Sparse K-SVD Algorithm

Ron Rubinstein Advisor: Prof. Michael Elad

October 2010

Signal Models

Signal models are a fundamental tool for solving low-level

Signal Models

Signal model: a mathematical description of the behavior we expect from a "good" (uncontaminated) signal in our system

Piecewise smooth

Smooth with point singularities

Smooth

Signal Models are Everywhere

Denoising:
$$y = x + n$$

$$\min_{\hat{x}} \frac{1}{2} \|y - \hat{x}\|_{2}^{2} + R(\hat{x}) \quad \underset{\text{Image model}}{\text{Regularizer}} \quad \begin{array}{l} y: \text{Measured signal} \\ \hat{x}: \text{Estimated signal} \end{array}$$

Wavelet thresholding, total variation, BLS-GMS, K-SVD denoising...

General inverse problems:
$$y = T\{x\} + n$$

$$\min_{\hat{x}} \frac{1}{2} \left\| y - T\{\hat{x}\} \right\|_{2}^{2} + R(\hat{x}) \qquad \qquad x: \text{Unknown signal} \\ T: \text{Degradation operator}$$

Demosaicing, deblurring, inpainting, super-resolution,...

Signal Models are Everywhere

Interpolation:

- Bilinear, bicubic: signals are piecewise-smooth
- Lanczos: signals are band-limited

Compression:

- PNG: neighboring pixels have similar intensities
- JPEG: small image patches are smooth
- JPEG2K: images are smooth except for simple singularities

Agenda

- 1. Analysis and synthesis signal models Two models are better than one
- 2. A few words on dictionary design On dictionaries and choices
- 3. Introduction to sparse representation Some background on sparsity and the K-SVD
- 4. The sparse dictionary model Introducing an efficient *and* adaptable dictionary!
- 5. Why sparse dictionaries are good for you Some uses and applications
- 6. Summary and conclusions

Transform-Based Signal Models

Transform-based models compute a vector transform of the signal:

$$X \rightarrow \gamma(X)$$

Such signal models promote sparsity of $\gamma(x)$, in the sense that we expect the coefficients in γ to decay rapidly.

Wavelet Coefficient Distribution - Barbara

Analysis and Synthesis Models

Analysis models use a set of linear filters, assumed to produce sparse inner products with the signal:

$$\mathbf{X} \rightarrow \gamma = \mathbf{\Omega} \mathbf{X}$$

The analysis dictionary contains the linear filters as its rows

Synthesis models use a set of atomic signals, assumed to reproduce the input signal via a sparse linear combination:

$$x \rightarrow x = D\gamma$$

The synthesis dictionary contains the atoms as its columns

Analysis versus Synthesis?

Obvious question: are the two models equivalent?

$\gamma = \Omega X$ $\longrightarrow_{\mathbf{D}=\Omega^+} X = \Omega^+ \gamma$

Surprising answer: NO

(Well, except for the invertible case, where we can use $D=\Omega^{-1}$)

Analysis versus Synthesis in the L₁ Case

For the widely-used L₁ case,

[Elad, Milanfar & Rubinstein '07]

- Given any similar-sized D and $\Omega,$ we can find large number of signals where the two will substantially differ
- The analysis model is mathematically a subset of the synthesis model, but the mapping is exponentially complex
- There are practical cases where one may outperform the other

Geometric structure in the L₁ case

Current Research on Analysis Models

Sparsity measure: how do we quantify the "sparsity" of the coefficients in Ωx ?

Algorithms: how do we efficiently solve the resulting optimization problems?

Dictionary training: can we use computational learning to infer the dictionary Ω from examples?

[Black & Roth '05] [Rubinstein & Elad '10]

Agenda

- 1. Analysis and synthesis signal models Two models are better than one
- 2. A few words on dictionary design On dictionaries and choices
- 3. Introduction to sparse representation Some background on sparsity and K-SVD
- 4. The sparse dictionary model Introducing an efficient *and* adaptable dictionary!
- 5. Why sparse dictionaries are good for you Some uses and applications
- 6. Summary and conclusions

Designing Your Dictionary

Harmonic Analysis: Analytic dictionaries

Machine Learning: Trained dictionaries

[Rubinstein, Bruckstein & Elad '10]

Analytic Dictionaries

Analytic dictionaries arise from a mathematical model of the signals

- ✓ Atoms have analytic formulations
- Known mathematical properties (e.g. coefficient decay rates)

- ✓ Fast algorithms for computing the transforms
- Limited expressiveness: all signals behave the same

Some Analytic Dictionaries

Trained Dictionaries

Trained dictionaries arise from a **set of examples** of the signal data

- $\checkmark\,$ Dictionary is learned from actual data
- ✓ Finer adaptation to the target signals
- ✓ Better performance in applications
- Non-structured: higher complexity, single scale

Dictionary Training Algorithms

Dictionary Design: Summary

Analytic dictionaries

- Low complexity
- ✓ Optimal for specific classes of signals
- Non-adaptive

Trained dictionaries

- Adaptable to different signal types
- ✓ Better results in many applications
- Non-structured

Can we have it all ?

Agenda

- 1. Analysis and synthesis signal models Two models are better than one
- 2. A few words on dictionary design On dictionaries and choices
- **3.** Introduction to sparse representation Some background on sparsity and the K-SVD
- 4. The sparse dictionary model Introducing an efficient *and* adaptable dictionary!
- 5. Why sparse dictionaries are good for you Some uses and applications
- 6. Summary and conclusions

The Sparse Representation Model

- We assumes the existence of a synthesis dictionary D∈ ℝ^{N×L} whose columns are the atom signals.
- We model natural signals as sparse linear combinations of the dictionary atoms:

$$\mathbf{x} = \mathbf{D} \boldsymbol{\gamma}$$

 We seek exact sparsity of γ, meaning that it is assumed to contain mostly zeros.

Sparse Coding

Problem 1 (sparse coding): given a signal x, can we find its representation γ over **D**?

- The equation for γ is underdetermined: $\mathbf{x} = \mathbf{D}\gamma$
- Among all the solutions, we want the sparsest one:

Noisy Sparse Coding

Problem 2 (noisy sparse coding): what if we only have y, a noisy version of x?

$$y = x + n = D\gamma + n$$

Additive Gaussian noise

Use the sparsity assumption to recover γ and approximate x:

$$\min_{\gamma} \| \gamma \|_{0} \quad \text{s.t.} \quad \| \mathbf{y} - \mathbf{D} \gamma \|_{2} \le \epsilon \qquad \Longrightarrow \quad \hat{\mathbf{x}} = \mathbf{D} \gamma$$

Sparse Coding Algorithms

- The sparse coding problem NP-hard in general!
- Many efficient approximation algorithms:

- Success bounds available, depending on the sparsity of γ and the amount of noise
- Empirical performance typically much better than theory

Orthogonal Matching Pursuit (OMP)

- Greedy algorithm selects atoms one at a time
- Input: signal y, dictionary **D**
- Output: sparse γ such that $y \approx \mathbf{D}\gamma$

Orthogonal Matching Pursuit (OMP)

- Block size: 8 x 8
- Overcomplete DCT dictionary, 256 atoms

Overcomplete DCT = extension of DCT with non-integer wave numbers

Which Dictionary?

The K-SVD algorithm: [Aharon, Elad & Bruckstein '06] Train an explicit dictionary from examples

The K-SVD Training Algorithm

The target function to minimize:

 $\min_{\mathbf{D},\mathbf{\Gamma}} \|\mathbf{X} - \mathbf{D}\mathbf{\Gamma}\|_{F}^{2} \quad \text{s.t.} \quad \forall i \|\gamma_{i}\|_{0} \leq \mathbf{T}$

The examples are linear combinations of the atoms

Each representation uses at most T atoms

The K-SVD: Overview

K-SVD: Sparse Coding Stage

K-SVD: Dictionary Update Stage

K-SVD: Dictionary Update Stage

K-SVD: Dictionary Update Stage

We want to solve:

Only some of the examples use atom d_k

When updating γ_k , only recompute the coefficients for those examples

Solve with **SVD**

The K-SVD: Summary

The K-SVD: Applications

- Image denoising [Elad & Aharon '06]
- Image inpainting [Raboy '07]
- ✓ Tomography reconstruction [Liao & Sapiro '08]
- Demosaicing [Mairal, Elad & Sapiro '08]
- Facial image compression [Bryt & Elad '08]
- Video denoising [Protter & Elad '09]
- Image scaling [Zeyde, Elad & Protter '10]
- Many others...

Limitations of Explicit Dictionaries

- Inefficient: applied via explicit matrix multiplication
- Unstructured: complex to store and transmit
- Over-parameterized: many degrees of freedom require a lot of training examples
- Single scale: adapted to a specific signal size, inter-scale relations are not expressed

Agenda

- 1. Analysis and synthesis signal models Two models are better than one
- 2. A few words on dictionary design On dictionaries and choices
- 3. Introduction to sparse representation Some background on sparsity and the K-SVD
- 4. The sparse dictionary model Introducing an efficient *and* adaptable dictionary!
- 5. Why sparse dictionaries are good for you Some uses and applications
- 6. Summary and conclusions

Parametric Dictionaries

Some Existing Parametric Dictionaries

Semi-multiscale K-SVD [Mairal, Sapiro & Elad, '08]

Signature dictionary [Aharon & Elad, '08]

Iterative LS Dictionary Learning Algorithms (ILS-DLA) [Engan, Skretting & Husøy, '07]

Sub-Atomic Particles?

Could the trained atoms *themselves* be sparse over some simpler underlying dictionary?

The Sparse Dictionary Model [Rubinstein, Zibulevsky & Elad '10]

and the sparse K-SVD algorithm

The Sparse Dictionary Model

Efficiency: depends mostly on the choice of base dictionary – typically an *analytic dictionary*.

Adaptivity: by modifying the representation matrix A.

Complexity of Sparse Dictionaries

Signal is d-dimensional Signal size: $n \times n \times ... \times n = n^d = N$ Dictionary size: $N \times L$, L=O(N)Base dictionary size: $N \times L$, separable Cardinality of each sparse atom: p

Efficiency of Sparse Dictionaries

Example: patches from *pirate* – encoding time per 1,000 blocks.

Sparsity-based signal models and the sparse K-SVD algorithm Ron Rubinstein

^{*} [Rubinstein, Zibulevsky & Elad '08]

Training a Sparse Dictionary

The target function to minimize:

$$\min_{\mathbf{A},\Gamma} \| \mathbf{X} - \mathbf{B}\mathbf{A}\Gamma \|_{F}^{2} \quad \text{s.t.} \quad \left\{ \begin{array}{l} \forall i \| \gamma_{i} \|_{0} \leq T \\ \forall j \| \mathbf{a}_{j} \|_{0} \leq P \end{array} \right.$$

The Sparse K-SVD

Sparse K-SVD: Atom Update Stage

Sparse K-SVD: Atom Update Stage

$$\min_{\mathbf{a}_{k},\tilde{\boldsymbol{\gamma}}_{k}^{\mathrm{T}}} \left\| \tilde{\mathbf{E}}_{k} - \mathbf{F} \right\|_{k}^{2} = \left\| \mathbf{a}_{k} \tilde{\boldsymbol{\gamma}}_{k}^{\mathrm{T}} \right\|_{k}^{2} \quad \text{s.t.} \quad \left\| \mathbf{a}_{k} \right\|_{0}^{2} \leq \mathsf{P}$$

Block relaxation:

$$\min_{\mathbf{a}_{k}} \| \tilde{\mathbf{E}}_{k} - \mathbf{B}\mathbf{a}_{k} \tilde{\gamma}_{k}^{T} \|_{F}^{2} \quad \text{s.t.} \| \mathbf{a}_{k} \|_{0} \leq \mathbf{P} \qquad \min_{\tilde{\gamma}_{k}^{T}} \| \tilde{\mathbf{E}}_{k} - \mathbf{B}\mathbf{a}_{k} \tilde{\gamma}_{k}^{T} \|_{F}^{2}$$

$$\text{Some Math} \qquad \text{Sparse Coding Over B !} \qquad \text{Ordinary } L_{2}$$

$$\min_{\mathbf{a}_{k}} \| \tilde{\mathbf{E}}_{k} \tilde{\gamma}_{k} - \mathbf{B}\mathbf{a}_{k} \|_{F}^{2} \quad \text{s.t.} \| \mathbf{a}_{k} \|_{0} \leq \mathbf{P} \qquad \tilde{\gamma}_{k} = \tilde{\mathbf{E}}_{k}^{T} \mathbf{B}\mathbf{a}_{k}$$

(Assumes **B**a_k is normalized)

The Sparse K-SVD: Summary

Agenda

- 1. Analysis and synthesis signal models Two models are better than one
- 2. A few words on dictionary design On dictionaries and choices
- 3. Introduction to sparse representation Some background on sparsity and the K-SVD
- 4. The sparse dictionary model Introducing an efficient *and* adaptable dictionary!
- 5. Why sparse dictionaries are good for you Some uses and applications
- 6. Summary and conclusions

Sparse versus Explicit Dictionaries

Efficient Enable processing of larger signals

Compact Easy to store and transmit

Stable

Require less training examples due to reduced overfitting

Structured

Allow meaningful constructions to be described

Application: 3-D Image Denoising

Challenge:

3-D signals much larger than 2-D = Larger time & memory requirements

* Images curtsey of the NIH

The K-SVD-Denoise Algorithm

Experiment Setup

Test CT volumes:

Male-head

Female-ankle

Block size	8 x 8 x 8
Dictionary size	512 x 1000
Atom sparsity (sparse K-SVD)	16
No. training signals	80,000
Training iterations	15
Step size	2
Base dictionary (sparse K-SVD)	O-DCT

Denoising Results

Denoising Running Times: Female-Ankle

	Overcomplete DCT	Sparse K-SVD	K-SVD
σ=10	10:32	27:49	2:02:28
σ=20	4:28	11:32	48:36
σ=30	2:45	7:09	29:11
σ=50	1:34	4:23	16:59
σ=75	1:06	3:19	11:44
σ=100	0:53	2:52	9:36

* Test platform: Intel Core 2 (single thread), Matlab 2010a, combined C+Matlab implementation.

Denoising Results versus # Training Signals

20

19.5

19

18.5

18

17.5^L

50

PSNR Improvement

Sparsity-based signal models and the sparse K-SVD algorithm Ron Rubinstein

100

No. Training Signals (Thousands)

150

Some Actual Results

Noise with standard deviation σ = 50 Showing slice from Male-Head:

PSNR = 14.15 dB

PSNR = 29.74 dB

PSNR = 33.56 dB

Application: Image Compression

Basic concept:

Apply a (possibly lossy) sparsifying transform which reduces the entropy of the representation

In collaboration with

Ori Bryt

Application: Image Compression

Previously ...

Caveat: the dictionary must be known at the gher decoder!

JPEG: DCT dictionary Linear approximation

-	-		•	•	- e (*	
	1	- 0	•		- ÷ 6		*	
-								

JPEG-2K: Wavelet dictionary

Non-linear approximation

Solution 1: The Facial Compression Scheme

[Bryt & Elad '08]

The Sparse K-SVD Compression Scheme

Sparse Matrix Encoding

JPEG-2000	
Sparse K-SVD	
Standard JPEG	

JPEG-2000	
Sparse K-SVD	
Standard JPEG	

JPEG-2000	
Sparse K-SVD	
Standard JPEG	

JPEG-2000	
Sparse K-SVD	
Standard JPEG	

Further Improvements

Two-scale (easier) and multi-scale dictionaries Possibly locally- adaptive

Combining signal-adaptive and fixed dictionaries Fixed dictionaries shared by encoder and decoder

Reduced index entropy

Using specialized sparse-coding algorithm

Image deblocking

Strength may be locally adapted based on # of coefficients used

Compression in a transformed domain

E.g. a wavelet transform of the image

Other Applications: Music Transcription

Goal: train a dictionary of musical notes for a given instrument

Observation: dictionary has a known sparse structure – each musical note is the superposition of a specific set of frequencies (base frequency + overtones)

Michal Genussov

[Genussov & Cohen '10]

Other Applications: Multiscale Dictionaries

Goal: train a dictionary with a multi-scale structure

Motivation: multi-scale dictionaries efficiently describe phenomena at various scales, can exploit inter-scale dependencies, and may be independent of block size

Idea: train **A** over a multi-scale base dictionary. Localization / inter-scale regularity can be enforced

Boaz Ophir

Agenda

- 1. Analysis and synthesis signal models Two models are better than one
- 2. A few words on dictionary design On dictionaries and choices
- 3. Introduction to sparse representation Some background on sparsity and the K-SVD
- 4. The sparse dictionary model Introducing an efficient *and* adaptable dictionary!
- 5. Why sparse dictionaries are good for you Some uses and applications

6. Summary and conclusions

Summary

- Signal models play a critical role in low-level signal and image processing
- Two competing models: analysis and synthesis, synthesis vastly studied, analysis an emerging direction
- Designing a good dictionary is critical for the success of either model
- Traditional choice: analytic versus trained dictionaries

Summary

- We can do better with parametric dictionaries! The sparse dictionary bridges the gap between the two options
- The Sparse K-SVD algorithm efficiently trains sparse dictionaries
- Applications: denoising, compression, specialized dictionary structures.

Thank You!

Questions?

Extra slides

Question: if x is sparse over **BA**...

$\mathbf{x} \approx \mathbf{B} \mathbf{A} \boldsymbol{\gamma}$

and ${f A}$ and γ are both sparse, then x is sparse over ${f B}$ too!

So, why do we need $\mathbf{A}_{\mathbf{2}}^{\mathbf{2}}$

Answer: x is much less sparse over **B** than over **BA**!

$$\left\|a_{i}\right\|_{0} = p$$
, $\left\|\gamma\right\|_{0} = q$ \Rightarrow $\left\|\mathbf{A}\gamma\right\|_{0} \approx pq$

- Sparse representation methods rely on sparsity for their success. So, they are less effective when operating directly over B.
- The matrix **A** allows us to sidestep this issue, taking us back to the sparse zone!

How many non-zeros should γ have?

Higher cardinality: More accurate description of the original signal

Lower cardinality:

Less remaining noise = stronger denoising

Proof of Equivalence for a_k

Let X and Y be matrices, and let u and v be vectors. Also, assume that $v^Tv=1$. Then we can show that

$$\left\|\mathbf{X} - \mathbf{Y}\mathbf{u}\mathbf{v}^{T}\right\|_{F}^{2} = \left\|\mathbf{X}\mathbf{v} - \mathbf{Y}\mathbf{u}\right\|_{F}^{2} + \mathrm{Tr}\left(\mathbf{X}^{T}\mathbf{X}\right) - \mathbf{v}^{T}\mathbf{X}^{T}\mathbf{X}\mathbf{v}$$
$$= \left\|\mathbf{X}\mathbf{v} - \mathbf{Y}\mathbf{u}\right\|_{F}^{2} + f\left(\mathbf{X}, \mathbf{v}\right)$$

So, for
$$\tilde{\gamma}_k^T \tilde{\gamma}_k = 1$$
, we have
 $\|\tilde{\mathbf{E}}_k - \mathbf{B} \mathbf{a}_k \tilde{\gamma}_k^T\|_F^2 = \|\tilde{\mathbf{E}}_k \tilde{\gamma}_k - \mathbf{B} \mathbf{a}_k\|_F^2 + f\left(\tilde{\mathbf{E}}_k, \tilde{\gamma}_k\right)$

Proof of Equivalence for a_k

Since we are minimizing for a_k , this means that the two minimization problems are equivalent:

We note that the normalization assumption on $\tilde{\gamma}_k$ is easily overcome by transferring energy between a_k and $\tilde{\gamma}_k$.

Sparse Coding Stage: Global OMP

Motivation: adapt the distribution of coefficients to the complexity of the block

Image

Efficiency is achieve by implementing the computations locally only for the affected block

Dictionary

Global OMP + Quantization

