
Learning Sparse Dictionaries for Sparse Signal

Approximation

Ron Rubinstein∗, Michael Zibulevsky∗ and Michael Elad∗

Abstract

An efficient and flexible dictionary structure is proposed for sparse and redundant

signal representation. The structure is based on a sparsity model of the dictionary

atoms over a base dictionary. The sparse dictionary provides efficient forward and

adjoint operators, has a compact representation, and can be effectively trained from

given example data. In this, the sparse structure bridges the gap between implicit

dictionaries, which have efficient implementations yet lack adaptability, and explicit

dictionaries, which are fully adaptable but non-efficient and costly to deploy. In this

report we discuss the advantages of sparse dictionaries, and present an efficient algo-

rithm for training them. We demonstrate the advantages of the proposed structure

for 3-D image denoising.

1 Introduction

Sparse representation of signals over redundant dictionaries [1, 2, 3] is a rapidly evolv-

ing field, with state-of-the-art results in many fundamental signal and image processing

tasks [4, 5, 6, 7, 8, 9, 10]. The basic model suggests that natural signals can be com-

pactly expressed, or efficiently approximated, as a linear combination of prespecified

atom signals, where the linear coefficients are sparse (i.e., most of them zero). Formally,

letting x ∈ R
N be a column signal, and arranging the atom signals as the columns of

the dictionary D ∈ R
N×L, the sparsity assumption is described by the following sparse

approximation problem, for which we assume a sparse solution exists:

γ̂ = Argmin
γ

‖γ‖0
0 Subject To ‖x − Dγ‖2 ≤ ε . (1)

In this expression, γ̂ is the sparse representation of x, ε is the error tolerance, and the

function ‖ ·‖0
0 , loosely referred to as the `0-norm, counts the non-zero entries of a vector.

Though known to be NP-hard in general [11], the above problem is relatively easy to

approximate using a wide variety of techniques [12, 13, 14, 15, 16, 17, 18, 19, 20].

A fundamental consideration in employing the above model is the choice of the

dictionary D. The majority of literature on this topic can be divided to one of two main

∗Computer Science Department, Technion – Israel Institute of Technology, Haifa 32000 Israel.

1

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

CS
-2

00
9-

13
 -

20
09

categories: analytic-based and learning-based. In the first approach, a mathematical

model of the data is formulated, and an analytic construction is developed to efficiently

represent the model. This generally leads to dictionaries that are highly structured

and have a fast numerical implementation. We refer to these as implicit dictionaries

as they are described algorithmically rather than as an explicit matrix. Dictionaries of

this type include Wavelets [21], Curvelets [22], Contourlets [23], Complex Wavelets [24],

Bandelets [25], and more.

The second approach suggests using machine learning techniques to infer the dictio-

nary from a set of examples. In this case, the dictionary is typically represented as an

explicit matrix, and a training algorithm is employed to adapt the matrix coefficients

to the examples. Algorithms of this type include PCA and Generalized PCA [26], the

Method of Optimal Directions (MOD) [27], the K-SVD [28], and others. Advantages of

this approach are the much finer-tuned dictionaries they produce compared to analyti-

cal approaches, and the significantly better performance in applications. However, this

comes at the expense of generating an unstructured dictionary, which is more costly to

apply. Also, complexity constraints limit the size of the dictionaries that can be trained

in this way, and the dimensions of the signals that can be processed.

In this paper, we present a novel dictionary structure that bridges some of the gap

between these two approaches, gaining the benefits of both. The structure is based on a

sparsity model of the dictionary atoms over a known implicit base dictionary. The new

parametric structure leads to a flexible and compact dictionary representation which is

both adaptive and efficient. Advantages of the new structure include stabilizing and

accelerating sparsity-based techniques, handling larger and higher-dimensional signals,

and offering a more compact dictionary representation.

1.1 Related Work

The idea of training dictionaries with a specific structure has been proposed in the past,

though the research is still in its early stages. Most of the work so far has focused

specifically on developing adaptive Wavelet transforms, as in [29, 30, 31, 32]. These

works attempt to adapt various parameters of the Wavelet transform, such as the mother

wavelet or the scale and dilation operators, to better suite specific given data.

More recently, an algorithm for training unions of orthonormal bases was proposed

in [33]. The suggested dictionary structure takes the form

D = [D1 D2 . . . Dk] , (2)

where the Di’s are unitary sub-dictionaries. The structure has the advantage of offering

efficient sparse-coding via Block Coordinate Relaxation (BCR) [16], and the training

algorithm itself is simple and relatively efficient. On the down side, the dictionary model

is relatively restrictive, and its training algorithm shows somewhat weak performance.

2

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

CS
-2

00
9-

13
 -

20
09

Furthermore, the structure does not lead to quick forward and adjoint operators, as the

dictionary itself remains explicit.

A different approach is proposed in [6], where a semi-multiscale structure is employed.

The dictionary model is a concatenation of several scale-specific dictionaries over a dyadic

grid, leading (in the 1-D case) to the form:

D =

D1

D2

D2

D3

D3

D3

D3

· · ·

. (3)

The multiscale structure is shown to provide excellent results in applications such as

denoising and inpainting. Nonetheless, the explicit nature of the dictionary is main-

tained along with most of the drawbacks of such dictionaries. Indeed, the use of sparse

dictionaries to replace the explicit ones in (3) is an interesting option for future study.

Another recent contribution is the signature dictionary proposed in [34]. According

to the suggested model, the dictionary is described via a compact signature image, with

each sub-block of this image constituting an atom of the dictionary (both fixed and

variable-sized sub-blocks can be considered). The advantages of this structure include

near-translation-invariance, reduced overfitting, and faster sparse-coding when utilizing

spatial relationships between neighboring signal blocks. On the other hand, the small

number of parameters in this model — one coefficient per atom — also makes this dic-

tionary more restrictive than other structures. The proposed sparse dictionary model

in this paper improves the dictionary expressiveness by increasing the number of pa-

rameters per atom from 1 to k > 1, while maintaining other favorable properties of the

dictionary.

1.2 Paper Organization

This report is organized as follows. We begin in Section 2 with a description of the

dictionary model and its advantages. In Section 3 we consider the task of training the

dictionary from examples, and present an efficient algorithm for doing so. Section 4

analyzes and quantifies the complexity of sparse dictionaries, and compares this to other

dictionary forms. Simulation results are provided in Section 5. We summarize and

conclude in Section 6.

1.3 Notation

This report uses the following notation:

• Bold uppercase letters designate matrices (M, Γ), and bold lowercase letters des-

ignate column vectors (v, γ). The columns of a matrix are referenced using the cor-

responding lowercase letter, e.g. M = [m1 | . . . |mn]; the elements of a vector are

3

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

CS
-2

00
9-

13
 -

20
09

similarly referenced using standard-type letters, e.g. v = (v1, . . . , vn)T . The notation 0

is used to denote the zero vector, with its length inferred from the context.

• Given a single index I = i1 or an ordered sequence of indices I = (i1, . . . , ik), we

denote by MI = [mi1 | . . . |mik] the sub-matrix of M containing the columns indexed

by I, in the order in which they appear in I. For vectors we similarly denote the sub-

vector vI = (vi1 , . . . , vik)T . We use the notation MI,J , with J a second index or sequence

of indices, to refer to the sub-matrix of M containing the rows indexed by I and the

columns indexed by J , in their respective orders. This notation is used for both access

and assignment, so if I = (2, 4, 6, . . . , n), the statement MI,j := 0 means nullifying the

even-indexed entries in the j-th row of M.

2 Sparse Dictionaries

2.1 Motivation

In selecting a dictionary for sparse signal representation, two elementary and seem-

ingly competing properties immediately come to mind. The first is the complexity of

the dictionary, as multiplication by the dictionary and its adjoint constitute the dom-

inant components in most sparse-coding techniques, and these in turn form the core

components in all dictionary training and sparsity-based signal processing algorithms.

Indeed, techniques such as Matching Pursuit (MP) [2], Orthogonal Matching Pursuit

(OMP) [12], Stagewise Orthogonal Matching Pursuit (StOMP) [15], and their variants,

all involve costly dictionary-signal computations each iteration. Other common methods

such as interior-point Basis Pursuit [1] and FOCUSS [14] minimize a quadratic function

each iteration, which is commonly performed iteratively using repeated application of

the dictionary and its adjoint. Many additional methods rely heavily on the dictionary

operators as well.

Over the years, a variety of dictionaries with fast implementations have been de-

signed. For natural images, dictionaries such as Wavelets [21], Curvelets [22], Con-

tourlets [23], and Shearlets [35], all provide fast transforms. However, such dictionaries

are fixed and limited in their ability to adapt to different types of data. Adaptability

is thus a second desirable property of a dictionary, and in practical applications, adap-

tive dictionaries consistently show better performance than generic ones [5, 8, 10, 6].

Unfortunately, adaptive methods usually prefer explicit dictionary representations over

structured ones, gaining a higher degree of freedom in the training but sacrificing regu-

larity and efficiency of the result.1

1Note that in adaptive dictionaries we are referring to dictionaries whose content can be adapted

to different families of signals, typically through a learning process. Signal-dependent representation

schemes, such as Best Wavelet Packet Bases [29] and Bandelets [25], are another type of adaptive process,

but of a very different nature. These methods produce an optimized dictionary for a given signal based

on its specific characteristics (frequency content or geometry, respectively).

4

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

CS
-2

00
9-

13
 -

20
09

Figure 1: Left: dictionary for 8 × 8 image patches, trained using the K-SVD algorithm. Right:

images used for the training. Each image contributed 25,000 randomly selected patches, for a

total of 100,000 training signals.

Bridging this gap between complexity and adaptivity requires a parametric dictionary

model having an inner structure with enough degrees of freedom. In this work, we

propose the sparse dictionary model as a simple and effective structure for achieving

this goal, based on sparsity of the atoms over a known base dictionary. Our approach

can be motivated as follows. In Fig. 1 we see an example of a dictionary trained using

the K-SVD algorithm [28] for 8×8 natural image patches. The algorithm trains explicit,

fully un-constrained dictionary matrices, and yet, the resulting dictionary appears highly

structured, and its atoms have noticeable regularity. This gives rise to the hypothesis

that the dictionary atoms themselves may have some underlying sparse structure over a

more fundamental dictionary. As we will see, such a structure can indeed be recovered,

and has several favorable properties.

2.2 Dictionary Model

The sparse dictionary model suggests that each of the atom signals in the dictionary has

itself a sparse representation over some prespecified base dictionary Φ. The dictionary

is therefore expressed as

D = ΦA , (4)

where A is the atom representation matrix, assumed to be sparse. For simplicity, we

focus on matrices A having a fixed number of non-zeros per column, so ‖ai‖
0
0 ≤ p

for some p. The base dictionary Φ will generally be chosen to have a quick implicit

implementation, and, while Φ may have any number of atoms, we assume it to span the

signal space. The choice of the base dictionary obviously affects the success of the entire

model, and we thus prefer one which already incorporates some prior knowledge about

the data.

5

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

CS
-2

00
9-

13
 -

20
09

In comparison to implicit dictionaries, the dictionary model (4) is adaptive via mod-

ification of the matrix A, and can be efficiently trained from examples. Furthermore,

as Φ can be any dictionary — specifically, any existing implicit dictionary — the model

can be viewed as an extension to existing dictionaries, which adds them a new layer of

adaptability.

In comparison to explicit dictionaries, the sparse structure is significantly more ef-

ficient, depending mostly on the choice of Φ. It is also more compact to store and

transmit. Furthermore, as we show later in this report, the imposed structure acts as a

regularizer in dictionary learning processes, and reduces overfitting and instability in the

presence of noise. Training a sparse dictionary requires less examples than an explicit

one, and produces useable results even when only a few examples are available.

The sparse dictionary model has another interesting interpretation. Assume a signal

x is sparsely represented over the dictionary D = ΦA, so x = ΦAγ for some sparse γ.

Therefore, (Aγ) is the representation of x over Φ. Since both γ and the columns of A are

sparse — having no more than, say, t and p non-zeros, respectively — this representation

will have approximately tp non-zeros. However, such quadratic cardinality will generally

fall way beyond the success range of the sparse-approximation techniques [3]. As such, it

is no longer considered sparse in terms of the formulation (1), and sparse-coding methods

will commonly fail to recover it. Furthermore, given a noisy version of x, attempting

to recover it directly over Φ using tp atoms will likely result in capturing a significant

portion of the noise along with the signal, due to the number of coefficients used.2

Through the sparse dictionary structure, we are able to accommodate denser signal

representations over Φ while essentially by-passing the related difficulties. The rea-

son is that even though every t-sparse signal over D will generally have a denser tp-

representation over Φ, not every tp-representation over Φ will necessarily fit the model.

The proposed model therefore acts as a regularizer for the allowed dense representations

over Φ, and by learning the matrix A, we are expressing in some form the complicated

dependencies between its atoms.

3 Learning Sparse Dictionaries

We now turn to the question of designing a sparse dictionary for sparse signal represen-

tation. A straightforward approach would be to select some general (probably learned)

dictionary D0, choose a base dictionary Φ, and sparse-code the atoms in D0 to obtain

D = ΦA ≈ D0. This naive approach, however, is clearly sub-optimal: specifically, the

dictionary Φ must be sufficiently compatible with D0, or else the representations in A

may not be very sparse. Simulation results indicate that such dictionaries indeed perform

poorly in practical signal processing applications.

2For white noise and a signal of length N , the expected remaining noise in a recovered signal using t

atoms is approximately t/N the initial noise energy, due to the orthogonal projection.

6

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

CS
-2

00
9-

13
 -

20
09

A more desirable approach would be to learn the sparse dictionary using a process

that is aware of the dictionary’s structure. We adopt an approach which continues

the line of work in [28], and develop a K-SVD-like learning scheme for training the

sparse dictionary from examples. The algorithm is inspired by the Approximate K-SVD

implementation presented in [36], which we briefly review.

3.1 K-SVD and Its Approximate Implementation

The K-SVD algorithm accepts an initial overcomplete dictionary matrix D0 ∈ R
N×L,

a number of iterations k, and a set of examples arranged as the columns of the matrix

X ∈ R
N×R. The algorithm aims to iteratively improve the dictionary by approximating

the solution to
Min
D,Γ

‖X − DΓ‖2
F Subject To ∀i ‖γi‖

0
0 ≤ t

∀j ‖dj‖2 = 1
. (5)

Note that in this formulation, the atom normalization constraint is commonly added for

convenience, though it does not have any practical significance to the result.

The K-SVD iteration consists of two basic steps: (i) sparse-coding the signals in

X given the current dictionary estimate, and (ii) updating the dictionary atoms given

the sparse representations in Γ. The sparse-coding step can be implemented using any

sparse-approximation method. The dictionary update is performed one atom at a time,

optimizing the target function for each atom individually while keeping the remaining

ones fixed.

The atom update step is carried out while preserving the sparsity constraints in (5).

To achieve this, the update uses only those signals in X whose sparse representations

use the current atom. Denoting by I the indices of the signals in X that use the j-th

atom, the update of this atom is obtained by minimizing the target function

‖XI − DΓI‖
2
F (6)

for both the atom and its corresponding coefficient row in ΓI . The resulting problem is

a simple rank-1 approximation, given by

{d,g} := Argmin
d,g

‖E − dgT ‖2
F Subject To ‖d‖2 = 1 , (7)

where E = XI −
∑

i 6=j diΓi,I is the error matrix without the j-th atom, and d and gT are

the updated atom and coefficient row, respectively. The problem can be solved directly

via an SVD decomposition, or more efficiently using some numerical power method.

In practice, the exact solution of (7) is computationally demanding, especially when

the number of training signals is large. As an alternative, an approximate solution can

be used to reduce the complexity of this task [36]. The simplified update step is obtained

by applying a single iteration of alternate-optimization, given by

d := Eg/‖Eg‖2

g := ETd
. (8)

7

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

CS
-2

00
9-

13
 -

20
09

The above process is known to ultimately converge to the optimum,3 and when trun-

cated, supplies an approximation which still reduces the penalty term. Also, this process

eliminates the need to explicitly compute E, which is both time and memory consuming,

and instead only requires its products with vectors.

3.2 The Sparse K-SVD Algorithm

To train a sparse dictionary, we use the same basic framework as the original K-SVD

algorithm. Specifically, we aim to (approximately) solve the optimization problem

Min
A,Γ

‖X − ΦAΓ‖2
F

Subject To

∀i ‖γi‖
0
0 ≤ t

∀j ‖aj‖
0
0 ≤ p , ‖Φaj‖2 = 1

, (9)

alternating sparse-coding and dictionary update steps for a fixed number of iterations.

The notable change is in the atom update step: as opposed to the original K-SVD

algorithm, in this case the atom is constrained to the form d = Φa with ‖a‖0
0 ≤ p. The

modified atom update is therefore given by

{a,g} := Argmin
a,g

‖E − ΦagT ‖2
F Subject To ‖a‖0

0 ≤ p

‖Φa‖2 = 1
, (10)

with E defined as in (7).

Interestingly, our problem is closely related to a different problem known as Sparse

Matrix Approximation (here SMA), recently raised in the context of Kernel-SVM meth-

ods [37]. The SMA problem is formulated similar to problem (10), but replaces the

rank-1 matrix agT with a general matrix T, and the sparsity constraint on a with a

constraint on the number of non-zero rows in T. Our problem is therefore essentially

a rank-constrained version of the original SMA problem. In [37], the authors suggest

a greedy OMP-like algorithm for solving the problem, utilizing randomization to deal

with the large amount of work involved. Unfortunately, while this approach is likely

extendable to the rank-constrained case, it leads to a computationally intensive process

which is impractical for large problems.

Our approach therefore takes a different path to solving the problem, employing an

alternate-optimization technique over a and g parallel to (8). We point out that as op-

posed to (8), the process here does not generally converge to the optimum when repeated,

due to the non-convexity of the problem. Nonetheless, the method does guarantee a re-

duction in the target function value, which is essentially enough for our purposes.

3Note that applying two consecutive iterations of this process produces d
j+1 = EE

T
d

j/‖EE
T
d

j‖2,

which is the well-known power iteration for EE
T . The process converges, under reasonable assumptions,

to the largest eigenvector of EE
T — also the largest left singular vector of E.

8

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

CS
-2

00
9-

13
 -

20
09

To simplify the derivation, we note that (10) may be solved without the norm con-

straint on Φa, adding a post-processing step which transfers energy between a and g to

achieve ‖Φa‖2 = 1 while keeping agT fixed. The simplified problem is given by

{a,g} := Argmin
a,g

‖E − ΦagT ‖2
F Subject To ‖a‖0

0 ≤ p . (11)

Note that the solution to this problem is guaranteed to be non-zero for all E 6= 0, hence

the described re-normalization of a and g is possible.

Optimizing over g in (11) is straightforward, and given by

g := ETΦa/‖Φa‖2
2 . (12)

Optimizing over a, however, requires more attention. The minimization task for a is

given by:

a := Argmin
a

‖E − ΦagT ‖2
F Subject To ‖a‖0

0 ≤ p . (13)

The standard approach to this problem is to rewrite E as a column vector e, and for-

mulate the problem as an ordinary sparse-coding task for e (we use ⊗ to denote the

Kronecker matrix product [38]):

a := Argmin
a

‖e − (g ⊗ Φ)a‖2
2 Subject To ‖a‖0

0 ≤ p . (14)

This, however, leads to an intolerably large optimization problem, as the length of the

signal to be sparse-coded is of the same order of magnitude as the entire dataset.

Instead, we show that problem (13) is equivalent to a much simpler sparse-coding

problem, namely

a := Argmin
a

‖Eg − Φa‖2
2 Subject To ‖a‖0

0 ≤ p . (15)

Here, the vector Eg is of the same length as a single training example, and the dictionary

is the base dictionary Φ which is assumed to have an efficient implementation; therefore,

this problem is significantly easier to handle than the previous one. Furthermore, the

vector Eg itself is faster to compute than the vector e in (14), as it can be computed

using simple matrix-vector multiplications without having to explicitly compute the full

matrix E.

We establish the equivalence between the two problems using the following Lemma:

Lemma 1. Let X ∈ R
N×M and Y ∈ R

N×K be two matrices, and let v ∈ R
M and

u ∈ R
K be two vectors of respective sizes. Also assume that v

T
v = 1. Then the following

holds:

‖X−Yuv
T ‖2

F = ‖Xv−Yu‖2
2 + f(X, v) .

9

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

CS
-2

00
9-

13
 -

20
09

Proof. The equality follows from elementary properties of the trace function:

‖X − YuvT ‖2
F =

= Tr((X − YuvT)T (X − YuvT))

= Tr(XTX) − 2Tr(XTYuvT) + Tr(vuTYTYuvT)

= Tr(XTX) − 2Tr(vTXTYu) + Tr(vTvuTYTYu)

= Tr(XTX) − 2vTXTYu + uTYTYu

= Tr(XTX) − 2vTXTYu + uTYTYu +

+vTXTXv − vTXTXv

= ‖Xv − Yu‖2
2 + Tr(XTX) − vTXTXv

= ‖Xv − Yu‖2
2 + f(X,v) .

The Lemma implies that assuming gTg = 1, then for every representation vector a

‖E − ΦagT ‖2
F = ‖Eg − Φa‖2

2 + f(E,g) .

Clearly the important point in this equality is that the two sides differ by a constant

independent of a. Thus, the target function in (13) can be safely replaced with the right

hand side of the equality (sans the constant), establishing the equivalence to (15).

When using the Lemma to solve (13), we note that the energy assumption on g can

be easily overcome, as dividing g by a non-zero constant simply results in a solution

a scaled by that same constant. Thus (13) can be solved for any g by normalizing it

to unit length, applying the Lemma, and re-scaling the solution a by the appropriate

factor. Conveniently, since a is independently re-normalized at the end of the process,

this re-scaling can be skipped completely, scaling a instead to ‖Φa‖2 = 1 and continuing

with the update of g.

Combining the pieces, the final atom update process consists of (i) normalizing g to

unit length; (ii) solving (15) for a; (iii) normalizing a to ‖Φa‖2 = 1; and (iv) updating

g := ETΦa. This process may generally be repeated, though we have found little

practical advantage in doing so. The complete Sparse K-SVD algorithm is detailed in

Fig. 2. Figs. 3,4 show an example result, obtained by applying this algorithm to the

same training set as that used to train the dictionary in Fig. 1.

4 Complexity of Sparse Dictionaries

Sparse dictionaries are generally much more efficient than explicit ones. However, the

gains become more substantial for larger dictionaries and higher-dimensional signals. In

this section we analyze and quantify the complexity of sparse dictionaries, and compare

them to other dictionary forms. We consider specifically the case of Orthogonal Matching

Pursuit (OMP), which is a widely used method which is relatively simple to analyze.

10

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

CS
-2

00
9-

13
 -

20
09

1: Input: Signal set X, base dictionary Φ, initial dictionary representation A0, target

atom sparsity p, target signal sparsity t, number of iterations k.

2: Output: Sparse dictionary representation A and sparse signal representations Γ such

that X ≈ ΦAΓ

3: Init: Set A := A0

4: for n = 1 . . . k do

5: ∀i : Γi := Argmin
γ

‖xi − ΦAγ‖2
2 Subject To ‖γ‖0

0 ≤ t

6: for j = 1 . . . L do

7: Aj := 0

8: I := {indices of the signals in X whose reps. use aj}

9: g := ΓT
j, I

10: g := g/‖g‖2

11: z := XIg − ΦAΓIg

12: a := Argmin
a

‖z − Φa‖2
2 Subject To ‖a‖0

0 ≤ p

13: a := a/‖Φa‖2

14: Aj := a

15: Γj, I := (XT
I Φa − (ΦAΓI)

TΦa)T

16: end for

17: end for

Figure 2: The Sparse K-SVD Algorithm.

4.1 Complexity of OMP

The Orthogonal Matching Pursuit algorithm and its efficient implementation are re-

viewed in the Appendix. We focus on two OMP implementations — OMP-Cholesky

and Batch-OMP [36]. The first is an implementation which uses progressive Cholesky

decomposition to accelerate the orthogonal projection, and the second is an implemen-

tation designed for sparse-coding large sets of signals, and trades memory for speed by

employing an initial precomputation step which substantially accelerates the subsequent

sparse-coding tasks. In the following we quote the main complexity results, and leave

additional details to the Appendix.

The implementation of OMP-Choleksy varies slightly depending on the dictionary

representation — either explicit or implicit. Consequently, its complexity has two forms:

Tomp {explicit-dict} = tTD + 2t2N + 2t(L + N) + t3

Tomp {implicit-dict} = 4tTD + 2t(L + N) + t3
. (16)

In these expressions, t is the number of OMP iterations (also the number of selected

atoms), N and L are the dimensions of the dictionary, and TD is the complexity of the

dictionary operators (TD = 2NL in the explicit case).

The complexity of Batch-OMP is simpler and does not depend on the dictionary

11

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

CS
-2

00
9-

13
 -

20
09

Figure 3: Left: overcomplete DCT dictionary for 8 × 8 image patches. Right: sparse dictionary

trained over the overcomplete DCT using Sparse K-SVD. Dictionary atoms are represented using

6 coefficients each. Marked atoms are magnified in Fig. 4.

1,3 4,4

+

4,1 6,6 2,2 7,8

= + + + +

9,6 8,5 11,8 7,8 11,4 2,8

+= + + + +

+= + + + +

6,5 3,1 5,8 1,2 8,6 2,8

Figure 4: Some atoms from the trained dictionary in Fig. 3, and their overcomplete DCT com-

ponents. The index pair above each overcomplete DCT atom denotes the wave number of the

atom, with (1,1) corresponding to the upper-left atom, (16,1) corresponding to the lower-left

atom, etc. In each row, the components are ordered by decreasing magnitude of the coefficients,

the most significant component on the left. The coefficients themselves are not shown due to

space limitations, but are all of the same order of magnitude.

implementation, as all dictionary-dependent computations are absorbed into the pre-

computation. The Batch-OMP complexity per-signal is given by:

Tb−omp = TD + t2L + 3tL + t3 . (17)

The precomputation step involves computing the Gram matrix G = DTD. For an

implicit dictionary, this will generally require 2L applications of the dictionary, or TG =

12

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

CS
-2

00
9-

13
 -

20
09

2LTD. For an explicit dictionary, we can exploit the symmetry of G to obtain TG = NL2.

4.2 Using Sparse Dictionaries

For the dictionary structure (4), the forward dictionary operator is implemented by

multiplying the sparse representation by A and applying Φ; the adjoint operator is

obtained by reversing and transposing the process.

In practice, operations involving sparse matrices introduce an overhead compared to

the equivalent operations with explicit matrices. The performance of the sparse-matrix

operations will vary depending on the architecture, data structures, and algorithms used

(see [39] for some insights on the topic). In this paper, we make the simplifying assump-

tion that the complexity of these operations is proportional to the number of non-zeros in

the sparse matrix. Specifically, we consider multiplying a vector by a sparse matrix with

Z non-zeros as equivalent to multiplying it by a full matrix with αZ (α ≥ 1) coefficients

(a total of 2αZ multiplications and additions). For a concrete figure, we use α = 7,

which is roughly what our machine (an Intel Core 2 running Matlab 2007a) produced.

Thus, the complexity of the sparse dictionary operators is

TD = 2αpL + TΦ , (18)

where pL is the number of non-zeros in A, and TΦ is the complexity of the base dictionary.

OMP-Cholesky with a sparse dictionary is implemented slightly differently than with

either an explicit or implicit dictionary. We derive the complexity of this implementation

in the Appendix, where we arrive at

Tomp {sparse-dict} = 4tTΦ + 2αtpL + 2t(L + N) + t3 . (19)

As to Batch-OMP, deriving its complexity is straightforward as (18) can be readily

substituted in (17), leading to

Tb−omp {sparse-dict} = 2αpL + TΦ + t2L + 3tL + t3 . (20)

The precomputation step, where the dictionary implementation has more influence, will

generally be implemented using a series of applications of the base dictionary and its

adjoint. Taking into account the symmetry of G, this sums up to

TG {sparse-dict} = 2LTΦ + αpL2 . (21)

In specific cases, this process can be further accelerated. For instance, if GΦ = ΦTΦ is

assumed to be known (a reasonable assumption when Φ is some standard transform),

the computation of G reduces to G = ATGΦA.

Table 1 summarizes the complexities of the various OMP configurations.

13

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

CS
-2

00
9-

13
 -

20
09

4.3 Some Example Base Dictionaries

The base dictionary Φ will usually be chosen to have a compact representation and

sub-N2 implementation, which characterizes most implicit dictionaries. For concrete

quantitative results, we consider specifically the following types of base dictionaries:

Separable dictionaries: Dictionaries which are the Kronecker product of several 1-

dimensional dictionaries. When the signal x ∈ R
N1·N2···Nd represents a d-dimensional

patch of size N1 ×N2 × . . .×Nd, sorted in column-major order, a dictionary can be con-

structed for this signal by combining d separate 1-dimensional dictionaries Φi ∈ R
Ni×Mi ,

where each Φi is designed to represent the signal’s behavior along its i-th dimension. The

combined dictionary is given by Φ = Φd ⊗Φd−1 · · · ⊗Φ1 ∈ R
N×M , with N =

∏

i Ni and

M =
∏

i Mi. The dictionary adjoint is given by DT = (Φd)T ⊗ (Φd−1)T ⊗ · · · ⊗ (Φ1)T .

The forward and adjoint operators can be efficiently implemented by applying each of

the 1-D transforms Φi or (Φi)T (respectively) along the i-th dimension, in any order.

Assuming the dictionaries are applied in order (from 1 to d), and denoting ai = Mi/Ni,

the complexity of this dictionary is given by

TΦ = 2N
(

M1 + a1M2 + a1a2M3 + . . . + (a1a2 · · · ad−1)Md

)

. (22)

Note that in the above we assumed that the 1-D dictionaries are applied via explicit

matrix multiplications, and complexity may further decrease if the Φi’s have efficient

implementations. The separable dictionary model generalizes many common dictionar-

ies such as the DCT (Fourier), overcomplete DCT (Fourier), and Wavelet dictionaries,

among others.

Linear-time dictionaries: Dictionaries which are implemented with a constant num-

ber of operations per sample, so

TΦ = βN . (23)

for some constant value β. Indeed these are the most efficient dictionaries possible,

though they are restricted to a linear number of atoms in N . Examples include the

Wavelet, Contourlet, and Complex Wavelet dictionaries, among others.

Other types of dictionaries could also be considered. We restrict the discussion

to these two dictionary families as they roughly represent two extremes — a near-N2

polynomial dictionary and a linear dictionary. Many other dictionaries used in practice,

such as the Curvelet and Undecimated Wavelet dictionaries, fall in-between the two,

with complexities of around Θ(N log N).

4.4 Quantitative Comparison and Analysis

Table 2 lists some operation counts of OMP with explicit and sparse dictionaries, for a

few sizes of signal sets. For each set, the fastest method is designated in bold numerals.

Note that the complexity of OMP-Cholesky scales linearly with the number of the signals,

whereas Batch-OMP gains its efficiency as the number of signals increases.

14

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

CS
-2

00
9-

13
 -

20
09

Dictionary OMP-Cholesky Batch-OMP

Type (Per Signal) Per Signal Precomputation

Implicit 4tTD + 2t(L + N) + t3 TD + t2L + 3tL + t3 2LTD

Explicit 2tNL + 2t2N + 2t(L + N) + t3 2NL + t2L + 3tL + t3 NL2

Sparse 4tTΦ + 2αtpL + 2t(L + N) + t3 TΦ + 2αpL + t2L + 3tL + t3 2LTΦ + αpL2

Dictionary: N × L Base dictionary: N × M

of iterations: t Atom sparsity (sparse dictionary): p

Table 1: Complexity of OMP for implicit, explicit and sparse dictionaries.

As can be seen in the Table, sparse dictionaries provide a pronounced performance

increase compared to explicit ones for any number of signals. The largest gains are

achieved for high-dimensional signals, where the complexity gap between explicit and

implicit dictionaries is more significant. For large sets of signals (rightmost columns in

these tables) we see that the operation counts may increase to the point where sparse

dictionaries become the only feasible option.

A graphical comparison of these complexities is provided in Fig. 5. The Figure depicts

the operation counts for coding 100, 000 signals using the two OMP variants and all

dictionary types (explicit, implicit and sparse). We see that for Batch-OMP (dark bars),

the significant complexity gap is between explicit and non-explicit dictionaries, with the

non-explicit dictionaries all having very close complexities; in this case sparse dictionaries

clearly offer a more flexible and useful structure than the other options, imposing only

a small computational toll. Moving to OMP-Cholesky (light bars), we see that the

complexity difference between the various dictionary options here is larger, however

sparse dictionaries still provide the best balance between efficiency and adaptability.

Indeed, they are significantly faster than the explicit option, and more flexible than the

implicit options. We also see that the complexity advantage of sparse dictionaries is

much more pronounced for larger dictionaries and higher-dimensional signals.

4.5 Dictionary Training

Unsurprisingly, the Sparse K-SVD algorithm is much faster than the standard and ap-

proximate K-SVD implementations. The gain stems mostly from the acceleration in the

sparse-coding step (line 5 in the algorithm). In the case of Batch-OMP, the precompu-

tation step is also accelerated as it can be done by precomputing GΦ = ΦTΦ prior to

the training (Φ is fixed through the training process).

In the asymptotic case t ∼ p ¿ M ∼ L ∼ N ¿ R, with R the number of training

signals, the complexity of the approximate K-SVD can be shown to be proportional to

the complexity of its sparse-coding method [36]. This result is easily extended to the

Sparse K-SVD case, and consequently we find that the Sparse K-SVD is faster than the

approximate K-SVD by approximately the sparse-coding speedup. As we will see in the

experimental section, a more significant (though less obvious) advantage of the Sparse

15

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

CS
-2

00
9-

13
 -

20
09

of Signals: 1 10 102 103 104 105

Exp 1.6 16.0 160.1 1,600.7 16,007.3 160,072.8

OMP-Chol Sep 0.9 (x1.9) 8.5 (x1.9) 85.3 (x1.9) 852.7 (x1.9) 8,527.3 (x1.9) 85,272.6 (x1.9)

Lin 0.3 (x5.3) 3.0 (x5.3) 30.4 (x5.3) 304.3 (x5.3) 3,043.4 (x5.3) 30,434.4 (x5.3)

Exp 67.4 70.0 96.1 357.1 2,967.2 29,067.9

B-OMP Sep 36.1 (x1.9) 36.8 (x1.9) 44.4 (x2.2) 120.5 (x2.0) 881.0 (x3.4) 8,486.5 (x3.4)

Lin 10.0 (x6.7) 10.6 (x6.6) 15.9 (x6.1) 69.1 (x5.2) 600.9 (x4.9) 5,919.6 (x4.9)

Signal: 16 × 16 Dictionary: 256 × 512 Base dictionary: 256 × 512

of atoms: t = 6 Atom sparsity: p = 4 α = 7, β = 10

of Signals: 1 10 102 103 104

Exp 143.0 1,439.5 14,395.1 143,951.0 1,439,510.4

OMP-Chol Sep 14.4 (x9.0) 144.2 (x9.0) 1,442.0 (x9.0) 14,420.4 (x9.0) 144,203.6 (x9.0)

Lin 6.4 (x22.4) 64.3 (x22.4) 642.0 (x22.4) 6,429.9 (x22.4) 64,298.9 (x22.4)

Exp 20,651.7 20,764.8 21,895.9 33,206.9 146,316.6

B-OMP Sep 2,059.6 (x10.0) 2,070.5 (x10.0) 2,179.6 (x10.0) 3,270.3 (x10.2) 14,177.4 (x10.3)

Lin 789.3 (x26.2) 798.6 (x26.0) 891.1 (x24.6) 1,816.5 (x18.3) 11,069.9 (x13.2)

Signal: 12 × 12 × 12 Dictionary: 1728 × 3456 Base dictionary: 1728 × 3456

of atoms: t = 12 Atom sparsity: p = 8 α = 7, β = 10

Table 2: Operation counts (in millions of operations) of OMP-Cholesky and Batch-OMP for

explicit, sparse+separable and sparse+linear dictionaries (denoted Exp, Sep, and Lin, respec-

tively). Values in parentheses are the speedups relative to an explicit dictionary. Bold numerals

designate the fastest result for each set size. Separable dictionaries assumes N1 = . . . = Nd =

M1 = . . . = Md.

K-SVD is the reduction in overfitting. This results in a substantially smaller number of

examples required for the training process, and leads to a further reduction in training

complexity.

5 Applications and Simulation Results

The sparse dictionary structure has several advantages. It enables larger dictionaries to

be trained, for instance to fill-in bigger holes in an image inpainting task [6]. Specifically

of interest are dictionaries for high-dimensional data. Indeed, employing sparsity-based

techniques to high-dimensional signal data is challenging, as the complicated nature of

these signals limits the availability of analytic transforms, while the complexity of the

training problem constrains the use of existing adaptive techniques as well. The sparse

dictionary structure — coupled with the Sparse K-SVD algorithm — make it possible

to process such signals and design rich dictionaries for representing them.

Another application for sparse dictionaries is signal compression. Using an adaptive

dictionary to code signal blocks leads to sparser representations than generic dictionaries,

16

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

CS
-2

00
9-

13
 -

20
09

10
9

10
10

10
11

10
12

O
M

P-E
xp

lic
it

O
M

P-S
pars

e-S
ep

O
M

P-S
epara

ble

B-O
M

P-E
xp

lic
it

O
M

P-S
pars

e-L
in

B-O
M

P-S
pars

e-S
ep

O
M

P-L
in

ear

B-O
M

P-S
pars

e-L
in

B-O
M

P-S
epara

ble

B-O
M

P-L
in

ear
10

10

10
11

10
12

10
13

10
14

O
M

P-E
xp

lic
it

O
M

P-S
pars

e-S
ep

B-O
M

P-E
xp

lic
it

O
M

P-S
epara

ble

O
M

P-S
pars

e-L
in

B-O
M

P-S
pars

e-S
ep

B-O
M

P-S
pars

e-L
in

O
M

P-L
in

ear

B-O
M

P-S
epara

ble

B-O
M

P-L
in

ear

Figure 5: Operation counts of OMP-Cholesky and Batch-OMP for coding 105 signals, using either

explicit, sparse+linear, sparse+separable, implicit linear, or implicit separable dictionaries. Bars

are shown on a logarithmic scale. The parameters of the plots are identical to those in Table 2.

Left: operation counts for signals of size 16 × 16. Right: operation counts for signals of size

12 × 12 × 12. Dark bars correspond to Batch-OMP implementations.

and therefore to higher compression rates. Such dictionaries, however, must be stored

alongside the compressed data, and this becomes a limiting factor when used with explicit

dictionary representations. Sparse dictionaries significantly reduce this overhead. In

essence, wherever a prespecified dictionary is used for compression, one may readily

introduce adaptivity by training a sparse dictionary over this predesigned one. The

facial compression algorithm in [8] makes a good candidate for such a technique, and we

are currently researching this option further.

In the following experiments we focus on a specific type of signal, namely 3-D com-

puted tomography (CT) imagery. We compare the sparse and explicit dictionary struc-

tures in their ability to adapt to specific data and generalize from it. We also provide

concrete CT denoising results for the two dictionary structures, and show that the sparse

dictionary produces superior results to the explicit one, especially in the higher noise

range. Our simulations make use of the CT data provided by the NIH Visible Human

Project4.

5.1 Training and Generalization

Training a large dictionary generally requires increasing the number of training signals

accordingly. Heuristically, we expect the training set to grow at least linearly with the

number of atoms, to guarantee sufficient information for the training process. Uniqueness

is in fact only known to exist for an exponential number of training signals in the general

case [40]. Unfortunately, large numbers of training signals quickly become impractical

when the dictionary size increases, and it is therefore highly desirable to develop methods

for reducing the number of required examples.

In the following experiments we compare the generalization performance of K-SVD

4http://www.nlm.nih.gov/research/visible/visible_human.html

17

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

CS
-2

00
9-

13
 -

20
09

versus Sparse K-SVD with small to moderate training sets. We use both methods to train

a 512 × 1000 dictionary for 8 × 8 × 8 signal patches. The data is taken from the Visible

Male - Head CT volume. We extract the training blocks from a noisy version of the

CT volume (PSNR=17dB), while the validation blocks are extracted directly from the

original volume. Training is performed using 10,000, 30,000, and 80,000 training blocks,

randomly selected from the noisy volume, and with each set including all the signals

in the previous sets. The validation set consists of 20,000 blocks, randomly selected

from the locations not used for training. The initial dictionary for both methods is the

overcomplete DCT dictionary5. For Sparse K-SVD, we use the overcomplete DCT as

the base dictionary, and set the initial A matrix to identity. The sparse dictionary is

trained using either 8, 16, or 24 coefficients per atom.

Fig. 6 shows our results. The top and bottom rows show the evolution of the K-

SVD and Sparse K-SVD performance on the training and validation sets (respectively)

during the algorithm iterations. Following [5], we code the noisy training signals using an

error target proportional to the noise, and have the `0 sparsity of the representations as

the training target function. We evaluate performance on the validation signals (which

are noiseless) by sparse-coding them with a fixed number of atoms, and measuring the

resulting representation RMSE.

We can see that average number of non-zeros for the training signals decreases rapidly

in the K-SVD case, especially for smaller training sets. However, this phenomena is

mostly an indication of overfitting, as the drop is greatly attenuated when adding training

data. The overfitting consequently leads to degraded performance on the validation set,

as can be seen in the bottom row.

In contrast, the sparse dictionary shows much more stable performance. Even with

only 10,000 training signals, the learned dictionary performs reasonably well on the

validation signals. As the training set increases, we find that the sparsest (p = 8)

dictionary begins to slightly lag behind, indicating the limits of the constrained structure.

However, for p = 16 and p = 24 the sparse dictionary continues to gradually improve,

and consistently outperforms the standard K-SVD. It should be noted that while the

K-SVD dictionary is also expected to improve as the training set is increased — possibly

surpassing the Sparse K-SVD at some point — such large training sets are extremely

difficult to process, to the point of being impractical.

5.2 CT Volume Denoising

We used the adaptive K-SVD Denoising algorithm [5] to evaluate CT volume denoising

performance. The algorithm trains an overcomplete dictionary using blocks from the

5A 1-dimensional N×L overcomplete DCT dictionary is essentially a cropped version of the orthogonal

L×L DCT dictionary matrix. A k-D overcomplete DCT dictionary is obtained as the Kronecker product

of k 1-D overcomplete DCT dictionaries. Note that the number of atoms in the resulting dictionary is

Lk and has an integer k-th root (in our case, 103 = 1000 atoms).

18

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

CS
-2

00
9-

13
 -

20
09

10000 Training Signals 30000 Training Signals 80000 Training Signals

T
ra

in
in

g
 p

e
n

a
lt
y
 e

v
o

lu
ti
o

n

0 10 20 30 40 50 60

0.5

1

1.5

2

2.5

3

3.5

Iteration

M
ea

n
no

. n
on

ze
ro

s

KSVD
S−KSVD(8)
S−KSVD(16)
S−KSVD(24)

0 10 20 30 40 50 60

0.5

1

1.5

2

2.5

3

3.5

Iteration

M
ea

n
no

. n
on

ze
ro

s

KSVD
S−KSVD(8)
S−KSVD(16)
S−KSVD(24)

0 10 20 30 40 50 60

0.5

1

1.5

2

2.5

3

3.5

Iteration

M
ea

n
no

. n
on

ze
ro

s

KSVD
S−KSVD(8)
S−KSVD(16)
S−KSVD(24)

V
a

lid
a

ti
o

n
 p

e
n

a
lt
y
 e

v
o

lu
ti
o

n

0 10 20 30 40 50 60
5

5.5

6

6.5

7

Iteration

RM
SE

KSVD
S−KSVD(8)
S−KSVD(16)
S−KSVD(24)

0 10 20 30 40 50 60
5

5.5

6

6.5

7

Iteration

RM
SE

KSVD
S−KSVD(8)
S−KSVD(16)
S−KSVD(24)

0 10 20 30 40 50 60
5

5.5

6

6.5

7

Iteration

RM
SE

KSVD
S−KSVD(8)
S−KSVD(16)
S−KSVD(24)

Figure 6: Training and validation results for patches from Visible Male - Head. Training signals

are taken from the noisy volume (PSNR=17dB), and validation signals are taken from the original

volume. Block size is 8×8×8, and dictionary size is 512×1000. Training signals (noisy) are sparse-

coded using an error stopping criterion proportional to the noise; validation signals (noiseless)

are sparse-coded using a fixed number of atoms. Shown penalty functions are respectively the

average number of non-zeros in the sparse representations and the coding RMSE). Sparse K-SVD

with atom-sparsity p is designated in the legend as S-KSVD(p).

noisy signal, and then denoises the signal using this dictionary, averaging denoised blocks

when they overlap in the result.

We performed the experiments on the Visible Male - Head and Visible Female -

Ankle volumes. The intensity values of each volume were first fitted to the range [0,255]

for comparability with image denoising results, and then subjected to additive white

Gaussian noise with varying standard deviations of 5 ≤ σ ≤ 100. We tested both 2-D

denoising, in which each CT slice is processed separately, and 3-D denoising, in which the

volume is processed as a whole. The atom sparsity for these experiments was heuristically

set to p = 6 in the 2-D case and p = 16 in the 3-D case, motivated by results such as

those in Fig. 6. Our denoising results are actually expected to improve as these values

are increased, up to the point where overfitting becomes a factor. However, we preferred

to limit the atom sparsity in these experiments in order to maintain the complexity

advantage. Further work may establish a more systematic way of selecting these values.

Our results are summarized in Table 3. For convenience, Table 4 lists the complete set

of parameters used in these experiments. As can be seen, in the low noise range (σ ≤ 20)

the two methods perform essentially the same. However, in the medium and high noise

ranges (σ ≥ 30) the sparse dictionary clearly surpasses the explicit one, with some cases

where the standard K-SVD actually performs worse, or just negligibly better, than the

19

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

CS
-2

00
9-

13
 -

20
09

Test σ / PSNR 2-D Denoising 3-D Denoising

ODCT KSVD S-KSVD ODCT KSVD S-KSVD

Vis. M. 5 / 34.15 43.61 43.94 43.72 45.10 45.12 45.16

Head 10 / 28.13 39.34 40.13 39.70 41.43 41.55 41.54

20 / 22.11 34.97 36.08 35.81 37.67 38.01 38.11

30 / 18.59 32.48 33.13 33.08 35.34 35.80 36.12

50 / 14.15 29.62 29.67 29.74 32.56 32.85 33.38

75 / 10.63 27.84 27.75 27.82 30.44 30.43 30.74

100 / 8.13 26.51 26.40 26.48 29.40 29.27 29.46

Vis. F. 5 / 34.15 43.07 43.23 43.15 44.38 44.61 44.59

Ankle 10 / 28.13 39.25 39.70 39.45 40.87 41.21 41.18

20 / 22.11 35.34 36.12 35.87 37.52 37.99 38.01

30 / 18.59 33.01 33.76 33.67 35.47 35.94 36.11

50 / 14.15 30.15 30.43 30.48 32.86 33.40 33.77

75 / 10.63 27.88 27.84 27.92 30.98 31.44 31.84

100 / 8.13 26.42 26.31 26.39 29.65 29.82 30.18

Table 3: CT denoising results using K-SVD, Sparse K-SVD, and overcomplete DCT. Bold nu-

merals denote the best result in each test.

initial overcomplete DCT dictionary, due to the weakness of the K-SVD when used

with insufficient training data and high noise. The sparse structure thus shows effective

regularization in the presence of noise, while maintaining the required flexibility to rise

above the performance of its base dictionary.

In conclusion, when considering the combination of complexity, stability and struc-

ture, sparse dictionaries form an appealing alternative to the existing dictionary forms

in sparsity-based techniques. The pronounced difference between 2-D and 3-D denoising

provides further motivation for the move towards bigger patches and dictionaries, where

sparse dictionaries are truly advantageous. Some actual denoising results are shown in

Fig. 7.

6 Summary and Future Work

We have presented a novel dictionary structure which is both adaptive and efficient.

The sparse structure is simple and can be easily integrated into existing sparsity-based

methods. It provides fast forward and adjoint operators, enabling its use with larger

dictionaries and higher-dimensional data. Its compact form is beneficial for tasks such

as compression, communication, and real-time systems. It may be combined with any

implicit dictionary to enhance its adaptability with very little overhead.

We developed an efficient K-SVD-like algorithm for training the sparse dictionary,

and showed that the structure provides better generalization abilities than the non-

constrained one. The algorithm was applied to noisy CT data, where the performance of

20

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

CS
-2

00
9-

13
 -

20
09

2-D Denoising 3-D Denoising

Block size 8 × 8 8 × 8 × 8

Dictionary size 64 × 100 512 × 1000

Atom sparsity (Sparse K-SVD) 6 16

Initial dictionary Overcomplete DCT Overcomplete DCT

Training signals 30,000 80,000

K-SVD iterations 15 15

Noise gain 1.15 1.05

Lagrange multiplier 0 0

Step size 1 2

Table 4: Parameters of the K-SVD denoising algorithm (see [5] for more details). Note that a

Lagrange multiplier of 0 means that the noisy image is not weighted when computing the final

denoised result.

the sparse structure was found to exceed that of the explicit representation under mod-

erate and high noise. The proposed dictionary structure is thus a compelling alternative

to existing explicit and implicit dictionaries alike, offering the benefits of both.

The full potential of the new dictionary structure is yet to be realized. We have

provided preliminary results for CT denoising, however other signal processing tasks are

expected to benefit from the new structure as well, and additional work is required to

establish these gains. As noted in the introduction, the generality of the sparse dictionary

structure allows it to be easily combined with other dictionary forms. As dictionary

design receives increasing attention, the proposed structure can become a valuable tool

for accelerating, regularizing, and enhancing adaptability in future dictionary structures.

Appendix

In this Appendix we briefly review the Orthogonal Matching Pursuit (OMP) algorithm,

and discuss the OMP-Cholesky and Batch-OMP implementations along with their com-

plexities.

The OMP algorithm aims to solve the sparse approximation problem (1), by taking a

greedy approach. The algorithm begins with an empty set of atoms, and each iteration,

selects the atom with highest correlation to the current residual, and adds it to the set.

Once the atom is added, the signal is orthogonally projected to the span of the selected

atoms, the residual is recomputed, and the process repeats with the new residual. The

method terminates once the desired number of atoms is reached, or the predetermined

error target is met.

The two computationally demanding processes in the OMP iteration are the compu-

tation of the atom-residual correlations DT r, and the orthogonal projection of the signal

on the span of the selected atoms. Beginning with the orthogonal projection task, we

21

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

CS
-2

00
9-

13
 -

20
09

(a) Original (b) Noisy

(c) 2-D Sparse K-SVD (d) 3-D Sparse K-SVD

Figure 7: Denoising results for Visible Male - Head, slice #137 (σ = 50).

let I denote the set of selected atoms, and thus write the projection as

γI = (DI)
+x , (24)

where γI are the non-zero coefficients in the sparse representation γ, and DI are the

selected atoms. The computation is efficiently implemented by employing a progres-

sive matrix decomposition such as a Cholesky or QR decomposition [20, 36, 41]. The

progressive Cholesky approach is obtained by writing

γI = (DT
I DI)

−1DT
I x , (25)

and using a progressive update of the Cholesky decomposition of DT
I DI to perform the

inversion.

22

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

CS
-2

00
9-

13
 -

20
09

The progressive Cholesky update involves two operations which assume direct access

to the dictionary atoms. Namely, it requires the computation of DT
I dj where dj is the

selected atom, and the computation of DIγI . For explicit dictionaries such operations

are straightforward, and the complexity of the entire OMP-Cholesky algorithm is easily

determined to be

Tomp {explicit-dict} = tTD + 2t(L + N) + t3 + 2t2N . (26)

In this expression, the first three terms are common to all OMP-Cholesky implementa-

tions, whereas the final term arises from the two mentioned dictionary-specific compu-

tations.

For implicit dictionaries, where only full forward and adjoint operators are supported,

these two computations involve three dictionary applications — one for computing the

atom dj and two for multiplying by D and DT . Thus, the complexity of OMP-Cholesky

in this case becomes

Tomp {implicit-dict} = 4tTD + 2t(L + N) + t3 . (27)

For sparse dictionaries, operations with sub-dictionaries are straightforward as in the

explicit case. Specifically, computing DIγI = ΦAIγI at the n-th iteration requires mul-

tiplying by AI (np non-zeros) and applying Φ; computing DT
I dj = AT

I ΦTΦaj requires

multiplying by AT
I plus two applications of Φ. Summing over all n = 1 . . . t iterations,

we find that the OMP-Cholesky complexity with a sparse dictionary is

Tomp {sparse-dict} =

= tTD + 2t(L + N) + t3 + 3tTΦ + 2αt2p

≈ 4tTΦ + 2αtpL + 2t(L + N) + t3 . (28)

Note that in the above we neglected 2αt2p relative to 2αtpL as we assume t ¿ L.

In all these cases, the complexity of OMP-Cholesky is generally dominated by the

dictionary operators, which emerge both in the correlation step and in the progressive

Cholesky update. Batch-OMP [36] significantly reduces the complexity of these compu-

tations by adding an initial precomputation phase in which the Gram matrix G = DTD

is computed. Given this matrix, a quick update of the atom-residual correlations each

iteration is possible, and the computation of DT
I dj in the Cholesky update becomes

unnecessary as well.

Performing the Batch-OMP precomputation requires a substantial amount of work

and memory, and is only worthwhile when a large number of signals needs to be coded.

The complexity of the precomputation is obviously dictionary-dependent, and expres-

sions for a few types of dictionaries are mentioned in the text. Per-signal, Batch-OMP

involves a single computation of DTx, after which the cost of each iteration is small.

The complexity of Batch-OMP per-signal can be determined to be

Tb−omp = TD + t2L + 3tL + t3 , (29)

23

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

CS
-2

00
9-

13
 -

20
09

and we note that this result is independent of the dictionary implementation, apart from

the value of TD.

References

[1] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis

pursuit,” SIAM Review, vol. 43, no. 1, pp. 129–159, 2001.

[2] S. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE

Trans. Signal Process., vol. 41, no. 12, pp. 3397–3415, 1993.

[3] A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of systems of

equations to sparse modeling of signals and images,” SIAM Review, vol. 51, no. 1,

pp. 34–81, 2009.

[4] M. Elad, J. L. Starck, P. Querre, and D. L. Donoho, “Simultaneous cartoon and

texture image inpainting using morphological component analysis (MCA),” Applied

and Computational Harmonic Analysis, vol. 19, pp. 340–358, 2005.

[5] M. Elad and M. Aharon, “Image denoising via sparse and redundant representations

over learned dictionaries,” IEEE Trans. Image Process., vol. 15, no. 12, pp. 3736–

3745, 2006.

[6] J. Mairal, G. Sapiro, and M. Elad, “Learning multiscale sparse representations for

image and video restoration,” SIAM Multiscale Modeling and Simulation, vol. 7,

no. 1, pp. 214–241, 2008.

[7] M. Protter and M. Elad, “Image sequence denoising via sparse and redundant rep-

resentations,” IEEE Trans. Image Process., 2008. To appear.

[8] O. Bryt and M. Elad, “Compression of facial images using the K-SVD algorithm,”

Journal of Visual Communication and Image Representation, vol. 19, no. 4, pp. 270–

283, 2008.

[9] M. Zibulevsky and B. A. Pearlmutter, “Blind source separation by sparse decom-

position in a signal dictionary,” Neural Computation, vol. 13, no. 4, pp. 863–882,

2001.

[10] H. Y. Liao and G. Sapiro, “Sparse representations for limited data tomography,” in

5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro,

2008. ISBI 2008, pp. 1375–1378, 2008.

[11] G. Davis, S. Mallat, and M. Avellaneda, “Adaptive greedy approximations,” Con-

structive Approximation, vol. 13, no. 1, pp. 57–98, 1997.

24

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

CS
-2

00
9-

13
 -

20
09

[12] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching pursuit:

recursive function approximation with applications to wavelet decomposition,” 1993

Conference Record of The 27th Asilomar Conference on Signals, Systems and Com-

puters, pp. 40–44, 1993.

[13] D. L. Donoho and M. Elad, “Optimal sparse representation in general (nonorthog-

onal) dictionaries via L1 minimization,” Proceedings of the National Academy of

Sciences, vol. 100, pp. 2197–2202, 2003.

[14] I. F. Gorodnitsky and B. D. Rao, “Sparse signal reconstruction from limited data

using FOCUSS: a re-weighted minimum norm algorithm,” IEEE Trans. Signal Pro-

cess., vol. 45, no. 3, pp. 600–616, 1997.

[15] D. L. Donoho, Y. Tsaig, I. Drori, and J. L. Starck, “Sparse solution of underdeter-

mined linear equations by stagewise orthogonal matching pursuit,” Submitted.

[16] S. Sardy, A. G. Bruce, and P. Tseng, “Block coordinate relaxation methods for non-

parametric wavelet denoising,” Journal of Computational and Graphical Statistics,

vol. 9, no. 2, pp. 361–379, 2000.

[17] M. Elad, “Why simple shrinkage is still relevant for redundant representations?,”

IEEE Trans. Inf. Theory, vol. 52, no. 12, pp. 5559–5569, 2006.

[18] M. Elad, B. Matalon, and M. Zibulevsky, “Coordinate and subspace optimization

methods for linear least squares with non-quadratic regularization,” Applied and

Computational Harmonic Analysis, vol. 23, no. 3, pp. 346–367, 2007.

[19] K. Schnass and P. Vandergheynst, “Dictionary preconditioning for greedy algo-

rithms,” IEEE Trans. Signal Process., 2007.

[20] T. Blumensath and M. Davies, “Gradient pursuits,” IEEE Trans. Signal Process.,

vol. 56, no. 6, pp. 2370–2382, 2008.

[21] S. Mallat, A wavelet tour of signal processing. Academic Press, 1999.

[22] E. J. Candès and D. L. Donoho, “Curvelets – a surprisingly effective nonadaptive

representation for objects with edges,” Curves and Surfaces, 1999.

[23] M. N. Do and M. Vetterli, “The contourlet transform: an efficient directional mul-

tiresolution image representation,” IEEE Trans. Image Process., vol. 14, no. 12,

pp. 2091–2106, 2005.

[24] I. W. Selesnick, R. G. Baraniuk, and N. C. Kingsbury, “The dual-tree complex

wavelet transform,” IEEE Signal Process Mag., vol. 22, no. 6, pp. 123–151, 2005.

[25] E. LePennec and S. Mallat, “Sparse geometric image representations with ban-

delets,” IEEE Trans. Image Process., vol. 14, no. 4, pp. 423–438, 2005.

25

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

CS
-2

00
9-

13
 -

20
09

[26] R. Vidal, Y. Ma, and S. Sastry, “Generalized principal component analysis

(GPCA),” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 12, pp. 1945–1959,

2005.

[27] K. Engan, S. O. Aase, and J. Hakon Husoy, “Method of optimal directions for frame

design,” Proceedings ICASSP’99 – IEEE International Conference on Acoustics,

Speech, and Signal Processing, vol. 5, pp. 2443–2446, 1999.

[28] M. Aharon, M. Elad, and A. M. Bruckstein, “The K-SVD: an algorithm for designing

of overcomplete dictionaries for sparse representation,” IEEE Trans. Signal Process.,

vol. 54, no. 11, pp. 4311–4322, 2006.

[29] R. R. Coifman and M. V. Wickerhauser, “Entropy-based algorithms for best basis

selection,” IEEE Trans. Inf. Theory, vol. 38, no. 2(2), pp. 713–718, 1992.

[30] H. H. Szu, B. A. Telfer, and S. L. Kadambe, “Neural network adaptive wavelets for

signal representation and classification,” Optical Engineering, vol. 31, p. 1907, 1992.

[31] W. J. Jasper, S. J. Garnier, and H. Potlapalli, “Texture characterization and defect

detection using adaptive wavelets,” Optical Engineering, vol. 35, p. 3140, 1996.

[32] M. Nielsen, E. N. Kamavuako, M. M. Andersen, M. F. Lucas, and D. Farina, “Opti-

mal wavelets for biomedical signal compression,” Medical and Biological Engineering

and Computing, vol. 44, no. 7, pp. 561–568, 2006.

[33] S. Lesage, R. Gribonval, F. Bimbot, and L. Benaroya, “Learning unions of orthonor-

mal bases with thresholded singular value decomposition,” Proceedings ICASSP’05 –

IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5,

pp. 293–296, 2005.

[34] M. Aharon and M. Elad, “Sparse and redundant modeling of image content using

an image-signature-dictionary,” SIAM Journal on Imaging Sciences, vol. 1, no. 3,

pp. 228–247, 2008.

[35] D. Labate, W. Lim, G. Kutyniok, and G. Weiss, “Sparse multidimensional rep-

resentation using shearlets,” in Proc. SPIE: Wavelets XI, vol. 5914, pp. 254–262,

2005.

[36] R. Rubinstein, M. Zibulevsky, and M. Elad, “Efficient implementation of the K-

SVD algorithm using batch orthogonal matching pursuit,” Technical Report – CS

Technion, 2008.

[37] A. J. Smola and B. Scholkopf, “Sparse greedy matrix approximation for machine

learning,” Proceedings of the 17th International Conference on Machine Learning,

pp. 911–918, 2000.

26

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

CS
-2

00
9-

13
 -

20
09

[38] R. A. Horn and C. R. Johnson, Topics in matrix analysis. Cambridge University

Press, 1991.

[39] E. J. Im, Optimizing the Performance of Sparse Matrix-Vector Multiplication. PhD

thesis, University of California, 2000.

[40] M. Aharon, M. Elad, and A. M. Bruckstein, “On the uniqueness of overcomplete

dictionaries, and a practical way to retrieve them,” Linear Algebra and Its Applica-

tions, vol. 416, no. 1, pp. 48–67, 2006.

[41] S. F. Cotter, R. Adler, R. D. Rao, and K. Kreutz-Delgado, “Forward sequential

algorithms for best basis selection,” IEEE Proceedings – Vision, Image and Signal

Processing, vol. 146, no. 5, pp. 235–244, 1999.

27

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

CS
-2

00
9-

13
 -

20
09

