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Signal Models

Signal models are a fundamental tool for solving low-level 
signal processing tasks

Noise 
Removal

Image 
Scaling

Compression

Demosaicing

Inpainting

Deblurring Tompgraphy
reconstruction

Super-resolution

Detail 
enhancement

Morphologic 
decomposition

Source 
separation

Deinterlacing

Compressive sensing
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Signal Models

Smooth

Piecewise smooth
Smooth with

point singularities ?

Signal model: a mathematical description of the behavior 
we expect from a “good” (uncontaminated ) 
signal in our system
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 
2

2x̂

1
ˆ ˆmin y x R x

2
 

Signal Models are Everywhere

Regularizer = 
Image model

Denoising:

Wavelet thresholding, total variation, BLS-GMS, K-SVD denoising…

y : Measured signal
: Estimated signalx̂

   
x

2

2ˆ

1
ˆ ˆmin y T x + R x

2


General inverse problems:

x : Unknown signal
T : Degradation operator

 y T x n 

y x n 

Demosaicing, deblurring, inpainting, super-resolution,…
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Signal Models are Everywhere

Interpolation:

• Bilinear, bicubic: signals are piecewise-smooth 

• Lanczos: signals are band-limited

Compression:

• PNG: neighboring pixels have similar intensities

• JPEG: small image patches are smooth

• JPEG2K: images are smooth except for simple singularities
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Agenda

1. Analysis and synthesis signal models
Two models are better than one

2. A few words on dictionary design
On dictionaries and choices

3. Introduction to sparse representation
Some background on sparsity and the K-SVD

4. The sparse dictionary model
Introducing an efficient and adaptable dictionary!

5. Why sparse dictionaries are good for you
Some uses and applications

6. Summary and conclusions
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Transform-Based Signal Models

Transform-based models compute a vector transform 
of the signal:

x γ(x)

Such signal models promote sparsity
of γ(x), in the sense that we expect 
the coefficients in γ to decay rapidly.

-0.2 -0.1 0 0.1 0.2

Wavelet Coefficient Distribution - Barbara
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x

Analysis and Synthesis Models

Analysis models use a set of linear filters, assumed to 
produce sparse inner products with the signal:

x

Synthesis models use a set of atomic signals, assumed to 
reproduce the input signal via a sparse linear combination:

The analysis dictionary 
contains the linear filters 
as its rows

The synthesis dictionary 
contains the atoms as its 
columnsx = γD

γ xΩ

D

Ω
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Analysis versus Synthesis?

Obvious question: are the two models equivalent?

x = γ
Ωγ xΩ

Surprising answer: NO!

= 
D Ω

(Well, except for the invertible case, where we can use D=Ω-1)
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Analysis versus Synthesis in the L1 Case

For the widely-used L1 case,

• Given any similar-sized D and Ω, we can find large 
number of signals where the two will substantially differ

[Elad, Milanfar & Rubinstein ‘07]

• The analysis model is 
mathematically a subset of the 
synthesis model, but the mapping 
is exponentially complex

• There are practical cases where 
one may outperform the other Geometric structure in the L1 case



Sparsity-based signal models 
and the sparse K-SVD algorithm
Ron Rubinstein

11

Sparsity measure: how do we quantify the “sparsity” of 
the coefficients in Ωx?

Current Research on Analysis Models

L0 (sparsity) Lp norms Huber Cauchy

Dictionary training: can we use computational learning to 
infer the dictionary Ω from examples?

*Black & Roth ‘05] [Rubinstein & Elad ‘10]

Algorithms: how do we efficiently solve the resulting 
optimization problems?
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Agenda

1. Analysis and synthesis signal models
Two models are better than one

2. A few words on dictionary design
On dictionaries and choices

3. Introduction to sparse representation
Some background on sparsity and K-SVD

4. The sparse dictionary model
Introducing an efficient and adaptable dictionary!

5. Why sparse dictionaries are good for you
Some uses and applications

6. Summary and conclusions
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Designing Your Dictionary

Harmonic Analysis: 

Analytic dictionaries

Machine Learning:

Trained dictionaries

[Rubinstein, Bruckstein & Elad ‘10]
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Analytic dictionaries arise from a mathematical 
model of the signals

Analytic Dictionaries

 Atoms have analytic formulations

 Known mathematical properties 
(e.g. coefficient decay rates)

 Fast algorithms for computing the transforms

− Limited expressiveness: all signals behave
the same
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Some Analytic Dictionaries

Fourier Gabor
2

, ( ) ω( ) i kx

k n x x n e

/2

, ( ) ( )m m

m n x f x n ,

, , ( ) ( ( ))m

m n m nx R x x

Wavelets Curvelets

Smooth signals Smooth signals

Smooth + point 
singularities

Smooth + curve 
singularities

2( ) i kx

k x e

[Candès & Donoho ’99]
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Trained Dictionaries

 Dictionary is learned from actual data

 Finer adaptation to the target signals

 Better performance in applications

− Non-structured: higher complexity, 
single scale

Trained dictionaries arise from a set of examples 
of the signal data
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Dictionary Training Algorithms

Olshausen & Field ‘96

MOD (Method of Optimal Directions)

[Engan, Aase & HusØy ’99]

K-SVD 
[Aharon, Elad & Bruckstein ’06]

Generalized PCA
[Vidal, Ma & Sastry ’05]
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Dictionary Design: Summary

Analytic dictionaries

 Low complexity

 Optimal for specific classes of signals

− Non-adaptive

Trained dictionaries

 Adaptable to different signal types

 Better results in many applications

− Non-structured

Can we have it all
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Agenda

1. Analysis and synthesis signal models
Two models are better than one

2. A few words on dictionary design
On dictionaries and choices

3. Introduction to sparse representation
Some background on sparsity and the K-SVD

4. The sparse dictionary model
Introducing an efficient and adaptable dictionary!

5. Why sparse dictionaries are good for you
Some uses and applications

6. Summary and conclusions
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The Sparse Representation Model

• We assumes the existence of a 
synthesis dictionary                  whose 
columns are the atom signals.

D
N LD

…• We model natural signals as 
sparse linear combinations of 
the dictionary atoms:

x γD

• We seek exact sparsity of γ, meaning
that it is assumed to contain mostly zeros.

D γ=x
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Sparse Coding

• The equation for γ is underdetermined:

• Among all the solutions, we want the sparsest one:

x γ D

γ 0min γ s.t.    x γ D

The “L0 norm” counts the number 
of non-zeros in a vector

Problem 1 (sparse coding): given a signal x, 

can we find its representation γ over D?
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Problem 2 (noisy sparse coding): what if 

we only have y, a noisy version of x?

Noisy Sparse Coding

y x n γ n   D

γ 0 2min γ s.t.    y γ D

• Use the sparsity assumption to recover γ and
approximate x:

x̂ = γD

Additive Gaussian noise
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Sparse Coding Algorithms

• The sparse coding problem NP-hard in general!

• Many efficient approximation algorithms:

Greedy

MP/OMP
StOMP
LARS
CoSAMP

Iterative

FOCUSS
BCR
Iterated Shrinkage

Relaxation

Basis Pursuit
LASSO

Others

Thresholding
Shrinkage
RandOMP

• Success bounds available, depending on the sparsity of γ and 
the amount of noise

• Empirical performance typically much better than theory
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Orthogonal Matching Pursuit (OMP)

• Greedy algorithm – selects atoms one at a time

• Input: signal y, dictionary D

• Output: sparse γ such that y ≈ Dγ

Initialize: 
S = empty atom set 

residual = y

 
id iS = S arg max  | d ,r |

Sr = y - P {y}

Stopping condition?
γ = all zeros except 

on S, non-zeros 
computed by min-L2

No

Yes
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PSNR = 
21.4dB

1 atoms / block

PSNR = 
24.6dB

2 atoms / block

Orthogonal Matching Pursuit (OMP)

• Block size: 8 x 8

• Overcomplete DCT dictionary, 256 atoms

Overcomplete DCT = extension of 
DCT with non-integer wave numbers

3 atoms / block

PSNR = 
26.6dB
PSNR = 
28.1dB

4 atoms / block5 atoms / block

PSNR = 
29.4dB

6 atoms / block

PSNR = 
30.5dB

7 atoms / block

PSNR = 
31.5dB

8 atoms / block

PSNR = 
32.5dB
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The K-SVD algorithm:
Train an explicit dictionary from examples

Which Dictionary?

Output

.

…

Input

Set of Examples

D

Trained Dictionary

X

[Aharon, Elad & Bruckstein ‘06]
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The K-SVD Training Algorithm

The examples are linear 
combinations of the atoms

Each representation 
uses at most T atoms

The target function to minimize:

.

≈
.

…X …ΓD

0s.t.    γ T ii2

,
min  F
D Γ

X DΓ
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The K-SVD: Overview

.

≈
.

… …ΓX D

Initialize D Sparse Code
Dictionary 

Update
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K-SVD: Sparse Coding Stage

2

0min s.t.  γ T  F ii
Γ

X DΓ

For the jth

example

2

0
γ

min γ s.t.  γ T 
j

j j F jx D

Ordinary 
Sparse Coding !

.

≈
.

… …ΓX D
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K-SVD: Dictionary Update Stage

2

0min s.t.  γ TF ii  
D

X DΓ

For the kth

atom

2

d
min d γ

k

T

k k k FE (Residual)

.

≈
.

… …Γ

d γT

k j j

j k

 E X,

X D
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K-SVD: Dictionary Update Stage

We can do 
better!

2

d ,γ
min d γ

T
k k

T

k k k FE

.

≈
.

… …Γ

2

d
min d γ

k

T

k k k FE

But wait! What 
about sparsity?

X D
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
d ,γ
min

T
k k

Only some of 
the examples 
use atom dk

When updating γk, 
only recompute
the coefficients for 
those examples

dk

γk
T

Solve 
with SVD

We want to solve:

Ek

K-SVD: Dictionary Update Stage

2

F

~ ~

~



Sparsity-based signal models 
and the sparse K-SVD algorithm
Ron Rubinstein

33

The K-SVD: Summary

.

≈
.

… …ΓX D

Initialize 
Dictionary

Sparse Code
Using OMP

Dictionary 
Update

Atom-by-atom + coeffs.
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The K-SVD: Applications

 Image denoising [Elad & Aharon ‘06]

 Image inpainting [Raboy ‘07]

 Tomography reconstruction [Liao & Sapiro ‘08]

 Demosaicing [Mairal, Elad & Sapiro ‘08]

 Facial image compression [Bryt & Elad ‘08]

 Video denoising [Protter & Elad ’09]

 Image scaling [Zeyde, Elad & Protter ‘10]

 Many others…
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Limitations of Explicit Dictionaries

• Unstructured: complex to store and transmit

• Inefficient: applied via explicit matrix multiplication

• Over-parameterized: many degrees of 
freedom require a lot of training examples

D
• Single scale: adapted to a specific signal size, 

inter-scale relations are not expressed

• Unstructured:

• Inefficient:

• Over-parameterized:

• Single scale:
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Agenda

1. Analysis and synthesis signal models
Two models are better than one

2. A few words on dictionary design
On dictionaries and choices

3. Introduction to sparse representation
Some background on sparsity and the K-SVD

4. The sparse dictionary model
Introducing an efficient and adaptable dictionary!

5. Why sparse dictionaries are good for you
Some uses and applications

6. Summary and conclusions
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Parametric Dictionaries

xγ

Analytic dictionaries

xγ

Trained dictionaries

` `

Parametric 
Dictionaries

Adaptivity Structure

`
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Some Existing Parametric Dictionaries

Semi-multiscale K-SVD
[Mairal, Sapiro & Elad, ‘08]

Iterative LS Dictionary Learning 
Algorithms (ILS-DLA)
[Engan, Skretting & Husøy, ‘07]

Signature dictionary
[Aharon & Elad, ‘08]
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Sub-Atomic Particles?

K-SVD dictionary

Could the trained atoms themselves be sparse over some 
simpler underlying dictionary?
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The Sparse Dictionary Model

.

=
.

D B A

Base dictionary Representation matrix

X ≈
Base dictionary Sparse matrix

B A Γ
Sparse matrix

Double 
Sparsity

[Rubinstein, Zibulevsky & Elad ‘10]
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The Sparse Dictionary Model

B
Efficiency: depends mostly on the 
choice of base dictionary – typically 
an analytic dictionary.

Adaptivity: by modifying the 
representation matrix A.

.

A
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Complexity of Sparse Dictionaries

Sparse 
Dictionaries

 
1

· dN N pN 

Signal is d-dimensional

Signal size: n  n  …  n = nd = N

Dictionary size: N  L, L=O(N)

Base dictionary size: N  L, separable

Cardinality of each sparse atom: p

Analytic
Dictionaries

 

 

log

...

N N

N




 2N

Explicit 
Dictionaries
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8 12 16 24 32
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e
 (
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c
)

Efficiency of Sparse Dictionaries

OMP-Cholesky
61 sec

Sparse 
OMP-Cholesky

13 sec

Batch-OMP*

4.5 sec

Sparse 
Batch-OMP*

1.2 sec

Example: patches from pirate – encoding time per 1,000 blocks.

Signal size:
n x n = n2 = N

Dictionary size:
N x 2N

Base dictionary:
2-D Separable

Atom sparsity: n

Encoding target:
n/2 atoms
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* [Rubinstein, Zibulevsky & Elad ‘08]
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0a Pjj 

0γ Tii 

Training a Sparse Dictionary

The target function to minimize:

. .

… …Γ

s.t.2

,
min  F
A Γ

X BAΓ

≈ BX A
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The Sparse K-SVD

. .

… …≈ BX A Γ

Initialize A Sparse Code
Dictionary 

Update
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≈

2

0
a ,γ
min s.t. a P 

T
k k

F kB kΓγ
T

kkX AE a k

...

Sparse K-SVD: Atom Update Stage

≈ …

For the kth

atom

a γT

k j j

j k

 E X B,

2

0
,

0

min s.t. γ T

a P

F i

j

i

j

  

 
A Γ

X BAΓ

B A…X Γ
~~

k
γT

kE a kk
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Sparse K-SVD: Atom Update Stage

2

0
a

min a γ s.t. a P 
k

T

k k k F kE B 2

γ
min a γ

T
k

T

k k k FE B

Some 
Math

2

0
a

min γ a s.t. a P
k

k k k F k E B

Sparse Coding 
Over B !

Ordinary 
L2

γ a T

k k kE B

(Assumes Bak is normalized)

2

F


a ,γ
min

T
k k

Ek

~

~ 0a Pk s.t.ak

γT~

B k

Block relaxation:



Sparsity-based signal models 
and the sparse K-SVD algorithm
Ron Rubinstein

48

The Sparse K-SVD: Summary

.

≈
.

… …BX A Γ

Initialize 
Dictionary

Sparse Code
Over BA using OMP

Dictionary 
Update

OMP for each atom + L2
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Agenda

1. Analysis and synthesis signal models
Two models are better than one

2. A few words on dictionary design
On dictionaries and choices

3. Introduction to sparse representation
Some background on sparsity and the K-SVD

4. The sparse dictionary model
Introducing an efficient and adaptable dictionary!

5. Why sparse dictionaries are good for you
Some uses and applications

6. Summary and conclusions
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Sparse versus Explicit Dictionaries

Efficient
Enable processing of larger signals

Compact
Easy to store and transmit

Stable
Require less training examples due to reduced overfitting

Structured
Allow meaningful constructions to be described
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Application: 3-D Image Denoising

* Images curtsey of the NIH

Challenge: 

3-D signals much larger than 2-D  =
Larger time & memory requirements
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Extract Noisy 
Blocks

Train K-SVD 
Dictionary

Denoise Using 
Trained 

Dictioanry

Rearrange and 
Average 

Denoised Blocks

The K-SVD-Denoise Algorithm

PSNR = 20.2dB PSNR = 30.3dB
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Experiment Setup

Block size 8 x 8 x 8

Dictionary size 512 x 1000

Atom sparsity (sparse K-SVD) 16

No. training signals 80,000

Training iterations 15

Step size 2

Base dictionary (sparse K-SVD) O-DCT

Male-head Female-ankle

Test CT volumes:
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Denoising Results
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Male-head Female-ankle

Overcomplete DCT

Standard K-SVD

Sparse K-SVDGraphs show the improvement in 
PSNR over the noisy volume (in dB)
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Denoising Running Times: Female-Ankle

Overcomplete
DCT

Sparse K-SVD K-SVD

σ=10 10:32 27:49 2:02:28

σ=20 4:28 11:32 48:36

σ=30 2:45 7:09 29:11

σ=50 1:34 4:23 16:59

σ=75 1:06 3:19 11:44

σ=100 0:53 2:52 9:36

* Test platform: Intel Core 2 (single thread), Matlab 2010a, combined C+Matlab implementation.
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Denoising Results versus # Training Signals

Male-head Female-ankle

Overcomplete DCT

Standard K-SVD

Sparse K-SVDGraphs show the improvement in 
PSNR over the noisy volume (in dB). 
Input noise is σ=50 (PSNR=14.15dB)
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Some Actual Results

Noise with standard deviation σ = 50

Showing slice from Male-Head:

Original Noisy

PSNR = 14.15 dB

2-D Sparse K-SVD

PSNR = 29.74 dB

3-D Sparse K-SVD

PSNR = 33.56 dB
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Application: Image Compression

Inbal Horev Ori Bryt

In collaboration with
Basic concept: 

Apply a (possibly lossy) sparsifying
transform which reduces the entropy 
of the representation

4.9 KB
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Application: Image Compression

Previously …

JPEG: DCT dictionary
Linear approximation JPEG-2K: Wavelet dictionary

Non-linear approximation

The promise: adaptive dictionaries achieve higher 
sparsity than generic ones!
Caveat: the dictionary must be known at the 
decoder!
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Sparse coding using fixed
block-specific dictionaries

Solution 1: The Facial Compression Scheme

Geometrical alignment

[Bryt & Elad ‘08]

Partitioning

Original JPEG JPEG-2K Adaptive 

What about generic compression

24.8 dB 26.3 dB 33.1 dB
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DC Encoding 
(DPCM)

The Sparse K-SVD Compression Scheme

Sparse K-SVD Quantization Sparse Coding

Sparse Matrix 
Encoding

Quantization

+

Compressed 
Image

B A

A Γ

…Γ
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Entropy 
coder

Sparse Matrix Encoding

…

Quantized coefficients

Indices (binary mask) Rearrange rows by 
usage (optional)

Column run-length 
coding

Entropy 
coder
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Further Improvements

Two-scale (easier) and multi-scale dictionaries
Possibly locally- adaptive

Combining signal-adaptive and fixed dictionaries
Fixed dictionaries shared by encoder and decoder

Reduced index entropy
Using specialized sparse-coding algorithm

Image deblocking
Strength may be locally adapted based on # of coefficients used

Compression in a transformed domain
E.g. a wavelet transform of the image
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Other Applications: Music Transcription

Goal: train a dictionary of musical notes for a given 
instrument

Observation: dictionary has a known sparse structure –
each musical note is the superposition of a specific set
of frequencies (base frequency + overtones)

B A
Michal Genussov

[Genussov & Cohen ‘10]
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A

Other Applications: Multiscale Dictionaries

Goal: train a dictionary with a multi-scale structure

Motivation: multi-scale dictionaries efficiently describe 
phenomena at various scales, can exploit inter-scale 
dependencies, and may be independent of block size

Idea: train A over a multi-scale base dictionary. 
Localization / inter-scale regularity can be enforced

Boaz Ophir

B
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Agenda

1. Analysis and synthesis signal models
Two models are better than one

2. A few words on dictionary design
On dictionaries and choices

3. Introduction to sparse representation
Some background on sparsity and the K-SVD

4. The sparse dictionary model
Introducing an efficient and adaptable dictionary!

5. Why sparse dictionaries are good for you
Some uses and applications

6. Summary and conclusions
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Summary

• Signal models play a critical role in low-level signal and 
image processing

• Two competing models: analysis and synthesis, synthesis 
vastly studied, analysis an emerging direction

• Designing a good dictionary is critical for the success of 
either model

• Traditional choice: analytic versus trained dictionaries
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Summary

• We can do better with parametric dictionaries! The 
sparse dictionary bridges the gap between the two 
options

• The Sparse K-SVD algorithm efficiently trains sparse 
dictionaries

• Applications: denoising, compression, specialized 
dictionary structures.
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Thank You!

Questions?
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Extra slides
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Double Sparsity versus Double Cardinality

Question: if x is sparse over BA…

x ≈ BAγ

and A and γ are both sparse, then x is sparse over B too! 

So, why do we need A
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Double Sparsity versus Double Cardinality

Answer:  x is much less sparse over B than over BA!

i 0 0 0
a p  ,  γ q         γ pqA   

• Sparse representation methods rely on sparsity for 
their success. So, they are less effective when 
operating directly over B.

• The matrix A allows us to sidestep this issue, 
taking us back to the sparse zone!
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Double Sparsity versus Double Cardinality

Example: The denoising tradeoff

y ≈ Dγ

Higher cardinality:
More accurate description 
of the original signal

Lower cardinality:
Less remaining noise = 
stronger denoising

Noisy signal Recovered 
representation

How many non-zeros should γ have?
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Denoise with overcomplete-DCT

Double Sparsity versus Double Cardinality

Denoise with a sparse dictionary
over an O-DCT base dictionary

Increased cardinality rapidly 
deteriorates performance

More atoms can be used, while 
noise is much better controlled

Noise level

Denoising
directly over an 

O-DCT dictionary 
with variable 
atom# / block

Denoising over sparse 
dictionary with O-DCT base 
dictionary. Plotting effective 

atom# / block over the 
O-DCT dictionary
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 

 

2 2

2

uv v u Tr v v

= v u , v

T T T T

FF

F
f

X Y X Y X X X X

X Y X

    

 

Proof of Equivalence for ak

Let X and Y be matrices, and let u and v be vectors.
Also, assume that vTv=1. Then we can show that

So, for , we haveγ γ 1T

k k

 2 2a γ γ a , γ   T

k k k F k k k F k kfE B E B E

Independent of ak!
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Proof of Equivalence for ak

2

0
a

min a γ s.t. a P 
k

T

k k k F kE B

2

0
a

min γ a s.t. a P 
k

T

k k k F kE B

Since we are minimizing for ak, this means that the two 
minimization problems are equivalent:

We note that the normalization assumption on is easily 
overcome by transferring energy between ak and .

γk

γk



Sparsity-based signal models 
and the sparse K-SVD algorithm
Ron Rubinstein

81

Sparse Coding Stage: Global OMP

Motivation: adapt the distribution of 
coefficients to the complexity of the block

Efficiency is achieve by implementing the 
computations locally only for the affected block

Select atom+block
that produce maximal 

inner product

Add atom to
block using a single 

OMP iteration

Stop when error for 
entire image reaches 

desired target

Dictionary

Image
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T

Global OMP + Quantization

We overcome the PSNR reduction caused by 
quantization using iteration:

Encode using Global-
OMP to PSNR = Tn

Initialize
T1 = Ttrg = Target PSNR

n = 1

Quantize the 
sparse coefficients

Compute
T = PSNR of Result

Tn+1 = Tn + (Ttrg-T)

T < Ttrg- ε

T > Ttrg - ε

Repeated executions of Global-OMP are 
incremental – we continue adding atoms 
where the previous execution stopped

Target
PSNR

T

T
T

n += 1

T1

T2

T3




