the non-

empty, singly-linked list pointed to by h. insert is annotated with a pre-condition and

44

45

void insert(Node e, Node h, Node x) {

Requires: h 6= null ∧ h〈n+〉x ∧ x〈n∗〉null ∧ e 6= null ∧ e〈n〉null ∧ ¬h〈n∗〉e
Ensures: h 6= null ∧ h〈n∗〉e ∧ e〈n〉x ∧ x〈n∗〉null
Node p = h, q = null;

while (p != x && p != null) {

q = p; p = p.n;

}

q.n = e; e.n = p;

}

Figure 4.1: A procedure to insert the element pointed to by e into the non-empty,
(unsorted) singly-linked list pointed by h, just before the element x (which must not be
first). The while-loop uses the trailing-pointer idiom: q is always one step behind p.

a post-condition.

The task of filling in an appropriate loop invariant for insert is not trivial because

(i) a loop invariant may be more complex than a program’s pre-condition or post-

condition, and (ii) it is infeasible to enumerate all the potential invariants expressible

as CNF formulas over a set of properties. For instance, there are 6 variables in insert

(including null), so even if we are only interested in properties of the form x〈n∗〉y,

there are 26×6 possible clauses that can be created as disjunctions of these atomic

formulas. Therefore, the number of candidate invariants that can be formulated with

these predicates is 22
6×6

. It would be infeasible to investigate them all explicitly.

Intuitively, an invariant for the while-loop in insert must assert that q is one step

behind p. This is not true, however, for the first iteration where q = null. Consequently,

we expect the loop invariant to look something like the following:

h 6= null ∧ h〈n+〉x ∧ x〈n∗〉null ∧ e 6= null ∧ e〈n〉null ∧ ¬h〈n∗〉e ∧

(j = null→ i = h) ∧

(j 6= null→ h〈n∗〉k ∧ j〈n〉i) ∧

i〈n∗〉x

(4.1)

The analysis shown here is based on property-directed reachability [8]. It starts with

the trivial invariant true, which is repeatedly refined until it becomes inductive.1 On

each iteration, a concrete counterexample to inductiveness is used to refine the invariant

by excluding predicates that are implied by that counterexample.

Although in this chapter we mainly discuss memory-safety properties and data-

1An invariant I is inductive at the entry to a loop if whenever the code of the loop body is executed
on an arbitrary state that satisfies both I and the loop condition, the result is a state that satisfies I.

46 CHAPTER 4. LOOP INVARIANTS

structure invariants, the technique can be easily extended to other correctness proper-

ties (see Section 4.3).

To the best of our knowledge, our method represents the first shape-analysis algo-

rithm that is capable of (i) reporting concrete counterexamples, or alternatively (ii) es-

tablishing that the abstraction in use is not capable of proving the property in question.

This result is achieved by combining several existing ideas in a new way:

• The algorithm uses a predicate-abstraction domain [25] in which quantified

(closed) formulas express properties of singly and doubly linked lists, and serve as

the abstraction predicates. In contrast to most recent work, which uses restricted

forms of predicate abstraction — such as Cartesian abstraction [3] — the follow-

ing analysis uses full predicate abstraction (i.e., the abstraction uses arbitrary

Boolean combinations of the predicates).

• The abstraction predicates and language semantics are expressed in the reacha-

bility logics defined earlier (Section 3.2), which are decidable using a reduction

to SAT.

• The algorithm is property-directed—i.e., its choices are driven by the memory-

safety properties to be proven. In particular, the algorithm is based on IC3 [8],

which we here refer to as property-directed reachability (PDR).

PDR integrates well with full predicate abstraction: in effect, the analysis obtains

the same precision as the best abstract transformer for full predicate abstraction, with-

out ever constructing the transformers explicitly. In particular, we cast PDR as a

framework that is parameterized on

• the logic L in which the semantics of program statements are expressed, and

• the finite set of predicates that define the abstract domain A in which invariants

can be expressed. An element of A is an arbitrary Boolean combination of the

predicates.

Furthermore, this PDR framework is relatively complete with respect to the given ab-

straction. That is, the analysis is guaranteed to terminate and either (i) verifies the

given property, (ii) generates a concrete counterexample to the given property, or

(iii) reports that the abstract domain is not expressive enough to establish the proof.

47

Outcome (ii) is possible because the “frame” structure maintained during PDR

can be used to build a trace formula; if the formula is satisfiable, the model can be

presented to the user as a concrete counterexample. Moreover, if the analysis fails to

prove the property or find a concrete counterexample (outcome (iii)), then there is no

way to express an inductive invariant that establishes the property in question using a

Boolean combination of the abstraction predicates. Note that outcome (iii) is a much

stronger guarantee than what other approaches provide when they terminate with an

“unknown” result. For example, abstract interpretation techniques such as [42] may fail

to find an invariant even when an appropriate one exists in the given abstract domain.

Key to instantiating the PDR framework for shape analysis was the development

of the AFR and AER logics for expressing properties of linked lists in Section 3. AFR

is used to define abstraction predicates, and AER is used to express the language

semantics. AER is a decidable, alternation-free fragment of first-order logic with tran-

sitive closure (FOTC). When applied to list-manipulation programs, atomic formulas

of AFR/AER can denote reachability relations between memory locations pointed to

by pointer variables, where reachability corresponds to repeated dereferences of pointer

fields such as next or prev. One advantage of AFR is that it does not require any

special-purpose reasoning machinery: an AFR formula can be converted to a formula

in “effectively propositional” logic, which can then be reduced to Boolean SAT solving.

That is, in contrast to much previous work on shape analysis, our method makes use

of a general purpose SMT solver, Z3 [11] (rather than specialized tools developed for

reasoning about linked data structures, e.g., [6, 14, 22, 59]).

As we saw, the main restriction in AFR is that it allows the use of a relation symbol

f∗ that denotes the transitive closure of a function symbol f , but only limited use of f

itself. Despite this restriction, as a language for expressing invariants, AFR provides a

fairly natural abstraction, which means that analysis results should be understandable

by non-experts (similar to Fig. 3.4).2

This formulation produces a new algorithm for shape analysis that either (i) suc-

ceeds, (ii) returns a concrete counterexample, or (iii) returns an abstract trace showing

that the abstraction in use is not capable of proving the property in question.

In this chapter of the thesis, the reader will find:

2 By a “non-expert”, we mean someone who has no knowledge of either the analysis algorithm, or
the abstraction techniques used inside the algorithm.

48 CHAPTER 4. LOOP INVARIANTS

• A description of a framework, based on the IC3 algorithm, for finding an inductive

invariant in a certain logic fragment (abstract domain) that allows one to prove

that a given pre-/post-condition holds or find a concrete counter-example to the

property, or, in the case of a negative result, the information that there is no

inductive invariant expressible in the abstract domain (Section 4.1).

• An instantiation of the framework for finding invariants of programs that manip-

ulate singly-linked or doubly-linked lists. This instantiation uses AFR to define a

simple predicate-abstraction domain, and is the first application of PDR to estab-

lish quantified invariants of programs that manipulate linked lists (Section 4.2).

• An empirical evaluation showing the efficacy of the PDR framework for a set of

linked-list programs (Section 4.3).

4.1 Property-Directed Reachability: the IC3 Algorithm

for Invariant Inference

Summary

• The IC3 algorithm originates from the field of Model Checking • Originally designed to find

invariants in a finite state space, it was shown to explore the state space efficiently • One of its

prominent traits is being property-directed • It focuses on the property of the reachable state

set that is of interest to verify • In cases where the state space is infinite, an abstraction is

employed • The result is a full (non-Cartesian) predicate analysis •

In this section, we present an adaptation of the IC3 algorithm (“Incremental Con-

struction of Inductive Clauses for Indubitable Correctness” [8]) that uses predicate

abstraction. In this chapter, by predicate abstraction we mean the technique that

performs verification using a given fixed set of abstraction predicates [17], and not

techniques that incorporate automatic refinement of the abstraction predicates; e.g.

CEGAR. The PDR algorithm shown in Alg. 1 is parameterized by a given finite set of

predicates P expressed in a logic L. The requirements on the logic L are:

R1 L is decidable (for satisfiability).

4.1. PROPERTY-DIRECTED REACHABILITY: THE IC3 ALGORITHM FOR INVARIANT INFERENCE49

Algorithm 1: PDRA(Init, ρ,Bad)

R[−1] := false
R[0] := true
N := 0
while true do

if there exists 0 ≤ i < N
such that R[i] = R[i+ 1]

then
return valid

end
(r,A) := CheckA(Bad, R[N])
if r = unsat then

N := N + 1
R[N] := true

end
else

reduceA(N,A)
end

end

Algorithm 2: reduceA(j, A)

(r,A1) := CheckA(Init, A)
if r = sat then

σ := Model(Init∧ρN−j ∧ (Bad)′
×(N−j)

)
if σ is None then error
“abstraction failure”
else error “concrete
counterexample(σ)”

end
while true do

(r,A2) :=
CheckA((Init)′∨(R[j−1]∧ρ), (A)′)

if r = unsat then break
else reduceA(j − 1, A2)

end
for i = 0 . . . j do

R[i] := R[i] ∧ (¬A1 ∨ ¬A2)
end

R2 The transition relation for each statement of the programming language can be

expressed as a two-vocabulary L formula.

Then for a particular program, we are given:

• A finite set of predicates P = {pi ∈ L}, 1 ≤ i ≤ n.

• The transition relation of the system as a two-vocabulary formula ρ ∈ L.

• The initial condition of the system, Init ∈ L.

• The formula specifying the set of bad states, Bad ∈ L.

Let A be the full predicate abstraction domain over the predicates P. That is, each

element A ∈ A is an arbitrary Boolean combination of the predicates P. A ∈ A is

inductive with respect to Init and ρ if and only if Init =⇒ A and A ∧ ρ =⇒ (A)′.

(ϕ)′ renames the vocabulary of constant symbols and relation symbols occurring in ϕ

from {c, . . . , r, . . .} to {c′, . . . , r′, . . .}. ϕ is (ϕ)′ stripped of primes.

If the logic L is propositional logic, then Alg. 1 is an instance of IC3 from [8].

Our presentation is a simplification of more advanced variants [8, 15, 30]. For in-

stance, the presentation omits inductive generalization, although our implementation

does implement inductive generalization (see Section 4.3). Furthermore, this simplified

presentation brings out the fact that the PDR algorithm is really an analysis framework

that is parameterized on the set of abstraction predicates P.

50 CHAPTER 4. LOOP INVARIANTS

The algorithm employs an unbounded array R, where each frame R[i] ∈ A over-

approximates the set of concrete states after executing the loop at most i times. The

algorithm maintains an integer N , called the frame counter, such that the following

invariants hold for all 0 ≤ i < N :

1. Init is a subset of all R[i], i.e., Init =⇒ R[i].

2. The safety requirements are satisfied, i.e., R[i] =⇒ ¬Bad.

3. Each of the R[i+ 1] includes the states in R[i], i.e., R[i] =⇒ R[i+ 1].

4. The successors of R[i] are included in R[i + 1], i.e., for all σ, σ′ if σ |= R[i] and

〈σ, σ′〉 |= ρ, then σ′ |= R[i+ 1].

We illustrate the workings of the algorithm using a simple example, after which we

explain the algorithm in detail.

Example 1. Consider the program while (x != y) x = x.n; where n is a pointer

field (replaces next for brevity). Suppose the precondition is Init := y 6= null ∧ x〈n+〉y.

We wish to prove the absence of null-dereference; that is, Bad := x 6= y ∧ x = null.

Table 4.1 shows a trace of PDR running with this input; each line represents a SAT

query carried out by PDRA (line 1) or by reduceA (line 2). The predicate abstraction

domain A comprises of equalities and 〈n∗〉-paths. At each stage, if the result (r) is

“ unsat”, then either we unfold one more loop iteration (N := N +1) or we learn a new

clause to add to R[j] of the previous step, as marked by the “↗” symbol. If the result

is “ sat”, the resulting model is used to further refine an earlier clause by recursively

calling reduceA.

On the first row, we start with R[0] = true, so definitely R[0]∧Bad is satisfiable, for

example with a model where x = y = null. The algorithm checks if this model represents

a reachable state at iteration 0 (see the second row), and indeed it is not—the result is

“ unsat” and the unsat-core is x = null (Init∧x = null is not satisfiable). Therefore, we

infer the negation, x 6= null, and add that to R[0]. The algorithm progresses in the same

manner—e.g., four lines later, we have R[0] = (x 6= null∧x 6= y), and so on. Eventually,

the loop terminates when R[i] = R[i + 1] for some i; in this example, the algorithm

terminates because R[1] = R[2]. The resulting invariant is R[2] ≡ (y 6= null ∧ x〈n∗〉y),

a slight generalization of Pre in this case.

Some terminology used in the PDR algorithm:

4.1. PROPERTY-DIRECTED REACHABILITY: THE IC3 ALGORITHM FOR INVARIANT INFERENCE51

N Formula Model A := βA(Model) Inferred

0 R[0] ∧ Bad (null, 1) 1 7→ null A := x = null ∧ x 6= y ∧ ¬x〈n∗〉y ∧ y〈n∗〉x
0 ((Init)′ ∨ (R[−1] ∧ ρ)) ∧ (A)′ unsat R[0] |= x 6= null

0 R[0] ∧ Bad unsat

1 R[1] ∧ Bad (null, 1) 1 7→ null A := x = null ∧ x 6= y ∧ ¬x〈n∗〉y ∧ y〈n∗〉x
1 ((Init)′ ∨ (R[0] ∧ ρ)) ∧ (A)′ (1, 1) 1 7→ null A := x = y 6= null ∧ x〈n∗〉y ∧ y〈n∗〉x
1 ((Init)′ ∨ (R[−1] ∧ ρ)) ∧ (A)′ unsat R[0] |= x 6= y

1 R[1] ∧ Bad (null, 1) 1 7→ null A := x = null ∧ x 6= y ∧ ¬x〈n∗〉y ∧ y〈n∗〉x
1 ((Init)′ ∨ (R[0] ∧ ρ)) ∧ (A)′ (1, 2) 1, 2 7→ null A := x 6= y ∧ x, y 6= null ∧ ¬x〈n∗〉y ∧ ¬y〈n∗〉x
1 ((Init)′ ∨ (R[−1] ∧ ρ)) ∧ (A)′ unsat R[0] |= x〈n∗〉y
1 R[1] ∧ Bad (null, 1) 1 7→ null A := x = null ∧ x 6= y ∧ ¬x〈n∗〉y ∧ y〈n∗〉x
1 ((Init)′ ∨ (R[0] ∧ ρ)) ∧ (A)′ unsat R[1] |= x〈n∗〉y
1 R[1] ∧ Bad unsat

2 R[2] ∧ Bad (null, 1) 1 7→ null A := x = null ∧ x 6= y ∧ ¬x〈n∗〉y ∧ y〈n∗〉x
2 ((Init)′ ∨ (R[1] ∧ ρ)) ∧ (A)′ unsat R[2] |= x〈n∗〉y
2 R[1] = R[2] valid

Table 4.1: Example run with Init := y 6= null ∧ x〈n+〉y, Bad := x 6= y ∧ x = null, and
ρ := (x′ = n(x)). Intermediate counterexample models are written as (x, y)E where
(x, y) is the interpretation of the constant symbols x,y and E are the n-links. The
output invariant is R[1] = R[2] = x〈n∗〉y.

• Model(ϕ) returns a model σ satisfying ϕ if it exists, and None if it doesn’t.

• The abstraction of a model σ, denoted by βA(σ), is the cube of predicates from

P that hold in σ: βA(σ) =
∧{p | σ |= p, p ∈ P} ∧∧{¬q | σ |= ¬q, q ∈ P}.

• Let ϕ ∈ L is a formula in the unprimed vocabulary, A ∈ A is a value in the

unprimed or primed vocabulary. CheckA(ϕ,A) returns a pair (r,A1) such that

– if ϕ ∧ A is satisfiable, then r = sat and A1 is the abstraction of a concrete

state in the unprimed vocabulary. That is, if the given A is in the unprimed

vocabulary, then βA(σ) for some σ |= ϕ ∧ A; else if A is in the primed

vocabulary, then A1 = βA(σ) for some (σ, σ′) |= ϕ ∧A.

– if ϕ ∧ A is unsatisfiable, then r = unsat, and A1 is a predicate such that

A =⇒ A1 and ϕ∧A1 is unsatisfiable. The vocabulary of A1 is the same as

that of A. If A is in the primed vocabulary (as in line 2 of Alg. 2), CheckA

drops the primes from A1 before returning the value.

A valid choice for A1 in the unsatisfiable case would be A1 = A (and indeed the

algorithm would still be correct), but ideally A1 should be the weakest such pred-

icate. For instance, CheckA(false, A) should return (unsat, true). In practice,

when ϕ∧A is unsatisfiable, the A1 returned is an unsat core of ϕ∧A constructed

52 CHAPTER 4. LOOP INVARIANTS

exclusively from conjuncts of A. Such an unsat core is a Boolean combination of

predicates in P, and thus is an element of A.

We now give a more detailed explanation of Alg. 1. Each R[i], i ≥ 0 is initialized

to true (lines 1 and 1), and R[−1] is false. N is initialized to 0 (line 1). At line 1,

the algorithm checks whether R[i] = R[i + 1] for some 0 ≤ i < N . If true, then an

inductive invariant proving unreachability of Bad has been found, and the algorithm

returns valid (line 1).

At line 1, the algorithm checks whether R[N]∧Bad is satisfiable. If it is unsatisfiable,

it means that R[N] excludes the states described by Bad, and the frame counter N is

incremented (line 1). Otherwise, A ∈ A represents an abstract state that satisfies

R[N] ∧ Bad. PDR then attempts to reduce R[N] to try and exclude this abstract

counterexample by calling reduceA(N,A) (line 1).

The reduce algorithm (Alg. 2) takes as input an integer j, 0 ≤ j ≤ N , and an

abstract state A ∈ A such that there is a path starting from A of length N − j that

reaches Bad. Alg. 2 tries to strengthen R[j] so as to exclude A. At line 2, reduce

first checks whether Init ∧ A is satisfiable. If it is satisfiable, then there is an abstract

trace of length N − j from Init to Bad, using the transition relation ρ. The call to

Model at line 2 checks whether there exists a concrete model corresponding to the

abstract counterexample. ρk denotes k unfoldings of the transition relation ρ; ρ0 is

true. (Bad)′×k denotes k applications of the renaming operation (·)′ to Bad. If no

such concrete model is found, then the abstraction was not precise enough to prove

the required property (line 2); otherwise, a concrete counterexample to the property is

returned (line 2).

Now consider the case when Init ∧A is unsatisfiable on line 2. A1 ∈ A returned by

the call to CheckA is such that Init ∧A1 is unsatisfiable; that is, Init =⇒ ¬A1.

The while-loop on lines 2–2 checks whether the (N − j)-length path to Bad can

be extended backward to an (N − j + 1)-length path. In particular, it checks whether

R[j − 1] ∧ ρ ∧ (A)′ is satisfiable. If it is satisfiable, then the algorithm calls reduce

recursively on j − 1 and A2 (line 2). If no such backward extension is possible, the

algorithm exits the while loop (line 2). Note that if j = 0, CheckA(R[j − 1] ∧ ρ,A)

returns (unsat, true), because R[−1] is set to false.

The conjunction of (¬A1∨¬A2) to R[i], 0 ≤ i ≤ j, in the loop on lines 2–2 eliminates

abstract counterexample A while preserving the required invariants on R. In particular,

4.1. PROPERTY-DIRECTED REACHABILITY: THE IC3 ALGORITHM FOR INVARIANT INFERENCE53

the invariant Init =⇒ R[i] is maintained because Init =⇒ ¬A1, and hence Init =⇒
(R[i] ∧ (¬A1 ∨ ¬A2)). Furthermore, A2 is the abstract state from which there is a

(spurious) path of length N−j to Bad. By the properties of CheckA, ¬A1 and ¬A2 are

each disjoint from A, and hence (¬A1 ∨¬A2) is also disjoint from A. Thus, conjoining

(¬A1 ∨ ¬A2) to R[i], 0 ≤ i ≤ j eliminates the spurious abstract counterexample A.

Lastly, the invariant R[i] =⇒ R[i+ 1] is preserved because (¬A1 ∨ ¬A2) is conjoined

to all R[i], 0 ≤ i ≤ j, and not just R[j].

Formally, the output of PDRA(Init, ρ,Bad) is captured by the following theorem:

Theorem 3. Given (i) the set of abstraction predicates P = {pi ∈ L}, 1 ≤ i ≤ n where

L is a decidable logic, and the full predicate abstraction domain A over P, (ii) the initial

condition Init ∈ L, (iii) a transition relation ρ expressed as a two-vocabulary formula

in L, and (iv) a formula Bad ∈ L specifying the set of bad states, PDRA(Init, ρ,Bad)

terminates, and reports either

1. valid if there exists A ∈ A s.t. (i) Init→ A, (ii) A is inductive, and (iii) A =⇒
¬Bad,

2. a concrete counterexample trace, which reaches a state satisfying Bad, or

3. an abstract trace, if the inductive invariant required to prove the property cannot

be expressed as an element of A.

The proof of Theorem 3 in Appendix A.3 is based on the observation that, when

“abstraction failure” is reported by reduceA(j, A), the set of models σi |= R[i] (j ≤ i <
N) represents an abstract error trace.

Optimization

There are some optimizations that contribute to reducing the number of iterations

required by Alg. 1. We describe one of them in brief and refer to additional material.

Inductive Generalization. Each R[i] is a conjunction of clauses ϕ1∧· · ·∧ϕm. If we

detect that some ψj comprising a subset of literals of ϕj , it holds that R[i] ∧ ρ ∧ ψj |=
(ψj)

′, then ψj is inductive relative to R[i]. In this case, it is safe to conjoin ψj to R[k]

for k ≤ i + 1. Spurious counter-examples can also be purged if they are inductively

blocked. The advantages of this method are explained thoroughly by Bradley [8].

54 CHAPTER 4. LOOP INVARIANTS

Comparison to Other Predicate-Abstraction Approaches

Our approach differs in two ways from earlier approaches that perform verification via

predicate abstraction; that is, verification using a given fixed set of abstraction predi-

cates [17]. First, our approach is property directed. Our PDR algorithm does not aim

to find the strongest invariant expressible in A, instead the algorithm tries to find an

invariant that is strong enough to verify the given property. Hence, the PDR algorithm

could be more efficient in practice, depending on the property to be verified. Second,

the PDR algorithm fails to verify the property or provide a concrete counter-example

only when it is not possible to express the required inductive invariant as a Boolean

combination of the given abstraction predicates P. Most approaches to predicate ab-

straction use an approximation of the best abstract transformers. As a consequence,

earlier approaches might not necessarily find the inductive invariant even if it is express-

ible in A. On the other hand, approaches that use the best abstract transformers are

able to compute the strongest inductive invariant expressible in A [53, 63, 64, 69], but

are not property directed. Furthermore, the frame structure maintained by the PDR

algorithm allows it to find concrete counterexamples. In contrast, other approaches

to verification via predicate abstraction only return an abstract counterexample trace,

from which it is not always possible to construct a concrete counterexample.

4.2 A Useful Predicate Abstraction Domain for Linked

Lists

Summary

• We show one possible abstraction space that performs well for linked data structures • The

abstraction predicates are expressed as AFR formulas •

In this section, we describe how PDRA(Init, ρ,Bad) described in Alg. 1 can be

instantiated for verifying linked-list programs. The key insight is the use of the reach-

ability logics for expressing properties of linked lists, as defined in Section 3.2.

We begin by presenting a set of properties that occur naturally when observing

programs manipulating linked lists. Table 4.2 contains a list of properties with an

English description.

4.2. A USEFUL PREDICATE ABSTRACTION DOMAIN FOR LINKED LISTS 55

Name Description Mnemonic

x = y equality

x〈f〉y x->f = y

x〈f∗〉y an f path from x to y

f.ls [x, y] unshared f linked-list segment between x and y

alloc(x) x points to an allocated element A

f.stable(h) any f -path from h leads to an allocated element A

f/b.rev [x, y] reversed f/b linked-list segment between x and y R

f.sorted [x, y] sorted f list segment between x and y S

Table 4.2: Predicates for expressing various properties of linked lists whose elements
hold data values. x and y denote program variables that point to list elements or null.
f and b are parameters that denote pointer fields. (The mnemonics are referred to later
in Table 4.5.)

We use two related logics for expressing properties of linked data structures. One

of them is AFR, which already appeared as part of Definition 6. The second is EAR,

in fact the dual of AER also defined there. We will need ρ, the transition relation, to

be EAR (as opposed to AER) because it is used in a positive context in SAT queries

in Alg. 1 and Alg. 2. An alternative set of rules for wlp[[]] that generate EAR formulas,

and are closed under EAR, is given in Table 4.4 below.

Definition 7. (EAR) (Extension for Definition 6)

• Exists-Forall Formulas with Reachability (EAR) are Boolean combinations

of the atomic propositions with additional quantifiers of the form ∃∗∀∗:ϕ where ϕ

is a QFR formula.

In particular, QFR ⊂ AFR ⊂ EAR. Also, if ϕ ∈ AER, then ¬ϕ has an equivalent in

EAR, and vice versa.

Technically, EAR forbids any use of an individual function symbol f ; however, when

f defines an acyclic linkage chain—as in acyclic singly linked and doubly linked lists—f

can be defined in terms of f∗ by using universal quantification to express that an element

is the closest in the chain to another element, as demonstrated by Eq (3.6). However,

because of the quantifier occurring on the the right-hand side, this macro substitution

can only be used in a context that does not introduce a quantifier alternation (e.g., if

f occurs in negative context inside a universal quantifier, the resulting formula will not

be EAR).

56 CHAPTER 4. LOOP INVARIANTS

Name Formula

x〈f〉y Ef (x, y)

f.ls [x, y] ∀α, β : x〈f∗〉α ∧ α〈f∗〉y ∧ β〈f∗〉α =⇒ (β〈f∗〉x ∨ x〈f∗〉β)

f.stable(h) ∀α : h〈f∗〉α =⇒ alloc(α)

f/b.rev [x, y] ∀α, β :

(
α 6= null ∧ β 6= null

∧ x〈f∗〉α ∧ α〈f∗〉y ∧ x〈f∗〉β ∧ β〈f∗〉y

)
→
(
α〈f∗〉β ↔ β〈b∗〉α

)
f.sorted [x, y] ∀α, β :

(
α 6= null ∧ β 6= null

∧ x〈f∗〉α ∧ α〈f∗〉β ∧ β〈f∗〉y

)
→ dle(α, β)

Table 4.3: AFR formulas for the derived predicates shown in Table 4.2. f and b denote
pointer fields. dle is an uninterpreted predicate that denotes a total order on the data
values. The intention is that dle(α, β) holds whenever α->d ≤ β->d, where d is the data
field. We assume that the semantics of dle are enforced by an appropriate total-order
background theory.

A Predicate Abstraction Domain that uses AFR

The abstraction predicates used for verifying properties of linked list programs were

introduced informally in Table 4.2. Table 4.3 gives the corresponding formal definition

of the predicates as AFR formulas. Note that all four predicates defined in Table 4.3

are quantified. (The quantified formula for Ef is given in Eq (3.6).) In essence, we use

a template-based approach for obtaining quantified invariants: the discovered invari-

ants have a quantifier-free structure, but the atomic formulas can be quantified AFR

formulas. Restricting the formulas in such a manner makes sure that the resulting

satisfiability checks in Alg. 2 would be of EAR formulas.

We now show that the EAR logic satisfies requirements R1 and R2 for the PDR

algorithm stated in Section 4.1.

Decidability of EAR

To satisfy requirement R1 stated in Section 4.1, we have to show that EAR is decidable

for satisfiability.

EAR is decidable for satisfiability because any formula in this logic can be translated

into the “effectively propositional” decidable logic of ∃∗∀∗ formulas described by Piskac

et al. [51]. EAR includes relations of the form f∗ (the reflexive transitive closure of a

function symbol f), but only allows limited use of f itself.

Every EAR formula can be translated into an ∃∗∀∗ formula using the the same

steps as in Section 3.2: (i) add a new uninterpreted relation Rf , which is intended to

4.2. A USEFUL PREDICATE ABSTRACTION DOMAIN FOR LINKED LISTS 57

Command C wlp[[C]](Q)

assume ϕ ϕ→ Q

x = y Q[y/x]

x = y->f y 6= null ∧ ∃α : (y〈f〉α ∧Q[α/x])

x->f = null x 6= null ∧Q[α〈f∗〉β ∧ (¬α〈f∗〉x ∨ β〈f∗〉x)/α〈f∗〉β]

x->f = y x 6= null ∧Q[α〈f∗〉β ∨ (α〈f∗〉x ∧ y〈f∗〉β)/α〈f∗〉β]

x = malloc() ∃α : ¬alloc(α) ∧Q[(alloc(β) ∨ (β = α ∧ β = x))/alloc(β))]

free(x) alloc(x) ∧Q[(alloc(β) ∧ β 6= x)/alloc(β))]

Table 4.4: A revised set of basic wlp[[]] rules for invariant inference. y〈f〉α is the
universal formula defined in Eq (3.6). alloc stands for a memory location that has been
allocated and not subsequently freed.

represent reflexive transitive reachability via f ; (ii) add the consistency rule ΓlinOrd

shown in Table 3.2, which asserts that Rf is a partial order, i.e., reflexive, transitive,

acyclic, and linear;3 and (iii) replace all occurrences of t1〈f∗〉t2 by Rf (t1, t2). (By means

of this translation step, acyclicity is built into the logic.)

Proposition 4 (Simulation of EAR). Consider EAR formula ϕ over vocabulary

V = 〈C,F ,R〉. Let ϕ′ def
= ϕ[Rf (t1, t2)/t1〈f∗〉t2]. Then ϕ′ is a first-order formula over

vocabulary V ′ = 〈C, ∅,R∪ {Rf : f ∈ F〉, and ΓlinOrd∧ϕ′ is satisfiable if and only if the

original formula ϕ is satisfiable.

This proposition is the dual of Proposition 2 for validity of ∀∗∃∗ formulas.

Axiomatic specification of concrete semantics in EAR

To satisfy requirement R2 stated in Section 4.1, we have to show that the transition

relation for each statement Cmd of the programming language can be expressed as a

two-vocabulary formula ρ ∈ EAR, where each program state variable is represented

by two constants: c, representing the value of the variable in the pre-state, and c′

representing the value of the variable in the post-state. Similarly, each pointer field is

represented by two binary relations f∗ and f ′∗ denoting reachability along f -paths in

pre- and post-states, respectively.

Let wlp[[Cmd]](Q) be the weakest liberal precondition of command Cmd with respect

to Q ∈ EAR. Then, the transition formula for command Cmd is wlp[[Cmd]](Id), where

3Note that the order is a partial order and not a total order, because not every pair of elements
must be ordered.

58 CHAPTER 4. LOOP INVARIANTS

Id is a two-vocabulary formula that specifies that the input and the output states are

identical, i.e.,

Id
def
=
∧
c∈C

c = c′ ∧
∧
f∈F
∀α, β : α〈f∗〉β ⇔ α〈f ′∗〉β.

To show that the concrete semantics of linked list programs can be expressed in

EAR, we have to prove that EAR is closed under wlp[[]]; that is, for all commands Cmd

and Q ∈ EAR, wlp[[Cmd]](Q) ∈ EAR.

Table 4.4 shows rules for computing wlp of atomic commands. This is slightly re-

vised from Table 3.3 which generates ∃∗∀∗ formulas instead of ∀∗∃∗. Note that pointer-

related rules in Table 4.4 each include a memory-safety condition to detect null-

dereferences. For instance, the rule for “x->f = y” includes the conjunct “x 6= null”;

if, in addition, we wish to detect accesses to unallocated memory, the rule would be

extended with the conjunct “alloc(x)”.

The following lemma establishes the soundness and completeness of the wlp rules.

Lemma 1. Consider a command C of the form defined in Table 4.4 and postcondition

Q. Then, σ |= wlp[[C]](Q) if and only if the execution of C on σ can yield a state σ′

such that σ′ |= Q.

This lemma is the dual of Theorem 5 (Appendix A.2) for validity of ∀∗∃∗ formulas.

Consider a program with a single loop “while Cond do Cmd”. Alg. 1 can be

used to prove whether or not a precondition Pre ∈ AFR before the loop implies that a

postcondition Post ∈ AFR holds after the loop, if the loop terminates: we supply Alg. 1

with Init
def
= Pre, ρ

def
= Cond ∧ wlp[[Cmd]](Id) and Bad

def
= ¬Cond ∧ ¬Post. Furthermore,

memory safety can be enforced on the loop body by setting Bad
def
= (¬Cond∧¬Post)∨

(Cond ∧ ¬wlp[[Cmd]](true).

4.3 Empirical Results

Summary

• The PDR framework was implemented, parametric of the abstraction predicates • Instantiated

with different subsets of predicates • Z3 was again used for generating models and unsat-cores •

Tested on a set of programs with linked lists • Invariants were successfully generated for correct

programs • We were also able to detect concrete bugs when introduced •

4.3. EMPIRICAL RESULTS 59

Benchmark

Memory-safety

+ data-structure integrity Additional properties

A Time N # calls to Z3 # clauses A Time N # calls to Z3 # clauses

create 1.37 3 28 3 8.19 4 96 7

delete 14.55 4 61 6 9.32 3 67 7

deleteAll A 6.77 3 72 6 A 37.35 7 308 12

filter 2.37 3 27 4 55.53 5 94 5

insert 26.38 5 220 16 25.25 4 155 13

prev 0.21 2 3 0 11.64 4 118 6

last 0.33 2 3 0 7.49 3 41 4

reverse 5.35 5 128 4 146.42 6 723 11

sorted insert S 41.07 3 48 7 S 51.46 4 134 10

sorted merge 26.69 4 87 10 S 256.41 5 140 14

make doubly-linked 18.91 3 44 5 R 1086.61 5 112 8

Table 4.5: Experimental results. Column A signifies the set of predicates used (blank
= only the top part of Table 4.2; S = with the addition of the sorted predicate family;
R = with the addition of the rev family; A = with the addition of the stable family,
where alloc conjuncts are added in wlp rules). Running time is measured in seconds.
N denotes the highest index for a generated element R[i]. The number of clauses refers
to the inferred loop invariant.

To evaluate the usefulness of the analysis algorithm, we applied it to a collection

of sequential procedures that manipulate singly and doubly-linked lists (see Table 4.5).

For each program, we report the predicates used, the time (in seconds), the number of

PDR frames, the number of calls to Z3, and the size of the resulting inductive invariant,

in terms of the number of clauses. All experiments were run on a 1.7GHz Intel Core

i5 machine with 4GB of RAM, running OS X 10.7.5. We used version 4.3.2 of Z3 [11],

compiled for a 64-bit Intel architecture (using gcc 4.2 and LLVM).

For each of the benchmarks, we verified that the program avoids null-dereferences,

as well as that it preserves the data-structure invariant that the inputs and outputs

are acyclic linked-lists. In addition, for some of the benchmarks we were also able to

verify some additional correctness properties. While full functional correctness, or even

partial correctness, is hard to achieve using predicate abstraction, we were able to use

simple formulas to verify several interesting properties that go beyond memory-safety

properties and data-structure invariants. Table 4.6 describes the properties we checked

for the various examples. As seen from columns 3, 4, 8, and 9 of the entries for delete

and insert in Table 4.5, trying to prove stronger properties can sometimes result in fewer

iterations being needed, resulting in a shorter running time. In the remainder of the

examples, handling additional properties beyond memory-safety properties and data-

60 CHAPTER 4. LOOP INVARIANTS

Benchmark Property checked

create Some memory location pointed to by x (a global variable) that
was allocated prior to the call, is not reachable from the list head,
h.

delete The argument x is no longer reachable from h.

deleteAll An arbitrary non-null element x of the list becomes non-allocated.

filter Two arbitrary elements x and y that satisfy the filtering criterion
and have an n-path between them, maintain that path.

insert The new element e is reachable from h and is the direct predecessor
of the argument x.

last The function returns the last element of the list.

prev The function returns the element just before x, if one exists.

reverse If x comes before y in the input, then x should come after y in the
output.

sorted insert The list rooted at h remains sorted.

make doubly-linked The resulting p is the inverse of n within the list rooted at h.

Table 4.6: Some correctness properties that can be verified by the analysis procedure.
For each of the programs, we have defined suitable Pre and Post formulas in AFR.

Automatic bug finding

Benchmark Bug description Time N # calls to Z3 c.e. size

insert Precondition is too weak (omitted e 6=
null)

4.46 1 17 8

filter Potential null dereference 6.30 1 21 3

Typo: list head used instead of list it-
erator

103.10 3 79 4

reverse Corrupted data structure: a cycle is
created

0.96 1 9 2

Table 4.7: Results of experiments with buggy programs. Running time is measured in
seconds. N denotes the highest index for a generated element R[i]. “C.e. size” denotes
the largest number of individuals in a model in the counterexample trace.

structure invariants required more processing effort, which can be attributed mainly to

the larger set of symbols (and hence predicates) in the computation.

Bug Finding

We also ran our analysis on programs containing deliberate bugs, to demonstrate the

utility of this approach to bug finding. In all of the cases, the method was able to detect

the bug and generate a concrete trace in which the safety or correctness properties are

violated. The output in that case is a series of concrete states σ0..σN where each σi

contains the set of heap locations, pointer references, and program variables at step i.

The experiments and their results are shown in Table 4.7. We found both the length of

4.3. EMPIRICAL RESULTS 61

the trace and the size of the heap structures to be very small. Their small size makes

the traces useful to present to a human programmer, which can help in locating and

fixing the bug.

Observations

It is worth noting that for programs where the proof of safety is trivial—because every

access is guarded by an appropriate conditional check, such as in prev and last—

the algorithm terminates almost immediately with the correct invariant true. This

behavior is due to the property-directedness of the approach, in contrast with abstract

interpretation, which always tries to find the least fixed point, regardless of the desired

property.

We experimented with different refinements of inductive-generalization (Sec-

tion 4.1). Our algorithm could in many cases succeed even without minimizing the

unsat-core, but we observed runs with up to N = 40 iterations. On the other hand, the

more advanced versions of inductive generalization did not help us: trying to remove

literals resulted in a large number of expensive (and useless) solver calls; and blocking

spurious counter-examples using inductive generalization also turned out to be quite

expensive in our setting.

We also noticed that the analysis procedure is sensitive to the number of abstraction

predicates used. In particular, using predicates whose definitions involve quantifiers

can affect the running time considerably. When the predicate families f.sorted [x, y]

and f/b.rev [x, y] are added to A, running times can increase substantially (about 20-

60 times), as the space of formulas grows much larger. This effect occurred even in

the case of sorted merge, where we did not attempt to prove an additional correctness

property beyond safety and integrity—and indeed there were no occurrences of the

added predicates in the loop invariant obtained. As can be seen from Table 4.5, the

PDR algorithm per se is well-behaved, in the sense that the number of calls to Z3

increased only modestly with the additional predicates. However, each call to Z3 took

a lot more time.

In make doubly-linked, proving the prev/next-inverse property requires the predicate

family f/b.rev [x, y] (see Table 4.3), resulting in a slowdown of more than twenty times

over just proving safety and integrity (without the use of the f/b.rev [x, y] predicates).

For sorted merge, we did not prove an additional correctness property beyond safety and

62 CHAPTER 4. LOOP INVARIANTS

integrity; the numbers reported in columns 6–9 are for proving safety and integrity when

the predicate family f.sorted [x, y] is also included. These predicates are not needed

to prove safety and integrity, nor did they show up in the resulting invariant; however,

the analysis time was more than sixty times slower than was needed to prove safety

and integrity without the additional predicates, and two orders of magnitude slower

than delete and insert. As can be seen from column 4, about the same number of

calls to Z3 were performed for all four examples; however, in the case of (the extended)

sorted merge and make doubly-linked, each call to Z3 took a lot more time.

4.4 Related Work for Chapter 4

The literature on program analysis is vast, and the subject of shape analysis alone has

an extensive literature. Thus, in this section we are only able to touch on a few pieces

of prior work that relate to the ideas used in this chapter.

Predicate abstraction. Houdini [16] is the first algorithm of which we are aware

that aims to identify a loop invariant, given a set of predicates as candidate ingredients.

However, Houdini only infers conjunctive invariants from a given set of predicates.

Santini [64, 65] is a recent algorithm for discovering invariants expressed in terms of

a set of candidate predicates. Like our algorithm, Santini is based on full predicate

abstraction (i.e., it uses arbitrary Boolean combinations of a set of predicates), and

thus is strictly more powerful than Houdini. Santini could make use of the predicates

and abstract domain described in this chapter; however, unlike our algorithm, Santini

would not be able to report counterexamples when verification fails. Other work infers

quantified invariants [31, 61] but does not support the reporting of counterexamples.

Templates are used in many tools to define the abstract domains used to represent sets

of states, by fixing the form of the constraints permitted. Template Constraint Matrices

[60] are based on inequalities in linear real arithmetic (i.e., polyhedra), but leave the

linear coefficients as symbolic inputs to the analysis. The values of the coefficients are

derived in the course of running the analysis. In comparison, a coefficient in our use

of EAR corresponds to one of the finitely many constants that appear in the program,

and we instantiated our templates prior to using PDR.

As mentioned in the beginning of this chapter, PDR meshes well with full pred-

icate abstraction: in effect, the analysis obtains the benefit of the precision of the

4.4. RELATED WORK FOR CHAPTER 4 63

abstract transformers for full predicate abstraction, without ever constructing the ab-

stract transformers explicitly. PDR also allows a predicate-abstraction-based tool to

create concrete counterexamples when verification fails.

Abstractions based on linked-list segments. Our abstract domain is based on

formulas expressed in AFR, which has very limited capabilities to express properties

of stretches of data structures that are not pointed to by a program variable. This

feature is similar to the self-imposed limitations on expressibility used in a number

of past approaches, including (a) canonical abstraction [59]; (b) a prior method for

applying predicate abstraction to linked lists [47]; (c) an abstraction method based on

“must-paths” between nodes that are either pointed to by variables or are list-merge

points [43]; and (d) domains based on separation logic’s list-segment primitive [6, 14]

(i.e., “ls[x, y]” asserts the existence of a possibly empty list segment running from the

node pointed to by x to the node pointed to by y). Decision procedures have been

used in previous work to compute the best transformer for individual statements that

manipulate linked lists [52, 68].

STRAND and elastic quantified data automata. Recently, Garg et al. devel-

oped methods for obtaining quantified invariants for programs that manipulate linked

lists via an abstract domain of quantified data automata [21, 22]. To create an abstract

domain with the right properties, they use a weakened form of automaton—so-called

elastic quantified data automata—that is unable to observe the details of stretches

of data structures that are not pointed to by a program variable. (Thus, an elastic

automaton has some of the characteristics of the work based on linked-list segments

described above.) An elastic automaton can be converted to a formula in the decidable

fragment of the STRAND logic over lists [45].

Other work on IC3/PDR. Our work represents the first application of PDR to

programs that manipulate dynamically allocated storage. We chose to use PDR because

it has been shown to work extremely well in other domains, such as hardware verification

[8, 15]. Subsequently, it was generalized to software model checking for program models

that use linear real arithmetic [30] and linear rational arithmetic [9]. Cimatti and

Griggio [9] employ a quantifier-elimination procedure for linear rational arithmetic,

based on an approximate pre-image operation. Our use of a predicate-abstraction

64 CHAPTER 4. LOOP INVARIANTS

domain allows us to obtain an approximate pre-image as the unsat core of a single call

to an SMT solver (line 2 of Alg. 2).

Chapter 5

Modular Analysis of Procedures

This chapter is based on the results published in [37].

This chapter shows how to harness existing SAT solvers for proving that a program

containing (potentially recursive) procedures satisfies its specification and for auto-

matically producing counterexamples when it does not. We concentrate on proving

safety properties of imperative programs manipulating linked data structures which is

challenging since we need to reason about unbounded memory and destructive pointer

updates. The tricky part is to identify a logic which is expressive enough to enable

the modular verification of interesting procedures and properties and weak enough to

enable sound and complete verification using SAT solvers.

In the previous chapters we have shown how to employ effectively propositional

logic for verifying programs manipulating linked lists. However, we see that effectively

propositional logic does not suffice to naturally express the effect on the global heap

when the local heap of a procedure is accessible via shared nodes from outside. For

example, Fig. 5.1 shows a pre- and post-heap before a list pointed-to by h is reversed.

The problem is how to express the change in reachability between nodes such as zi

1h 2 3 4 5

z1 z2 z3

;
reverse x

1 2 3 4 5 h

z1 z2 z3

Figure 5.1: Reversing a list pointed to by a head h with many shared nodes accessible
from outside the local heap (surrounded by a rounded rectangle).

65

66 CHAPTER 5. MODULAR ANALYSIS OF PROCEDURES

and list nodes 1, 2, . . . , 5: note that, e.g., nodes 3, 4, 5 are unreachable from z1 in the

post-heap.

This chapter shows that in many cases, including the above example, reachability

can still be checked precisely using SAT solvers. Our solution is based on the following

principles:

• We follow the standard techniques (e.g., see [4, 41, 66, 71]) by requiring that the

programmer define the set of potentially modified elements.

• The programmer only specifies postconditions on local heaps and ignores the

effect of paths from the global heap.

• We provide a general and exact adaptation rule for adapting postconditions to

the global heap. This adaptation rule is expressible in a generalized version of

AER (Definition 6) called AEAR. AEAR allows an extra function symbol, called

the entry function, that maps each node u in the global heap into the first node

accessible from u in the local heap. In Fig. 5.1, z1, z2 and z3 are mapped to

2, 3 and 4, respectively. The key facts are that AEAR suffices to precisely define

the global reachability relationship after each procedure call and yet any AEAR

formula can be simulated by an AER formula, and from Proposition 2, by an

effectively propositional one. Thus the automatic methods used in Chapter 3 still

apply to this significantly more general setting.

• We restrict the verified procedures in order to guarantee that the generated ver-

ification condition of every procedure remains in AEAR. The main restrictions

are: type correctness, deterministic paths in the heap, limited number of changed

list segments in the local heap (each of which may be unbounded) and limited

amount of newly created heap sharing by each procedure call. These restrictions

are enforced by the generated verification condition in AEAR. This formula is

automatically checked by the SAT solver.

Main Results

The results presented in this chapter can be summarized as follows:

• We define a new logic, AEAR, which extends the previously defined AER (Defini-

tion 6) with a limited idempotent function and yet is equi-satisfiable with EPR.

5.1. THE PROBLEM WITH GLOBAL STATE 67

• We provide a precise adaptation rule in AEAR, expressing the locality property

of the change, such that, in conjunction with the formula expressing the post-

condition of the local heap, it precisely updates the reachability relation over the

global heap.

• We generate a modular verification formula in AEAR for each procedure, asserting

that the procedure satisfies its pre- and post-conditions and the above restrictions.

This verification condition is sound and complete, i.e., it is valid if and only if the

procedure adheres to the restrictions and satisfies its requirements.

• We implemented this tool on top of Z3. We were able to show that many programs

can be modularly verified using our methods. They satisfy our restrictions and

their invariants can be expressed naturally in AER.

5.1 The Problem with Global State

5.1.1 A Running Example

To make the discussion more clear, we start with an example program. We use the

union-find data structure, due to Tarjan [62], which efficiently maintains a partition of

elements, supporting the union of two bins and giving each bin a unique representative.

It does so by maintaining a forest using a parent pointer at each node (see Fig. 5.2). 1,

Two elements are in the same bin iff they share a common root.

The method find requires that the argument x is not null. The formula tailf (x, rx)

means that the last node on an f -path from x is rx, which asserts that the auxiliary

variable rx is equal to the root of x. The procedure changes the pointers of some nodes

in the list segment between x and rx, denoted using the closed interval [x, rx]f . All the

nodes in this segment are set to point directly to rx.

The return value of find (denoted by retval) is rx. The postcondition uses the

symbol f denoting the value of f before the method was invoked. Since find compresses

paths from ancestors of x to single edges to rx, this root may be shared via new parent

pointers. Fig. 5.3 depicts a typical run of find.

The method union requires that both its arguments are not null. It potentially

modifies the ancestors of x and y, i.e., [x, rx]f ∪ [y, ry]f . Fig. 5.4 depicts a typical run

1We have simplified union by not keeping track of the sizes of sets (usually employed in order to
attach the smaller set to the larger).

68 CHAPTER 5. MODULAR ANALYSIS OF PROCEDURES

@ requires x 6= null ∧ tailf (x, rx)

@ mod [x, rx]f

@ ensures
retval = rx ∧
∀α, β ∈ mod : α〈f∗〉β ↔ α = β ∨ β = rx

Node find(Node x) {
Node i = x.f;

if (i != null) {
i = find(i);

x.f = i;

}
else {
i = x;

}
return i;

}

@ requires x 6= null ∧ y 6= null ∧ tailf (x, rx) ∧ tailf (y, ry)

@ mod [x, rx]f ∪ [y, ry]f

@ ensures

∀α, β ∈ mod :

(
x〈f∗〉α→ (α〈f∗〉β ↔ β = α ∨ β = rx ∨ β = ry)

)
∧
(
y〈f∗〉α→ (α〈f∗〉β ↔ β = α ∨ β = ry)

)
void union(Node x, Node y) {

Node t = find(x);

Node s = find(y);

if (t != s) t.f = s;

}

Figure 5.2: An annotated implementation of Union-Find in Java. f is the backbone
field denoting the parent of a tree node.

of union. Notice that the number of cutpoints [56] into the branches of x and y is

unbounded.

5.1.2 Working Assumptions

Type correct The procedure manipulates references to dynamically created objects

in a type-safe way. For example, we do not support pointer arithmetic.

Deterministic Reachability The specification may use arbitrary uninterpreted rela-

tions. It may also use the reachability formula α〈f∗〉β meaning that β is reachable

from α via zero or more steps along the functional backbone field f . It may not

use f in any other way. Until Section 6.2, we require f to be acyclic and we

5.1. THE PROBLEM WITH GLOBAL STATE 69

x r

y

;
find x x

r

y

Figure 5.3: An example scenario of running find (= return value).

x t

y s

;
union x, y

x

t

y s

Figure 5.4: An example scenario of running union.

restrict our attention to only one backbone field.

Precondition There is a requires clause defining the precondition which is written

in alternation-free relational first-order logic (AFR) and may use the relation f?

(see Definition 6).

Mod-set There is a modifies clause defining the mod-set (modf), which is the set of

potentially changed memory locations. (We include both source and target of

every edge that is added or deleted). The modified set may have an unbounded

number of vertices, but we require it to be the union of a bounded number of

f -intervals, that is chains of vertices through f -pointers.

Postcondition There is an ensures clause which exactly defines the new reachability

relation f? restricted to modf . The ensures clause, written in AFR, may use two

vocabularies (employing both f and f to refer to the reachability relations before

and after.

Bounded new sharing All the new shared nodes — nodes pointed to by more than

one node – must be pointed to by local variables at the end of the procedure’s

execution. This requires that only a bounded number of new shared nodes can

be introduced by each procedure call.

Loop-free We assume that all code is loop free, with loops replaced by recursive calls.

Our goal is to reason modularly about a procedure that modifies a subset of the

heap. We wish to automatically update the reachability relation in the entire heap

70 CHAPTER 5. MODULAR ANALYSIS OF PROCEDURES

x

c

yz

modf

modf∗

;
find x

x

c

yz

modf

modf∗

Figure 5.5: A case where changes made by find have a non-local effect: y〈f∗〉c, but
¬y〈f∗〉c.

based on the changes to the modified subset. We remark that we are concerned with

reachability between any two nodes in the heap, as opposed to only those pointed to

by program variables. When we discuss sharing we mean sharing via pointer fields in

the heap as opposed to aliasing from stack variables, which does not concern us in this

context.

5.1.3 Non-Local Effects

Reachability is inherently non-local: a single edge mutation can affect the reachability

of an unbounded number of points that are an unbounded distance from the point of

change. Fig. 5.5 contains a typical run of find. Two kinds of “frames” are depicted:

(i) modf = [x, rx)f , specified by the programmer, denotes the nodes whose edges can be

directly changed by find— this is the standard notion of a frame condition; (ii) modf∗

denotes nodes for which f∗, the reachability relation, has changed. We do not and

in general we cannot specify this set in a modular way because it usually depends

on variables outside the scope of the current function such as y in Fig. 5.5. In the

example shown, there is a path from y to c before the call which does not exist after

the call. Furthermore, modf∗ can be an arbitrarily large set: in particular, it may not

be expressible as the union of a bounded set of intervals: for example, when adding a

subtree as a child of some node in another tree, modf spans only one edge, whereas

modf∗ is the entire subtree added — which may contain an unbounded number of

branches.

The postcondition of find is sound (every execution of find satisfies it), but in-

complete: it does not provide a way to determine information concerning paths outside

mod, such as from y to c in Fig. 5.5. Therefore, this rule is often not enough to verify

the correctness of programs that invoke find in larger contexts.

Notice the difficulty of updating the global heap, especially the part modf∗ \modf .

5.2. AN ADAPTATION RULE FOR DETERMINISTIC TRANSITIVE CLOSURE71

mod

q f f

q q

q

f

f

f f

q

q q

Figure 5.6:
Labeling edges inside and outside mod.

In particular, using only the local specification of find, one would not be able to prove

that ¬y〈f∗〉c. Indeed, the problem is updating the reachability of elements that are

outside mod; in more complex situations, these elements may be far from the changed

interval, and their number may be unbounded.

One possibility to avoid the problem of incompleteness is to specify a postcondition

which is specific to the context in which the invocation occurs. However, such a solution

requires reasoning per call site and is thus not modular. We wish to develop a rule that

will fit in all contexts. Reasoning about all contexts is naturally done by quantification.

5.2 An Adaptation Rule for Deterministic Transitive Clo-

sure

5.2.1 An FO(TC) Adaptation Rule

A standard way to modularize specifications is to specify the local effect of a procedure

and then to use a general adaptation rule (or frame rule) to derive the global effect. In

our case, we know that locations outside mod are not modified. Therefore, for example,

after a call to find a new path from node σ to node τ is either an old path from σ

to τ , or it consists of an old path to a node α ∈ mod, a new path from α to a node

β ∈ mod and an old path from β to τ :

∀σ, τ : σ〈f∗〉τ ↔ σ〈q∗〉τ ∨

∃α, β ∈ mod : σ〈q∗〉α ∧ α〈f∗〉β ∧ β〈q∗〉τ
(5.1)

72 CHAPTER 5. MODULAR ANALYSIS OF PROCEDURES

α 1 2 3 4 α 1 2 3 4

α 1 2 3 4 α 1 2 3 4

(a) (b)

(c) (d)

del 〈2, 3〉 del 〈2, 3〉

Figure 5.7: Memory states with non-unique pointers where global reasoning about
reachability is hard. In the memory state (a), there is one edge from α into the modified-
set {1, 2, 3, 4}, and in memory state (b), there are two edges from α into the same
modified-set, {1, 2, 3, 4}. The two memory states have the same reachability relation
and therefore are indistinguishable via reachability alone. The memory states (c) and
(d) are obtained from the memory states (a) and (b), respectively, by deleting the edge
〈2, 3〉. The reachability in (c) is not the same as in (d), which shows it is impossible to
update reachability in general w.r.t. edge deletion, without using the edge relation.

Notice that the condition α ∈ mod is expressible as a quantifier-free formula using f∗

when mod is specified, as it is, as a union of intervals. Here q∗ denotes paths through

edges, that are definitely unchanged, since at least one of their ends is outside mod

(recall that f denotes f before the change) —

∀α, β : α〈q〉β ↔ α〈f〉β ∧ (α /∈ mod ∨ β /∈ mod) (5.2)

Thus we distinguish between edges that have both ends in mod, and therefore may

have been altered in a manner described by the “ensures” clause, and other edges,

which were not changed at all. We therefore define q (and hence, its transitive closure,

q∗) to be exactly all the edges “outside” mod, that is, having at least one end that

does not belong to mod (Eq (5.2)). Now we define all the new paths f∗ using q∗ and a

restriction of f∗ to only edges inside mod. See Fig. 5.6 for a depiction of these labels.

Every such new path is either constructed entirely of “old” edges q, or is constructed

from some path f∗ between two nodes α, β ∈ mod, concatenated with some old prefix

and some old suffix (each of which may be zero-length). This is expressed by Eq (5.1).

Taking the adaptation rule given by Eq (5.1) and Eq (5.2) eliminates superfluous

behaviours involving edges outside mod being changed. Notice that these equations

are not specific to find, but Eq (5.1) does assume that no new path can enter and exit

mod multiple times. In this formula α is a placeholder for an entry-point into mod and

5.2. AN ADAPTATION RULE FOR DETERMINISTIC TRANSITIVE CLOSURE73

β is a placeholder for an exit-point from mod.

The adaptation rule uses a logic which is too expressive and thus hard for automated

reasoning: FOTC is not decidable (in fact, not even recursively enumerable). The

first problem is that the q∗ relation is not usually first order expressible and generally

requires transitive closure. For example, Fig. 5.7 shows that in general the adaptation

rule is not necessarily definable using only the reachability relation, when there are

multiple outgoing edges per node. We avoid this problem by only reasoning about

functional fields, f .

The second problem with Eq (5.1) is that it contains quantifier alternation. α

matches an arbitrary node in mod which may be of arbitrary size. Therefore, it is not

completely obvious how to avoid existential quantifications.

5.2.2 An Adaptation Rule in a Restricted Logic

We provide an equivalent adaptation rule in a restricted logic, without extra quantifier-

alternations. Indeed, our assumptions from Section 5.1.2, especially the deterministic

reachability, single backbone field, acyclicity, and the bound on the number of intervals

in the mod-set, greatly simplify reasoning about modified paths in the entire heap. The

simplification is obtained by employing an additional unary function symbol enmod,

where enmod(σ) is meant to denote the entry point of the node σ in mod, that is the

first node on the (unique) path from σ that enters mod, and null if no such node exists

(see Fig. 5.8). Note that since transitive closure is only applied to functions, the entry

points such as α in Eq (5.1) is uniquely determined by σ, the origin of the path. A

key property of enmod is that on mod itself, enmod acts as identity, and therefore for

any σ ∈ V it holds that enmod(enmod(σ)) = enmod(σ)) — that is, the function enmod

is idempotent . It is important to note that enmod does not change as a result of local

modifications in mod. Hence, we do not need to worry about enmod in the pre-state as

opposed to the post-state, and we do not need to parametrize enmod by f/f . Formally,

enmod is characterized by the following formula:

∀σ : σ〈f∗〉enmod(σ) ∧ enmod(σ) ∈ mod ∧

∀α ∈ mod : σ〈f∗〉α→ enmod(σ)〈f∗〉α
(5.3)

Using enmod the new adaptation rule adapt[mod] is obtained by considering, for

74 CHAPTER 5. MODULAR ANALYSIS OF PROCEDURES

. . .

mod

enmod

enmod

enmod : V → mod

Figure 5.8: The function enmod maps every node σ to the first node in mod reachable
from σ. Notice that for any α ∈ mod, enmod(α) = α by definition.

σ
α t1

t2

mod

τ

. . .

Figure 5.9: This diagram depicts how an arbitrary path from σ /∈ mod to τ /∈ mod is
constructed from three segments: [σ, α]f , [α, ti]f , and [ti, τ]f (here i = 2). Arrows in
the diagram denote paths; thick arrows entering and exiting the box denote paths that
were not modified since they are outside of mod. Here, α = enmod(σ) is an entry-point
and t1, t2 are exit-points.

every source and target, the following three cases:

Out-In: The source is out of mod; the target is in;

In-Out: The source is in mod; the target is out;

Out-Out: The source and target are both out of mod.

The full adaptation rule is obtained by taking the conjunction of the formulas for

each case (Eq (5.4), Eq (5.5),Eq (5.6)), that are described below, and the formula

defining enmod (Eq (5.3)).

Out-In Paths Using enmod we can easily handle paths that enter mod. Such paths

originate at some σ /∈ mod and terminate at some τ ∈ mod. Any such path therefore

has to go through enmod(σ) as depicted in Fig. 5.9. Thus, the following simple formula

can be used:

∀σ /∈ mod, τ ∈ mod : σ〈f∗〉τ ↔ enmod(σ)〈f∗〉τ (5.4)

Observe that for some β ∈ mod, the atomic formula used above, enmod(σ)〈f∗〉β,

corresponds to the FO(TC) sub-formula ∃α : σ〈q∗〉α ∧ α〈f∗〉β from Eq (5.1).

5.2. AN ADAPTATION RULE FOR DETERMINISTIC TRANSITIVE CLOSURE75

@ requires Ef (x, f1x) ∧ Ef (f1x , f
2
x) ∧ Ef (f3x , f

2
x)∧

x 6= null ∧ f1x 6= null ∧ f2x 6= null

@ mod [x, f3x]

@ ensures . . .

void swap(Node x) {
Node t = x.f;

x.f = t.f;

t.f = x.f.f;

x.f.f = t;

}

x

t

f3x

modn

Figure 5.10: A simple function that swaps two adjacent elements following x in a
singly-linked list. Dotted lines denote the new state after the swap. The notation e.g.
Ef (x, f1x) denotes the single edge from x to f1x following the f field.

In-Out Paths We now shift attention to paths that exit mod. Exit points, that is,

last points on some path that belong to mod, are more subtle since you need both

ends of the path to determine them. The end of the path is not enough since it can be

shared, and the origin of the path is not enough since it can exit the set multiple times,

because a path may exit mod and enter it again later. Therefore, we cannot define a

function in a similar manner to enmod. The fact that transitive closure is only applied

to functions is useful here: every interval [α, β] has at most one exit β. We therefore

utilize the fact that mod is expressed as a bounded union of intervals — which bounds

the potential exit points to a bounded set of terms. We will denote the exit points of

mod with ti.

For example, in the procedure swap shown in Fig. 5.10, mod = [x, f3x] and there is

one exit point t1 = f3x (f3x is a constant set by the precondition to have the value of

f(f(f(x))) using the inversion formula Eq (3.6) introduced in Section 3.2.

Observe a general path that originates at some σ ∈ mod and terminates at some

τ /∈ mod (see Fig. 5.11). Evidently this path has to go though one of the ti s, which, as a

result of our assumptions, are bounded. Notice that the exit points, too, do not change

as a result of modifying edges between nodes in mod. Assume a path from σ to τ and

let ti be the last exit point along that path. This is important, because it lets us know

that the segment of the path between ti and τ comprises solely of unchanged edges —

since they are all outside of mod. We can therefore safely use f∗, rather than q∗, to

characterize it. As for the part of the path between σ and ti, it can be characterized

simply by f∗, because σ and ti are both in mod. Therefore the entire path can be

76 CHAPTER 5. MODULAR ANALYSIS OF PROCEDURES

σ t1 τ1 t2 τ2

mod

Figure 5.11: A subtle situation occurs when the path from σ passes through multiple
exit-points. In such a case, the relevant exit-point for σ〈f∗〉τ1 is t1, whereas for σ〈f∗〉τ2
and τ1〈f∗〉τ2 it would be t2.

void swap_two(Node a, Node b) {
swap(a); swap(b);

}

Figure 5.12: An example of a procedure where the mod-set is not (essentially) convex.

expressed as σ〈f∗〉ti ∧ ti〈f∗〉τ . Consequently, we obtain the following formula:

∀σ ∈ mod, τ /∈ mod : σ〈f∗〉τ ↔∨
ti

(σ〈f∗〉ti ∧ ti〈f∗〉τ ∧
∧
tj 6=ti tj /∈ [ti, τ]f)

(5.5)

Note that Eq (5.5) corresponds to the sub-formula ∃β : α〈f∗〉β∧β〈q∗〉τ in Eq (5.1).

Out-Out Paths For paths between σ and τ , both outside mod, there are two possible

situations:

• The path goes through mod (as in Fig. 5.9). In this case, we can reuse the in-out

case, by taking enmod(σ) instead of σ.

• The path is entirely outside of mod (see Fig. 5.13).

The corresponding formula in this case is:

∀σ /∈ mod, τ /∈ mod : σ〈f∗〉τ ↔∨
ti

(enmod(σ)〈f∗〉ti ∧ ti〈f∗〉τ ∧
∧
tj 6=ti tj /∈ [ti, τ]f) ∨

enmod(σ) = enmod(τ) ∧ σ〈f∗〉τ

(5.6)

Notice that the second disjunct covers both the situation where σ has a path that

reaches some node in mod (in which case enmod(σ) 6= null) and the situation where it

does not (in which case enmod(σ) = null, so if σ〈f∗〉τ , then surely τ cannot reach mod

as well, hence enmod(τ) = null).

5.2. AN ADAPTATION RULE FOR DETERMINISTIC TRANSITIVE CLOSURE77

σ1 τ1 α

σ2 τ2

mod

Figure 5.13: Paths that go entirely untouched. enmod(σ1) = α, whereas enmod(σ2) =
null.

To conclude, given mod, adapt[mod] is the conjunction of the three formulas in

Eq (5.4), Eq (5.5), Eq (5.6), and the formula defining enmod (Eq (5.3)). To show its

adequacy, some more formalism is required, and it is introduced in the following section.

5.2.3 Adaptable Heap Reachability Logic

The utility of enmod in the formulas for adaptation motivates the definition of a logic

fragment that would be able to accommodate it.

Definition 8. The new logic AEAR is obtained by augmenting AER with unary function

symbols, denoted by g, h1, . . . , hn where:

• g should be interpreted as an idempotent function: g
(
g(α)

)
= g(α).

• The images of h1, . . . , hn are all bounded by some pre-determined parameter N ,

that is: each hi takes at most N distinct values.

• All terms involving these function symbols have the form f(z), where z is some

variable.

We later show that AEAR suffices for expressing the verification conditions of the

programs discussed above. In the typical use case, the function g assigns the entry

point in the mod-set for every node (called enmodf above), and the functions h1, . . . , hn

are used for expressing the entry points in inner mod-sets. The main attractive feature

of this logic is given in the following theorem.

Theorem 4. Any AEAR-formula ϕ can be translated to an equal-valid (first-order)

function-free ∀∗∃∗-formula.

The proof of Theorem 4, given in Appendix A.4, begins by translating ϕ to a ∀∗∃∗-
formula ϕ′ as described in Proposition 2, keeping the function symbols g, h1, . . . , hn as is.

These function symbols are then replaced by additional relation and constant symbols,

78 CHAPTER 5. MODULAR ANALYSIS OF PROCEDURES

and extra universal relational formulas are used to enforce the semantic restrictions of

them.

5.3 Extending wlp for Procedure Calls

5.3.1 Modular Specifications of Procedure Behaviours

Here we explain how procedure specifications are written in order to support modular

verification.

Definition 9. A vocabulary V = 〈C, {f},R〉 is a triple of constant symbols, a function

symbol, and relation symbols. The special constant symbol null is always included. A

state, M , is a logical structure with universe |M |, including null, and nullM = null =

fM (null).2 A state is appropriate for an annotated procedure proc if its vocabulary

includes every symbol occurring in its annotations, and constants corresponding to all

of the program variables occurring in proc.

The diagrams in this chapter denote program states. For example Fig. 5.1 shows a

transition between two states.

Definition 10 (Backbone Differences). For states M and M with the same domain

(|M| = |M | denotes the domain of M), we denote by M/M the structure over the two-

vocabulary V = 〈{null} ∪ C ∪ C, {f, f},R∪R〉 obtained by combining M and M in the

obvious way. The set M ⊕M consists of the “differences between M and M excluding

null”, i.e. M ⊕M = {u : fM (u) 6= fM (u)} ∪ {fM (u) : fM (u) 6= fM (u)} \ {null}.

Modification Set

We must specify the mod-set, mod, containing all the endpoints of edges that are

modified. Therefore when adding or deleting an edge 〈s, t〉, both ends — the source, s,

and the target, t — are included in mod. Often in programming language semantics,

only the source is considered modified. However, thinking of the heap as a graph, it is

useful to consider both ends of a modified edge as modified.

Our mod-sets are built from two kinds of intervals:

2Remember that nullM is the interpretation of null in the structure M , and fM is the interpretation
of f .

5.3. EXTENDING WLP FOR PROCEDURE CALLS 79

Command Pre Mod Post

ret = y.f y 6= null ∧ Ef (y, s) ∅ ret = s

y.f = null y 6= null ∧ Ef (y, s) [y, s]f ¬y〈f∗〉s ∧ ¬s〈f∗〉y
assume y.f==null;

y.f = x y 6= null ∧ Ef (y, null) ∧ ¬x〈f∗〉y [y, y]f ∪ [x, x]f y〈f∗〉x ∧ ¬x〈f∗〉y

Table 5.1: The specifications of atomic commands. s is a local constant denoting the
f -field of y. Ef is the inversion formula defined in Eq (3.6).

Definition 11 (Intervals). The closed interval [a, b]f is

[a, b]f
def
= {α | a〈f∗〉α ∧ α〈f∗〉b}

and the half-open interval [a, null)f is:

[a, null)f
def
= {α | a〈f∗〉α ∧ α〈f+〉null}

(notice that α〈f+〉null is trivially true in acyclic heaps).

Definition 12 (mod-set). The mod-set, mod, of a procedure is a union I1∪I2∪ . . .∪Ik,

where each Ii may be [si, ti]f or [si, null)f , si, ti are parameters of the procedure or

constant symbols occurring in the pre-condition.

In our examples, the mod-sets of find and union are written above each procedure,

preceded by the symbol “@ mod” (Fig. 5.2). Note that it follows from Definition 12

that “α ∈ mod” is expressible as a quantifier-free formula.

Definition 13. Given an appropriate state M for proc with modset mod, modM is

the set of all elements in |M | that are in mod (where mod is defined by a union of

intervals, see Definition 11).

Pre- and Post-Conditions

The programmer specifies AFR pre- and post-conditions. Two-vocabulary formulas

may be used in the post-conditions where f denotes the value of f before the call.

80 CHAPTER 5. MODULAR ANALYSIS OF PROCEDURES

Specifying Atomic Commands

Table 5.1 provides specification of atomic commands. They describe the memory

changed by atomic statements and the changes on the local heap.

Accessing a pointer field The statement ret = y.f reads the content of the f -

field of y into ret. It requires that y is not null and that an auxiliary variable s point

to the f -field of y (which may be null). It does not modify the heap at all. It sets

ret to s. It is interesting to note that the postcondition is much simpler than the one

provided in Section 3.4 because there is no need to specify the effect on the whole heap.

In particular, it does not employ quantifiers at all. The quantification is “filled in” by

the adaptation rule.

Edge Removals The statement y.f = null sets the content of the f -field of y, into

null. It requires that y is not null and that an auxiliary variable s points to the f -field

of y (which may be null). It modifies the node pointed-to by y and potentially the

node pointed-to by s. Notice that the modset includes two elements pointed by y and

t, the two end-points of the edge. It removes paths between y and s. The postcondition

assert that there are no paths from y to s. Also, since s is potentially modified, it has

to assert that no path is created from s to y.

Edge Additions The statement y.f = x is specified assuming without loss of gener-

ality, that the statement y.f = null was applied before it. Thus, it only handles edge

additions. It therefore requires that y is not null and its f -field is null. It modifies the

node pointed-to by y and potentially the node pointed-to by x. It creates a new path

from y to x and asserts the absence of new paths from x back to y. Again the absence

of back paths (denoted by ¬x〈f∗〉y) is needed for completeness. The reason is that

both the node pointed-to by x and y are potentially modified. Since x is potentially

modified, without this assertion, a post-state in which x.f == y will be allowed by the

postcondition.

5.3.1.1 Soundness and Completeness

We now formalize the notion of soundness and completeness of modular specifications

and assert that the specifications of atomic commands are sound and complete.

5.3. EXTENDING WLP FOR PROCEDURE CALLS 81

Definition 14 (Soundness and Completeness of Procedure Specification). Consider

a procedure proc with precondition P , modset mod, post-condition Q. We say that

〈P,mod, Q〉 is sound with respect to proc if for every appropriate pre-state M such

that M |= P , and appropriate post-state M which is a potential outcome of the body

of proc when executed on M : (i) M ⊕M ⊆ modM , (ii) M/M |= Q. Such a triple

〈P,mod, Q〉 is complete with respect to proc if for every appropriate states M,M

such that (i) M |= P , (ii) M/M |= Q, and (iii) M ⊕M ⊆ modM , then there exists an

execution of the body of proc on M whose outcome is M .

The following proposition establishes the correctness of atomic statements.

Proposition 5 (Soundness and Completeness of Atomic Commands). The specifica-

tions of atomic commands given in Table 5.1 are sound and complete.

The following lemma establishes the correctness of find and union, which is inter-

esting since they update an unbounded amount of memory.

Lemma 2 (Soundness and Completeness of Union-Find). The specification of find

and union in Fig. 5.2 is sound and complete.

We can now state the following proposition:

Proposition 6 (Soundness and Completeness of adapt[]). Let mod be a mod-set

of some procedure proc. Let M and M be two appropriate states for proc. Then,

M ⊕M ⊆ modM iff M/M augmented with some interpretation for the function sym-

bol enmod is a model of adapt[mod].

5.3.2 Generating Verification Condition for Procedure With Sub-calls

in AEAR

We will now extend the basic rules for weakest (liberal) precondition with appropriate

formulas for procedure call statements.

5.3.2.1 Modular Verification Conditions

The modular verification condition will also contain a conjunct for checking that mod

affected by the invoked procedure is a subset of the “outer” mod. This way the specified

restriction can be checked in AEAR and the SMT solver can therefore be used to enforce

it automatically.

82 CHAPTER 5. MODULAR ANALYSIS OF PROCEDURES

@ requires Pproc

@ mod modproc

@ ensures Qproc

return-type proc(x) { ... }

Figure 5.14: Specification of proc with placeholders.

wlp[[r := proc(a)]](Q)
def
=

Pproc [a/x] ∧
∀α : α ∈ modproc [a/x]→ α ∈ modprog ∧
∀ζ : Qproc [a/x, f

a
/f, f/f, ζ/retval]∧

adapt
[
modproc [f/f]

]
[a/x, f

a
/f, f/f]→

Q[f
a
/f, ζ/r]

Table 5.2: Computing the weakest (liberal) precondition for a statement containing a
procedure call. r is a local variable that is assigned the return value; a are the actual

arguments passed. f
a

is a fresh function symbol.

5.3.2.2 Weakest-precondition of Call Statements

As discussed in Section 5.1.2, the specification as it appears in the “ensures” clause

of a procedure’s contract is a local one, and in order to make reasoning complete we

need to adapt it in order to handle arbitrary contexts. This is done by conjoining Qproc

occurring in the “ensures” clause from the specification of proc with the universal

adaptation rule adapt[mod], where mod is replaced with the mod-set as specified in the

“modifies” clause of proc.

Table 5.2 presents a formula for the weakest-precondition of a statement containing

the single procedure call, where the invoked procedure has the specifications as in

Fig. 5.14, where “proc” has the formal parameters x = x1, . . . , xk, and it is used with

a = a1, . . . , ak (used in the formula) as the actual arguments for a specific procedure

call; we assume w.l.g. that each ai is a local variable of the calling procedure.

In general it is not obvious how to enforce that the set of locations modified by inner

calls is a subset of the set of locations declared by the outer procedure. Moreover, this

can be tricky to check since it depends on aliasing and paths between nodes pointed

to by different variables. Fortunately, the sub-formula ∀α : α ∈ modproc [a/x] → α ∈
modprog captures this property, ensuring that the outer procedure does not exceed its

own mod specification, taking advantage of the interval-union structure of the mod.

Since all the modifications (even atomic ones) are done by means of procedure calls,

5.3. EXTENDING WLP FOR PROCEDURE CALLS 83

5

4

3

2

1

5

4

xy

[x, rx]f

[x, rx]f ∪ [y, ry]f

en[x,rx]

5

4

3

2

1

5

4

xy

t[x, rx]f

[x, rx]f ∪ [y, ry]f

en[x,rx]

t := find x

Figure 5.15: An example invocation of find inside union.

this ensures that no edges incident to nodes outside mod are changed.

Proposition 7. The rule for wlp[[]] of call statements is sound and complete, that is,

when proc is a procedure with specification as in Fig. 5.14, called in the context of prog

whose mod-set is mod:

M |= wlp[[r := proc(a)]](Q)

m

M |= Pproc [a/x] ∧modMproc ⊆ modM∧

∀M :
(
M/M |= Qproc [a/x] ∧M ⊕M ⊆ modMproc

)
⇒M [r 7→ retvalM] |= Q

(5.7)

5.3.2.3 Reducing Function Symbols

Notice that when we apply the adaptation rule for AEAR, as discussed above, it intro-

duces a new function symbol enmod depending on the concrete mod-set of the called

procedure. This introduces a complication: the mod-sets of separate procedure calls

may differ from the one of the top procedure, hence multiple applications of Table 5.2

naturally require a separate function symbol enmod for every such invocation. Consider

for example the situation of union making two invocations to find. In Fig. 5.15 one

can see that the mod of union is [x, rx]f ∪ [y, ry]f , while the mod of the first call t

:= find(x) is [x, rx]f , which may be a proper subset of the former. The mod of the

second invocation is [y, ry]f , which may overlap with [x, rx]f .

To meet the requirement of AEAR concerning the function symbols, we observe that:

(a) the amount of sharing that any particular function call creates, as well as the entire

84 CHAPTER 5. MODULAR ANALYSIS OF PROCEDURES

1 2 3 4

(inner)mod = B

mod = A
δ enA

enB|A

Figure 5.16: The inner enmod is constructed from the outer one by composing with an
auxiliary function enB|A.

call, is bounded, and we can pre-determine a bound for it; (b) the modification set of

any sub-call must be a subset of the top call, as otherwise it violates the obligation not

to change any edge outside mod. These two properties allow us to express the functions

enmod of the sub-calls using enmod of the top procedure and extra intermediate functions

with bounded image. Thus, we replace all of the function symbols enS introduced by

adapt[S] for different S’s, with a single (global, idempotent) function symbol together

with a set of bounded function symbols.

Consider a statement r := proc(a) in a procedure prog . Let A denote the mod-set

of prog , and B the mod-set of proc. We show how enB can be expressed using enA and

one more function, where the latter has a bounded range. We define enB|A : A\B → B

a new function that is the restriction of enB to the domain A \B. enB|A is defined as

follows:

enB(σ)
def
=

enA(σ) enA(σ) ∈ B

enB|A(enA(σ)) otherwise

(5.8)

Using equality the nesting of function symbols can be reduced (without affecting

the quantifier alternation).

Consult Fig. 5.16; notice that enB|A(σ) is always either:

• The beginning si of one of the intervals [si, ti]f of B (such as 1 in the figure);

• A node that is shared by backbone pointers from two nodes in A (such as 3);

• The value null.

A bound on the number of si’s is given in the modular specification of proc. A

bound on the number of shared nodes is given in the next subsection. This bound is

effective for all the procedure calls in prog ; hence enB|A can be used in the restricted

5.3. EXTENDING WLP FOR PROCEDURE CALLS 85

logic AEAR.

5.3.2.4 Bounding the Amount of Sharing

We show that under the restrictions of the specification given in Section 5.3.1, the

number of shared nodes inside mod — that is, nodes in mod that are pointed two by

more than one f -pointer of other nodes in mod — has a fixed bound throughout the

procedure’s execution.

Consider a typical loop-free program prog containing calls of the form vi := proci(ai).

Assume that the mod-set of prog is a union of k intervals. We show how to compute a

bound on the number of shared nodes inside the mod-set. Since there are k start points,

at most
(
k
2

)
elements can be shared when prog starts executing. Each sub-procedure

invoked from prog may introduce, by our restriction, at most as many shared nodes

as there are local variables in the sub-procedure. Therefore, by computing the sum

over all invocation statements in prog , plus
(
k
2

)
, we get a fixed bound on the number of

shared nodes inside the mod-set.

Nshared = k +

(
k

2

)
+
∑
proci

|Pvarproci |

Pvarproci signifies the set of local variables in the procedure proci. Notice that if

the same procedure is invoked twice, it has to be included twice in the sum as well.

5.3.3 Verification Condition for the Entire Procedure

Since every procedure on its own is loop-free, the verification condition is straightfor-

ward:

vc[prog] = Pprog → wlp[[prog]]
(
Qprog ∧ “shared ⊆ Pvar”

)
where “shared ⊆ Pvar” is a shorthand for the (AER) formula:

∀α, β, γ ∈ mod : Ef (α, γ) ∧ Ef (β, γ)→

α = β ∨∨v∈Pvar γ = v

(5.9)

See Eq (3.6) for the definition of Ef . This It expresses the obligation mentioned in

Section 5.1.2 that all the shared nodes in mod should be pointed to by local variables,

effectively limiting newly introduced sharing to a bounded number of memory locations.

86 CHAPTER 5. MODULAR ANALYSIS OF PROCEDURES

Now vc[prog] is expressed in AEAR, and it is valid if-and-only-if the program meets

its specification. Its validity can be checked using effectively-propositional logic accord-

ing to Section 5.3.1.

5.4 Empirical Results

5.4.1 Implementation Details

A VC generator described in Section 5.3.2 is implemented in Python, and PLY (Python

Lex-Yacc) is employed at the front-end to parse modular recursive procedure specifica-

tions as defined in Section 5.3.1. The tool checks that the pre and the post-conditions

are specified in AFR and that the modset is defined. SMT-LIB v2 [5] standard notation

is used to format the VC and to invoke Z3. As before, the validity of the VC can be

checked by providing its negation to Z3. If Z3 exhibits a satisfying assignment then

that serves as counterexample for the correctness of the assertions. This means that

either the procedure’s post-condition is not met, or that some precondition in one of

the sub-calls is violated. If no satisfying assignment exists, then the generated VC is

valid, and therefore the program satisfies the assertions.

The output model/counterexample (S-Expression), if one is generated, is then also

parsed and f∗ is evaluated on all pairs of nodes. This structure represents the state of

the program either at the input or at the beginning of a loop iteration: running the

program from this point will violate one or more invariants. To provide feedback to

the user, f is recovered by computing Eq (3.6), and then the pygraphviz tool is used

to visualize and present to the user a directed graph, whose vertices are nodes in the

heap, and whose edges are the f pointer fields.

5.4.2 Verification Examples

We have written modular specifications for the example procedures shown in Table 5.4.

We are encouraged by the fact that it was not difficult to express assertions in AFR

for these procedures. The annotated examples and the VC generation tool are publicly

available. We picked examples with interesting cutpoints to show the benefits of the

modular approach relative to the techniques presented in Chapter 3.

To give some account of the programs’ sizes, we observe the program summary

specification given as pre- and postcondition, count the number of atomic formulas in

5.4. EMPIRICAL RESULTS 87

UF: find, UF: union — Implementation of a Union-
Find dynamic data structure.

SLL: filter — Takes a linked list and deletes
all elements not satisfying
some predicate C.

SLL: quicksort — Sorts a linked-list in-place us-
ing the Quicksort algorithm.

SLL: insert-sort — Creates a new, sorted linked-
list from a given list by repeat-
edly running insert on the el-
ements of the input list.

Table 5.3: Description of some pointer manipulating programs verified by our tool.

Benchmark

Formula size Solving

P,Q mod VC time

∀ # # ∀ (Z3)

SLL: filter 7 2 1 217 6 0.48s

SLL: quicksort 25 2 1 745 9 1.06s

SLL: insert-sort 21 2 1 284 11 0.37s

UF: find 13 2 1 203 6 0.40s

UF: union 20 2 2 188 6 1.39s

Table 5.4: Implementation Benchmarks; P,Q — program’s specification given as pre-
and post-condition, mod— mod-set, VC — verification condition, # — number of
atomic formulas/intervals, ∀— quantifier nesting The tests were conducted on a 1.7GHz
Intel Core i5 machine with 4GB of RAM, running OS X 10.7.5. The version of Z3 used
was 4.2, complied for 64-bit Intel architecture (using gcc 4.2, LLVM). The solving time
reported is wall clock time of the execution of Z3.

each of them, and note the depth of quantifier nesting; all our samples had only universal

quantifiers in the specification. We did the same for the generated VC; naturally, the

the VC is much larger than the specification even for small programs. Still, the time

required by Z3 to prove that the VC is valid is short.

Thanks to the fact that FOL-based tools, and in particular SAT solvers, permit

multiple relation symbols we were able to express ordering properties in sorted lists,

and thus in the sorting routines implementing Quicksort and insertion-sort.

5.4.3 Buggy Examples

We also applied the tool to erroneous programs and programs with incorrect assertions.

The results, including run-time statistics and formula sizes, are reported in Table 5.5.

In addition, we measured the size of the model generated, by observing the size of

88 CHAPTER 5. MODULAR ANALYSIS OF PROCEDURES

Formula size Solving C.e.

Benchmark P,Q VC time size

(+ Nature of de-

fect)

∀ # ∀ (Z3) (|L|)

UF: find 27 3 201 6 1.60s 2

Incorrect handling

of corner case

UF: union 19 2 186 6 0.70s 8

Incorrect specifica-

tion

SLL: filter 36 4 317 6 0.49s 14

Uncontrolled shar-

ing

SLL: insert-sort 21 2 283 9 0.88s 8

Unmet call precon-

dition

Table 5.5: Information about benchmarks that demonstrate detection of several kinds of
bugs in pointer programs. In addition to the previous measurements, the last column
lists the size of the generated counterexample in terms of the number of vertices —
linked-list or tree nodes.

the generated domain—which reflects the number of nodes in the heap. As expected,

Z3 was able to produce concrete counterexamples of reasonable size, providing output

that is readable for the programmer and useful for debugging. Since these are slight

variations of the correct programs, size and running time statistics are similar.

5.5 Related Work for Chapter 5

Modular Verification. The area of modular procedure specification is heavily stud-

ied. Many of these works require that the user declare potential changes similar to

the modset (e.g., see [4, 41, 66, 71]). The frame rule of separation logic [35] naturally

supports modular reasoning where the separating conjunction combines the local post-

condition with the assertion at the call site. Unlike separation, reachability is a higher

abstraction which relies on type correctness and naturally abstracts operations such

as garbage collection. Nevertheless, in Section 6.2 we show that it can also deal with

explicit memory reclamations.

We believe that our work pioneers the use of an effectively propositional logic, which

is a weak logical fragment, to perform modular reasoning in a sound and complete way.

5.5. RELATED WORK FOR CHAPTER 5 89

Our adaptation rule is more complex than the frame rule as it automatically updates

reachability.

Cutpoints. Rinetzky et al. [56] introduce cutpoint objects which are objects that can

reach the area of the heap accessible by the procedure without passing through objects

directly pointed-to by parameters. Cutpoints complicate program reasoning. They are

used in model checking [1] and static analysis [24, 57]. Examples such as the ones in

[58] which include (unbounded) cutpoints from the stack are handled by our method

without any changes. These extra cutpoints cannot change the reachabilty and thus

have no effect. Interestingly, we can also handle certain programs which manipulate

unbounded cutpoints. Instead, we do limit the amount of new sharing in paths which

are necessary for the verification. For example, the find procedure shown in Fig. 5.2

includes unbounded sharing which can be created by the client program. A typical

client such as a spanning tree construction algorithm will indeed create unbounded

sharing. In the future, we plan to verify such clients by abstracting away the pointers

inside the union-find tree.

Chapter 6

Discussion

6.1 On the Expressivity Limitations of AFR

6.1.1 Inversion yielding a non-AFR formula

We show here that a näıve attempt to encode the summary of a procedure (e.g. the

one in Fig. 3.1) immediately leads to formula that are not AFR.

Take I ′9 (Eq (3.3)), and substitute occurrences of 〈n〉 using the inversion formula

Eq (3.6). We obtain—

∀α, β :
(
α〈n+〉β ∧ ∀γ : α〈n+〉γ → β〈n∗〉γ

)
⇔(

α〈n+
0 〉β ∧ ∀γ : α〈n+

0 〉γ → β〈n∗0〉γ
)

which, when converted to Prenex normal form yields the non-AFR formula

∀α, β : ∃γ1∀γ′1 ∃γ2∀γ′2 :
(
α〈n+〉β ∧ (α〈n+〉γ1 → β〈n∗〉γ1)→

α〈n+
0 〉β ∧ (α〈n+

0 〉γ′1 → β〈n∗0〉γ′1)
)

∧
(
α〈n+

0 〉β ∧ (α〈n+
0 〉γ2 → β〈n∗0〉γ2)→

α〈n+〉β ∧ (α〈n+〉γ′2 → β〈n∗〉γ′2)
)

6.1.2 Formulas not expressible in AFR

Unbounded cutpoints. In Section 3.2 we saw that with the assumption of owner-

ship, the postcondition of reverse could be expressed as an AFR formula. In contrast,

90

6.1. ON THE EXPRESSIVITY LIMITATIONS OF AFR 91

void correl_lists(int sz) {
Node c = null; Node d = null;

while (sz > 0) {
Node t = new Node();

t.next = c; c = t;

t = new Node();

t.next = d; d = t;

}
while (c != null) {
c = c.next;d = d.next;

}
}

Figure 6.1: A simple Java program that creates two correlated lists.

if we assume an unbounded number of cutpoints then Eq (3.10) must be changed to

∀α, β : α〈n∗〉β ⇔

β〈n∗0〉α h0〈n∗0〉α ∧ h0〈n∗0〉β

α〈n∗0〉β ¬h0〈n∗0〉α ∧ ¬h0〈n∗0〉β

false h0〈n∗0〉α ∧ ¬h0〈n∗0〉β

∃γ : α〈n∗0〉γ ∧

¬h0〈n∗0〉γ ∧ β〈n∗0〉n0(γ)

¬h0〈n∗0〉α ∧ h0〈n∗0〉β

(6.1)

The first three cases are the same as in Eq (3.10). The last case considers the situation

where α is outside the list while β is within the list. For α to reach β in the postcon-

dition, it must be the case that there exists a node γ such that γ is outside the list but

its successor is within the list and reachable from β. The formula, however, introduces

alternation of ∃ inside ∀ and the use of the function symbol n so it is outside AER (and

thus outside AFR).

Correlations Between Data Structures. Another example of a non-AFR formula

mentioned concerns programs that manipulate two lists of the same length. The pro-

gram in Fig. 6.1 demonstrates a case where a weak logic is not enough to prove the

absence of null dereference in a pointer program. The first while loop creates two lists

of length sz. Then, taking advantage of the equal lengths, it traverses the first list —

the one pointed to by c — while at the same time advancing the pointer d.

92 CHAPTER 6. DISCUSSION

Since each iterator advances one step, the second loop preserves an invariant that the

lists at c and d are of the same length. Hence, as long as c is not null, it guarantees that

d is not null either. Unfortunately, such an invariant requires an inductive definition

which is well outside of AFR:

eqlen(x, y)
def
= (x = null ∧ y = null) ∨(

x 6= null ∧ y 6= null ∧ eqlen(n(x),n(y))
)

6.2 Extensions

Doubly-linked List and Nested Lists. To verify a program that manipulates a

doubly-linked list, all that needs to be done is to duplicate the analysis we did for n,

for a second pointer field prev. As long as the only atomic formulas used in assertions

are α〈n∗〉β and α〈prev∗〉β (and not, for example, α〈(n|prev)∗〉β), providing the substi-

tutions for atomic formulas in Table 3.3 would not get us outside of the class AER. In

particular, we have verified the doubly-linked list property:

∀α, β : h〈n∗〉α ∧ h〈n∗〉β =⇒ (α〈n∗〉β ⇔ β〈prev∗〉α).

In fact we can verify nested lists and, in general, lists with arbitrary number of pointer

fields as long as reachability constraints are expressed using only one function symbol

at a time, like in the case of next and prev above.

Cycles. For data structures with a single pointer, the acyclicity restriction may be

lifted by using an alternative formulation that keeps and maintains more auxiliary

information [28, 40]. Instead of keeping track of just n∗, we instrument the edge addition

operation with a check: if the added edge is about to close a cycle, then instead of adding

the edge, we keep it in a separate set M of “cycle-inducing” edges. Two properties of

lists now come into play: (1) The number of cycles reachable from program variables,

and hence the size of M , is bounded by the number of program variables; (2) Any

path (simple or otherwise) in the heap may utilize at most one of those edges, because

once a path enters a cycle, there is no way out. In all assertions, therefore, we replace

α〈n∗〉β with: α〈n∗〉β∨∨〈u,v〉∈M (α〈n∗〉u∧v〈n∗〉β). Notice that it is possible to construct

6.2. EXTENSIONS 93

All lists are acyclic sll(n∗) ∧ sll(m∗)

No sharing between lists
∀α, β, γ : h〈n∗〉α ∧ α〈m∗〉β ∧

h〈n∗〉γ ∧ γ〈m∗〉β =⇒ α = γ

Hierarchy ∀α, β, γ : α 6= β ∧ β 6= γ ∧ α〈m∗〉β =⇒ ¬β〈n∗〉γ

Cycle edge
∀α, β, γ : α 6= β ∧ α 6= γ ∧ α〈n∗〉β =⇒ ¬α〈c〉γ
∀α, β : β〈c〉α =⇒ h〈n∗〉α ∧ α〈m∗〉β

Table 6.1: Properties of a list of cyclic lists expressed in AFR

this formula thanks to the bound on the size of M ; otherwise, an existential quantifier

would have been required in place of the disjunction.

Cycles can also be combined with nesting, in such a way as to introduce an un-

bounded number of cycles. To illustrate this, consider the example of a linked list

beginning at h and formed by a pointer field which we shall denote n, where each el-

ement serves as the head of a singly-linked cycle along a second pointer field m. This

is basically the same as in the case of acyclic nested lists, only that the last node in

every sub-chain (a list segment formed by m) is connected to the first node of that

same chain.

One way to model this in a simple way is to assume that the programmer designates

the last edge of each cycle; that is, the edge that goes back from the last list node to

the first. We denote this designation by introducing a ghost field named c. This

cycle-inducing edge is thus labeled c instead of m.

Properties of the nested data structure can be expressed with AFR formulas as

shown in Table 6.1. “Hierarchy” means that the primary list is contiguous, that is,

there cannot be n-pointers originating from the middle of sub-lists. “Cycle edge”

describes the closing of the cyclic list by a special edge c.

We were able to verify the absence of memory errors and the correct functioning of

the program flatten, shown in Fig. 6.2.

Bounded Sharing. Arbitrary sharing in data structures is hard, because even in

lists, any node of the list may be shared (that is, have more than one incoming edge).

In this case we have to use quantification since we do not know in advance which node

in the list is going to be a cutpoint for which other nodes. However, when the entire

heap consists solely of lists, the quantifier may be replaced with a disjunction if we take

into account that there is a bounded number of program variables, which can serve

94 CHAPTER 6. DISCUSSION

Node flatten(Node h) {
Node i = h, j = null;

while (i != null) I1 {
Node k = i;

while (k != null) I2 {
j = k; k = k.m;

}
j.c = null;

i = i.n; j.m = null; j.m = i;

}
j.c = null; j.c := h;

return h;

}

Figure 6.2: A program that flattens a hierarchical structure of lists into a single cyclic
list.

Command Pre Mod Post

ret = new() free(s) ∅ ret = s ∧ ¬free(s)

access y ¬free(y) ∅
free(y) y 6= null ∧ ¬free(y) ∅ free(y)

Table 6.2: The specifications of atomic commands for resource allocations in a C-like
language.

as the heads of lists, and any two lists have at most one cutpoint. Such heaps when

viewed as graphs are much simpler than general DAGs, since one can define in advance

a set of constant symbols to hold the edges that induce the sharing; for example, if we

have one list through the nodes x→ u1 → u2 and a second list through y → v1 → v2,

all distinct locations, then adding an edge u2 → v1 would create sharing, as the nodes

v1, v2 become accessible from both x and y. This technique is also covered by Hesse [28].

Explicit Memory Management Table 6.2 updates the specification of atomic com-

mands (provided in Table 5.1) to handle explicit memory management operations. For

simplicity, we follow ANSI C semantics but do not handle arrays and pointer arithmetic.

The allocation statement assigns a freed location denoted by s to ret and sets its value

to be non-freed. All accesses to memory locations pointed-to by y in statements ret =

y.f, y.f = x, and x = y are required to access non-freed memory. Finally, free(y)

sets the free predicate to true for the node pointed-to by y. As a result, all the nodes

reachable from y cannot be accessed.

Notice that it is possible to enforce interesting safety properties naturally using

6.2. EXTENSIONS 95

AFR formulas such as the absence of memory leaks. For example a precondition for

free(x) can be

∀α : y〈f∗〉α ∧ α 6= y ∧ α 6= null→ free(y)

Chapter 7

Conclusion

In this thesis we investigated complex properties of programs, involving high-order

concepts as transitive closure of pointer links and its derivatives such as sharing and

entry-point. It is surprising that such properties can be expressed and handled by a

logic based on EPR, which is among the weakest fragments of first-order logic. A key

insight to enable this was the idea of “inversion”: instead of a function symbol for next

and a derived binary relation next∗ for its transitive closure, formalize the properties

of next∗ and have next derived from it instead. As previously noted, this is analogous

to reasoning in the natural numbers using a successor function succ (which requires

constant use of induction) vs. reasoning with ≤.

The results shed some light on the complexity of reasoning about programs that

manipulate linked data structures such as singly- and doubly-linked lists. The invariants

in many of these programs can be expressed without quantifier alternation. Alternations

are introduced by unbounded cutpoints and reasoning about more complicated directed

acyclic graphs. Furthermore, for programs manipulating general graphs higher order

reasoning may be required.

Compared to past work on shape analysis, our approach (i) is based on full predicate

abstraction, (ii) makes use of standard theorem proving techniques, (iii) is capable of

reporting concrete counterexamples, and (iv) is based on property-directed reachability.

The experimental evaluation in Section 4.3 illustrates these four advantages of our

approach. The algorithm is able to establish memory-safety and preservation of data-

structure invariants for all of the examples, using only a handful of simple predicates.

This result may look somewhat surprising because earlier work on shape analysis that

employed the same predicates [26] failed to prove these properties. One reason is

96

97

that [26] only uses positive and negative combinations of these predicates, whereas our

algorithm uses arbitrary Boolean combinations of predicates.

A crucial method for simplifying the reasoning about linked data structures is par-

titioning programs into smaller pieces, where each piece manipulates part of the heap.

The part that a sub-program manipulate usually has a bounded number of entry and

exit points. This thesis slightly generalizes by reasoning about a potentially unbounded

number of entry points, as demonstrated by find and union. Only the new sharing

that is introduced by the procedure should be bounded. Notice that this unbounded-

ness supports modularity: even in the case where in every particular call context there

is a bounded number of paths (e.g. when there is a bounded number of roots in the

heap), the bound is not known in advance, therefore the programmer has to prepare

for an unbounded number of cases.

It is important to note that the adaptation rule of Section 5.2 adds expressive power

to verifying programs: it is in general impossible for the programmer to define, in AFR,

a modular specification for all the procedures. Generation of a verification condition

requires coordination between the separate call sites as mentioned above, in particular

taking note of potential sharing. This coordination requires per-call-site instantiation,

which, thanks to having the adaptation rule in the framework, is done automatically.

Finally we remark that there is a trade-off between the complexity of the mod-set

and of the post-condition: defining a simpler, but larger mod may cause the post-

condition to become more complicated, sometimes not even AFR-expressible. Also

notice that if mod = V (the entire heap), modular reasoning becomes trivial since it

can be done by relational composition, but this puts the burden of writing the most

complete post-conditions on the programmer, which we suspect is not always possible

in our limited logic.

Therefore, we believe that this thesis is an important step towards the ability to

handle real-life programs in a scalable way.

There are some issues still open. As we have seen, there is an interesting class of

programs that work on linked data structures with pointers and admit EPR induc-

tive loop invariants. Since EPR is a countable set of formulas, and from the decision

procedure developed in the previous chapters, the problem of checking whether a pro-

gram has such a loop invariant becomes r.e. by a simple generate-and-test approach

(of course, in general, the problem of checking a single loop invariant is undecidable,

98 CHAPTER 7. CONCLUSION

and the problem of finding a loop invariant is not r.e.). Is there a better way to an-

swer this question? The method represented in Chapter 4 for invariant inference allows

limited use of quantifiers, restricted by the parameter templates. It would be useful

to learn new quantified predicates and refine the abstractions (e.g. using CEGAR);

this would require less from the programmer and would allow more instances where

fully-automated reasoning on loops can be applied. On a broader scale, we raise a

theoretical question of whether an EPR invariant can be discovered automatically, and

whether the existence of an EPR invariant is decidable. We conjecture, however, that

the answer would be negative, although a proof is yet to be discovered.

The solution might be a heuristic for EPR inductive loop invariant inference that

would be sound but not complete; while not providing a conclusive solution, a heuristic

has a high chance of working well in practice because naturally-occurring programs

are usually “well-behaved” and have a simple argument that proves their correctness.

Moreover, it can be argued that having a simple loop invariant is a good programming

trait by its own right and that programmers should make an effort to write such pro-

grams. In any case, it is obvious that the programs presented in undecidability proofs

are highly unnatural and there is no practical need to handle such instances.

To design such heuristics, a larger base of benchmarks should be obtained and

inspected to characterize what common programming idioms exist, then exploit prop-

erties of these idioms to handle variants of the benchmarks in different contexts.

On the aspects of modular programming and reasoning, we still do not know the

bounds of modular reasoning and in which situations it can be used. The restriction of

bounded sharing (Section 5.3.2.4) may be too severe for some cases, and can probably be

avoided. Also, it is interesting to investigate the differences and similarities of handling

procedure calls within loops vs. handling recursion as is done in this thesis.

Finally, the success we had with reasoning of transitive closure gives hope that this

kind of reasoning can also be applied for the field of synthesis, where invariants are

given and the code is automatically generated, rather than being checked against the

specifications. This can be a win-win situation, since sometimes generation of code

may even be easier than verification, and the resulting code is correct by construction.

Appendix A

Logical Proofs

Definition 15 (Vocabulary). A vocabulary V is a triple 〈C,F ,R〉 where C is a finite

set of constant symbols, F is a finite set of function symbols where each f ∈ F has a

fixed arity ar(f), and R is a finite set of relation symbols where each r ∈ R has a fixed

arity ar(r).

A.1 Reductions between Logics

We now state the reduction from the problem of checking validity of an AER formula

to effectively-propositional logic for a specific function n. It can be generalized for any

fixed number of function symbols in order to handle, for example, doubly-linked lists

or nested lists. First we show that for acyclic functions over finite domains, there is a

one-to-one correspondence between n and n∗, as hinted previously by Eq (3.6).

Let L be the set of memory locations (“objects”). Let α ∈ L be some node, then

the set of nodes reachable from α, that is, W = {β | α〈n∗〉β}, is linearly ordered via

n∗. Thus α has a unique successor — namely, the minimal node of W \{α}. This gives

rise to the following lemma:

Lemma 3. For n : L→ L ∪ {null}, which is acyclic,

β = n(α) ⇐⇒ α〈n+〉β ∧ ∀γ : α〈n+〉γ =⇒ β〈n∗〉γ

for any α, β ∈ L.

Proof. First direction (⇒): Let β = n(α). Trivially α〈n+〉β. Assume some γ ∈ L such

that α〈n+〉γ, then n(α)〈n∗〉γ; Hence β〈n∗〉γ.

99

100 APPENDIX A. LOGICAL PROOFS

Second direction (⇐): Let α〈n+〉β and α〈n+〉γ =⇒ β〈n∗〉γ for any γ ∈ L. From

the first clause, n(α)〈n∗〉β. From the second, since α〈n+〉n(α), follows β〈n∗〉n(α). Due

to acyclicity, β = n(α).

Relying on the fact that L is finite, the right-hand side of the lemma necessarily

defines a total function (which is, in fact, computable). We can use this fact to simulate

reachability constraints in first-order logic. For this purpose, we use the formula ϕ′ from

Eq (3.7) (Section 3.2).

Proposition 2 (Simulation of AER) Consider an AER formula ϕ over vocabulary

V = 〈C, {n},R〉. Let ϕ′ def
= ϕ[n̂∗(t1, t2)/t1〈n∗〉t2]. Then ϕ′ is a FO formula over vocab-

ulary V ′ = 〈C, ∅,R∪ {n̂∗}〉 and ϕ is simulated by ΓlinOrd → ϕ′ where ΓlinOrd is the

formula in Table 3.2.

Proof. We need to show that ϕ is valid ⇐⇒ ϕ′ is valid.

First direction (⇒): Suppose that ϕ is true on all appropriate structures. Let

A′ ∈ STRUC(V ′) be an arbitrary finite structure for ϕ′, with domain L such that

A′ |= ΓlinOrd. Define nA as in Lemma 3 — this is well-defined since L is finite. We got

a structure A for ϕ, so A |= ϕ, and (nA)∗ = n̂∗
A′

. Therefore, A′ |= ϕ′.

Second direction (⇐): Conversely, suppose that ΓlinOrd =⇒ ϕ′ is true on all

appropriate structures, and let A ∈ STRUC(V) be an arbitrary structure for ϕ; By

setting n̂∗
A′

= (nA)∗ we get A′, which is a model of ΓlinOrd; hence from the assumption,

A′ |= ϕ′; therefore A |= ϕ.

A.2 Program Semantics

This section of the appendix refers to the definitions of Table 2.2, Table 2.3 (Section 2.2)

and Table 3.3 (Section 3.4).

Proposition 3 (VCs in AER) For every program S whose precondition P , postcon-

dition Q, branch conditions, loop conditions, and loop invariants are all expressed as

AFR formulas, VCgen({P}S{Q}) ∈ AER.

Proof. Follows from closure properties of AER, and from the fact that AER is closed

under wlp, The proofs of which immediately follow. In particular, in VCaux(while . . .),

the subformulas [[B]] and I are AFR and Q is AER. Thus I∧[[B]]→ Q is AER. Similarly

for the ¬[[B]] case.

A.2. PROGRAM SEMANTICS 101

The following proposition summarizes the properties of formulas which are used to

guarantee that we can generate AFR formulas for arbitrary procedures manipulating

singly and doubly linked lists with AFR specified invariants.

Proposition 8 (Closure of AER Formulas). Let af be a closed AFR formula, qf be a

QFR formula. Let ϕ1 and ϕ2 be closed AER formulas. Let a be an atomic subformula in

ϕ1 and let ϕ1[qf/a] denote the substitution of a in ϕ1 by qf. Let c be a constant. Then,

the following formulas are all AER formulas: disjunction: ϕ1∨ϕ2; conjunction: ϕ1∧
ϕ2; AFR-implication: af =⇒ ϕ1; QFR-substitution: ϕ1[qf/a]; generalization:

∀α : ϕ1[α/c].

Theorem 5. (Soundness and Completeness of the wlp rules for heap

access—atomic statements) For every state σ be a structure with the vocabulary

〈Pvar, {n},R〉 over a set of locations L, for every atomic heap access atomic statement

S, σ |= wlp[[S]](Q) if and only if [[S]]σ |= Q ∧ ac.

Proof. We will prove the theorem in terms of the operational semantics of the atomic

statements.

Let σ, σ′ ∈ Σ be program states such that σ |= P ∧ ac.
So nσ is a function without cycles.

Consider the two atomic commands whose semantics update n — this is based

almost completely on [28]:

S = x.n := y: Assume that nσ(xσ) = null. Then n[[S]]σ(xσ) = yσ, and for any α 6= xσ,

n[[S]]σ(α) = nσ(α). In this case, α〈n[[S]]σ∗〉β ⇐⇒ α〈nσ∗〉β ∨ (α〈nσ∗〉xσ ∧ yσ〈nσ∗〉β), so

via our assumption,

[[S]]σ |= Q ⇐⇒ σ |= Q[α〈n∗〉β ∨ (α〈n∗〉x ∧ y〈n∗〉β)/α〈n∗〉β)]

Because σ and [[S]]σ differ only in n (values of all program variables are the same), that

is [[S]]σ = σ[n 7→ n[[S]]σ].

S = x.n := null: Similarly, we have n[[S]]σ(xσ) = null and for any α 6= xσ, n[[S]]σ(α) =

nσ(α). Therefore in this case α〈n[[S]]σ∗〉β ⇐⇒ α〈nσ∗〉β∧(¬α〈nσ∗〉xσ∨β〈nσ∗〉xσ) (here

it is important that we know that n is without cycles). Hence,

[[S]]σ |= Q ⇐⇒ σ |= Q[α〈n∗〉β ∧ (¬α〈n∗〉x ∨ β〈n∗〉x)/α〈n∗〉β]

102 APPENDIX A. LOGICAL PROOFS

Consider the atomic command whose semantics read the value of n. These do not

change n, so safely σ |= ac ⇐⇒ [[S]]σ |= ac. It is left to check the condition for Q:

S = x := y.n: Assume ` ∈ L such that σ,A |= Pn[y/s, α/t] where A = [α 7→ `] is

a variable assignment for a fresh variable a. According to Lemma 3, this means that

nσ(yσ) = `. We then get [[S]]σ = σ[x 7→ nσ(yσ)] = σ[x 7→ `].

[[S]]σ |= Q ⇐⇒ σ[x 7→ `] |= Q ⇐⇒ σ,A |= Q[α/x]

And since this holds for any A as above,

[[S]]σ |= Q ⇐⇒ σ |= ∀α : Pn[y/s, α/t] =⇒ Q[α/x]

Finally, consider the atomic command that allocates memory.

S = x := new: We model the memory allocation as a function M : Σ→ L that given a

structure σ, returns a non-null location ` ∈ L such that ` is not “used” — in the sense

that it cannot be reached from any of the program variables, that is, constant symbols

of the set Pvar. In this case [[S]]σ = σ[x 7→M(σ)]. Also,

σ,
[
α 7→M(σ)

]
|=

∧
p∈Pvar∪{null}

¬p〈n∗〉α

Assume σ |= ∀α :
(∧

p∈Pvar∪{null} ¬p〈n∗〉α
)

=⇒ Q[α/x]. Hence from the use of

∀, we know that σ,
[
α 7→ M(σ)

]
|=
(∧

p∈Pvar∪{null} ¬p〈n∗〉α
)

=⇒ Q[α/x]. Combined

with M specifications, σ,
[
α 7→M(σ)

]
|= Q[α/x]. Hence [[S]]σ |= Q.

Now assume that [[S]]σ |= Q. It means it should hold for any implementation of M .

Let ` = M(σ), then we know that ` can be any location such that

σ,A |=
∧

p∈Pvar∪{null}
¬p〈n∗〉α

Where A =
[
α 7→ `]. Also, σ,A |= Q[α/x] from the same reasons as before. Since

this holds for any such A satisfying the antecendant, we conclude that σ |= ∀α :(∧
p∈Pvar∪{null} ¬p〈n∗〉α

)
=⇒ Q[α/x].

A.3. RELATIVE COMPLETENESS OF IC3WITH PREDICATE ABSTRACTION103

A.3 Relative Completeness of IC3 with Predicate Ab-

straction

Theorem 3 Given (i) the set of abstraction predicates P = {pi ∈ L}, 1 ≤ i ≤ n where

L is a decidable logic, and the full predicate abstraction domain A over P, (ii) the initial

condition Init ∈ L, (iii) a transition relation ρ expressed as a two-vocabulary formula

in L, and (iv) a formula Bad ∈ L specifying the set of bad states, PDRA(Init, ρ,Bad)

terminates, and reports either

1. valid if there exists A ∈ A s.t. (i) Init→ A, (ii) A is inductive, and (iii) A =⇒
¬Bad,

2. a concrete counterexample trace, which reaches a state satisfying Bad, or

3. an abstract trace, if the inductive invariant required to prove the property cannot

be expressed as an element of A.

Proof. The first two cases are trivial: if PDRA terminates returning some R[j], j < N ,

then Init → R[j] by virtue of Init → R[0] and R[i] → R[i + 1] for every i < N , and

R[j]→ ¬Bad or the check at line line 1 would have failed. Also, R[j−1] ≡ R[j] so R[j]

is inductive.

If PDRA returns a set of concrete states, then they have to be a concrete coun-

terexample trace, as they are a model of Init∧ ρN−j ∧ (Bad)′×(N−j) (line 2 of reduceA).

For the third case, we show that if the check on the first line of “reduce” is “sat”,

then there exists a chain of concrete states, σj σj+1 · · · σN , such that σj |= Init,

σN |= Bad, and for any j ≤ i < N there exist two concrete states σ, σ′ satisfying:

• σ ∈ γ(βA(σi))

• σ′ ∈ γ(βA(σi+1))

• 〈σ, σ′〉 |= ρ

The key point is that, because the given abstraction can never distinguish any two states

in γ(βA(σi)), the chain σj σj+1 · · ·σN cannot be excluded by the abstract domain A,

no matter what Boolean combination of the predicates of P is used. Moreover, the

chain βA(σj) βA(σj+1) · · · βA(σN) is an abstract trace that leads from an initial

state to an error state.

104 APPENDIX A. LOGICAL PROOFS

Notice that the chain above may not be a concrete trace, there can be “breaks”

between adjacent σis, within the same abstract element.

Construction of (σi)i=j...N : Follow the chain of recursive calls to “reduce” with

index values N down to j. The parameter A is always a cube of the form βA(σ);

take one σ |= A for each call, forming a series that we denote by σj , σj+1, etc. We

show that this series satisfies the above properties: At each call except the innermost,

“reduce” made a recursive call at line 7, which means that R[j − 1] ∧ ρ ∧ (A)′ was

satisfiable; the returned cube A2 becomes βA(σj−1). Let 〈σ, σ′〉 |= R[j − 1] ∧ ρ ∧ (A)′,

then σ |= A2 = βA(σj−1); σ′ |= A = βA(σj); and 〈σ, σ′〉 |= ρ as required.

A.4 Simulation of an Idempotent Function in EPR

We prove Theorem 4, by providing a concrete translation in three steps. First, we

translate ϕ to a ∀∗∃∗-formula ϕ′ as described in Proposition 2, keeping the function

symbols g, h1, . . . , hn as is. Similarly to the proof of Proposition 2, one obtains that

(a) if ϕ is valid in all finite structures then ϕ′ is valid in all finite structures; and (b) if

ϕ′ is valid then ϕ is valid.

Second, to eliminate the function symbols h1, . . . , hn we repetitively use the follow-

ing proposition:

Proposition 9. Let N > 0. Let h be some unary function symbol, and Σh be

a first-order signature (with equality) that includes the function symbol h. Let ΣR

be the signature obtained from Σh by replacing h with a binary relation symbol Rh,

and adding N fresh constant symbols c1, . . . , cN . Consider an ∃∗∀∗ sentence over

Σg: Φ = ∃x1, . . . , xn.∀y1, . . . , ym.Ψ (where Ψ is quantifier free, over the variables

x1, . . . , xn, y1, . . . , ym). Suppose that the only terms occurring in Φ that involve h have

the form h(z), where z is a variable. Define T (Φ) to be the following sentence over ΣR:

Γ ∧ ∃x1, xh1 , . . . , xn, xhn.∀y1, yh1 , . . . , ym, yhm.∧
1≤i≤nRh(xi, x

h
i) ∧ (

∧
1≤i≤mRh(yi, y

h
i)→ Ψ′)

(A.1)

where:

• Γ is the conjunction of the following formulas:

– ∀x, y, z.Rh(x, y) ∧Rh(x, z)→ y = z

A.4. SIMULATION OF AN IDEMPOTENT FUNCTION IN EPR 105

– ∀x. ∨1≤i≤N Rh(x, ci)

• xh1 , . . . , xhn, yh1 , . . . , yhm are fresh variables.

• Ψ′ is obtained from Ψ by replacing each term of the form h(ai) by ahi (for a ∈
{x, y}).

Then, Φ is satisfied by a (finite) normal structure interpreting h as a function whose

image cardinality is at most N iff T (Φ) is satisfied by some (finite) normal structures.

Proof. Suppose that a (finite) normal structure Mh interpreting h as a function whose

image cardinality is at most N is a model of Φ. We can obtain a (finite) normal model

of T (Φ) by: (a) interpreting c1, . . . , cN as the elements of the image of hMh ; (b) use the

(graph of the) interpretation of h as an interpretation of Rh.

For the converse, suppose thatMR is a (finite) normal model of T (Φ). We can obtain

a (finite) normal model Mh of T (Φ) by choosing hMh = λd ∈ |MR|.ιd′ ∈ |MR|.〈d, d′〉 ∈
RMR
h . This is well-defined since MR is a model of Γ. It is straightforward to verify that

Mh is a model of Φ.

Finally, to eliminate the function symbol g, we use the following proposition:

Proposition 10. Let Σg be a first-order signature (including equality) with only

one unary function symbol g, and ΣR be the signature obtained from Σg by re-

placing g with a binary relation symbol Rg. Consider an ∃∗∀∗ sentence over

Σg: Φ = ∃x1, . . . , xn.∀y1, . . . , ym.Ψ (where Ψ is quantifier free, over the variables

x1, . . . , xn, y1, . . . , ym). Suppose that the only terms occurring in Φ are variables and

terms of the form g(z) (where z is a variable). Define T (Φ) to be the following sentence

over ΣR:

Γ ∧ ∃x1, xg1, . . . , xn, xgn.∀y1, yg1 , . . . , ym, ygm.∧
1≤i≤nRg(xi, x

g
i) ∧ (

∧
1≤i≤mRg(yi, y

g
i)→ Ψ′)

(A.2)

where:

• Γidem is the conjunction of the following formulas:

– ∃x, y.Rg(x, y)

– ∀x, y, z.Rg(x, y) ∧Rg(x, z)→ y = z

106 APPENDIX A. LOGICAL PROOFS

– ∀x, y.Rg(x, y)→ Rg(y, y)

• xg1, . . . , xgn, yg1 , . . . , ygm are fresh variables.

• Ψ′ is obtained from Ψ by replacing each term of the form g(ai) by agi (for a ∈
{x, y}).

Then, Φ is satisfied by a (finite) normal structure interpreting g as an idempotent

function iff T (Φ) is satisfied by some (finite) normal structure.

Proof. The left-to-right direction is clear. Indeed, if a (finite) normal structure Mg

interpreting g as an idempotent function is a model of Φ, then we can use the (graph of

the) interpretation of g as an interpretation of Rg and obtain a (finite) normal model

of T (Φ). We prove the converse. Suppose that MR is a (finite) normal model of T (Φ).

Construct a (finite) normal structure Mg (for the signature Σg) as follows:

1. |Mg| = {d ∈ |MR| : ∃d′ ∈ |MR|.〈d, d′〉 ∈ RMR
g }

2. gMg = λd ∈ |Mg|.ιd′ ∈ |Mg|.〈d, d′〉 ∈ RMR
g

3. For every k-ary predicate symbol p of Σg, p
Mg = pMR ∩ |Mg|k (i.e., pMg is the

restriction of pMR to the new domain).

|Mg| is non-empty since MR is a model of ∃x, y.Rg(x, y). To see that gMg is well-

defined, note that if 〈d, d′〉 ∈ RMR
g then both d and d′ are in |Mg|. Indeed, in this case

d ∈ |Mg| by definition, and since MR is a model of ∀x, y.Rg(x, y)→ Rg(y, y), we must

have 〈d′, d′〉 ∈ RMR
g , and thus d′ ∈ |Mg| as well. Hence for every d ∈ |Mg| there exists

an element d′ ∈ |Mg| such that 〈d, d′〉 ∈ RMR
g . Its uniqueness is guaranteed since MR

is a model of ∀x, y, z.Rg(x, y) ∧ Rg(x, z) → y = z. The fact that gMg is idempotent

directly follows from the fact that MR |= ∀x, y.Rg(x, y)→ Rg(y, y).

Now, we show that Mg is a model of Φ. Let σ be an |MR|-assignment (as-

signing elements of |MR| to the variables), such that MR, σ
′ |= ∧

1≤i≤nRg(xi, x
g
i) ∧

(
∧

1≤i≤mRg(yi, y
g
i) → Ψ′) for every {y1, yg1 , . . . , ym, ygm}-variant σ′ of σ. Then, for

every 1 ≤ i ≤ n, σ[xi] and σ[xgi] are elements of |Mg| and gMg(σ[xi]) = σ[xgi]. In-

deed, we have MR, σ |=
∧

1≤i≤nRg(xi, x
g
i), and thus 〈σ[xi], σ[xgi]〉 ∈ RMR

g for every

1 ≤ i ≤ n. Consider an |Mg|-assignment σg such that σg[xi] = σ[xi] for every 1 ≤ i ≤ n.

We show that Mg, σ
′
g |= Ψ for every {y1, . . . , ym}-variant σ′g of σg. Consequently,

Mg, σg |= ∀y1, . . . , ym.Ψ and hence Mg |= Φ.

A.4. SIMULATION OF AN IDEMPOTENT FUNCTION IN EPR 107

Let σ′g be a {y1, . . . , ym}-variant σg. We prove that Mg, σ
′
g |= Ψ. Consider the

{y1, yg1 , . . . , ym, ygm}-variant σ′ of σ defined by σ′[yi] = σ′g[yi] and σ′[ygi] = gMg(σ′g[yi]).

It follows from our definitions that MR, σ
′ |= ∧

1≤i≤mRg(yi, y
g
i). Therefore, since

MR, σ
′ |= ∧

1≤i≤mRg(yi, y
g
i) → Ψ′, we have that MR, σ

′ |= Ψ′. We show that

for every atomic Σg-formula p(t1, . . . , tk) that occurs in Ψ, Mg, σ
′
g |= p(t1, . . . , tk) iff

MR, σ
′ |= p(t′1, . . . , t

′
k), where for every 1 ≤ j ≤ k, t′j = tj if tj is a variable, t′j = agi

if tj = g(ai) for a ∈ {x, y}. By induction on the structure of Ψ, it would easily follow

that Mg, σ
′
g |= Ψ (using the definition of Ψ′, and the fact that MR, σ

′ |= Ψ′).

Thus let p(t1, . . . , tk) be an atomic Σg-formula that occurs in Ψ, and let t′1, . . . , t
′
k

be defined as above. Using the natural extension of assignments to terms (given in-

terpretations of function symbols) we have that: σ′g[tj] = σ′[t′j] for every 1 ≤ j ≤ k.

This is obvious if tj = xi or tj = yi (since σ′g[xi] = σ′[xi] for every 1 ≤ i ≤ n,

and σ′g[yi] = σ′[yi] for every 1 ≤ i ≤ m). But, also if tj = g(xi) or tj = g(yi),

then t′j is either xgi or ygi , and we have σ′[xgi] = gMg(σ′g[xi]) = σ′g[g(xi)] and σ′[ygi] =

gMg(σ′g[yi]) = σ′g[g(yi)]. Now, Mg, σ
′
g |= p(t1, . . . , tk) iff 〈σ′g[t1], . . . , σ′g[tk]〉 ∈ pMg , or

equivalently iff 〈σ′[t′1], . . . , σ′[t′k]〉 ∈ pMg . Since σ′[t′j] ∈ |MR| for every 1 ≤ j ≤ k, and

pMg = pMR ∩ |Mg|k, we can equivalently write 〈σ′[t′1], . . . , σ′[t′k]〉 ∈ pMR . This is exactly

the condition for MR, σ
′ |= p(t′1, . . . , t

′
k).

Now, note that the obtained formula ψ is a purely relational ∀∗∃∗-formula, and so

it is valid in all finite structures iff it is generally valid. It follows that ϕ is valid (in

AEAR) iff ψ is valid (in first-order logic).

Appendix B

Code Examples

SLL: insert

h, x, e, i, j : V

{P}
i := h; j := null;

while (i != x & i != null) {I} (

j := i;

i := i.n

) ;

j.n := e; e.n := i

{Q}

P := h 6= null ∧ h〈n+〉x ∧ e 6= null ∧ e〈n〉null ∧ ¬h〈n∗〉e

Q := h 6= null ∧ h〈n∗〉e ∧ e〈n〉x

I := h 6= null ∧ h〈n+〉x ∧ e 6= null ∧ e〈n〉null ∧ ¬h〈n∗〉e ∧

ite(j = null, i = h, h〈n∗〉j ∧ j〈n〉i) ∧

i〈n∗〉x

108

109

SLL: delete

h, i, j : V

C : V → {true, false}

{P}
i := h ; j := null ; t := null ;

while (i != null & t = null) {I} (

if (C(i)) then t := i

else (

j := i ; i := i.n

)

) ;

if (i != null) then (

if (j = null) then h := i.n

else (t := i.n ; j.n := null ; j.n := t)

)

else skip

{Q}

assumptions: ¬C(null), x, y 6= null

P := h〈n∗〉x ∧ x〈n∗〉y

Q := x〈n∗〉y ↔ (x = y ∨ y 6= i)

I := h〈n∗〉x ∧ x〈n∗〉y ∧

(i 6= null→ h〈n∗〉i) ∧

ite(j = null, i = h, h〈n∗〉j ∧ j〈n〉i) ∧

(∀m(h〈n∗〉m→ ¬i〈n∗〉m→ ¬C(m))) ∧

(t 6= null→ C(i))

110 APPENDIX B. CODE EXAMPLES

SLL: deleteAll

h, i, j : V

{P}
i := h;

while $i != null$ I (

j := i ;

i := i.n ;

j.n := null

)

{Q}

P := ∀xy(x〈n∗〉y ↔ x〈n∗〉y)

Q := ∀x(h〈n∗〉x→ x〈n〉null)

I := ∀mw(i〈n∗〉m→ (m〈n∗〉w ↔ m〈n∗〉w)) ∧

∀m(h〈n∗〉m ∧ ¬i〈n∗〉m→ m〈n〉null) ∧

(i 6= null→ h〈n∗〉i)

SLL: filter

{P}
i := h ;

j := null ;

while (i != null) {I} (

if (C(i)) then (t := i.n ; j.n := null ; j.n := t) else j := i ;

i := i.n

)

111

{Q}

P := n∗ = n∗ ∧ ¬C(h)

Q := ∀y(h〈n∗〉y ↔ (h〈n∗〉y ∧ ¬C(y)))

I := n∗ ⊆ n∗ ∧ ¬C(h) ∧

(i 6= null→ h〈n∗〉i) ∧ ite(j = null, i = h, j〈n〉i ∧ h〈n∗〉j) ∧

∀m(m 6= null→

ite(C(m), h〈n∗〉m↔ h〈n∗〉m ∧ i〈n∗〉m,

h〈n∗〉m↔ h〈n∗〉m))

Bibliography

[1] Mohamed Faouzi Atig, Ahmed Bouajjani, and Shaz Qadeer. Context-bounded

analysis for concurrent programs with dynamic creation of threads. Logical Meth-

ods in Computer Science, 7(4), 2011. 89

[2] Arnon Avron. Transitive closure and the mechanization of mathematics. In

FairouzD. Kamareddine, editor, Thirty Five Years of Automating Mathemat-

ics, volume 28 of Applied Logic Series, pages 149–171. Springer Netherlands,

2003. ISBN 978-90-481-6440-0. doi: 10.1007/978-94-017-0253-9 7. URL http:

//dx.doi.org/10.1007/978-94-017-0253-9_7. 28

[3] T. Ball, A. Podelski, and S.K. Rajamani. Boolean and Cartesian abstraction for

model checking C programs. 2001. 46

[4] Mike Barnett, Manuel Fähndrich, K. Rustan M. Leino, Peter Müller, Wolfram

Schulte, and Herman Venter. Specification and verification: the spec# experience.

Commun. ACM, 54(6):81–91, 2011. 66, 88

[5] Clark Barrett, Aaron Stump, , and Cesare Tinelli. SMTLIB: Satisfiability modulo

theories library, 2013. http://smtlib.cs.uiowa.edu/docs.html. 38, 86

[6] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P.W. O’Hearn, T. Wies, and

H. Yang. Shape analysis for composite data structures. 2007. 47, 63

[7] Ahmed Bouajjani, Cezara Dragoi, Constantin Enea, and Mihaela Sighireanu. Ac-

curate invariant checking for programs manipulating lists and arrays with infinite

data. In ATVA, pages 167–182, 2012. 43

[8] A.R. Bradley. SAT-based model checking without unrolling. 2011. 45, 46, 48, 49,

53, 63

112

http://dx.doi.org/10.1007/978-94-017-0253-9_7
http://dx.doi.org/10.1007/978-94-017-0253-9_7

BIBLIOGRAPHY 113

[9] A. Cimatti and A. Griggio. Software model checking via IC3. 2012. 63

[10] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for

static analysis of programs by construction or approximation of fixpoints. pages

238–252, 1977. 1

[11] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. 2008. 47, 59

[12] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, pages

337–340. Springer, 2008. 22

[13] Camil Demetrescu and Giuseppe F. Italiano. Decremental all-pairs shortest paths.

Encyclopedia of Algorithms, 2008. 5

[14] D. Distefano, P.W. O’Hearn, and H. Yang. A local shape analysis based on sepa-

ration logic. 2006. 47, 63

[15] N. Eén, A. Mishchenko, and R.K. Brayton. Efficient implementation of property

directed reachability. 2011. 49, 63

[16] C. Flanagan and K. Rustan M. Leino. Houdini, an annotation assistant for Esc/-

Java. 2001. 62

[17] C. Flanagan and S. Qadeer. Predicate abstraction for software verification. 2002.

48, 54

[18] Cormac Flanagan and James B. Saxe. Avoiding exponential explosion: generating

compact verification conditions. In POPL, pages 193–205, 2001. 17, 37

[19] R. W. Floyd. Assigning meanings to programs. Mathematical aspects of computer

science, 19(19-32):1, 1967. 1, 12

[20] M.J. Frade and J.S. Pinto. Verification conditions for source-level imperative pro-

grams. Computer Science Review, 5(3):252–277, 2011. 17

[21] P. Garg, C. Löding, P. Madhusudan, and D. Neider. Learning universally quanti-

fied invariants of linear data structures. 2013. 63

[22] P. Garg, P. Madhusudan, and G. Parlato. Quantified data automata on skinny

trees: An abstract domain for lists. 2013. 47, 63

114 BIBLIOGRAPHY

[23] Yeting Ge and Leonardo de Moura. Complete instantiation for quantified formulas

in satisfiabiliby modulo theories. In Proceedings of the 21st International Confer-

ence on Computer Aided Verification, CAV ’09, pages 306–320, Berlin, Heidelberg,

2009. Springer-Verlag. ISBN 978-3-642-02657-7. doi: 10.1007/978-3-642-02658-4

25. URL http://dx.doi.org/10.1007/978-3-642-02658-4_25. 23

[24] Alexey Gotsman, Josh Berdine, and Byron Cook. Interprocedural shape analysis

with separated heap abstractions. In SAS, 2006. 89

[25] S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. 1997. 46

[26] L. Hendren. Parallelizing Programs with Recursive Data Structures. PhD thesis,

Cornell Univ., Ithaca, NY, Jan 1990. 96, 97

[27] J.G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe, and

A. Sandholm. Mona: Monadic second-order logic in practice. 1995. 39

[28] W. Hesse. Dynamic computational complexity. PhD thesis, Dept. of Computer

Science, University of Massachusetts, Amherst, MA, 2003. 5, 34, 43, 92, 94, 101

[29] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,

12(10):576–580, 1969. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/363235.

363259. 1, 12

[30] K. Hoder and N. Bjørner. Generalized property directed reachability. 2012. 49, 63

[31] Krystof Hoder, Laura Kovács, and Andrei Voronkov. Invariant generation in vam-

pire. In TACAS, pages 60–64, 2011. 62

[32] Neil Immerman. Descriptive Complexity. Springer-Verlag, New York, NY, USA,

1998. ISBN 0-387-98600-6. 33

[33] Neil Immerman, Alexander Moshe Rabinovich, Thomas W. Reps, Shmuel Sa-

giv, and Greta Yorsh. The boundary between decidability and undecidability

for transitive-closure logics. In CSL, pages 160–174, 2004. 28

[34] Neil Immerman, Alexander Moshe Rabinovich, Thomas W. Reps, Shmuel Sa-

giv, and Greta Yorsh. The boundary between decidability and undecidability

for transitive-closure logics. In CSL, pages 160–174, 2004. 6, 27

http://dx.doi.org/10.1007/978-3-642-02658-4_25

BIBLIOGRAPHY 115

[35] Samin S. Ishtiaq and Peter W. O’Hearn. Bi as an assertion language for mutable

data structures. In Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL ’01, pages 14–26, New York,

NY, USA, 2001. ACM. ISBN 1-58113-336-7. doi: 10.1145/360204.375719. URL

http://doi.acm.org/10.1145/360204.375719. 2, 88

[36] Shachar Itzhaky, Anindya Banerjee, Neil Immerman, Aleksandar Nanevski, and

Mooly Sagiv. Effectively-propositional reasoning about reachability in linked data

structures. In CAV, volume 8044 of LNCS, pages 756–772, 2013. 6, 24

[37] Shachar Itzhaky, Anindya Banerjee, Neil Immerman, Ori Lahav, Aleksandar

Nanevski, and Mooly Sagiv. Modular reasoning about heap paths via effectively

propositional formulas. In The 41st Annual ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA,

January 20-21, 2014, pages 385–396, 2014. doi: 10.1145/2535838.2535854. 6, 65

[38] Shachar Itzhaky, Nikolaj Bjørner, Thomas W. Reps, Mooly Sagiv, and Aditya V.

Thakur. Property-directed shape analysis. In Computer Aided Verification - 26th

International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic,

VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings, pages 35–51, 2014. doi:

10.1007/978-3-319-08867-9 3. 6, 44

[39] J. Jensen, M. Jorgensen, N. Klarlund, and M. Schwartzbach. Automatic verifi-

cation of pointer programs using monadic second-order logic. In Proceedings of

PLDI 97, 1997. 39

[40] Shuvendu K. Lahiri and Shaz Qadeer. Back to the future: revisiting precise pro-

gram verification using smt solvers. In POPL, 2008. 43, 92

[41] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML:

a behavioral interface specification language for java. ACM SIGSOFT Software

Engineering Notes, 31(3):1–38, 2006. 66, 88

[42] T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analyses.

pages 280–301, 2000. 11, 47

[43] T. Lev-Ami, N. Immerman, and M. Sagiv. Abstraction for shape analysis with

fast and precise transformers. 2006. 63

http://doi.acm.org/10.1145/360204.375719

116 BIBLIOGRAPHY

[44] Tal Lev-Ami, Neil Immerman, Thomas W. Reps, Mooly Sagiv, Siddharth Sri-

vastava, and Greta Yorsh. Simulating reachability using first-order logic with

applications to verification of linked data structures. Logical Methods in Computer

Science, 5(2), 2009. 28, 43

[45] P. Madhusudan and X. Qiu. Efficient decision procedures for heaps using

STRAND. 2011. 63

[46] P. Madhusudan, Gennaro Parlato, and Xiaokang Qiu. Decidable logics combining

heap structures and data. In POPL, pages 611–622, 2011. 43

[47] R. Manevich, E. Yahav, G. Ramalingam, and Mooly Sagiv. Predicate abstraction

and canonical abstraction for singly-linked lists. 2005. 63

[48] A. Møller and M.I. Schwartzbach. The pointer assertion logic engine. pages 221–

231, 2001. 43

[49] G. Nelson. Verifying reachability invariants of linked structures. In POPL, 1983.

43

[50] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about

programs that alter data structures. In CSL, pages 1–19, 2001. 2

[51] R. Piskac, L. de Moura, and N. Bjørner. Deciding effectively propositional logic

using DPLL and substitution sets. J. Autom. Reasoning, 44(4):401–424, 2010. 56

[52] A. Podelski and T. Wies. Counterexample-guided focus. 2010. 63

[53] T. Reps, M. Sagiv, and G. Yorsh. Symbolic implementation of the best transformer.

pages 252–266, 2004. 54

[54] Thomas W. Reps, Mooly Sagiv, and Alexey Loginov. Finite differencing of logical

formulas for static analysis. ACM Trans. Program. Lang. Syst., 32(6), 2010. 43

[55] J. Reynolds. Separation logic: a logic for shared mutable data structures. In

LICS’02, 2002. xii, 2, 3

[56] Noam Rinetzky, Jörg Bauer, Thomas W. Reps, Shmuel Sagiv, and Reinhard Wil-

helm. A semantics for procedure local heaps and its abstractions. In POPL, pages

296–309, 2005. 9, 32, 68, 89

BIBLIOGRAPHY 117

[57] Noam Rinetzky, Mooly Sagiv, and Eran Yahav. Interprocedural shape analysis for

cutpoint-free programs. In SAS, pages 284–302, 2005. 89

[58] Xavier Rival and Bor-Yuh Evan Chang. Calling context abstraction with shapes.

In POPL, pages 173–186, 2011. 89

[59] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.

ACM Transactions on Programming Languages and Systems, 24(3):217–298, 2002.

47, 63

[60] Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. Scalable analysis

of linear systems using mathematical programming. In VMCAI, pages 25–41, 2005.

62

[61] Saurabh Srivastava and Sumit Gulwani. Program verification using templates over

predicate abstraction. In PLDI, pages 223–234, 2009. 62

[62] Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm.

Journal of the ACM, 22(2):215–225, 1975. 11, 67

[63] A. Thakur, M. Elder, and T. Reps. Bilateral algorithms for symbolic abstraction.

2012. 54

[64] A. Thakur, A. Lal, J. Lim, and T. Reps. PostHat and all that: Automating

abstract interpretation. 2013. 54, 62

[65] A. Thakur, A. Lal, J. Lim, and T. Reps. PostHat and all that: Attaining most-

precise inductive invariants. TR-1790, Comp. Sci. Dept., Univ. of Wisconsin,

Madison, WI, April 2013. 62

[66] J. Wing. The CMU larch project. ”http://www.cs.cmu.edu/afs/cs/project/larch/www/home.html”,

1995. 66, 88

[67] Glynn Winskel. The Formal Semantics of Programming Languages: An Introduc-

tion. MIT Press, Cambridge, MA, USA, 1993. ISBN 0-262-23169-7. ix, 13, 14,

15

[68] G. Yorsh, T. Reps, and M. Sagiv. Symbolically computing most-precise abstract

operations for shape analysis. 2004. 63

118 BIBLIOGRAPHY

[69] G. Yorsh, T. Ball, and M. Sagiv. Testing, abstraction, theorem proving: Better

together! 2006. 54

[70] Greta Yorsh, Alexander Moshe Rabinovich, Mooly Sagiv, Antoine Meyer, and

Ahmed Bouajjani. A logic of reachable patterns in linked data-structures. J. Log.

Algebr. Program., 73(1–2):111–142, 2007. 43

[71] Karen Zee, Viktor Kuncak, and Martin C. Rinard. Full functional verification of

linked data structures. In PLDI, pages 349–361, 2008. 66, 88

:םיאבה םירמאמב ומסרופ תואצותה

• S. Itzhaky, A. Banerjee, N. Immerman, A. Nanevski, and M. Sagiv.

“Effectively-Propositional Reasoning About Reachability in Linked Data

Structures” in Computer Aided Verification, 2013, St. Petersburg,

Russia, July 2013.

• S. Itzhaky, A. Banerjee, N. Immerman, O. Lahav, A. Nanevski, and M.

Sagiv. “Modular Reasoning about Heap Paths via Effectively

Propositional Formulas” in 41st ACM SIGPLAN–SIGACT Symposium on

Principles of Programming Languages, San Diego, California, January

2014.

• S. Itzhaky, N. Bjørner, T.Reps, M. Sagiv, and A. Thakur, “Property-

Directed Shape Analysis” in Computer Aided Verification 2014,

Vienna, Austria, July 2014.

 ילכב שומיש .רתוי הליעי הנכות תסדנה תבוטל)code reuse(שדחמ שומישל ןתינ

 יוצרו ,םינוש םירשקה רפסמב עצובמ תויהל לוכי דיחי דוק עטקש ךכל םרוג הז יתונכת

 םירשקהה ןמ דחאו דחא לכב דוקה עטק לש ותונוכנ תא אדוול ךרוצ היהי אלש דאמ

 אדוול היהי ןתינ אלו יליבלקס אל תויהל חותינל םורגי הז ןכש ,דרפנב עיפומ אוה םהבש

 תא עיבהל תלוכיה אוה רגתאה .תורודצורפ לש בר רפסמ תוליכמה תוינכת וז הטישב

 המרעה לע הרודצורפה תעצבמש ,טקפאה וא ,הלועפה תא תצמתיש ןפואב ןוכדעה

 ,שיגנ וניא רחאה קלחהו הרודצורפל םישיגנ המרעה ירבאמ קלח רשאכ ,והשלכ רשקהב

 frame(תרגסמ תייעב לש הרקמכ תאז תוארל רשפא .תונתשהל לוכי וניא חרכהב ךכיפלו

problem(.

 .)reachability logics(תוגישי תוקיגול םשה תחת תוקיגול תחפשמ תגצומ הזתב

 תודוא יתטיש קסיה ךרוצל םיישומיש ואצמנש םייגול םיעטקמ לש תילמרופ הרדגה תנתינ

 הלא תוקיגול לש הקיטנמסה ,תירקיע הטישכ .םיעיבצמ םע םינבמ תוללוכה תוינכת

 םיעדויה םייטמוטוא החכוה ילכב שומיש רשפאל תנמ-לע ןושאר רדסמ הקיגולב תעמטומ

 ןתוא לש העבהה תלוכי לע הלבגמ ,םנמא ,הווהמ הז שומיש .וז הפשב טלק לבקל

 קפסל ךרוצה ינפ-לע םייטמוטוא םילכב שומישהמ םיעבונה תונורתיה םלוא ,תוקיגול

 םיכפוה ,ןהילאמ-תונבומ תוארנש תונטק תוינכתב רבודמשכ וליפא ,ינדי ןפואב תוחכוה

.ןתינש תע לכב יאדכל םהב שומישה תא

 תועיפומ האלול תורומשש איה ךכל תירקיעה הביסה .םירוסא םניה םיתמכ יפוליח לבא

 תפש יכ שרדנ ךכיפל ;תומיאה יאנת תא םינוב רשאכ הרירג רשק לש םידדצה ינשב

 השירד תמייק אל יפוסה תומיאה יאנת רובעש דועב ,הלילש תחת הרוגס היהת תוזרכהה

.וזכ

 לש ןוכדע תויעבב שומיש הב השענ הנורחאלש ךכמ תעבונ תירואית תויכוביסל היינפה

 ונאש תוינכתש המרעב תוגישיה ינוכדעל הביבח הליבקמ שי וז היעבל .םינותנ יסיסב

 ןוכדעל תשמשמה החסונה תויכוביסש ,תוארהל ןתינ view-update תייעבב .םינחוב

 רשאמ רתוי הכומנ איה םינותנה סיסבב םישחרתמה םייוניש ינפ-לע התליאש תואצות

 ךרוצ שי תוגישיה בושיח ךרוצל ,ןכא .הלחתההמ התליאשה בושיחל תשמשמה החסונה

 ןושאר רדסמ םיחנומב אטבל ןתינ ןוכדע תואחסונש דועב ,יביטיזנרט רוגס םע החסונב

 ה בצמל ״הנשי״ה תוגישיה תמאתה לש תויכוביסהש הדבועה תא םילצנמ ונחנא .דבלב

 שומישל המוד םיצמאמ ונאש ןורתפה .תוגישי בושיח לש תויכוביסהמ הכומנ ״שדח״

 םילולסמ רשאכ ,view-update תויעב ןורתפ רובע םיפרג לע םיימניד םיימתירוגלאב

 ונלש ןורתפהש אלא ;תשק לש הפסוה וא הקיחמ ידכ ךות םינתשמ םיתמצ ןיב םינווכמ

 ינבמ םירצויה םיעיבצמ תועצמאב םינוכדעה תא תועצבמה בשחמ תוינכתב לופיטל ןווכמ

.םירשוקמ םינותנ

5

quantifier-free formulas without transitive closure. In our setting, we compute reach-

ability relations instead of queries. We exploit the fact that the logical complexity of

adapting the (old) reachability relation to the updated heap is lower than computing

the new reachability relation from scratch. The solution we employ is similar to the use

of dynamic graph algorithms for solving the view-update problem, where directed paths

between nodes are updated when edges are added/removed (e.g., see [12]), except that

our solution is geared towards verification of heap-manipulating programs with linked

data structures.

state
database-update //

query

✏✏

state

query

✏✏
qstate

query-update // qstate

Figure 1.3: The view update problem, natu-

rally occurring in databases but also applies

to heap reachability.

Another aspect that complicates pro-

grammatic reasoning, especially with

complex states as is the case when

pointer-based data structures are present,

is procedures. Programs are usually fac-

tored into several sub-programs in the in-

terest of readability and code reuse. This

common idiom causes one code block to

be executed in di↵erent contexts, and it is highly desirable for reasons of scalability

not to have to verify it for each context separately. The challenge is to be able to

express the view-update that summarizes the e↵ect of a procedure call in an arbitrary

context, where some of the elements are not reachable by the procedure, and therefore

essentially remain unmodified. This may be seen as an instance of the frame problem.

The rest of this thesis introduces reachability logics, a formal definition of logical

fragments found useful for the systematic reasoning over programs containing pointer

structures. As a primary technique, the semantics of such logics are embedded in

first-order logic for the use of automated solvers. While a severe limitation on the

expressivity of the defined logic, automated proof techniques prove to be so e↵ective

compared to manual proofs, even for small, seemingly-obvious examples, that there is

much benefit to using them whenever possible.

 םהבש הלא ןוגכ םיבכרומ םיבצמב רבודמשכ דחוימב ,יתונכת קסיה ךבסמה ףסונ ןפ

 בשחמ תוינכת .תורודצורפ אוה ,םיעיבצמ םיליכמה םינותנ ינבמ םימייק רשאכ םילקתנ

 היהיו רתוי אירק היהי דוקהש תנמ-לע תאזו ,תוינכת-תת רפסממ ללכ-ךרדב תובכרומ

 ,היתובחרהו)Hoare logic(רוה תקיגול לש םיחותיפה לע רקיעב ססבתנ וז הזתב

 החכוה תכרעמ איה רוה תקיגול .״רוה-חסונ תומיא״ ללוכה םשב ללכ-ךרדב תונוכמה

 רקיעב -)assertions(תוזרכהכ םינותנה ןהיטרפמו תוינכת תודוא םיקסיה תכירעל

 תיגול הפשב םיעבומ -)post-condition(רתב-יאנתו)pre-condition(םדק-יאנת

 תויביטרפמיא תונכת תופש רובע תומלש החכוה תוכרעמ תומייקש דועב .ונתריחבל

 לושכמה איה החכוהה שופיח תייעב ,)הדובעל עקרב תגצומ וזכ תכרעמל תחא המגוד(

 ןוכנ הז .ןהיתונוכת תחכוהלו תוינכת תומיאל תיטמוטוא תכרעמ שומימל ךרדב ירקיעה

 רשאכ דחוימב - םוצע אוה תוחכוהה בחרמש ןוויכ ,רתויב תונטק תוינכת רובע םג

 לש והשלכ רפסמ ץורל דוק עטקל םורגל היושע תינכתב האלול .תואלול הליכמ תינכתה

 וניא התציר ךלהמב תלקתנ תינכתה םהבש םינושה םיבצמה רפסמש ךכ ,םימעפ

 םיבצמ לש תוצובקב םיקסועה םינועיטש רמול ןתינ סג ןפואב .תינכתה לדוגב ינויצרופורפ

.הובג רדסמ קסיה תייעב םיביצמ

.הטישה סיסבב תואצמנ תויזכרמ תונחבא יתש

 next עיבצמה תא עיבהל ןתינ ,תורשוקמ-ודו תורשוקמ תומישר תולהנמה תוינכתב)א(

 רשפאמ הז .המישרה ירביא ןיב תוגישי סחי תורחא םילימב וא ,םילולסמ לש םיחנומב

 :)descriptive complexity(תירואיתה תויכוביסה תרותמ תושדח תואצותב חונ שומיש

 דבאמ וניאש ןפואב המרעב םיכרענה םייונישל םאתהב תוגישיה סחי תא קזחתל רשפא

 אלל ןניה ןוכדעה ךרוצל תושרדנה תומויסקאה ,דועו תאז .קיודמ אוה ךכיפלו עדימ

.םיתמכ

 הקיגולב תומיא יאנת רצייל ןתינ ,המרעה תא תוקרוסש תוינכתב לפטל תנמ-לע)ב(

 םילכ תרזעב םתותימא תא אדוול היהי ןתינש ךכ φ*∃*∀ היהת םתרוצש ןושאר רדסמ

 הפשב תוזרכה בותכל רתוי תנכתמל .)ךשמהב רבסויש יפכ - SAT(תוקיפס תקידבל

 next לש יביטיזנרט רוגסב שמתשהל ןתינ הבש ,ןושאר רדסמ הקיגול לש רתוי תמצמוצמ

 תפסוה זא ,לולסמ הזכ םייק םא ןכש ,הצירה לש בלש םושב i ל j ןיב next-לולסמ

.המרעב תויוסחייתה לגעמ תרצוי i→j תשקה 3

1i 2 3 4 5

1 2

j

3

i

4 5

1 2 3 4 5 j

(i)

(ii)

(iii)

Figure 1.2: The state of the memory during the execution of the list reversal program:
(i) initial state; (ii) an intermediate state; (iii) final state.

by i and each node contains a field next holding a pointer to the next node (or null

to signify the last node). The program outputs a list of the same structure, only that

the elements occur in reversed order. The reversal is done in-place, so that the original

input list is overwritten by the output.

Reynolds identified an acute problem when reasoning with programs that traverse

such recursive data structures: the pointer i serving as the iterator is advanced at each

step, and the number of steps is not bounded. Therefore there is always a risk that a

value written on one iteration will be overwritten in subsequent iterations. In particular,

to make sure that the list remains acyclic in this example, one must obtains that there

is no next-path from j to i, otherwise the addition of the edge i! j introduces a cycle.

We approach this problem by a careful construction of appropriate loop invariants

for iterative programs, and comprehensive summaries for recursive programs. Observ-

ing a typical run of reverse (Fig. 1.2), an important property of it can be noticed: the

pointer variables i and j always point into the beginning of two disjoint list segments.

Either segment may be empty (as in (i) and (iii)), but the segments never share el-

ements. It turns out that this property is crucial to prove the correctness of the list

reversal program. Formulating this property in logic is more involved than the previ-

ous, simpler aliasing conditions. To address this issue, we define reachability logics and

support reasoning to check the validity of implications. In this approach, we would

write an invariant such as

8↵ : ihnext⇤i↵ ^ jhnext⇤i↵! ↵ = null

While Reynolds proposed that such an approach would never scale, we show that for

many naturally occurring instances the invariants are quite managable and automatic

 תוינכת רובע תומיאתמ האלול תורומש לש תינדפק הינב ידי-לע וז היעבל םישגינ ונא

 םא .תויביסרוקר תוינכת רובע תורודצורפ לש םיקיודמו םימלש םיטרפמו ,תויביטרטיא

 i םינתשמה :הבושח הנוכתב ןיחבהל ןתינ ,reverse תינכתה לש תינייפוא הצירב ןנובתנ

 םיעטקמהמ דחא לכ .םירז המישר יעטקמ ינש לש םתליחת לע תע לכב םיעיבצמ j ו

 .םיפתושמ םירביא םהל ויהי אל םלועל ךא))iii(ו (i) םיבצמב ומכ(קיר תויהל יושע

 .המישר ךופיהל תינכתה לש תונוכנה תחכוה רובע תיחרכה איה וז הנוכתש רבתסמ

 הפיפחה יאנת םע ,תומדוקה תואמגודב רשאמ רתוי בכרומ הקיגולב הנעטה חוסינ

 reachability(תוגישי תוקיגול םירידגמ ונא הלאכ םיחוסינ רשפאל ידכ .םיטושפה

logics(תא בותכנ ,וז השיגב .תועיבנו תורירג לש תונוכנ תחכוהל קסיה תוטיש םיקפסמו

:ךכ האלולה תרומש

∀α : i⟨next∗⟩α ∧ j⟨next∗⟩α → α = null

 רובעש םיארמ ונא ,תיליבלקס היהת אל םלועל וז ןיעמ השיגש סרג סדלוניירש דועב

 תוטישו לופיטל טלחהב תונתינ תורומשה תויתואיצמ תוינכתב םישחרתמה םיבר םירקמ

 ךומתל תנמ-לע .םיריבס ןורכז תושירדו הציר ןמזב תורשפאתמ תויטמוטוא קסיה

 המגודב .ירלודומ קסיהל תוקיגול חתפל םיכישממ ונחנא תולדגו תוכלוהה תוינכתב

.3 קרפב טוריפב ןודנ סדלונייר לש תיפיצפסה

 תאז .תינכתה תא רתוס טרפמה)הפיפח(x=y ש הרקמב :םגפה תא תוהזל לק ןאכמ

 תועמשמ-רסח וניה תואוושמה רדסש ךכ ,)יתרהצה(יביטרלקד וא טרפמהש ןוויכמ

 תבותכב אצמנש ןורכזה אתש :המצע הנוכתה התוא תא םינייצמ תונויוושה ינש השעמלו

 איה ,תאז תמועל ,תינכתה לש הקיטנמסה .1 ב וכרעב לדג y ו x םינתשמב תנסחואמה

 לדגי ךרעה - תיתועמשמ ,ןבומכ ,איה המצע לע תרזוח המשההש הדבועהו ,תיביטרפמיא

 המאתה-רסוח יוליגל תיתטיש ךרד קפסמ תילמרופ הקיטנמס לש גוס לכב שומיש .2 ב

.הז גוסמ

 םישקו םיכבוסמ םינועיטל םיליבומ תובותכ לע תולועפו םיעיבצמ לש םיבכרומ םיפוריצ

 םינושארה םירמאמה דחאב סדלונייר תא השמיש ןלהלש המגודה תינכת .עוציבל רתוי

 תרשוקמ המישרב םירביאה רדס תא תכפוה תינכתה .Separation logic ב םיקסועה

 רביא לכל ;המישרה שארל עיבצמ ,יתלחתהה בצמב ,ליכמ i הנתשמה ;טלקכ הל תנתינה

 ןורחאה רביאה(המישרב אבה רביאל עיבצמ קיזחמה next םשב הדש םייק המישרב

 רדס םע ךא ,ההז הנבמ תלעב המישר םירביאהמ הנוב תינכתה .)הז הדשב null ןסחאי

 טלקה תמישרש ךכ ,״םוקמב״ תישענ ךופיהה תלועפ .טלקבש הזמ ךופהה םירביא

.טלפה ידי-לע תבתכושמ

j := null; while i ≠ null do

(k := i.next ; i.next := j ; j := i ; i := k)

 םינותנ ינבמ תוקרוסש תוינכתב םיקסועה םיקסיהב תידוסי היעב ההיז סדלונייר

 םידעצה רפסמו ,דעצ לכב םדוקמ רוטרטיאכ שמשמה i עיבצמה :הלאכש םייביסרוקר

 םיוסמ דעצב בתכנש ךרעש הנכס דימת הנשי ךכיפל .טלקה לדוגב יולת אוה - םוסח וניא

 .תינכתהמ תשרדנה הנוכתה תא רפי ךכבו ,םיאבה םידעצה דחאב בתכושי האלולה לש

 ןיאש חיכוהל םיבייח ,המישרב לגעמ רצונ אל המגודה תינכתבש אדוול ידכ ,לשמל

 תולועפ עברא ומכ יסיסב הדובע יכ םה םיעיבצמ ,הרבצש הברה תוירלופופה בקע

 םע הובג יוטיב רשוכ םיבלשמ םה .תינכתה לש הרקבה ינבמו הקיטמתיראב ןובשחה

 הקיגול ,Seperation logic .תויביטימירפ ןורכיז תולועפ עוציבב הציר-ןמז תוליעי

 לש ולא םירגתא לע תונעל דחוימב המאתוה ,ןרה׳ואו סדלונייר ידי-לע רקיעב החתופש

 םע תוינכתב)aliasing(הפיפח לש תוחכונה בקע ,ללככ ,םילוע םירגתא .תונכתה

 ןותנב יוניש ךכ-םושמו ,תבותכ התוא תא םיליכמ םיעיבצמ ינש ובש בצמ והז :םיעיבצמ

 ןתינ .תינכתב תומוקמ ינשב תחא הנועבו תעב דימ ןימז ךפוה וז תבותכב ןסחואמה

:)C תפשב(האבה תינכתב ןויע ידי-לע תאז םיגדהל

void go_up(int *x, int *y) {

 (*x)++; (*y)++;

}

 הרקמב ,םלואו .y ו x ידי-לע םיעבצומה םינומה ינש תא םדקל התייה תנכתמה תנווכ

 היהת האצותה ,)םיפפוח םה(תבותכ התואל עיבצמ םיליכמ y ו x םירטמרפה ובש הצק

 לולע אוה ,הזכ שיחרתל ןנוכתה אל תנכתמה םא .2 ב דיחי הנומ לש הלדגה :היופצ אל

 תונוכנ תא חיכוהל ןויסינ .רותיאל םישקו םינידע םיגאבלו הציר-ןמז תואיגשל ליבוהל

 ידי-לע ןיפואמה הז לשמל ,הרובע ירשפא טרפמ חוסינל דימ איבי ילמרופ ןפואב הרגשה

:תואוושמה

[x] = [x] + 1

[y] = [y] + 1

 x עיבמ ,ינסרה יוניש תועצבמה תוינכת לש םינויפאב לבוקמכ ,ןאכ עיפומה ןומיסב רשאכ

 טלפה ךרע תא עיבמ x וליאו ,יונישה ינפלש בצמב ,x תינכתה הנתשמ לש טלקה ךרע תא

 םינסחואמה םיכרעל תוסחייתה םינייצמ םיעבורמה םיירגוסה .יונישה ירחא ולש

.תונתשמ ןניאש ,ןמצע תובותכל םוקמב ,האוושמבש הנתשמה ידי לע תעבצומה תבותכב

ריצקת

 תושועה בשחמ תוינכת תונוכנ לש תיטמוטוא החכוה ךרוצל םיעצמא הגיצמ וז הזת

 ןוגכ ,םירשוקמ םינותנ ינבמ תולהנמש תוינכת תוללוכ הלא .םיעיבצמב בחרנ שומיש

 ךרוצל .םיכפוהמ םיצעו תוננוקמ תומישר ,תורשוקמ-וד תומישר ,תורשוקמ תומישר

 תיתשתה .לעופב החכוה םתוליעישו הישעתב טרדנטסל ויהש םילכב םישמתשמ ןוכימה

 .תויגול תותליאש לש הרדסל תומיאה תייעב לש היצקודר לע תססובמ תעצומה תיגולה

 וא ״ןכ״(תטלחומ הבושת ךכיפל ,העירכ הצובקב תוללכנו תיטמוטוא תורצוימ הלא

.הרקמ לכב תחטבומ)״אל״

 דיולפ םירקוחה .המצע הנכותה לש המויק תליחת זאמ תמייק הנכותה תומיא תייעב

 טרפמ לומ-לא בשחמ תוינכת לש תונוכנ תוחכוה תכירעל תיגול תיתשת ומזי רוהו

 ןמז ךות תרצוע הנודנה תינכתהש החכוה תללוכ רשא ,האלמ תונוכנ תחכוה ןה ;ילמרופ

 ןהו ,טרפמה תא תמאותה תוגהנתה םע דבב-דב ,הל תדעוימה טלקה תקלחמ לע יפוס

 תוציר תרשפאמו השירדה תא הלקמ רשא ,תיקלח תונוכנ תחכוה לש רתוי ץופנה גוסה

 םייקתהל ךישממ הלא תוחכוה תכירע ןוכימל ךשמתמ ץמאמ .תינכתה לש תורצוע אל

 abstract(טשפומה שוריפה םוחת לש וחותיפל ואיבה וסוק גוזה .םויה דעו זאמ

interpretation(, תוינכות חותינ רובע רזע-תוטישו תוקינכט לש בחרנ ףסוא קפסמה

 תודוה םיינרדומ םירדהמב ימוימוי שומישב תואצמנ הלא תוטיש .םינוש םיגוסמ

 ןפואב .תוקפסמ ןהש םיבוטה םיעוציבהו ,שומימה תולק ,ןהלש תיטמתמה תויטנגלאל

 המ ,תואצותה קויד ןיבל חותינל תשרדנה םיבאשמה תומכ ןיב חתמ דימת םייק ,יעבט

.תוברוקמ תואצות תוקפסמ םויכ שומישב תואצמנה תוזילנאה בורש ךכל ליבומש

 תויעב לש הצובק דחוימב תניינעמ ,הנכות תומיאב תורושקה תויעבה בחרמ ךותמ

 ורצונש היתורזגנבו C תפשב .םיעיבצמב בחרנ שומיש תושועה בשחמ תוינכתל תורושקה

 הצובק לעמ תויביטקודניא תורומש לש תיטמוטוא הקסה רובע יביטרטיא ןודיע םתירוגלא

 הנוב םתירוגלאה .םיבצמה בחרמ לש)היצקרטסבא(הטשפהל םישמשמה םיטקידרפ לש

 דע םיגישיה םיבצמה תצובק תא הלעמלמ תומסוח רשא תוטשפה לש ףסוא הגרדהב

 וז השיג .תשרדנה הנוכתה תא חיכוהל ליבשב קיפסמ הקזח הניהש הרומש תלבקתמש

 רצייל חילצמ ונלש שומימהש וניארה .״property-directed reachability״ םשב העודי

.םימיאתמ םיטרפמ םע ןחוב-ירקמ לש הצובק רובע תונוכנ תורומש

תיצמת

 גוסמ םינותנ ינבמ תולהנמה תוינכת לש תומיא תויעב רובע השדח הטיש תחסנמ וז הזת

 השוע הטישה .םיכופה םיצע ומכ תוילוחב םישמתשמה םימוד םינבמו תרשוקמ המישר

 תאז-םעו ,העירכ הניהש ןושאר רדסמ הקיגול לש תלבגומ הצובק-תתב שומיש

 תימנידה המרעב תועבצה ירושיק לש םילולסמ תודוא קסיהב ךומתל ידכ היד תיביטקפא

 ,םינותנה הנבמ לש תוניקת ,הריצע חיכוהל ידכ תויחרכה הלאכ תונוכת .תינכתה לש

 יביטיזנרט רוגס לש המלש תיטמויסקא הנרצה איה הזתה תביל .תופסונ תוחיטב תונוכתו

 םותרל ןתינש ךכ ,)EPR(השעמל-תויקוספ תואחסונב ,ןושאר רדסמ הקיגולב יטסינימרטד

 דגנ-תמגוד לש רוציי ךרוצל וא ,תופקת תחכוה ךרוצל SAT ןורתפל תומייק תוינכת

 ולוכ לכומו תיגול םלש ןורתפהש ןוויכ .רפומ תומיאה יאנתש םירקמ רובע תיטרקנוק

 םלועל הרגשה - תחטבומ הלא תואצותמ תחא ,ןושאר רדסמ הקיגול לש עירכ עטקמב

.תקיודמ-יתלב האצות הריזחמ הניאו תרדבתמ הניא

 תמייק ,תורודצורפ תוליכמה תוינכתב .ירלודומ קסיהל תוקינכט ףסונב םיגיצמ ונא

 היושע המרעה לש ןטק קלחב יוניש תעצבמש הרגש-תת :״ילבולג טקפא״ לש העפותה

 ןוויכמ ,המרעב םינוש םימוקמב)העבצה ירושיק ךרד(תוגישי תונוכת לע עיפשהל

 תולבגה ןנשי ךכיפל .םישדח םילולסמ תורצויו םימייק םילולסמ תוקתנמ הלש תולועפהש

 שומיש השענ .עצבל תארקנה הרגשלו תארוקה הרגשל רוסא המו רתומ המ לע תומייוסמ

 ךותב תארקנה הרגשה-תת התשעש םייונישה תא בלשל ידכ םיאתמ היצטפדא ללכב

.הל הארקש הרגשה לש המרעה בחרמ

 רובע המיאתמ תיביטקודניא הרומש קפסל שרדנ שמתשמה ,וללה תוזילנאה יתשב

 תויהל תולולעו ללכ תוילאיווירט ןניא תורומשה .תויביסרוקר תורודצורפ רובעו תואלול

 ונמשיי ,וזה היעבה לע רבגתהל ידכ .הלוכ תינכתה לש טרפמה רשאמ רתוי תוכבוסמ

ש ריימונד ובברלי סאקלר"הפקולטה למדעים מדויקים ע
ש בלבטניק"ס למדעי המחשב ע"ביה

 היסק אוטומטי בתכניות עם מצביעים
 ידי לוגיקות כריעות-על

 Ph.D– " דוקטור לפילוסופיה"חיבור זה הוגש כחלק מהדרישות לקבלת התואר

 על ידי

 שחר יצחקי

 העבודה הוכנה בהדרכתו של

 שגיב (מולי)שמואל ' פרופ

 ד" תשעאלול

	Introduction
	Main Results
	Deterministic Transitive Closure
	Idempotent Functions in EPR
	Procedural Reasoning with Adaptation
	Template-based Verification with Induction

	Preliminaries
	Hoare-style Verification
	Completeness and Weakest-Precondition
	Decidability
	Effectively-propositional Logic

	Pointer Manipulations
	Recursive Data Structures: The Need for Transitive Closure
	Deterministic Transitive Closure in FOL
	Updating Deterministic Transitive Closure
	Extending wlp for Pointer Expressions in Linked Lists
	Empirical Results
	Related Work for Chapter 3

	Loop Invariants
	Property-Directed Reachability: the IC3 Algorithm for Invariant Inference
	A Useful Predicate Abstraction Domain for Linked Lists
	Empirical Results
	Related Work for Chapter 4

	Modular Analysis of Procedures
	The Problem with Global State
	A Running Example
	Working Assumptions
	Non-Local Effects

	An Adaptation Rule for Deterministic Transitive Closure
	An FO(TC) Adaptation Rule
	An Adaptation Rule in a Restricted Logic
	Adaptable Heap Reachability Logic

	Extending wlp for Procedure Calls
	Modular Specifications of Procedure Behaviours
	Generating Verification Condition for Procedure With Sub-calls in AEAR
	Verification Condition for the Entire Procedure

	Empirical Results
	Implementation Details
	Verification Examples
	Buggy Examples

	Related Work for Chapter 5

	Discussion
	On the Expressivity Limitations of AFR
	Inversion yielding a non-AFR formula
	Formulas not expressible in AFR

	Extensions

	Conclusion
	Logical Proofs
	Reductions between Logics
	Program Semantics
	Relative Completeness of IC3 with Predicate Abstraction
	Simulation of an Idempotent Function in EPR

	Code Examples

