K-SVD DUMMIES

An Introduction to Sparse Representation and the K-SVD Algorithm

Ron Rubinstein

The CS Department The Technion – Israel Institute of technology Haifa 32000, Israel

University of Erlangen - Nürnberg April 2008

Denoising By Energy Minimization

Many of the proposed denoising algorithms are related to the minimization of an energy function of the form

$$f(\underline{x}) = \frac{1}{2} \| \underline{x} - \underline{y} \|_{2}^{2}$$

y: Given measurements \underline{x} : Unknown to be recovered

Sanity (relation to measurements)

Pr(x

- This is in-fact a Bayesian point of view, adopting the Maximum-Aposteriori Probability (MAP) estimation.
- Clearly, the wisdom in such an approach is within the choice of the prior **modeling the images** of interest.

Thomas Bayes 1702 - 1761

se Representation

Remove Additive Noise

Practical application

□ A convenient platform (being the simplest inverse problem) for testing basic ide in image processing.

$\mathbf{D}\alpha =$

 $\mathbf{D}\alpha = \mathbf{X}$

Noise Removal ?

Our story begins with image denoising ...

The Evolution Of Pr(x)

During the past several decades we have made all sort of guesses about the prior Pr(x) for images:

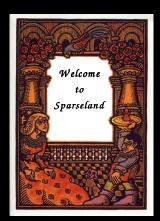
Agenda

1. A Visit to Sparseland Introducing sparsity & overcompleteness

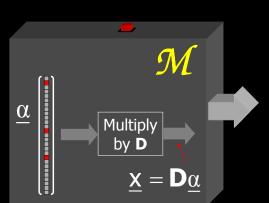
- 2. Transforms & Regularizations How & why should this work?
- 3. What about the dictionary? The quest for the origin of signals

d the K-SVD Algorithm

4. Putting it all together Image filling, denoising, compression, ...



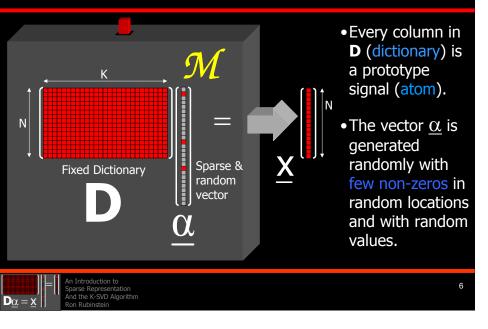
Sparseland Signals Are Special



e Representation

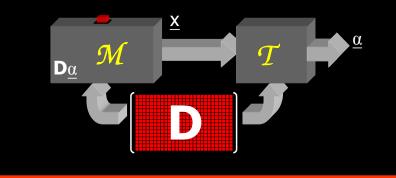
- **Simple:** Every signal is built as a linear combination of a <u>few</u> atoms from the dictionary **D**.
- Effective: Recent works adopt this model and successfully deploy it to applications.
- Empirically established: Neurological studies show similarity between this model and early vision processes.
 [Olshausen & Field ('96)]

Generating Signals in Sparseland

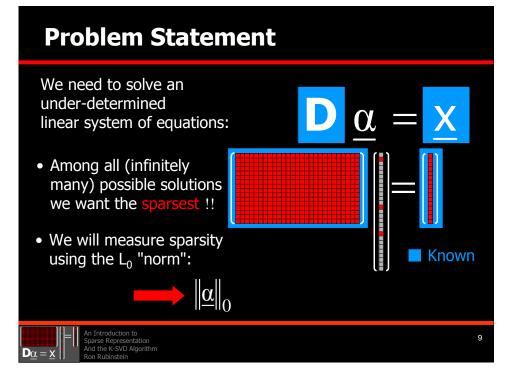


Transforms in Sparseland **?**

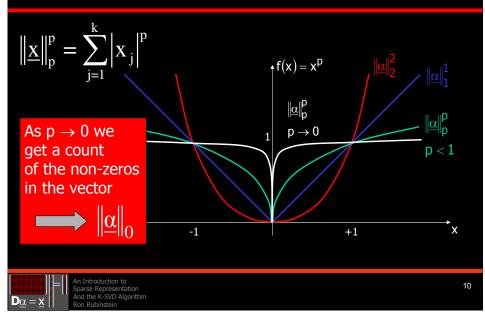
- Assume that \underline{x} is known to emerge from \mathcal{M} .
- How about "Given <u>x</u>, find the $\underline{\alpha}$ that generated it in \mathcal{M} "?

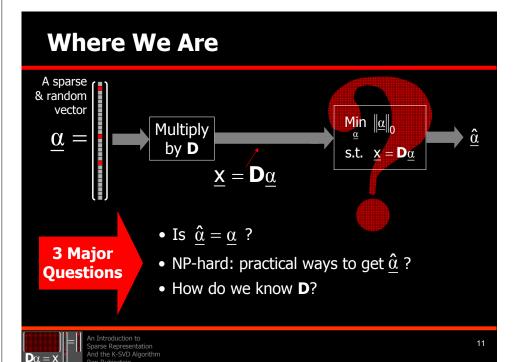


 $\mathbf{D}\alpha =$



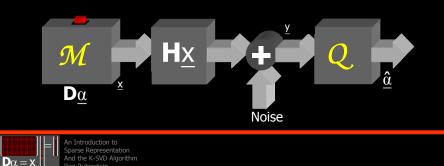
Measure of Sparsity?



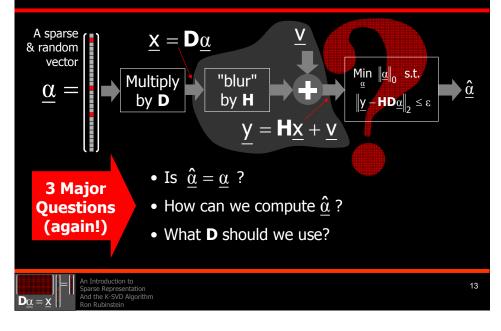


Inverse Problems in *Sparseland* ?

- Assume that \underline{x} is known to emerge from \mathcal{M} .
- Suppose we observe $\underline{y} = \underline{\mathbf{H}}\underline{x} + \underline{y}$, a degraded and noisy version of \underline{x} with $\|\underline{y}\|_2 \le \varepsilon$. How do we recover \underline{x} ?
- How about "find the $\underline{\alpha}$ that generated $\underline{\gamma}$ " ?



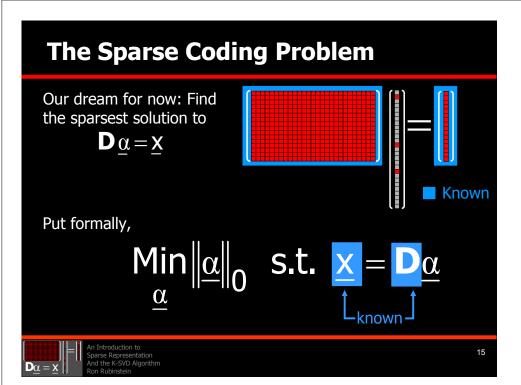
Inverse Problem Statement



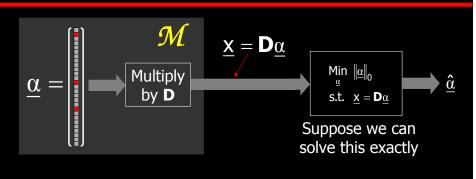
Agenda

- 1. A Visit to *Sparseland* Introducing sparsity & overcompleteness
- 2. Transforms & Regularizations How & why should this work?
- 3. What about the dictionary? The quest for the origin of signals
- 4. Putting it all together Image filling, denoising, compression, ...

 $\mathbf{D}\underline{\alpha} = \underline{\mathbf{X}} \begin{bmatrix} \mathbf{z} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} \mathbf{z} \\ \mathbf{z} \end{bmatrix}$ An Introduction to Sparse Representation And the K-SVD Algorithm Ron Rubinstein



Question 1 – Uniqueness?



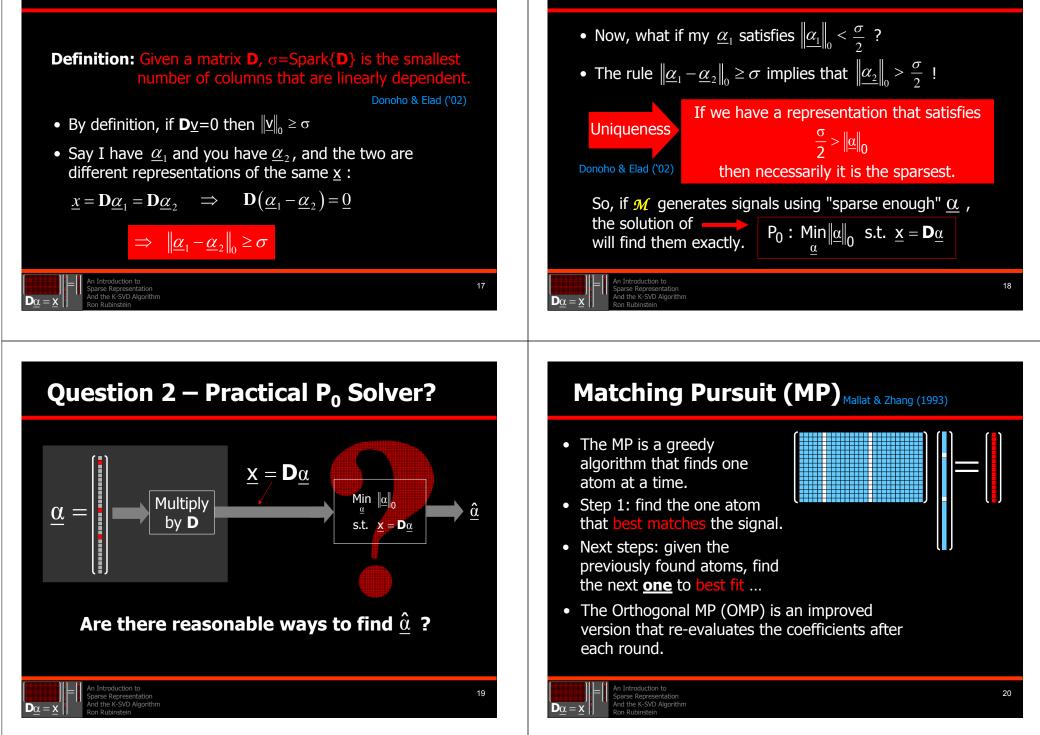
Why should we necessarily get $\hat{\underline{\alpha}} = \underline{\alpha}$?

It might happen that eventually $\|\hat{\underline{\alpha}}\|_0 < \|\underline{\alpha}\|_0$.

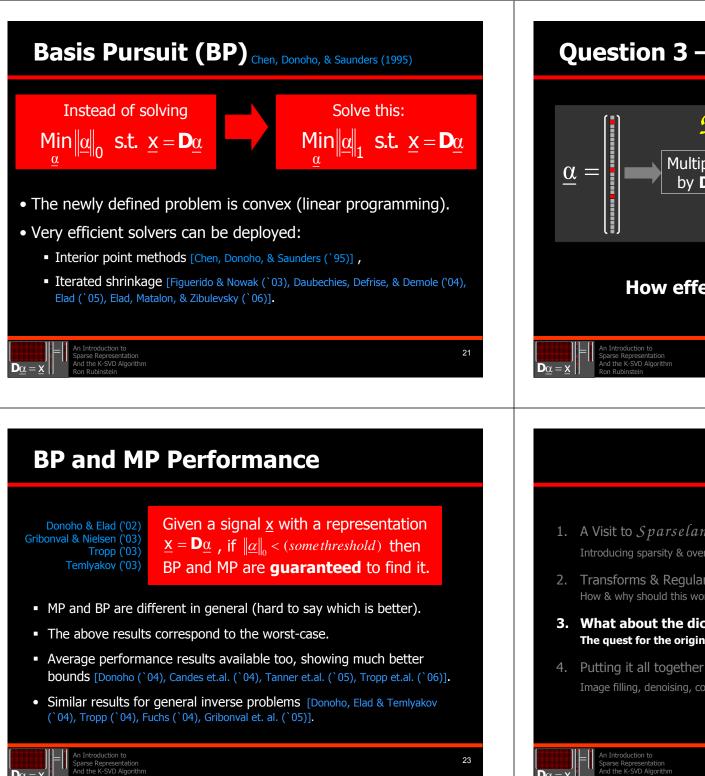
16

 $[\]mathbf{D}\alpha = \mathbf{X}$ An Introduction to Sparse Representation And the K-SVD Algorith Do Rubinstein

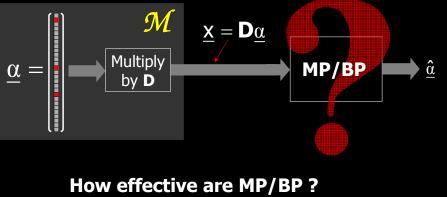
Matrix "Spark"



Uniqueness Rule

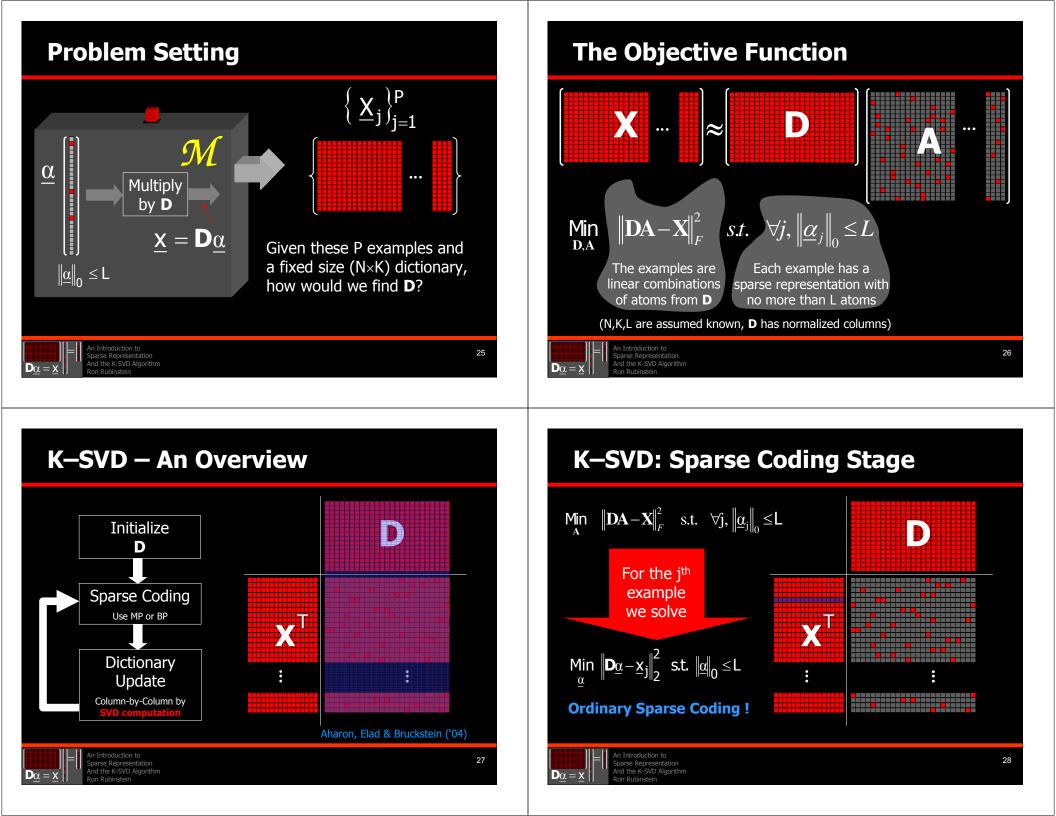


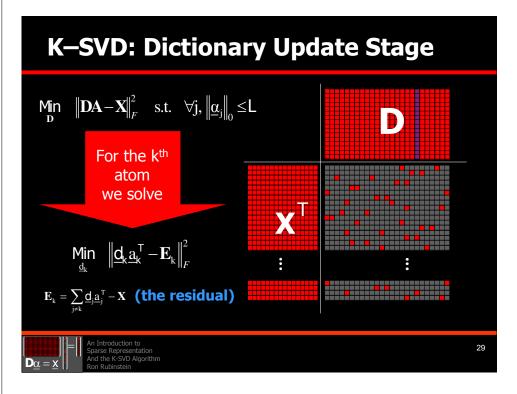
Question 3 – Approx. Quality?



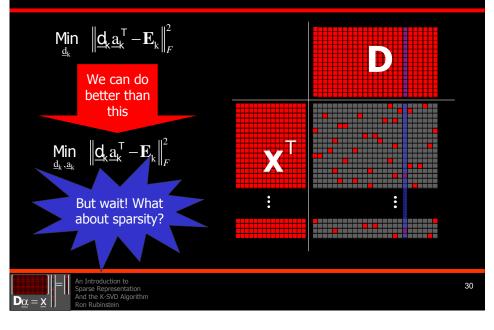
Agenda

- 1. A Visit to Sparseland Introducing sparsity & overcompleteness
- 2. Transforms & Regularizations How & why should this work?
- 3. What about the dictionary? The quest for the origin of signals
- Image filling, denoising, compression, ...



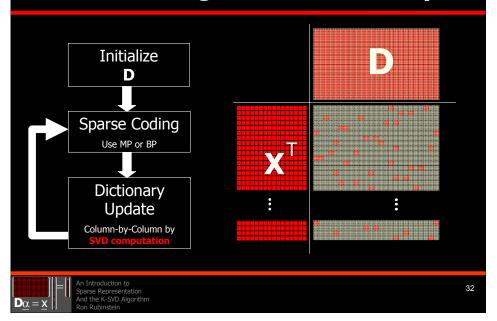


K–SVD Dictionary Update Stage



K–SVD Dictionary Update Stage We want to solve: <u>a</u>^T Min ... $\underline{d}_k, \underline{a}_k$ When updating \underline{a}_{k} , Only some of only recompute the examples the coefficients corresponding to use column $d_{\nu}!$ those examples rse Representation $\mathbf{D}\alpha =$

The K–SVD Algorithm – Summary



Agenda

- 1. A Visit to Sparseland Introducing sparsity & overcompleteness
- 2. Transforms & Regularizations How & why should this work?
- 3. What about the dictionary? The quest for the origin of signals

Image Inpainting: Theory

 $\mathbf{D} \mathbf{a}_0 =$

- □ Assumption: the signal x was created by $\underline{\mathbf{x}} = \mathbf{D}\underline{\alpha}_0$ with a very sparse $\underline{\alpha}_0$.
- \Box Missing values in <u>x</u> imply missing rows in this linear system.
- □ By removing these rows, we get

$$\tilde{\mathbf{D}}\underline{\alpha}_0 = \underline{\tilde{\mathbf{X}}}$$

$$\underbrace{\underset{\underline{\alpha}}{\text{Min}}}_{\underline{\alpha}} \|\underline{\alpha}\|_{0} \quad \text{s.t.} \quad \underline{\widetilde{\mathbf{X}}} = \mathbf{\widetilde{D}}\underline{\alpha}$$

 \Box If $\underline{\alpha}_0$ was sparse enough, it will be the solution of the above problem! Thus, computing $\mathbf{D}\alpha_0$ recovers <u>x</u> perfectly.

Sparse Representation And the K-SVD Algorithm $\mathbf{D}\alpha = \mathbf{D}$

□ Now set

Inpainting: The Practice

- □ We define a diagonal mask operator **W** representing the lost samples, so that
 - $y = \mathbf{W}\underline{x} + \underline{v}$ $W_{ii} \in \{0,1\}$
- \Box Given y, we try to recover the representation of X, by solving

$$\underline{\hat{\alpha}} = \operatorname{ArgMin}_{\underline{\alpha}} \|\underline{\alpha}\|_{0} \quad \text{s.t.} \quad \|\underline{y} - \mathbf{W}\mathbf{D}\underline{\alpha}\|_{2} \le \varepsilon \qquad \qquad \underline{\hat{X}} = \mathbf{D}_{\underline{\alpha}}$$

□ We use a dictionary that is the sum of two dictionaries, to get an effective representation of both texture and cartoon contents. This also leads to image separation [Elad, Starck, & Donoho ('05)]

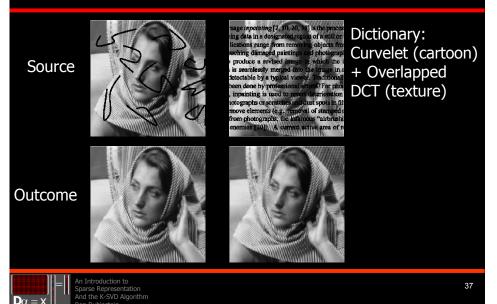
35

 $\mathbf{D}\alpha =$

33

Inpainting Results

Inpainting Results



Inpainting Results

Denoising: Theory and Practice

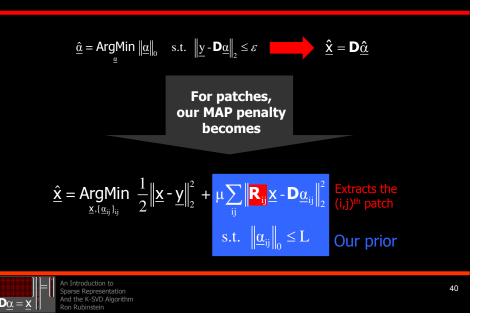
 \Box Given a noisy image \underline{y} , we can clean it by solving

 $\underline{\hat{\alpha}} = \operatorname{ArgMin} \|\underline{\alpha}\|_{0} \quad \text{s.t.} \quad \|\underline{y} - \mathbf{D}\underline{\alpha}\|_{2} \le \varepsilon \qquad \qquad \underline{\hat{X}} = \mathbf{D}\underline{\hat{\alpha}}$

- □ Can we use the K-SVD dictionary?
- With K-SVD, we cannot train a dictionary for an entire image. How do we go from local treatment of patches to a global prior?
- Solution: force shift-invariant sparsity for each NxN patch of the image, including overlaps.

39

From Local to Global Treatment



What Data to Train On?

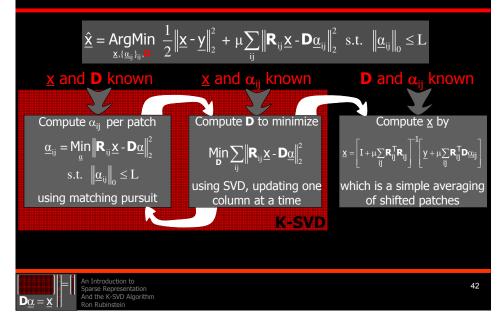
Option 1:

Use a database of images: works quite well (~0.5-1dB below the state-of-the-art)

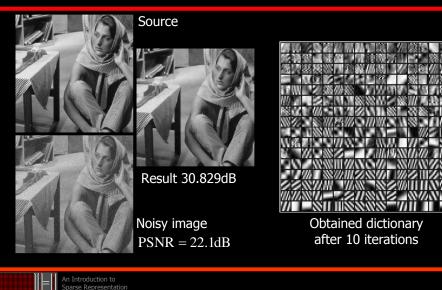
Option 2:

- Use the corrupted image itself !
- □ Simply sweep through all NxN patches (with overlaps) and use them to train
- □ Image of size 1000x1000 pixels $\implies \sim 10^6$ examples to use - more than enough.

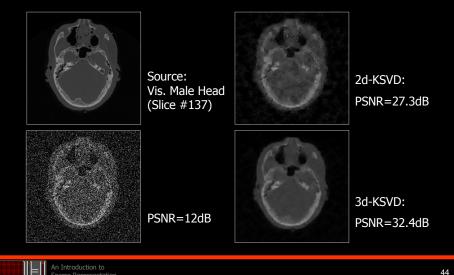
Image Denoising: The Algorithm



Denoising Results



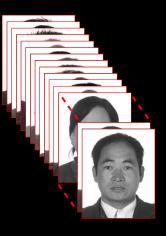
Denoising Results: 3D



 $D\alpha =$

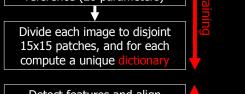
Image Compression

- □ Problem: compressing photo-ID images.
- □ General purpose methods (JPEG, JPEG2000) do not take into account the specific family.
- ting to the image-content, By ada better results can be obtained.

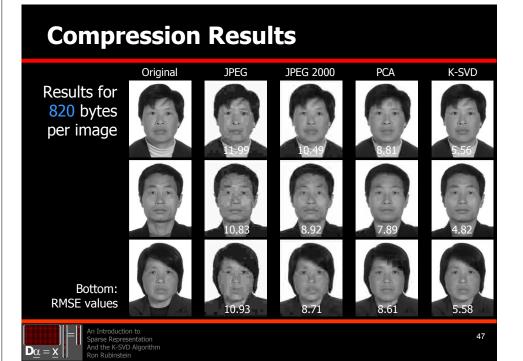


45

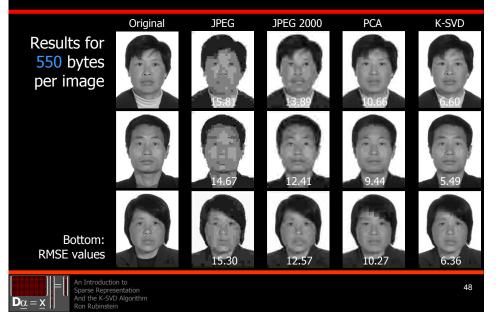
$\mathbf{D}\alpha =$



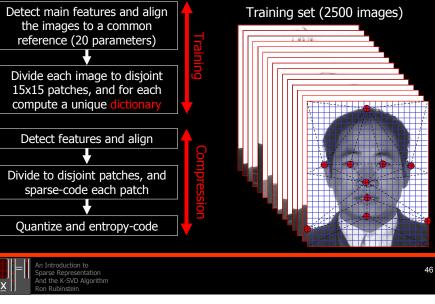
$\mathbf{D}\alpha =$



Compression Results



Compression: The Algorithm



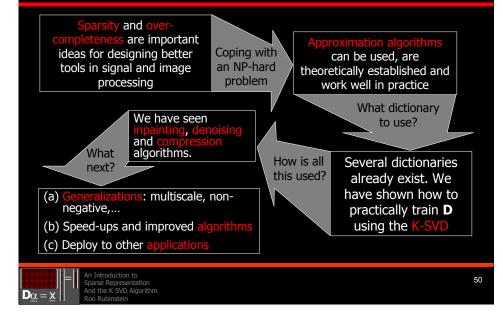
Today We Have Discussed

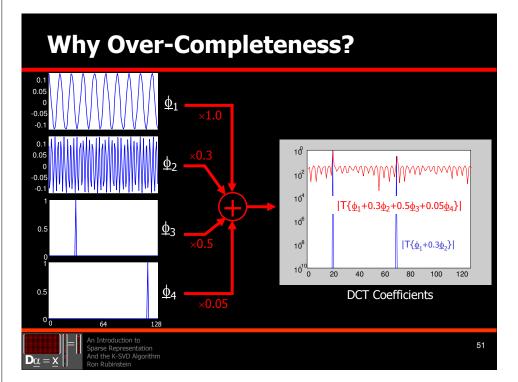
- 1. A Visit to *Sparseland* Introducing sparsity & overcompleteness
- 2. Transforms & Regularizations How & why should this work?
- 3. What about the dictionary? The quest for the origin of signals
- 4. Putting it all together Image filling, denoising, compression, ...

nd the K-SVD Algorithm on Rubinstein

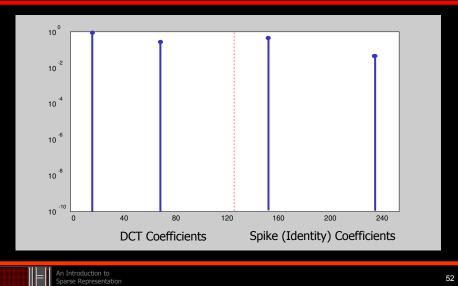
Summary

49





Desired Decomposition



 $\mathbf{D}\alpha =$

Inpainting Results

