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Abstract
Spreadsheets offer many advantages as the computational
and data-storage engine for applications that are authored by
end users. Paradoxically, however, their main failing in this
regard is their computational model. Despite being used in
almost all cases to represent data that is essentially relational
(with some hierarchical structuring), the spreadsheet model
treats the two-dimensional grid as largely unstructured, with
formulas linking cells in an ad hoc way.

This paper reports on a quest to rethink the spreadsheet
model. The model we propose supports not only conven-
tional flat tables, but also nested variable-size lists and object
references. It includes a formula language suited to the data
model and procedures to specify updates.

The model has been implemented in a tool called Ob-
ject Spreadsheets, which is intended for the development of
data-centric web applications. We describe several example
applications we built using the tool to demonstrate its appli-
cability.

Categories and Subject Descriptors H.4.1 [Office Au-
tomation]: Spreadsheets; D.1.7 [Visual Programming];
D.2.6 [Programming Environments]: Interactive environ-
ments; H.2.1 [Logical Design]: Data models; H.2.3
[Languages]: Database programming languages, Query lan-
guages

General Terms Design, Human Factors, Languages

Keywords End-user development

∗ This project was supported by a grant from Wistron Corporation as part of
a collaboration between Wistron and MIT’s Computer Science and Artifi-
cial Intelligence Laboratory. This project also received partial support from
the National Science Foundation under Grant No. CCF-1438982.

Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM,
Inc., fax +1 (212) 869-0481.
Onward! 2016 (preprint) October 30–November 4, 2016, Amsterdam, Netherlands
Copyright c© 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4076-2/16/10. . . $15.00
DOI: http://dx.doi.org/10.1145/2986012.2986018

1. Introduction
1.1 Languages and Users
The most widely used programming language is not Python
or Java or C++, but the formula language of Microsoft Ex-
cel. A 2005 study [33] estimated that 12 million people in the
US call themselves programmers, but 50 million use spread-
sheets and databases, more than half of the 90 million who
use computers at work. So it’s not surprising that developers
turn to spreadsheets when they want to provide a way for
users to download or upload application data, or to interact
with persistent data (as in Google Forms). The spreadsheet is
becoming a kind of universal data structure with “add row to
spreadsheet” (as it’s called in IFTTT) being the fundamental
operation.

1.2 A Fundamental Mismatch
But there’s an irony at the heart of the popularity of the
spreadsheet. In most applications, a spreadsheet is a table:
a homogeneous structure in which each row contains the
same types of data item in the same order. And yet the
spreadsheet computational model isn’t designed for tables,
and “add row” is a UI operation that is not part of the formula
language. On the contrary, the spreadsheet model treats the
two-dimensional grid of cells as unstructured, with formulas
expressed as algebraic expressions defining one cell in terms
of some other cells, either at fixed locations or at particular
relative displacements. The only nod to the table structure
is found in the notation for horizontal and vertical ranges.
Consequently, spreadsheets often hold relational data—that
is, data structured as it would be in the tables of a relational
database—but they have no relational operations with which
to manipulate it.

This mismatch, between the spreadsheet’s computational
model and its most common use, leads to friction and com-
plexity, and makes it hard to build powerful applications
on top of spreadsheets. Google Forms, for example, uses a
spreadsheet to present completed form inputs, with one row
per response. And yet Google’s own code to display sum-
maries seems to rely not on this spreadsheet, but instead
on some hidden data structure, which is presumably more
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amenable to the needed queries. (To observe this, just edit
the data in the spreadsheet, say by deleting rows or columns,
or hiding columns, and notice that the summaries do not
change accordingly. This means that if you include a ques-
tion in your form that solicits optional personally identifying
data, you will not be able to exclude it from summaries you
might otherwise have wanted to share.)

In one respect, though, spreadsheet data is often not
purely relational: it has hierarchical structure. Database pro-
grammers aren’t troubled by hierarchical data because they
never need to look directly at the content of the database
tables. If a table representing a company’s org chart maps
divisions to departments, it matters little that the rows of
the table repeat the division identifier for each department
in that division. When the COO makes a spreadsheet with
the same data, however, she will likely want to see the org
chart displayed as a horizontal tree, with each division hav-
ing a list of its departments next to it. In fact, spreadsheet
users commonly start with the visual layout, and then add
formulas later. The resulting formulas are brittle, and will
generally have to be rewritten if the data changes size (say
when removing a row or a cell).

1.3 A Programming Core for Simple Apps
Computer scientists are often faced with explaining techni-
cal issues to friends. Perhaps the most frustrating question to
answer is why building a simple web app should be so hard,
often requiring months or years of work by an experienced
team. “All I want is an app that lets my students enter their
team preferences, checks to make sure each person is on ex-
actly one team, and then notifies them of the assignment.
How hard can that be?”

The answer, sadly, is “very hard”. We find ourselves in
a conundrum: we know it would be rash to suggest a foray
into Rails or Meteor, and we’re not confident that a graphical
app builder will make the job that much easier, or will
even be able to express the required constraints1. So we
swallow our professional pride and tell our friend what we
would do ourselves: give all the students access to a Google
spreadsheet and hope for the best (or create a form and
resolve inconsistencies by hand later).

If we were to build a new development environment with
a simple but expressive structure at its core, what would
that core be? As the most successful end-user development
tool in computing history, the spreadsheet is the obvious
candidate. What makes the spreadsheet attractive, though, is
not its computational model. On the contrary, spreadsheets
are great for representing relational data not because of this
model but in spite of it. Rather, it’s the visual layout of the
data (especially the flexibility to arrange it hierarchically,
with some cells occupying multiple rows), the ability to

1 The reasons that app builders such as QuickBase haven’t replaced pro-
grammer tools such as Meteor for simple websites are not entirely clear, but
we discuss some of their key limitations later in the paper.

enter data and formulas at once and get immediate feedback,
and the fact that the data and its schema occupy the same
structure (more on this later).

1.4 A Quest for a New Spreadsheet Model
In our view, then, there is a single major obstacle to exploit-
ing spreadsheets for building web apps. Although spread-
sheets are ideally suited to representing and displaying rela-
tional (and hierarchical) data, their formula languages are
not up to the task. Our challenge is to find a new com-
putational model, with a new formula language, that pre-
serves the simplicity of the traditional spreadsheet model,
but which treats the spreadsheet as a table (or a collection
of tables)—not as a two-dimensional array of arbitrarily re-
lated data items. This paper reports on our effort to meet this
challenge.

Due to their popularity and known deficiencies in their
computational model, spreadsheets have been the subject of
many research efforts. Most of these, however, have focused
on extending them with capabilities such as more powerful
programming languages[11, 31], user-defined functions [6,
30], and stream processing [36]. In contrast, our project
aims to reconsider the most fundamental assumptions of the
spreadsheet data model.

In short, our model replaces computation over cells with
computation over columns, with a formula per column that
defines the value of each of its cells. Hierarchy is not just a
visual representation of a relational redundancy, but is funda-
mental to the structuring of the data. As the simplest exam-
ple, the summary cell of a table in a traditional spreadsheet
(representing, for example, a total of the costs of items in a
shopping cart) becomes a cell in a new column (giving the
total of each cart, now itself represented explicitly as an ob-
ject containing its items). The formula language is adapted
so that, unlike a standard spreadsheet language, its terms re-
fer not to individual cells and their values, but rather to sets
of cells and sets of values. These cells are addressed not by
their coordinates on the two-dimensional grid, but by their
location in the data structure. An extension of the language
with mutating operations provides the ability (amongst other
things) to programmatically add rows to a table; these oper-
ations are packaged into “transactions” that can be bound to
buttons in the user interface.

1.5 Data-Centric Web Applications
While a new computational model is the primary contribu-
tion of this paper, our ultimate aim is to build a new end-user
application development environment based on the spread-
sheet paradigm. We have therefore selected a class of appli-
cation that is increasingly important and an ideal target for
this approach.

Data-centric applications are interactive web applica-
tions that involve routine but non-trivial manipulations of
data, to support sharing of information, small-scale social in-
teractions, and business processes. They are unlike the kinds
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of application that can be easily built with content man-
agement systems, because they typically require complex
domain-specific queries and updates; and on the other end
of the spectrum, they are unlike scientific applications be-
cause they do not require resource-intensive computations.
An example is the kind of application a school would use
to arrange parent-teacher conferences, which lets the family
of each student schedule a meeting with each of the stu-
dent’s teachers, avoiding problems such as double-booking
(Fig. 1).

Organizations with such a need face a dilemma: to adopt
an off-the-shelf solution (which may be a less than perfect
match to the requirements); to engage a developer (which
is usually too expensive); or, as is most commonly done,
to cobble together tools such as email, spreadsheets and
online forms using form builders like Google Forms [16]
and Wufoo [37] (leaving a considerable burden of manual
work and possibly undesirable risks to data confidentiality
and integrity).

Ideally, an organization’s administrators would build a
application themselves to their exact requirements (end-user
development), but this approach is not as easy or as widely
used as it could be. General-purpose web application frame-
works continue to demand a high level of technical under-
standing from their users, even as design advances over time,
such as scaffolding scripts and object-relational mapping, re-
duce the amount of code that has to be written. Existing ap-
plication builders (such as App2You [22] and Intuit Quick-
Base [32]) make it easier for people with little or no pro-
gramming experience to build data-centric applications of
low to medium complexity, offering menu-driven, WYSI-
WYG, or other visual interfaces to specify the structure of
the information stored and the ways in which users may
view and update it. Such tools are more general than form
builders, which allow unprivileged users to add records but
offer very limited options (if any) for them to view and edit
records other than their own.

Many organizations use application builders to great ef-
fect, but others continue to use piecemeal solutions, likely
because the existing application builders are still too clunky
and intimidating. A major source of the clunkiness is that
the schema, data, and formulas are often spread across many
screens, so developers must go back and forth to find the part
of the application that needs to be edited and see the conse-
quences of the edit. And advanced developers often prefer
to use general-purpose frameworks because they scale better
to moderately complex application logic, even though they
lack some of the conveniences of application builders.

We propose that the use of the spreadsheet paradigm in
an application builder can help to overcome both of these
problems. Let’s review the essential characteristics that give
spreadsheets their appeal:

• A simple and flexible visual structure for organizing data;

Teacher Slot Meeting

name hours day time parent slot

•

Flitwick M4-5 • Mon 4:00p • Molly Tue 3:00p

T3-3.30 • Mon 4:30p • Xeno Mon 4:00p

• Tue 3:00p

•

Snape M2-4 • Mon 2:00p • Augusta

• Mon 2:30p • Lucius Mon 2:00p

• Mon 3:00p

• Mon 3:30pPTC

Mon Tue
2:00p

2:30p

3:00p Molly

3:30p

4:00p

4:30p

5:00p

 Available  Occupied  Your choice

Figure 1. A simple parent-teacher conference application,
with the Object Spreadsheet on the top and a Web UI below.

• The use of the very same structure and interface not only
for data, but also for the schema underlying the data and
the formulas defining queries on it;
• A continual computation strategy, which allows the im-

pact on example data to be viewed as formulas are con-
structed and modified;
• A simple and declarative formula language that provides

a smooth learning curve from simple data transforma-
tions, which can be selected visually, to more complex
transformations written with the help of integrated lan-
guage documentation and immediate feedback on subex-
pression results.

One can hope that a spreadsheet-based application builder
would:

• Provide a smooth path for end-user developers who are
comfortable with data entry and formulas in a traditional
spreadsheet to specify additional structure on their data
(tables, hierarchy, references, etc.) and build formulas
that traverse that structure to achieve the desired appli-
cation semantics.
• Avoid the clunkiness of going back and forth between

different screens to work with the schema, data, and for-
mulas.
• Feel powerful enough to win the respect of advanced de-

velopers, even as it offers significant guidance to novice
developers.

However, adapting the spreadsheet paradigm to the de-
velopment of data-centric web applications is not trivial,
and in Section 2 we outline particular challenges. In fact,
Quilt [5] is an example of a web application builder backed
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by a traditional spreadsheet in the style we propose, but it
does not address most of these challenges and consequently
supports only the very simplest applications. Our aim in this
project, therefore, has been to retain the essential appeal of
the spreadsheet paradigm while providing good solutions to
these challenges.

1.6 Object Spreadsheets
We have implemented a prototype tool, called Object Spread-
sheets, that embodies our new computational model, and
which is sufficient to build all the logic for a data-centric
web application. The spreadsheet serves as the standard UI
for development and administrative access to the application
data; the developer would design a separate, customized ap-
plication UI for regular use by unprivileged users. (In the
rest of this paper, we consistently use the term “developer”
for a person who defines the schema and logic of an applica-
tion or spreadsheet, however simple, and “user” for a person
who merely reads and writes data.)

In addition to the editable sheet with formulas, Object
Spreadsheets supports stored procedures to define the up-
dates that users of an application can make, and exposes an
API for the application UI to display data and invoke pro-
cedures. We envision combining the tool with a suitable UI
builder to provide a complete solution for application devel-
opment that requires no prior knowledge of web technolo-
gies. We have implemented a prototype of the spreadsheet
tool in the Meteor web application framework and demon-
strated it on a collection of example applications, building
the application UIs directly in Meteor using the exposed
API.

1.7 Paper Outline
The rest of the paper describes in more detail how the logic
of data-centric web applications can be built using Object
Spreadsheets. Our contributions include:
• An analysis of the challenges of extending the spread-

sheet paradigm to support data-centric application devel-
opment;
• A data model (Section 3) and spreadsheet interface de-

signed to handle web application data in a way that is
natural to end-user developers;
• A simple formula language that supports the queries

needed by our target applications (Section 4);
• A prototype implementation of the tool (Section 6);
• A suite of example applications that demonstrate com-

mon difficulties presented by this application class, and
their implementations in our tool (also in Section 6).

Demos. Interactive demos of the example applications and
a video demonstrating how to build an application with
Object Spreadsheets are available on the project web site
at http://sdg.csail.mit.edu/projects/objsheets/. These materials
may help the reader quickly get a sense of what Object
Spreadsheets does before reading further in the paper.

A B C D E F
1 room sq. footage occupant role alloc. free
2 Dungeon Five 480 Sirius Grad. student 12 436
3 James Post-doc 20
4 Wormtail Grad. student 12
5 Greenhouse Two 561 Bellatrix Visiting Prof. 45 476
6 Lily Post-doc 20
7 Remus Post-doc 20

8 role alloc. space =VLOOKUP(D5, A$9:B$11, 2)

9 Grad. student 12 =B2−sum(E2:E4)
10 Post-doc 20 =B5−sum(E5:E7)
11 Visiting Prof. 45

Figure 2. Tracking the used space in each room at a univer-
sity department based on space allocation amounts for each
role. Adding an occupant or room requires careful adjust-
ment of the formulas. A real implementation would have a
separate table of people like the table of roles above, but we
omit this detail to simplify the example.

2. Challenges and Approach
In this section we outline the key challenges of extending
a spreadsheet to support web application development and
how they are addressed in our design. We point out a few al-
ternatives and explain why we believe they are inferior. Fur-
ther discussion of alternatives and similar systems is given
in Section 7.

Nested variable-size sets. All but the simplest web appli-
cations contain one or more sets of objects and allow users
to add objects to and remove objects from these sets. Many
even include two or more nested levels of such sets. For
example, consider an application used by an administrator
to manage the space allocation for a university department,
shown in spreadsheet form in Fig. 2. Each person is allo-
cated an amount of space depending on their role, and peo-
ple must be assigned to rooms in such a way that each room
is large enough for the people assigned to it. The administra-
tor is constantly facing the problem of finding a room with
enough free space to accommodate the next person, so he
wrote formulas that subtract the total allocated space from
the square footage of each room. Unfortunately, this requires
hard-wiring the cell ranges corresponding to the occupants
of each room (E2:E4 and E5:E7). So when he adds a new
occupant to a room or adds a room to the list, he has to man-
ually adjust the formulas to refer to the new cell ranges.

Room RoleOccupant

name sqFoot name role free title allocSpace

• text number • text Role number • text number

•

Dungeon Five 480 • Sirius Grad. student 436 • Grad. student 12

• James Post-doc • Post-doc 20

• Wormtail Grad. student • Visiting Prof. 45

•

Greenhouse Two 561 • Bellatrix Visiting Prof. 476

• Lily Post-doc

• Remus Post-doc

Room.free =̂ sqFoot − sum[o : Occupant](o.role.allocSpace)

Figure 3. An Object Spreadsheet for the space allocation
example.
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This example illustrates the fundamental challenges of
handling variable-size sets in a spreadsheet. Applications
require both per-item computations, such as the lookup of
the allocated space for each person based on their role, and
computations over sets, such as summing the allocated space
for the occupants of a room. Actually, the latter computation
is also a per-item computation at the room level. To support
variable-size sets, a spreadsheet must be able to:

1. Fit as many items as are needed;

2. Automatically apply per-item computations to added
items;

3. Maintain enough information to locate sets and their en-
closing items as sizes change.

These capabilities are difficult to achieve in a traditional
spreadsheet, in which data items and formulas are bound
to individual cells in the grid and there is no paradigm for
adapting the structure to programmatic changes in data size.
One strategy to handle two levels of sets is to lay out one
level (e.g. the rooms) along one axis, and another level (e.g.
the occupants) along the other. This limits nesting to two
levels, and is also hard to maintain when the inner items
are composed of several fields, as in the example. Another
strategy is to move all the inner items to a separate table
with references to the outer items, as in a relational database,
and use functions such as SUMIF to query all inner items that
belong to a given outer item. But end-user developers may
not know to try this transformation, and even if they do,
it may present an ongoing burden to understanding of the
application implementation.

In Object Spreadsheets, we solve the problem by aban-
doning the two-dimensional grid of cells as the fundamental
data model in favor of a richer model that is merely viewed in
a two-dimensional layout. The model is never dependent on
the spreadsheet view for its correct functioning, and the view
adapts to arbitrary changes in the size of the model; there
are no issues of “running out of room in the grid”. Some
commands in the spreadsheet UI depend on the state of the
view at the time of invocation, but they ultimately result in
a change to the model that is expressed in view-independent
terms.

The model we choose is based on what is historically
known as the “hierarchical data model with virtual records”;
it directly supports nested variable-size sets of objects. Ev-
ery formula defines a computed field of an object type and
is automatically evaluated on each object of that type in
the sheet, ensuring uniformity. A root object is available to
hold global values and formulas. The spreadsheet view uses
the “nested table” layout with each object type occupying
a range of columns and objects of the same type occupy-
ing vertically stacked rectangles, which is common in other
tools [2, 3, 17]. The result for the space allocation example
is shown in Fig. 3.

Object references. Web applications include relationships
between objects, not all of which are well captured via hi-
erarchy, which leaves a need for object references of some
form. In the space allocation example (Fig. 2), this can be
seen by the “role” of each occupant, which refers to a role
listed in the table at the bottom. The administrator then wants
to retrieve the allocated space for the role from this table.
This can be done with the VLOOKUP function, but it becomes
tedious and error-prone to specify the target cell range for
each such lookup in an application. This approach is the ana-
logue of a join or subquery on a foreign key in a relational
database.

Another approach is to have the occupant’s role cell store
a cell reference in string form, such as “A11” in the case of
Bellatrix, and use a formula like =OFFSET(INDIRECT(D5),0,1)

to look up the allocated space. This approach avoids specify-
ing the cell range of the role table but still requires significant
boilerplate, and it fails if the role table must be moved to al-
low the room table to grow. Furthermore, to enter the role of
an occupant into the sheet, the administrator has to manually
look up the correct cell reference.

Object Spreadsheets provides object references that are
analogous to the “A11” mentioned above, but since the
data model supports objects directly, these references do not
break when the layout changes. So if the developer defines
an object type named Role corresponding to the role table,
then references to individual Role objects can be stored in
the “role” column of the occupant table and manipulated
like any other data type. A dot notation is used to access
fields of the target object, so the lookup of the allocated
space might be expressed as “=role.allocSpace”. The same
notation is used to access ancestor or child objects in the
hierarchy, for example, to retrieve all occupants of a room
to compute the free space. We call these dot expressions
navigations. Finally, Object Spreadsheets lets the developer
designate one field of each object type (defaulting to the first
field) as its display field, which is used as a string represen-
tation to display and input references to objects of that type
in the spreadsheet. So, by default, a reference to a role from
the occupant table would display the role title, underlined to
remind the developer that it is a reference.

Binding the application UI to data. Any web application
builder has to give the developer a way to specify what data
should appear in a given page of the (user-facing) applica-
tion UI. In existing tools such as QuickBase and App2You,
each page is associated with a particular object type, and a
form building interface is used to specify what fields of the
object type and what tables of related objects to display. The
amount of logic inherent in such UI building becomes non-
trivial if related objects are nested or are filtered, potentially
depending on parameters chosen by the user on the page.

We propose to harness the benefits of spreadsheets for
this task by making each page merely a stylized view of a
dedicated region of the spreadsheet that contains the data
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for display. As described earlier in this section, our spread-
sheet model has a hierarchical structure, which aligns well
with how user interfaces are normally built, plus plenty of
expressive power to select and assemble data. We discuss
further details in Section 5.

Mutations. Finally, the developer must specify the kinds
of mutations that users may make to the application’s state.
For example, the administrator of the space allocation appli-
cation may want to allow other users to assign occupants, but
not add rooms or alter their square footage. In the simplest
case, if a web application builder has a flexible means to bind
mutable state directly to a page, the developer could choose
to allow edits to some of the displayed values and creation
and deletion of objects that meet the criteria to appear in ta-
bles on the page, perhaps subject to conditions expressed as
formulas. If the page is bound to a view defined by formulas
on the source data, then the natural way to achieve equivalent
functionality is to provide default view-update semantics for
formulas with appropriate syntactic forms, as (for example)
PostgreSQL does.

However, some of our target applications, such as Got
Milk (see Section 6), have composite mutations that cannot
be expressed in this form without complicated tricks. The
most basic, general way to support such mutations is to use
stored procedures and allow users to call certain procedures
with arguments of their choice; the procedures would also
receive some built-in parameters such as the identity of the
calling user and the time. This is the approach we take. We
designed a small procedural language as an extension of the
formula language (thus, we hope, making it easy for end-
users to understand). A room assignment procedure might
look like this:

assign room: Room, name: text, role: Role
let a = new room.Occupant

a.name = name

a.role = role

check room.free >= 0

3. Data Model
The design of the Object Spreadsheets data model reflects a
compromise among the following goals:

1. Provide sufficient expressive power for moderately com-
plex data-centric applications.

2. Stay close to an end-user developer’s mental model of
a data-centric application, which we assume is well-
described as an entity-relationship model [9].

3. Support a spreadsheet-like interface that upholds the
properties that make spreadsheets easy to use and un-
derstand.

4. Keep the design simple so we could produce a reasonably
complete prototype demonstrating the essential charac-
teristics of the system with modest development effort.

We describe several future extensions that would be im-
portant in order to achieve the best possible usability.

Our data model is based on what is historically known
as the “hierarchical data model with virtual records” and
incorporates the following essential features of this model:

• Object attributes, or fields, as the basic unit of data, rather
than relational tuples.
• Object references rather than explicit foreign keys.
• An ownership hierarchy of objects.

Our system also shares much of the philosophy of DAPLEX
[34] and some of its design, including support for object ref-
erences as a first-class data type and set-valued fields anal-
ogous to the “multivalued functions” of DAPLEX; we men-
tion further similarities to DAPLEX in Section 4. We give
an informal exposition of the design of Object Spreadsheets
in this paper; for a mathematically rigorous specification,
see [25].

A sheet in Object Spreadsheets consists of a schema, a
data instance conforming to the schema, and a program of
formulas and procedures. (Formulas are described in Sec-
tion 4. We do not describe procedures in detail in this pa-
per, but a few examples may be seen in Section 6.) The
schema takes the form of a tree whose nodes are object types
that describe the objects in the sheet and fields (which must
be leaves), each of which gives the name and type of val-
ues that may exist in each object of the parent object type.
The schema of (a representative part of) the space allocation
sheet of Fig. 3 is shown at the top of Fig. 4.

The sheet’s data instance consists of a tree of objects
and values that parallel the object types and fields of the
schema, respectively, in the sense that each data node d is
described by a schema node that is a child of the schema
node describing the parent of d. This can be illustrated by
the data tree for the space allocation sheet, shown at the
bottom of Fig. 4; the correspondence to the schema nodes
is indicated by vertical dotted lines. In our model, an object
may have more than one value in a field (though this does not
occur in the space allocation sheet); we discuss the reason
for this decision in Section 4.4. Note that every sheet has
a root object, which is the unique object of the root object
type. Its fields can be used to store global values.

Objects in Object Spreadsheets are much like database
records, but we avoid the use of the term “record” because
it has the connotation of being flat and rigid. Objects do
not currently support many of the features of object-oriented
programming, such as methods; such features may be rea-
sonable extensions if they are consistent with the spirit of
the system.

The schema and data trees are currently displayed in a
layout similar to the “nested table” layout of [4]:
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• The schema nodes (taken in preorder) become the columns
of the grid, with each object type drawn as spanning its
descendants in the schema.
• Each data node becomes a cell in the corresponding col-

umn. An object cell has a bullet icon, while a value cell
displays the actual value.
• The data subtree rooted at an object o of type T lies in a

rectangle spanning the columns representing the schema
subtree rooted at T . The object cell spans the height of
this rectangle, as do value cells in single-valued fields.2

This presentation is simple and unambiguous but may not be
the easiest to understand or use for a given task. Indeed, the
ability for users to lay out data arbitrarily is a major element
of the appeal of spreadsheets, so increased flexibility in
layout without compromising the ability to automatically
adapt the layout to arbitrary changes in data size would be
an important extension to our system. A template structure
similar to ViTSL [1] but with unlimited nesting may provide
enough generality.

The data types supported by our system include common
primitive types (boolean, number, text, date) and “reference
to T ” for any object type T in the sheet. In the space alloca-
tion sheet, the role field of Occupant has type “reference to
Role”, and individual Occupant objects contain references
to Role objects, shown as dotted arrows in Fig. 4. As men-

2 We envision fields being specified as single-valued in the schema, but our
prototype does not yet support this and simply stretches every cell that is
currently the only one in its field.

(root)

Room

Occupant

Role

name

name role

title

•

•

•

Dungeon Five

Greenhouse Two

•

•

Sirius

James

•

•

Bellatrix

Grad student

•

Post-doc

•

Visiting prof

Figure 4. Schema tree (gray nodes) and data tree (white
nodes) for part of the space allocation sheet. Capitalized
schema nodes are object types; lowercase schema nodes are
fields. Bullet nodes are objects; other data nodes are values.
The dotted arrows are references.

tioned in Section 2, each object type has a display field that
provides a string representation for display and input of ref-
erences to objects of that type.

A field of an object type T may be computed, mean-
ing that its content is given by a formula that is automati-
cally evaluated once for each object of type T and may read
any other data on the sheet. Fields that are not computed
are called state fields and represent independently mutable
parts of the application state. Entire object types may also
be computed; we explain in Section 4.4 how this works, but
the end result is that arbitrary custom views of data can be
constructed. We plan to add support for updatable views that
can accept manual and programmatic writes and make cor-
responding writes to underlying data, in general by execut-
ing an arbitrary procedure, though we may offer simplified
options for common cases. We do not expect novice devel-
opers to build complex updatable views manually. Instead,
updatable views provide a clean way to define the semantics
of add-on data modeling and transformation features (which
may be included with the system or built by advanced third-
party developers) for incorporation into sheets by novice de-
velopers, who may gradually learn how to debug and modify
the views using the tools built into the spreadsheet.

3.1 Rationale
We designed Object Spreadsheets to present data hierarchi-
cally because hierarchy is widely accepted as an understand-
able and efficient approach to presenting structured data, as
in [4]. However, this does not fully determine our choice of
data model because a hierarchical view can be implemented
on top of any data model that can represent relationships be-
tween objects, including the relational and network models.
We specifically choose a hierarchical model with ownership,
i.e., an object owns all of its descendants in the data tree (but
not objects that it merely references), and the only object
deletion operation we provide is one that deletes the descen-
dants. This concept is easy to illustrate in the spreadsheet:
when the developer selects an object cell, the rectangle it
owns is highlighted. Ownership provides a rudimentary form
of encapsulation: data of any kind can be added to an object’s
representation and it will be deleted with the object. No one
seems to question this functionality for fields, and we argue
it should be offered for nested objects as well. In practical
terms, ownership captures the nature of a significant fraction
of entity relationships in real applications; for example, if
an application includes invoices that contain line items, one
would expect deleting an invoice to delete the line items.

Of course, many binary relationships, such as the one be-
tween Occupant and Role in the space allocation sheet, can-
not be captured by ownership. In our model, they are rep-
resented by reference-valued fields, which are equivalent to
the “virtual records” of the hierarchical data model. We be-
lieve the usability benefits of references over explicit foreign
keys are clear. Furthermore, we can support references as a
first-class data type without adding any complexity to the
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functioning of the data model or the spreadsheet interface,
provided that we refrain from imposing restrictions to pre-
vent references from becoming broken by deletion of their
target objects. Other approaches such as a separate “relation-
ship” concept would add complexity, and it’s unclear if they
would permit the examples of Section 4.3 to be expressed in
a comparably natural way.

In the space allocation sheet, each occupant has one role,
so the Occupant object type has a single-valued role field
referring to the role. In other cases—for example, if an
application has User and Newsletter object types, and each
user is subscribed to multiple newsletters—a multi-valued
field User.subscriptions would be used. If the application
needs to traverse the relationship in the other direction, the
developer can add a computed field Newsletter.subscribers
(updatable once this is supported by our system) that would
contain the references to the corresponding users; we will
likely offer this as a predefined option.

Although our basic data model does not prevent refer-
ences from becoming broken, many applications will want
to impose referential integrity constraints. We envision of-
fering predefined updatable views that provide the equiva-
lent of SQL’s “ON DELETE RESTRICT” (disallow deletion of
referenced objects) and “ON DELETE CASCADE” (automatically
delete all referencing objects). In general, we prefer to build
data modeling features on top of existing features of our sys-
tem rather than add complexity to the basic data model.

When applications require ternary or higher-arity rela-
tionships, they can be represented by dedicated object types
as in other database systems.

Particular tasks may call for hierarchical views that tra-
verse relationships that are represented via references rather
than ownership. Such views can be constructed using com-
puted fields and objects and will ultimately be updatable,
and our system could be extended with view-building com-
mands like those of SIEUFERD [2] that automate this con-
struction. Once the desired hierarchical structure is assem-
bled, customizing its on-screen layout for the best usability
remains a separate issue, as mentioned earlier.

4. Formulas and Computation
4.1 Overview of Computation
In a traditional spreadsheet, each cell can have its own for-
mula, and unintended inconsistencies in formulas are a no-
torious source of errors. In contrast, in Object Spreadsheets,
a formula is assigned to an entire non-root schema node,
i.e., a field or a nested object type, corresponding to a col-
umn in the nested table layout. The formula is written in
terms of a context object of the parent object type T and
is evaluated once for each object of type T to produce
the data for that object. For example, in the space alloca-
tion sheet, the computed field free of Room has the for-
mula sqFoot − sum[o : Occupant](o.role.allocSpace).
The free field of Dungeon Five is computed by evaluating

the formula with Dungeon Five as the context object, so sq-
Foot and Occupant refer to Dungeon Five’s square footage
and set of occupants (according to semantics we explain in
Section 4.2), and the result is 436.

Since the same formula is used for all objects of the same
type, if different behavior is desired for some objects, the de-
veloper must write an explicit conditional. This design both
ensures that no unintended inconsistencies are introduced
and provides predictable behavior for objects that are sub-
sequently created, either manually or programmatically. Of
course, this does not mean the behavior is what the developer
wants for a new object that is different from the existing ones
in some way! The developer may need to add or modify con-
ditionals in the face of new requirements; special interaction
techniques may be helpful to streamline this process.

In our computational model, the basic unit of data in a
sheet is the family. A family is identified by a pair 〈s, o〉,
where s is a non-root schema node and o is an object of
the parent object type of s, and consists of all child data
nodes of o described by s; it is called state or computed
depending on whether s is state or computed. A family 〈s, o〉
represents either the complete content of a field of o or o’s
entire set of child objects of a certain type. In Fig. 4, families
containing multiple nodes are indicated by forked edges; in
this example, every value node is in a family by itself. The
content of a family is the set of values of its nodes, where
the “value” of an object node is a reference to the object
itself. The content is indeed a set: the nodes in a family are
unordered, and we do not allow duplicate values within a
field of a single object (duplication does not arise with nested
objects, which always have distinct references).

The data instance of a sheet is uniquely determined by its
set of families and their content, and indeed, this is the most
useful form of the data instance for computation. The con-
tent of each computed family 〈s, o〉 results from one evalua-
tion of the formula of s with o as the context object, hence if
a runtime error occurs in the evaluation, the entire family is
erroneous. The family (state or computed) is also the unit of
data that can be read by a formula, thus it is the granularity
at which dependencies would be tracked for incremental re-
computation (not yet implemented in our prototype). In a tra-
ditional spreadsheet, this granularity would be the cell. The
computational model of DAPLEX is not explicitly stated in
[34], but it would likely be very similar to ours.

4.2 Formula Language
The most important feature of formulas in a spreadsheet is
access to other data in the sheet. Excel and other traditional
spreadsheets use a row-column coordinate notation that is
either absolute or relative. Since our data model is hierarchi-
cal, data access must follow this hierarchy using an operation
we refer to as a navigation. As in many other systems, nav-
igations are written using a dot notation: start.targetName,
where start evaluates to a starting object and targetName is
the name of a schema node to navigate to. An unqualified
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expr ::= var-name // local variable
| (expr.)? targetName // navigation
| literal
| { expr∗ } // union
| op expr // unary operator
| expr op expr // binary operator
| function-name ( expr∗ ) // built-in function invocation
| { var-name : expr | expr } // filter comprehension
| sum[var-name : expr](expr) // sum comprehension

literal ::= $ // root cell literal
| number
| "string"
| true | false

// (all literals are singleton sets)

Table 1. Formula syntax.

targetName denotes a navigation starting from the context
object of the formula, and $targetName starts from the root
object. (In the formula for Room.free in the space alloca-
tion sheet, sqFoot and Occupant are examples of unquali-
fied navigations, while o is a bound variable.)

We allow two types of navigation:

• Up navigation—following the parent relationship to go
to one of the object’s ancestors (or itself as a special
case; we believe that using the object’s type name is a
helpful reminder compared to a special variable with a
fixed name such as this).
• Down navigation—reading the content of a child family

of the starting object corresponding to a particular field
or nested object type, which in general results in a set
of values. As mentioned in Section 4.1, the “value” of a
nested object is a reference to it, so down navigation to
either a reference-valued field (e.g., o.role in the space
allocation sheet) or a nested object family (e.g., $Role)
yields a set of references, which can be the starting point
for a further navigation. Since developers like to use short
names that describe the meaning of a schema node with
respect to its immediate parent (e.g. “name”), we allow
each down navigation to go down only one level so that
its meaning is clear. To go down more than one level in
the hierarchy, one can chain navigations.

Like families in the sheet, all formulas are set-valued,
with scalars represented by singleton sets. A navigation from
a set of starting objects returns the union of the navigation
results for the individual objects in the set. (In these respects,
Object Spreadsheets works the same way as Alloy [19] and
DAPLEX [34].)

The target name of a navigation is resolved to a schema
node when the formula is entered (the formula cannot be
saved if this resolution fails), and the formula is automat-
ically updated if the schema node is later renamed by the
developer, much as a cell reference in a traditional spread-
sheet formula updates if the target cell moves. To perform
this resolution, we must know the type of the starting object,
so formulas are type-checked when they are entered. Type-
checking ensures that every subexpression evaluates to a set

of elements of the same type (which may be a primitive type
or a reference type).

Formula expressions are drawn from a language whose
syntax is described in Table 1. It includes set equality (=) and
inclusion (in) operators, which can also be used for scalar
equality and scalar membership in a set; a set comprehension
notation {var : set | pred} that filters an existing set using
a predicate; and various numeric, boolean, date, and set-
related operators and functions (+, -, <, >, &&, count, etc.).

4.3 Computing with Sets
Here are a few representative examples of set computations
that occur in data-centric applications and how they are
handled in Object Spreadsheets:

1. Given a set members of members of a research group (as
references to Person objects), compute the set of their
offices (assumed to be a field office of each person). This
can be done with a navigation members.office, which
takes the union of the result for each object in the starting
set.

2. Compute the set of cars (Car objects) currently available
in a car sharing service, assuming that each car has an
available field. This could be achieved with a navigation
$Car.selfIfAvailable given an auxiliary computed field

Car.selfIfAvailable =̂ if(available, Car, {})

but such filtering (like “WHERE” in SQL) is so common
that we believe it is well worth providing a filtering con-
struct. The current syntax is {c : $Car | c.available};
it can probably be improved to make it easier for new de-
velopers to understand, perhaps drawing inspiration from
LINQ [23], which is a good fit for our set-based system.

3. When a user (represented by a User object) visits the ap-
plication, show the distance from their current location
(given by User.location) to each of their favorite restau-
rants (given by User.favorites, a set of references to
Restaurant objects which also have a location field). The
distance depends on both the user and the restaurant, so it
can’t be defined simply as a computed field on one or the
other. One way we can represent the distances is to change
the representation of each user’s favorites from a plain set
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of references to a set of nested Favorite objects, each of
which contains a restaurant reference. (Indeed, Object
Spreadsheets provides a command to wrap the existing
values of a field in objects in this manner.) When a user
adds or removes a favorite, we create or delete a Favorite

object rather than just adding or removing a restaurant
reference. We can then define:

Favorite.distance =̂
dist(User.location, restaurant.location)

(imagining for the purpose of this example that dist is a
built-in function on locations).

4.4 Computed Objects
The last example started to push the boundaries of what
can be achieved with the features covered so far. Consider
a slightly more complex problem: given a user of the car
sharing service of example 2, with a User.location field,
show the distances to all available cars (which now have a
Car.location field). If we had UserCarInfo objects nested
in each User object for the available cars, we could define
UserCarInfo.distance as in example 3. However, it would
be awkward to manually create or delete UserCarInfo ob-
jects for all users when a car changes availability. Instead,
we can define UserCarInfo as a computed object type by as-
signing it a key formula that returns the set of available cars.
The formula is evaluated once in the context of each User

object u, and each returned car c generates a UserCarInfo

object xu,c nested in u. The car reference c becomes the key
of xu,c and is placed in a designated key field, which we
would name UserCarInfo.car.

In our example so far, the key formula returns the same
set of cars for each user, resulting in parallel sets of nested
UserCarInfo objects, but this need not be the case in general;
for example, we could filter the set of cars further based
on the user’s preferences. Keys may be of any primitive or
reference type. A computed object type is the analogue of a
use of the “COMPOUND OF” function in DAPLEX [34].

Further computed fields (such as UserCarInfo.distance)
and nested object types may be defined on a computed ob-
ject type in terms of its key and any data accessible via its
parent. This process can be repeated for any number of lev-
els of nesting, with formulas at each level able to access the
data of all ancestor objects, to transform data into arbitrary
structures. In this way, Object Spreadsheets offers expressive
power similar to SQL but requires—and allows—queries to
be broken down into steps that return one set at a time, main-
taining the local nature of computation of the spreadsheet
paradigm. One must keep in mind that while a key formula
produces values that appear in the key field of a computed
object type T , it is associated with T and its context is the
parent of T , not T itself, which can only be populated after
the set of keys has been generated by the formula. Key fields
may be regarded as computed but do not have formulas of
their own.

A computed object may go in and out of existence at any
time as the result set of the key formula on its parent changes
to include or exclude its key. Therefore, we do not allow a
computed object to contain state data because it’s unclear
what should happen to the state data if its owner goes out of
existence and then comes back; however, a computed object
may contain a view (in the future, updatable) of state data
stored elsewhere. Semantically, a reference to a computed
object consists of its parent and its key (though the reference
is still shown using a display field like any other reference).
That is, we are considering two computed objects that exist
at two points in time t1, t2 with the same parent and equal
keys to be the same object, and a reference stored at time t1
(even in state data) will work at time t2.

We give one final example that uses computed objects:

4. Given a set members of members of a university depart-
ment, with a field city giving the city in which each lives,
compute the set who live in each city for further analy-
sis. In SQL, this would be done with “GROUP BY”. In Ob-
ject Spreadsheets, one would define a top-level computed
object type CityGroup with key formula members.city,
which would generate one CityGroup for each city with
at least one resident. One would define a computed field
for the set of people in each city as follows:

CityGroup.residents =̂ {m : members | m.city = city}

Further computed fields can then be added to CityGroup.
This boilerplate is tolerable for now; it can be further
automated with a special “group by” feature.

Sets and beyond. We currently choose the unordered set as
the structure for families and subexpression results because
it is the simplest choice that provides the power to express
arbitrary data transformations in combination with our de-
sign for computed objects. We can still represent scalars as
singleton sets, and in some contexts the language semantics
requires a singleton value (e.g., a Boolean condition for if).

Our choice of sets has its limitations. In the space allo-
cation example (Fig. 3), we would like to use the simpler
formula

Room.free =̂ sqFoot − sum(Occupant.role.allocSpace)

but to get correct results, Occupant.role must able to return
a multiset, rather than a set. We could add support for multi-
sets as well as lists and ordered sets, which would make cer-
tain application logic easier to express but would make the
computation semantics more complicated; in particular, for
each new structure, we would need to decide what happens
if it is returned by the key formula for a computed object
type (or if this should even be allowed). For now, we support
a special sum construct that binds a variable, similar to the
mathematical Σ notation, and other aggregation operations
could be designed in the same way.
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ParentView ChildView MeetingView
parent student enrollment teacher sel. slot avail. slots
Person Person Enrollment Person Slot Slot

• Molly • Fred • Fred @ Potions Snape Snape @ 1pm
• Fred @ Divination Trelawney Trelawney @ 4pm

Trelawney @ 5pm
Trelawney @ 6pm

• George • George @ Charms Flitwick Flitwick @ 10am
Flitwick @ 11am

Hello, Molly.
Meetings for Fred scheduled pick one:

Snape @ 1pm ◦ Trelawney @ 4pm

× ◦ Trelawney @ 5pm

◦ Trelawney @ 6pm

Meetings for George pick one:
◦ Flitwick @ 10am

◦ Flitwick @ 11am

Figure 5. A view model and one instance for scheduling
parent-teacher meetings, with an example rendering.

5. Application Views
Application views follow MVC guidelines. The design of
HTML views is hierarchical by nature, so it seems desir-
able to have a hierarchical model backing it. We define a
view model to be a designated sub-tree of the data model,
by picking an object type T and including all its descendant
data. The view model is crafted through formulas to contain
exactly those data items that are to be displayed. If a view
needs some parameters, such as the currently logged-in user,
selected class, etc., then these parameters are placed in state
fields of a common view instance object of type T . This al-
lows several instances of the same view to exist simultane-
ously.

The view instance is then mapped onto an HTML tem-
plate using standard templating techniques. Notice that at
this point the template does not have to contain any logic
such as conditional statements; such logic can be pushed to
the formulas populating the view. This makes the binding
straightforward, following the nested structure of the view
model.

An example from the parent-teacher conference applica-
tion described in Section 6 is shown in Fig. 5. Under the
object type ParentView, parent is a state field that is filled
with a reference to the user requesting the view. Formulas
then pull out the relevant data from the other columns in the
data model. Notice that ParentView contains ChildView and
ChildView contains MeetingView in the schema, matching the
nesting structure of the rendered HTML.

To understand how the control aspect works, notice the
buttons × and ◦ in the figure; clicking a button fires a
transaction that mutates the data in order to schedule or
cancel a meeting. The button is contained in a UI element,
which is in turn associated with an object in the spreadsheet,
simplifying the task of associating the click with the relevant
data item(s) that need to be updated.

6. Experiments and Evaluation
We have built a prototype of the Object Spreadsheets ex-
ecution engine and developer interface on top of the Me-
teor web framework [26]; all our applications thus inherit
the reactivity of Meteor. The developer UI is rendered via
a Handsontable [18] widget with cell merging managed by
our code, and supports editing the schema (that is, the over-
all structure) and its contents. Formulas and values are type-
checked to ensure conformance to the schema. Transaction
procedures are executed by the engine, but they cannot yet be
edited in the developer interface (so they must be provided
in a file).

To assess the applicability of our model, we collected sce-
narios in which our colleagues faced a need for a collabo-
rative data-centric web application for a specific task. We
noted a few of the most interesting features of each applica-
tion and considered how best to implement them in an object
spreadsheet. We then built the essential parts of these ap-
plications, and hand-coded UIs for them using Meteor tem-
plates (eventually, UI building will be integrated in the de-
veloper interface).

The applications are:

• PTC—the parent-teacher conference application men-
tioned in the the introduction. Teachers, students, and par-
ents are stored as Person objects. A reference field links
students to their parents. Teachers own Slot objects that
represent potential meeting times. Classes are stored using
another top-level object type, and each class owns Section
objects, which in turn have references to teachers teaching
those sections and nested Enrollment objects that link to
enrolled students. Parents can only schedule one meeting
per Enrollment of each of their children, in a slot of the
correct teacher (i.e., the teacher of the section in which the
student is enrolled); and slots cannot be double booked.
• Dear Beta, a site for students working on a system archi-

tecture assignment to share advice on correcting particular
test failure modes. Students can vote on questions and an-
swers as on Stack Overflow. The questions are organized
in a tree structure matching the structure of the test cases.
• Hack-q, a system for participants in a hackathon to request

help from mentors in particular areas of expertise. This
case study is discussed in more detail below.
• Got Milk, a management application for a group of peo-

ple who share a pool of fresh milk for coffee. Teams of
two members take turns buying the milk for the entire
group. The application sends email notifications for mem-
bers when it is their turn to buy the milk, and alerts when
milk supply is low.

To give an idea of the size of the applications, Table 2
shows the sizes of the spreadsheets that were used to back
them. The numbers under “Data” and “Formulas” indicate
the number of schema nodes of the respective kind. The
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numbers under “Procedures” indicate the number of lines of
procedure code that were written for mutations.

Case study. We present the data model, formulas, and
transaction procedures constructed for the “Hack-q” exam-
ple and explain their function in finer detail. In this appli-
cation, participants of an organized hackathon access a web
form where they fill in their name, the programming area
in which they require assistance, and their current loca-
tion. Meanwhile, designated mentors have been classified
according to their area of expertise—each mentor has been
assigned one or more “skills”. The submitted request then
shows up in the relevant mentors’ queues as a “call”. A
mentor can then “pick” the call, in which case it disappears
from the queues of other mentors. After talking to the partic-
ipant, the mentor may close the call (discarding it from the
queue), or forfeit the call, putting it back so that it reappears
in all other queues and can subsequently be picked up again
by another mentor.

Fig. 6 shows a sample sheet containing some concrete
data. Column names, their types, and their hierarchy are
shown by the header of the spreadsheet. The formula for
the column “inbox” (under “Staff”) computes a mentor’s
incoming queue. Every mentor is assigned a set of “Call”
objects on subjects relevant to the mentor’s skills as listed in
the “expertise” column. The calls are sorted according to the
“time” column. Calls assigned to other mentors, and calls
that have been forfeited by that mentor, are subtracted from
their queue. The transactions are used to insert and remove
elements from the queue, and are quite straightforward.

For comparison, we built as much of Hack-q in Quick-
Base as we could. We created Skills and Calls tables as in
Fig. 6, but we stored the expertise information in reverse by
adding a QuickBase user-list field, “Experts”, to the Skills
table to hold the set of mentors with the skill. With this rep-
resentation (which we found slightly unnatural), we were
able to define an Inbox report on the Calls table that tested
whether the current user was in the Experts list of the skill
record associated with each call. However, if we wanted to
enhance the application so that a call could require multi-
ple skills, this would require only a small change in Object
Spreadsheets but we are not aware of a way to express such
logic in QuickBase; this illustrates the risk that developers
take by investing in a tool with limited expressive power.
Also, QuickBase does not support application-specific mu-

Data Formulas Procedures
# object # computed

# fields types schema nodes LOC
PTC 28 12 9 17
Dear Beta 6 7 1 7
Hack-q 10 3 1 9
Got Milk 11 5 1 16

Table 2. Sizes of sample applications.

Skill Staff Call
name name expertise inbox time name location issue assign forfeit
text text Skill Call date text text Skill Staff Staff

• Python • Remus Firefox Myrtle • 9:53 Angelina Forbidden Linux
• Android Python Forest
• Firefox • Severus Linux Angelina • 10:18 Myrtle Chamber Firefox
• Linux Python Neville of Secrets

• Dolores Android Angelina • 11:31 Neville Hall of Python Severus
Linux Myrtle Hexes
Firefox

Formulas inbox
{c : $.Call | c.issue in expertise

&& (c.assign = {} || c.assign = {Staff})

&& !(Staff in c.forfeit)}

Procedures enqueue name : text, issue : text, location : text

let q = new $.Call

q.time := now

q.name := name

q.location := location

q.issue := {s : $.Skill | s.name = issue}

check q.issue != {}

pick call : Call, user : Staff

call.assign := user

forfeit call : Call

to set call.forfeit add call.assign

call.assign := {}

done call : Call

delete call

Hello! I am name and I need help

with issue .

I am in location .
−→ enqueue

[
name
issue
location

]

Severus, your calls are
Angelina (Linux) Pick
»Neville (Python)« Forfeit Done

pick
[

call
user

]
forfeit [call]
done [call]

Figure 6. Data model, formulas, transaction procedure
code, and HTML forms associated with the simple queuing
example “Hack-q” in the case study.

tation patterns (such as assigning a call to the current user)
in the core application builder; instead, the developer has to
write a formula to concatenate strings into a URL that will
make the desired change via the QuickBase API and then
add a link to this URL to the page.

7. Related Work
Spreadsheet-backed application builders. The only
spreadsheet-backed application builder designed to allow
persistent state in the spreadsheet to be mutated via the appli-
cation UI is Quilt [5]. It uses an unmodified Google Spread-
sheet and does not attempt to overcome the limitations of
the traditional spreadsheet model, so it only supports flat ta-
bles containing one record per row. The developer creates
an HTML page and specifies an element to be repeated to
display each record, subelements of which may be bound to
fields of the record using column names or may be hidden
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conditionally based on fields. In addition, controls can be
designated to add and delete records.

Spreadsheet design features have been pursued more ex-
tensively for development of “mashup” applications that
combine, transform, and query data from multiple sources
but do not maintain their own persistent state. Gneiss [7, 8]
and SpreadMash [21] both retain the two-dimensional grid
but allow cells to contain nested data structures retrieved
from external sources. They can extract and filter items from
these structures, and SpreadMash can even define computed
fields on them, but neither tool can generate or mutate such
structures on its own.

Other data-centric application builders. Subtext with
Two-Way Dataflow [13] is analogous to our work in offering
a continuously visible rich data model with computed data
and application UI binding support, and it has an intriguing
design for batching view updates using a total order on the
data model. However, its developer UI is less familiar than
a spreadsheet, and it’s unclear to us how the UI will scale to
development of our target applications.

App2You [22] and AppForge [38] both let the developer
build hierarchical forms, constructing the schema automati-
cally, and offer a menu of access control policies. However,
neither has demonstrated how end-user developers would
build arbitrary logic. AppForge supports only filters of the
form “field operator constant”, and [22] does not state what
filters are supported by App2You, though it mentions a for-
mula language as a future extension.

Finally, the mainstream application builders QuickBase
[32], FileMaker [15], and Knack [20] all support computed
fields that are a function of fields of the same object or aggre-
gations of related objects, but none has the ability to repeat a
computation on each related object, as Object Spreadsheets
can by introducing a computed object type.

Naked Objects. Our work may recall the Naked Objects
approach to application design [29]. The essential principles
of this approach are (1) a commitment to encapsulating all
logic in the objects it affects and (2) automatic generation of
the application UI from the schema and programmatic inter-
faces. The use of Object Spreadsheets as a data model and
development tool for the application logic appears to be or-
thogonal to both of these principles. (Object Spreadsheets
currently does not provide any features to enforce encapsu-
lation, but a developer can still choose to respect it.) Fur-
thermore, the spreadsheet UI on the application state could
play the role of the automatically generated application UI,
except for the need for read access control. It does not yet
provide a way to invoke procedures, but this is planned.

Nested table interfaces to relational data. Related Work-
sheets [3] is a spreadsheet-like tool that lets a developer con-
struct a schema for a set of related tables and join them
into editable nested-table views. The original vision was to
provide most of the features of spreadsheets, but formula

support was never added. Instead, the authors went on to
develop SIEUFERD [2], a tool for exploring existing re-
lational databases. SIEUFERD lets a developer construct
nested-table views using menu commands for joins, filter-
ing, and sorting, but does not support modifying the data or
the schema. SIEUFERD also supports computed fields, with
a formula language that supports navigations both up and
down the hierarchy, though many data transformations are
only achievable via the menu commands. The semantics of
a SIEUFERD view are given by translation to SQL and do
not determine the value of a cell in terms of a small number
of other cells, and indeed, some changes to the view defi-
nition have non-local effects that surprised us. We believe
there is a subset of SIEUFERD’s functionality that (with the
use of some boilerplate) is equivalent to the computational
functionality of Object Spreadsheets, though we have not
verified this. Object Spreadsheets differs in its support for
schema and data editing, stored procedures, and abstract ob-
ject references and its demonstration as a backend for web
applications.

SheetMusiq [24] is similar in computational capabilities
to SIEUFERD, but its UI differs superficially from a nested
table layout: values in columns at outer nesting levels are
repeated for each row at the innermost level.

Mashroom [17] uses a typed, nested data model and a
nested table layout like ours and has a formula language sim-
ilar in spirit to ours with support for hierarchical navigation
(Mashroom does not have object references). However, its
computational model is based on a script of transformations
starting from the source data, such as “insert a column con-
taining a snapshot of the result of this formula”, which can
then be replayed on new source data. One could achieve a
development cycle similar to ours by modifying formulas in
the script and replaying it, with the limitation that depen-
dencies must be acyclic at the column level rather than the
family level. Also, Mashroom does not consider mutations
to a permanent state, as contrasted with edits recorded in the
script.

Structured spreadsheets. Several existing spreadsheet tools
are able to maintain varying degrees of structure within a
two-dimensional grid. In Microsoft Excel, if a formula is
entered in a cell in a range designated as a “table”, then the
column of the range becomes “calculated” and is automati-
cally filled with the same formula (including rows added to
the table later) and Excel warns if the formula is overridden
in individual cells.

MDSheet [12] is somewhat more general. It lets the de-
veloper define the structure and formulas of a spreadsheet
using the ClassSheets [14] modeling format, which supports
repeating row and column groups and a dot notation for nav-
igation, and it maintains the structure and formulas as the de-
veloper adds and removes instances of the repeating groups.
There appears to be no obstacle in principle to supporting
programmatic addition and removal of such instances. How-

13



ever, MDSheet supports only one level of repetition along
each axis of the grid, which limits its expressive power com-
pared to Object Spreadsheets.

Sumwise [27, 28] lets the developer annotate rows and
columns with arbitrary tags (which could be used to mark
object types or fields) and then declaratively bind formulas to
all cells with certain tags. However, the available documen-
tation is insufficient for us to evaluate its expressive power
compared to Object Spreadsheets, and it does not explicitly
mark the repeating row and column groups, which would be
necessary to support programmatic addition and removal of
instances.

Other spreadsheet extensions. We have reviewed several
systems that extend spreadsheets with new capabilities to see
if they might meet our requirement to be able to define a for-
mula in the context of a member of a nested variable-size set,
even if their original motivation differed from ours. Mini-
SP [39] meets this test, since it allows sheets to be nested in
cells and has a rich programming language that includes the
ability to instantiate a nested sheet for each cell in an input
array, but the code required is more complex than in Object
Spreadsheets. Forms/3 [6] is capable of mapping auxiliary
sheets containing per-item formulas across a variable-size
input array but does not support nested data. The Analytic
Spreadsheet Package [31] and the spreadsheet of Clack and
Braine [11] combine the two-dimensional grid with formulas
in more powerful programming languages that can manipu-
late nested data structures, so such structures can be stored in
a single cell, but items in these structures are not first-class
entities in the system as they are in Object Spreadsheets.

Other tools that bridge databases and spreadsheets. Sen-
bazuru [10] automatically recognizes and extracts relational
data from existing spreadsheets and provides a UI for de-
velopers to perform certain types of queries, but it does not
allow queries to be defined persistently, does not match the
expressiveness of Object Spreadsheets, and does not have an
approach to handle programmatic mutations.

Sroka et al. [35] give a construction to store relational
tables in a traditional spreadsheet and execute SQL queries
reactively by translating them to intricate spreadsheet for-
mulas. This may be a convenient environment to work with
data, but it does not improve upon SQL in terms of end-user
development of queries.

8. Conclusion
Our experience with the data model and the computational
model shows that they yield compact programs that are easy
to understand and easy to change, making them suitable for
rapid prototyping without up-front design and for situations
where the requirement specifications tend to change fre-
quently. We have shown that spreadsheets can greatly benefit
from having more structure built into them, without mak-
ing it harder to write formulas, and while keeping the data

model coherent with the visual representation. Programming
with formulas can be made even easier with additional point-
and-click support, which reduces the need to type identifier
names and is very intuitive for spreadsheet users. Having a
statically typed language aids in early detection of mistakes,
but does not burden the developer with annotations, since
most of the types can be inferred. Tighter integration with
a UI builder can help filling in the types of transaction pa-
rameters by selecting them from the view. Most importantly,
the application is always “live”, with the view reflecting the
current value of the state and the formulas that have been
entered, thus breaking the code-build-debug cycle that slows
down and obscures conventional programming.
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