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Noise Removal ?

Our story begins with image denoising …

Remove 
Additive 
Noise ?

� Practical application

� A convenient platform (being the simplest inverse 
problem) for testing basic ideas in image processing.
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Sanity (relation to 
measurements)

Denoising By Energy Minimization 

Thomas Bayes
1702 - 1761

Prior or regularization
y : Given measurements  

x : Unknown to be recovered

( ) ( )xPryx
2

1
xf

2

2
+−=

Many of the proposed denoising algorithms are related to the minimization 
of an energy function of the form

• This is in-fact a Bayesian point of view, adopting the 
Maximum-Aposteriori Probability (MAP) estimation.

• Clearly, the wisdom in such an approach is within the 
choice of the prior – modeling the images of interest. 
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( ) λ
1

Pr x = xB

Bilateral 
Filter

The Evolution Of Pr(x)

During the past several decades we have made all sort of guesses
about the prior Pr(x) for images:   

( ) 2
2

xxPr λ=

Energy

( ) 2
2

xxPr Lλ=

Smoothness

( ) 2
xxPr
W

Lλ=

Adapt+ 
Smooth

( ) { }xxPr Lλρ=

Robust 
Statistics

( )
1

xxPr ∇λ=

Total-
Variation

( )
1

xxPr Wλ=

Wavelet 
Sparsity

( ) 0

0
xPr αλ=

Sparse & 
Redundant

α= Dxfor
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Agenda

1. A Visit to SparselandSparselandSparselandSparseland
Introducing sparsity & overcompleteness

2. Transforms & Regularizations 
How & why should this work? 

3. What about the dictionary?
The quest for the origin of signals

4. Putting it all together

Image filling, denoising, compression, …
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Generating Signals in SparselandSparselandSparselandSparseland

MMMM     K

N

D
Fixed Dictionary

•Every column in  
D (dictionary) is 
a prototype 
signal (atom).

•The vector α is 
generated 
randomly with 
few non-zeros in 
random locations 
and with random 
values. 

Sparse & 
random 
vector

=

α

x

N
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• Simple: Every signal is built 
as a linear combination of
a few atoms from the 
dictionary D.

• Effective: Recent works 
adopt this model and 
successfully deploy it to 
applications.

• Empirically established:
Neurological studies show 
similarity between this model 
and early vision processes.
[Olshausen & Field (’96)]

SparselandSparselandSparselandSparseland Signals Are Special

Multiply 
by D

αD=x

MMMM     
α
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D

Transforms in SparselandSparselandSparselandSparseland ?

Nx ℜ∈

MMMM     
αD

MMMM     • Assume that x is known to emerge from     . .

MMMM     • How about "Given x, find the α that generated it in     " ? 

Kℜ∈α
TTTT    
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Known 

Problem Statement 

We need to solve an   
under-determined                        
linear system of equations:

=

x=αD

• We will measure sparsity 
using the L0 "norm":

0
α

• Among all (infinitely 
many) possible solutions 
we want the sparsest !!

An Introduction to 
Sparse Representation
And the K-SVD Algorithm
Ron Rubinstein

10=
x=αD

-1 +1

1

( ) pxxf =

x

Measure of Sparsity?

k
pp

jp
j=1

x = x∑
1
1

α
2
2

α

1p

p
p

<

α
0p

p
p

→

α

As p → 0 we  
get a count         
of the non-zeros 
in the vector

0
α
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• NP-hard: practical ways to get    ?α̂

Where We Are

α

α
α

D=x.t.s

Min
0

α̂Multiply 
by D

αD=x

A sparse 
& random 

vector

=α

3 Major 
Questions

αα =ˆ• Is            ?

• How do we know D?  
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• Suppose we observe                , a degraded and noisy 
version of x with          . How do we recover x?

Inverse Problems in SparselandSparselandSparselandSparseland ?

• Assume that x is known to emerge from     .    MMMM

MMMM     
αD

Nx ℜ∈

y x v= +H

ε≤
2

v

xH

My ℜ∈

Noise

• How about "find the α that generated y " ? 

Kˆ ℜ∈α
QQQQ
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• How can we compute    ?

Inverse Problem Statement

Multiply 
by D

αD=xA sparse 
& random 

vector

=α "blur" 
by H

vxy += H

v

3 Major 
Questions 
(again!) • What D should we use?  

α̂

αα =ˆ• Is            ?

εα

α
α

≤−
2

0

y

.t.sMin

HD
α̂
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Agenda

1. A Visit to Sparseland
Introducing sparsity & overcompleteness

2. Transforms & Regularizations 
How & why should this work? 

3. What about the dictionary?
The quest for the origin of signals

4. Putting it all together

Image filling, denoising, compression, …

TTTT

QQQQ
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The Sparse Coding Problem

known

αα
α

D=x.t.sMin:P
00

Put formally,

Our dream for now: Find 
the sparsest solution to =

Known 

x=αD
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Multiply 
by D

αD=x

=α

MMMM     
Question 1 – Uniqueness? 

α

α
α

D=x.t.s

Min
0

α̂

Suppose we can                          
solve this exactly

αα =ˆWhy should we necessarily get          ?

It might happen that eventually                  .00
ˆ αα <
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Definition: Given a matrix D, σ=Spark{D} is the smallest 
and and number of columns that are linearly dependent. 

Matrix "Spark"

Donoho & Elad (‘02) 

σ≥
0

v• By definition, if Dv=0 then            

• Say I have      and you have     , and the two are 
different representations of the same x :

1 2x α α= =D D ( )1 2 0α α− =D

1 2 0
α α σ⇒ − ≥

⇒

1α 2α
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Uniqueness Rule

So, if      generates signals using "sparse enough" α ,
the solution of 
will find them exactly.

MMMM

If we have a representation that satisfies 

then necessarily it is the sparsest.

02
α

σ
>

Uniqueness

Donoho & Elad (‘02) 

αα
α

D=x.t.sMin:P
00

• Now, what if my      satisfies                ?1
0

α <
1α

2

σ

• The rule                       implies that                 !1 2 0
α α σ− ≥ 2

0
α >

2

σ
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α̂Are there reasonable ways to find     ?

MMMM     
Question 2 – Practical P0 Solver? 

α

α
α

D=x.t.s

Min
0

α̂Multiply 
by D

αD=x

=α
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Matching Pursuit (MP)

=

Mallat & Zhang (1993)

• Next steps: given the 
previously found atoms, find 
the next one to best fit …

• The Orthogonal MP (OMP) is an improved 
version that re-evaluates the coefficients after 
each round.

• The MP is a greedy 
algorithm that finds one 
atom at a time.

• Step 1: find the one atom 
that best matches the signal. 
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Basis Pursuit (BP)

αα
α

D=x.t.sMin
0

Instead of solving

αα
α

D=x.t.sMin
1

Solve this:

Chen, Donoho, & Saunders (1995)

• The newly defined problem is convex (linear programming).

• Very efficient solvers can be deployed:

� Interior point methods [Chen, Donoho, & Saunders (`95)] ,

� Iterated shrinkage [Figuerido & Nowak (`03), Daubechies, Defrise, & Demole (‘04), 

Elad (`05), Elad, Matalon, & Zibulevsky (`06)].
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How effective are MP/BP ?

Multiply 
by D

αD=x

=α

MMMM     
Question 3 – Approx. Quality? 

α̂MP/BP 
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BP and MP Performance

Given a signal x with a representation

, if                               then 

BP and MP are guaranteed to find it. 

αD=x
0

( )somethresholdα <
Donoho & Elad (‘02)

Gribonval & Nielsen (‘03)
Tropp (‘03) 

Temlyakov (‘03)

� MP and BP are different in general (hard to say which is better).

� The above results correspond to the worst-case.

� Average performance results available too, showing much better 

bounds [Donoho (`04), Candes et.al. (`04), Tanner et.al. (`05), Tropp et.al. (`06)]. 

• Similar results for general inverse problems [Donoho, Elad & Temlyakov

(`04), Tropp (`04), Fuchs (`04), Gribonval et. al. (`05)].
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Agenda

1. A Visit to Sparseland
Introducing sparsity & overcompleteness

2. Transforms & Regularizations 
How & why should this work? 

3. What about the dictionary?
The quest for the origin of signals

4. Putting it all together

Image filling, denoising, compression, …
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Problem Setting

Multiply 
by D

αD=x

MMMM     
α

L
0

≤α

Given these P examples and 
a fixed size (N×K) dictionary, 
how would we find D?

{ }P
1jjX =
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The examples are                    
linear combinations                   
of atoms from D

The Objective Function

D≈≈≈≈X A

Each example has a 
sparse representation with 
no more than L atoms

2

0,
. . , jF

st j Lα− ∀ ≤
D A

DA XMin

(N,K,L are assumed known, D has normalized columns)

An Introduction to 
Sparse Representation
And the K-SVD Algorithm
Ron Rubinstein

27=
x=αD

K–SVD – An Overview 

DInitialize         
D

Sparse Coding
Use MP or BP

Dictionary 
Update

Column-by-Column by  
SVD computation

Aharon, Elad & Bruckstein (‘04)

X
T
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K–SVD: Sparse Coding Stage

D

X

For the jth

example           
we solve 

L.t.sxMin
0

2

2j
≤− αα

α
D

Ordinary Sparse Coding !

T

2

j 0
s.t. j, α

F
− ∀ ≤

A
DA XMin L
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2

j 0
s.t. j, α

F
− ∀ ≤

D
DA XMin L

K–SVD: Dictionary Update Stage

D

X
T

T

k j j

j k

a
≠

= −∑E Xd

For the kth

atom           
we solve 

k

2

k
d

a
F

−E
T

k kMin d

(the residual)
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K–SVD Dictionary Update Stage

D

X
T

k

2

k
d

a
F

−E
T

k kMin d

k k

2

k
d ,a

a
F

−E
T

k kMin d

We can do
better than 

this

But wait! What 
about sparsity?
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k kd ,a
Min

K–SVD Dictionary Update Stage

Only some of 
the examples 
use column dk!

When updating ak, 
only recompute
the coefficients 
corresponding to 
those examples

dk
ak

T

−

Solve with
SVD!

We want to solve:

2

F
Ek
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The K–SVD Algorithm – Summary

DInitialize         
D

Sparse Coding
Use MP or BP

Dictionary 
Update

Column-by-Column by  
SVD computation

X
T
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Agenda

1. A Visit to Sparseland
Introducing sparsity & overcompleteness

2. Transforms & Regularizations 
How & why should this work? 

3. What about the dictionary?
The quest for the origin of signals

4. Putting it all together

Image filling, denoising, compression, …
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� Assumption: the signal x was created                                        
by x=Dα0 with a very sparse α0.

� Missing values in x imply                                                          
missing rows in this linear                                     
system. 

� By removing these rows, we get               .

� Now solve

� If α0 was sparse enough, it will be the  solution of the 

above problem! Thus, computing Dα0 recovers x perfectly.

Image Inpainting: Theory

0
α = xD

=
0α =ɶ ɶxD

α=α
α

D
~

x
~

.t.s
0

Min
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Inpainting: The Practice

� Given y, we try to recover the representation of x, by solving  

� We define a diagonal mask operator W representing the lost 
samples, so that

α= ˆx̂ D

� We use a dictionary that is the sum of two dictionaries, to get an 
effective representation of both texture and cartoon contents. This 

also leads to image separation [Elad, Starck, & Donoho (’05)]

0 2
α

α̂ = α s.t. y - α ε≤ArgMin WD

y = x+vW i,i { }w 0,1∈
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Inpainting Results

Source

Outcome

Dictionary:                            
Curvelet (cartoon) 
+ Global DCT 
(texture)
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Inpainting Results

Source

Outcome

Dictionary:                            
Curvelet (cartoon) 
+ Overlapped 
DCT (texture)
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Inpainting Results

20%

50%

80%
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� Solution: force shift-invariant sparsity – for each NxN
patch of the image, including overlaps.

Denoising: Theory and Practice

� Given a noisy image y, we can clean it by solving  

� With K-SVD, we cannot train a dictionary for an entire 
image. How do we go from local treatment of patches to a 
global prior?

α= ˆx̂ D
0 2

α

α̂ = α s.t. y - α ε≤ArgMin D

� Can we use the K-SVD dictionary?  
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Our prior

Extracts the
(i,j)th patch

From Local to Global Treatment

α= ˆx̂ D

For patches,
our MAP penalty 

becomes

0 2
α

α̂ = α s.t. y - α ε≤ArgMin D

ijij

2 2

ijij 22
,{α } ij

1
ˆ = + µ - α

2
∑

x

x ArgMin x - y xR D

ij 0
s.t. α L≤
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Option 1:

� Use a database of images: works quite well 
(~0.5-1dB below the state-of-the-art) 

Option 2: 

� Use the corrupted image itself ! 

� Simply sweep through all NxN patches
(with overlaps) and use them to train

� Image of size 1000x1000 pixels      ~106

examples to use – more than enough.

� This works much better!

What Data to Train On?
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ijij

2 2

ij ijij 022
,{α } , ij

1
ˆ = + µ - α s.t. α L

2
≤∑

x

x ArgMin x - y x
D

R D

K-SVD

x and D known x and ααααij known

Compute D to minimize

using SVD, updating one 
column at a time

2

ij 2
ij

- α∑Min x
D

R D

D and ααααij known












αµ+












µ+= ∑∑

−

ij
ij

T
ij

1

ij
ij

T
ij yIx DRRR

Compute x by

which is a simple averaging 
of shifted patches

Image Denoising: The Algorithm

Compute αij per patch 

using matching pursuit

2

ij ij 2α
α = - αMin xR D

ij 0
s.t. α L≤
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Initial dictionary 
(overcomplete DCT) 64×256

Denoising Results

Source

Result 30.829dB

Obtained dictionary
after 10 iterations

Noisy image 

PSNR 22.1dB=
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Denoising Results: 3D

Source:
Vis. Male Head 
(Slice #137)

PSNR=12dB

2d-KSVD:

PSNR=27.3dB

3d-KSVD:

PSNR=32.4dB
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Image Compression

� Problem: compressing photo-ID images.

� General purpose methods (JPEG, 
JPEG2000) do not take into account the 
specific family. 

� By adapting to the image-content,
better results can be obtained.
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Compression: The Algorithm

Training set (2500 images)Detect main features and align 
the images to a common 
reference (20 parameters) 

T
ra
in
in
g

Divide each image to disjoint 
15x15 patches, and for each 
compute a unique dictionary

Divide to disjoint patches, and 
sparse-code each patch

C
o
m
p
re
ssio

n

Detect features and align

Quantize and entropy-code
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Compression Results

11.99

10.83

10.93

10.49

8.92

8.71

8.81

7.89

8.61

5.56

4.82

5.58

Results for 
820 bytes 
per image

Original JPEG JPEG 2000 PCA K-SVD

Bottom:
RMSE values
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Compression Results

Results for 
550 bytes 
per image

9.44

15.81

14.67

15.30

13.89

12.41

12.57

10.66

10.27

6.60

5.49

6.36

Original JPEG JPEG 2000 PCA K-SVD

Bottom:
RMSE values
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Today We Have Discussed

1. A Visit to Sparseland
Introducing sparsity & overcompleteness

2. Transforms & Regularizations 
How & why should this work? 

3. What about the dictionary?
The quest for the origin of signals

4. Putting it all together

Image filling, denoising, compression, …
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Summary

Sparsity and over-
completeness are important 
ideas for designing better 
tools in signal and image 

processing

Approximation algorithms
can be used, are 

theoretically established and 
work well in practice

Coping with 
an NP-hard 
problem

Several dictionaries 
already exist. We 

have shown how to 
practically train D
using the K-SVD

What dictionary 
to use?

How is all 
this used?

We have seen 
inpainting, denoising
and compression
algorithms.What 

next?

(a) Generalizations: multiscale, non-
negative,…

(b) Speed-ups and improved algorithms

(c) Deploy to other applications
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Why Over-Completeness? 
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Desired Decomposition
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Inpainting Results

70% Missing Samples DCT (RMSE=0.04) Haar (RMSE=0.045) K-SVD (RMSE=0.03)

90% Missing Samples DCT (RMSE=0.085_ Haar (RMSE=0.07) K-SVD (RMSE=0.06)


