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Inverse Problem Formulation

� We consider the following general inverse problem:

� is the degradation operator (not necessarily linear)

� Additive white Gaussian noise:
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� The statistical model:

� Maximum A Posterior (MAP) estimator
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� Analysis priors suggest a regularization of the form:

� The analyzing operator can be of any size,

but is usually overcomplete            .

� Typically

� This regularization is explained by the prior

Analysis Priors (“MAP-Analysis”)
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Synthesis Priors (“MAP-Synthesis”)

� Synthesis priors stem from the concept of sparse 

representation in overcomplete dictionaries (Chen, 

Donoho & Saunders):

� is generally overcomplete            :

� Typically

� Can also be explained in terms of MAP estimation.
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� The two approaches are algebraically very similar:

� Both methods are motivated by the same principal of 

representational sparsity.

Analysis versus Synthesis
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Analysis versus Synthesis

� MAP-Synthesis:

� Supported by empirical evidence (Olshausen & Field)

� Constructive form

� Seems to benefit from high redundancy

� Supported by a wealth of theoretical results: 
Donoho & Huo, Elad & Bruckstein, Gribonval & Nielsen, 

Fuchs, Donoho Elad & Temlyakov, Tropp…

� MAP-Analysis:

� Significantly simpler to solve

� Potentially more stable (all atoms contribute)
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Some Algebra: Could the two be Related?

� Using the pseudo-inverse, the two formulations can 

almost be brought to the same form:

� This is precisely the MAP-Synthesis formulation, but with 

the added constraint since     must be in the column-

span of      in the MAP-Analysis case.

� Though sometimes close, the two solutions are generally 

different.
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Specific Cases of Equivalence

� In the square case, as well as the under-complete 

denoising case, the two formulations become equivalent.

� The pseudo-inverse also obtains equivalence in the 

overcomplete p=2 case. For other values of p, however, 

simulations show that the pseudo-inverse relation fails.
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Analysis versus Synthesis

� Contradicting approaches in literature:

� Are the two prior types related?

� Which approach is better?

“…MAP-Synthesis is very ‘trendy’. It is a 

promising approach and provides superior results 
over MAP-Analysis”

“…The two methods are much closer. In fact, one 

can be used to approximate the other.”

12

Agenda

� Inverse Problems – Two Bayesian Approaches
Introducing MAP-Analysis and MAP-Synthesis

� Geometrical Study: Why there is no Equivalence
Geometry reveals underlying gaps

� From Theoretical Gap to Practical Results
Finding where the differences hurt the most

� Algebra at Last: Characterizing the Gap
Bound provides new insight

� What Next: Current and Future Work



13

The General Problem Is Difficult

� Searching for the most general relationship, we find 

ourselves with a large number of unknowns:

� The relation between     and     is unknown.

� The regularizing parameter    may not be the same for the 

two problems.

� Even the value of p may vary between the two 
approaches.

Ω D

λ
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Simplification

� Concentrate on p=1. Motivation for this choice:

� The “meeting point” between the two approaches.

� One of the most common choices for both methods, 
provides a combination of convexity and robustness.

� For MAP-Synthesis, it is known to be a good approximation 
of p=0 (true sparsity) in many cases.

� Replace regularization with a constraint:
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A Geometrical Analysis

� Both problems seek a solution over the same domain: a 

region of ‘’radius’’ about the input.

� In this region, each method aims to minimize a different 

target function:

a

y
a

( )
1MAP Af x x− = Ω

( )
{ } 1γ: γ

γmin
MAP S

x
f x−

=
=

D

16

A Geometrical Analysis

� The iso-surfaces of the MAP-Analysis target function form 

a set of coinciding, centro-symmetric polytopes:

� Imagine a very small iso-surface, being inflated it until first 

touching the ball; this will be the MAP-Analysis solution!

( ){ } { }
1
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The MAP Defining Polytopes

� A similar description applies to MAP-Synthesis, where

� For both methods, the coinciding polytopes are similar, 

and can be determined from the iso-surface with         :
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The MAP Defining Polytopes

� Conclusion: we can characterize each of the MAP priors 

using a single polytope!

� We define the MAP defining polytopes as

� We now have a basis for comparing the two approaches.

( ) { }
1
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MAP-Synthesis Defining Polytope

� Obtained as the convex hull of the columns of     and 

their antipodes,          .{ }id±
D

Conclusion: any row in
which is the convex 

combination of the 
remaining columns 

(and their antipodes) 
can be discarded.

D

1.09 1.43 0.25 1.30 0.42 0.32 0.56 0.24 0.90 0.47

= 0.73 0.32 1.20 0.66 1.51 0.51 0.28 0.19 0.22 0.55

0.56 0.32 0.98 0.48 0.37 1.29 0.76 0.95 0.39 0.58

− − − − − 
 − − − − − 
 − − − 

D

Redundant!
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� Highly complex polytope, whose faces are obtained as 

null-spaces of rows in    .

� Some properties of this polytope:

� Exponential worst-case vertex count:

Also the expected number of vertices when the directions 

of the rows in     are uniformly distributed.

� Highly regular structure

Faces are arranged in very specific structures. Highly 
organized neighborliness patterns.

MAP-Analysis Defining Polytope
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 − 

Ω
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MAP-Analysis Defining Polytope

-0.204 -0.905 -0.005

0.111 -0.324 0.608

0.860 -0.242 -0.432

-0.455 -0.131 -0.667

 
 
 Ω =
 
 
 

Edge loops
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1 22
v

L
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N
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Vertex count

Neighborliness

Every vertex has 
exactly  
neighbors.

2( 1) 4N − =

The edges are 
arranged in planar 
loops about the 
origin.
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Comparison: MAP Defining Polytopes

NoneHighRegularity

High:Low:Neighborliness (
are non-antipodes)

Low:High:Expected Vertex #

MAP-SynthesisMAP-Analysis
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( ){ }, 1P e u v
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→
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� The neighborliness property for MAP-Synthesis defining 
polytopes has been recently proven by Donoho, and is 

obtained for dictionaries in which              , and under certain 

randomness assumptions.
( )L O N=
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 Ω =
 
 
 
 

Translating Analysis to Synthesis

-.08 -.08 .04 -.05 -.24 -.46 -.60 -.31 -.52 .56

-.62 -.66 .61 -.06 -.49 .45 -.08 -.58 -.08 .03

.29 .21 .24 .61 .29 -.03 .24 .08 .39 .25

 
 =  
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Vertices of the MAP-Analysis defining polytope
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Analysis as a Subset of Synthesis

� Any MAP-Analysis problem can be reformulated as an 

identical MAP-Synthesis one.

� However, the translation leads to an exponentially large

dictionary; a feasible equivalence does not exist!

� The other direction does not hold: many MAP-Synthesis 

problems have no equivalent MAP-Analysis form.

Theorem: Any L1 MAP-Analysis problem has an equivalent 

L1 MAP-Synthesis one. The reverse is not true.
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� For MAP-Synthesis, we think of the dictionary atoms as 

the “ideal” signals. Other favorable signals are sparse 

combinations of these signals.

� What are the favorable MAP-Analysis signals?

� Observation: for MAP-Synthesis, the dictionary atoms are 

the vertices of its defining polytope, and their sparse 

combinations are its low-dimensional faces.

� The favorable signals of a MAP prior can be found on its 

low-dimensional faces!

Favorable MAP Signals
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Favorable MAP Signals

Vertex

Vertex

Edges

� Sample MAP distribution on the unit sphere:
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Favorable MAP Signals

� The MAP favorable signals are located on the low-

dimensional faces of the MAP defining polytope.

� This is, however, only a

necessary condition!

Vertex

Edge

Vertex
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Intermediate Summary

� We have studied the two formulations from a geometrical 

perspective. This viewpoint has led to the following 

conclusions:

� The geometrical structure underlying the two formulations 
is substantially different (of asymptotic nature).

� MAP-Analysis can only represent a small part of the 
problems representable by MAP-Synthesis.

� But how significant are these differences in practice?
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Synthetic Experiments: Setup

� Dictionary: 128x256 Identity-Hadamard,

Analysis operator: the pseudo-inverse,           

� Motivation for this choice –

� Simple two-ortho structure for both operators. Since     is a 
tight-frame, pseudo-inversion is obtained through direct 

matrix transpose.

� The dictionary is a near-optimal Grassmanian frame, and 

so is a preferred choice for MAP-Synthesis.

� Reminder: the Hadamard transform is given by
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2
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D
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Synthetic Experiments: Setup

� Dataset:

� 10,000 MAP-Analysis principal signals

� 256 MAP-Synthesis principal signals

� Additional sets of sparse MAP-Synthesis signals (to 

compensate for the small number of principal signals): 
1,000 2-atom, 1,000 3-atom, and so on up to 12-atom.

� Procedure:

� Generate noisy versions of all signals.

� Apply both MAP methods to the noisy signals, setting

to its optimal value for each signal individually (this value 

was determined by brute-force search).

� Collect the optimal errors obtained by each method for 

these signals.

a
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Synthetic Experiments: Results

� Distribution of optimal errors obtained for MAP-Analysis

principal signals:

MAP-Analysis 

Denoising:

MAP-Synthesis 

Denoising:
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Synthetic Experiments: Results

� Distribution of optimal errors obtained for MAP-Synthesis

principal signals:

MAP-Analysis 

Denoising:

MAP-Synthesis 

Denoising:
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Synthetic Experiments: Results

� Distribution of optimal errors obtained for 2-atom MAP-

Synthesis signals:

MAP-Analysis 

Denoising:

MAP-Synthesis 

Denoising:
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Synthetic Experiments: Results

� Distribution of optimal errors obtained for 3-atom MAP-

Synthesis signals:

MAP-Analysis 

Denoising:

MAP-Synthesis 

Denoising:
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Synthetic Experiments: Results

� Summary of results for MAP-Synthesis favorable signals 

(mean denoising error vs. number of atoms):

Atom number

M
e
a
n
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e
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v
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o
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Synthetic Experiments: Discussion

� The geometrical model correctly predicted the favorable 

signals of each method.

� However, each method favors different sets of signals.

� There is a large difference in the number of favorable 

signals between the two prior forms; this is due to the 

asymptotical gaps between them.

� The pseudo-inverse does not bridge the gap between the 

two methods!
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Real-World Experiments: Setup

� Dictionary: overcomplete DCT, contourlet.

Analysis operator: the pseudo-inverse (transpose)

� Motivation –

� Commonly used in image processing

� Tight frames

� Variety of redundancy factors

� Dataset: standard test images (Lenna, Barbara, 

Mandrill…), rescaled to 128x128 using bilinear 

interpolation.

� Procedure: add white noise (PSNR=25dB), denoise

using both methods, compare.
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Overcomplete DCT Transform

� Forward transform: block DCT with overlapping (amount 

of overlap may be adjusted).

� Backward transform: inverse DCT + averaging.

...

DCT

DCT

DCT
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� Forward transform: Laplacian pyramid + directional 

filtering (level-dependent).

� Directional filtering partitions the image

to differently oriented filtered regions:

� DF is critically-sampled (invertible).

� Backward transform: pseudo-inverse.

Contourlet Transform (Do & Vetterli)

LP DF

1 2 3
4

5

6

7

6

3

5

4

2 1

0

0

7
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Real-World Experiments: Results

� Contourlet results (overcompleteness of 4:3):
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Real-World Experiments: Results

� DCT results (overcompleteness of x4, x16, x64):
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Real-World Experiments: Discussion

� MAP-Analysis is beating MAP-Synthesis in every test!

� Furthermore, MAP-Analysis gains from the redundancy, 

while MAP-Synthesis does not.

� Conclusion: there is a real gap between the two methods 

in the overcomplete case.

� The gap increases with the overcompleteness.

� Despite recent trend toward MAP-Synthesis, MAP-

Analysis should also be considered for inverse problem 

regularization.
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� Consider the two methods in the following denoising setup:

� Taking a gradient we obtain equations for the optimum,

Some Algebra
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-

� Now, assume     is a left-inverse of    . Multiplying the 

second equation by     , we obtain

Some Algebra

D Ω
TΩ

( )S S- γ 0T
x y signλ+ ⋅Ω =

( ) 0T

A A
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y signλ+ ⋅ =D D
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T
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x x sign signλ− = ⋅Ω −
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� We have an upper bound on the distance between the 

two methods (for a fixed   ):

� Specifically,

Some Algebra

( )S 2 1 1T

A p pp
x x pλ− ≤ ⋅ Ω ≥
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( )S 2
2

A
x x Lλ ρ− ≤ Ω S 1

2
A

x x λ
∞
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� Simulations show that the bound is very pessimistic; 

nonetheless, it remains informative (i.e. below the noise 

level) for small     values:

Numerical Simulations

λ
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� Observation: the     bound predicts a linear dependence 

in    and       :

Numerical Simulations

λ L

DCT-1 (x64)

DCT-2 (x16)

DCT-4 (x4)

Contourlet (x4/3)

Transform

1024

512

256

148

L

2
ℓ
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Wrap-Up

� MAP-Analysis and MAP-Synthesis both emerge from the 

same Bayesian (MAP) methodology.

� The two are equivalent in simple cases, but not in the 

general (overcomplete) case.

� The difference between the two increases with the 

redundancy. For the denoising case, this distance is 

approximately proportional to     .

� None of the two has a clear advantage; rather, each 

performs best on different types of signals. Though recent 

trend favors MAP-Synthesis, MAP-Analysis still remains a 

very worthy candidate.

L
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Learning MAP-Analysis Operators

� Efficient algorithms exist for learning MAP-Synthesis 

dictionaries (Olshausen & Field, Lewicki & Sejnowski, 

Aharon & Elad)

� The success of MAP-Analysis motivates the development 

of parallel training algorithms for the analysis operator.

� Related work done by Black & Roth; assume a 

distribution of the form

21
( ) exp ( ) , ( ) ln 1

2

T

i i k

k i

P X const w x z zα ϕ ϕ
   = ⋅ − = +   

  
∑∑
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Learning MAP-Analysis Operators

� Suggestion: minimize the Haber-Tenorio penalty function.

� We assume a    -parameterized recovery method

� Given the set of training data           , the Haber-Tenorio 

supervised learning approach finds the parameter set 

minimizing the recovery MSE of the data:

Θ

( ),i ix y

( )ˆ ;x y= ΘR

( )
2

2

ˆ Arg min ;
i i

i

x y
Θ

Θ = − Θ∑ R
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Learning MAP-Analysis Operators

� Example: the K-SVD algorithm (MAP-Synthesis) can be 

interpreted as special case of the Haber-Tenorio approach.

� We assume a denoising method of the form

� The training set       is assumed to contain near-perfect 

signals (yet allowed a small amount of noise). Substituting 

these as both the clean and noisy signals, we obtain

( )
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2
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Learning MAP-Analysis Operators

� Can the same method be reproduced for MAP-Analysis?

� Unfortunately, no! Beginning with the denoising process

� We set       as both the clean and noisy signals, obtaining

� This is clearly useless…
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Learning MAP-Analysis Operators

� The H-T approach fails when attempting to reproduce the 

K-SVD approximation using MAP-Analysis.

� Conclusion: we must consider pairs            after all.

� Returning to the original MAP-Analysis formulation, our 

target is to minimize

� How can this target function be minimized?

( ),i ix y
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Learning MAP-Analysis Operators

� Suggested solution:

� Assume we have some initial guess for     

� Using this guess, we compute

� Since     is also in the feasible region (let’s assume    is 

large enough), the reason for this must be that

Ω
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i i
x
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1 1
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Learning MAP-Analysis Operators

� Idea: correct      by minimizing

� Gradient descent now suggests the update step:
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Learning MAP-Analysis Operators

� More generally, we can consider any function of the form

� is monotonically increasing

� The update rule becomes

:ϕ + +→ℝ ℝ
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Algorithm Summary

Init:

Iterate until converge:

(1) For all i, compute

(2) Determine descent direction

(3) Update: 

0:=Ω Ω

1 2
ˆ Arg min . .i i

x

x x s t x y a= − ≤Ω
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Initial Results are Encouraging

� We used

� Dataset: random 64x32     operator, from which 1500 

MAP-Analysis vertices were computed.

� 1300 for training, 200 for validation

� Adding low-intensity noise leads to the input pairs

( )x xϕ =

Ω

( ),i ix y
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Future Directions

� Improving the MAP-Analysis prior by learning.

� Beyond the Bayesian methodology: learning problem-

based regularizers.

� MAP-Analysis versus MAP-Synthesis: how do they 

compare for specific applications?

� Learning structured priors and fast transforms.

� Redundancy: how much is good? The benefits of each 

approach from overcompletness.

� Generalizing the regularization and degradation models.
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Thank You!

Questions?
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� Let                    , and let          denote the rank of the rows 

in     to which    is orthogonal to, then it resides strictly 

within a face of dimension                     of the MAP-

Analysis defining polytope.

MAP-Analysis Defining Polytope

( )x ∈ ∂Ψ Ω ( )k x

xΩ

x ( ) 1N k x− −

is a vertexx is orthogonal to N-1 

independent rows inΩ
x

is on an edgex is orthogonal to N-2 
independent rows inΩ
x

is on an facetx is orthogonal to 0 
rows inΩ
x

…
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MAP-Analysis Defining Polytope

-0.204 -0.905 -0.005

0.111 -0.324 0.608
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Facet (2D-face)
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0

Edge (1D-face)

0.65
-0.10

0.34
-0.70 ,

0.20

x x
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0

0

Vertex (0D-face)
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Regularity of MAP-A Defining Polytope

1. Its edges are arranged in planar edge loops about 

the origin.

2. For         , every          independent rows from     

define a k-D null-space, whose intersection with 

the polytope is a k-D polytope exhibiting itself the 

same MAP-Analysis polytopal regularity.

N k−3k ≥ Ω

� The MAP-Analysis defining polytope displays a structural 

regularity which has a recursive description:
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6ω

Regularity of MAP-A Defining Polytope

0.39 0.26 0.88

-0.99 0.12 0.01

0.96 0.02 0.27

-0.56 -0.17 0.81

0.24 -0.48 -0.84

0.10 0.89 -0.45

 
 
 
 

Ω =  
 
 
  
  6ω

� Example: In the 3D case, each row corresponds to a 

planar edge loop of the polytope:
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Theorem: The principal signals of a MAP-Synthesis 

prior coincide with the dictionary atoms when the 

dictionary is normalized to a fixed-length.

� Definition: the principal signals of a MAP distribution are 

the local maxima of

� For MAP-Synthesis, the principal signals are in fact a 

subset of the dictionary atoms. However, this issue is 

rarely observed:

Principal Signals

( )
2

arg max . . 1
x

P x s t x =
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Highly Recoverable Signals

� Not every vertex necessarily defines a principal signal:

Non-principal signalPrincipal signal
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� Unfortunately, in the general case we have no closed-

form description for these signals.

� Algorithms have been developed for locating these 

signals in the general case, for both MAP-Analysis and 

MAP-Synthesis.

� These algorithms, however, are quite heavy.

Principal Signals
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Locating Principal Signals

� MAP-Synthesis:

� Select an atom.

� Connect it to each of the other atoms and their antipods.

� Check if maximally distant relative to all these directions.

� If so, atom is principal; otherwise it is not.

� MAP-Analysis:

� Select an initial vertex.

� Determine its incident edge loops.

� If vertex is locally maximal – stop.

� Otherwise, choose a more distant vertex from one of its 
incident edge loops, and repeat.
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Analysis Priors (“MAP-Analysis”)

� Many existing algorithms take this form:

� Wavelet Shrinkage

� Total Variation (1D)

� Bilateral Filtering

� Others ?

TV
Wavelet

Bilateral

Undecimated

Wavelet
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Synthesis Priors (“MAP-Synthesis”)

� Synthesis priors stem from the concept of sparse 

representation in overcomplete dictionaries:

� is generally overcomplete            :

� Typically

� Can also be explained in terms of MAP estimation.

( ) { } ( )
γ

γ̂ arg min γ . . γ
p NxL

p
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