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Abstract

Signal models are a cornerstone of contemporary signal and image processing
methodology. Of these models, analysis and synthesis sparse representation mod-
els have been particularly successful in a wide range of applications. Both models
take a decompositional approach, and describe signals in terms of an underly-
ing set, or dictionary, of elementary signals known as atoms. The analysis ap-
proach describes signals in terms of their inner products with the dictionary atoms,
whereas the synthesis model takes a reverse approach and describes signals as lin-
ear combinations of atoms. The driving force behind both models is sparsity — the
rapid decay of the representation coefficients over the dictionary. The two models
have been found effective in a wide array of signal and image processing tasks,
and lead to state-of-the-art results in applications such as denoising, demosaicing,
compression, inpainting, upscaling, compressive sensing, and more.

This thesis studies several aspects of the analysis and synthesis modeling
paradigms. We begin with the question of the relation between the two dictionary-
based models, which arises due to the mathematical resemblance between the two.
We show, through geometrical reasoning, that contrary to the mathematical sim-
ilarity, the two approaches are in fact generally distinct, with a significant gap
separating the two. The results of this study ignite a renewed interest in the
analysis formulation, and provide several insights about the model.

In the main part of the thesis we focus on the core component of these mod-

els — the dictionary. The dictionary represents the materialization of all our
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knowledge about the signal behavior, and its choice determines the success of the
entire model. We describe the two main disciplines of designing such dictionaries
— harmonic analysis and machine learning — and discuss the recent trend of con-
verging the two through parametric dictionaries. We develop a specific parametric
dictionary which we name the sparse dictionary, and which provides a simple and
expressive structure for designing adaptable and efficient dictionaries. Among the
applications of this new structure, we describe a complete system for compress-
ing generic images, which is unique in that it encodes each input image over a
specifically-trained dictionary, sent as part of the compressed stream.

In the last part of this thesis, we return to the analysis formulation and con-
sider the problem of dictionary training for analysis models. This is a relatively
recent field, motivated by the theoretical results mentioned above, as well as the
widespread success of parallel machinery for the synthesis model. We present two
approaches to the training problem. The first trains a dictionary for a new ¢°
analysis model, which is largely motivated by the geometrical understanding of
the analysis structure. The second method trains a pair of analysis and synthe-
sis dictionaries for thresholding-based image recovery, and provides a simple and
effective framework for developing image recovery processes. We find that the
analysis framework thus presents a promising new field, which is well-situated to

complement or compete with the synthesis approach.
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Chapter 1

Introduction

1.1 Signal Models

Signal processing applications are typically concerned with only a specific subset
(or family) of signals Q C RY which forms the informative content. Examples of
such families include natural images, facial images, fingerprints, audio recordings,
video clips, medical scans, geological readings, neurological signals, and financial
series, to name just a few. In practice, such a family will occupy only a small
volume within the signal domain R¥. It is this scarcity of the interesting signals
which forms the core of all signal and image processing techniques, and is exploited
to guide recovery, enhancement, and representation of signal data.

Signal models are a fundamental tool for facilitating this distinctiveness of the
interesting signals. A signal model formulates a mathematical description of the
family of interesting signals, which allows to distinguish them from the rest of the
signal space. Indeed, due to the complexity of natural phenomena, these models
are bound to remain approximate, and are subject to constant refinement. The
aim of signal modeling research is to design increasingly accurate models, which
faithfully capture the behavior of real signal data.

Signal models can be expressed in a variety of mathematical forms. One of the
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simplest and most common forms is as a penalty function
R(x): RY = R, (1.1)

which assigns smaller penalties to signals more likely to belong to 2. In statisti-
cal estimation theory, such a function is explained as coming from some a-priori

probability distribution assumed on the signal space,
L R
Px)=—=-e , (1.2)

with the two related through elementary Bayesian estimation rules (see e.g., [1]
which is part of this thesis). While this probabilistic interpretation is useful when
employing statistical or information-theoretic signal processing methods, in this
work we do not assume such an association in general. Indeed, many signal models
in practical use cannot be directly related to a distribution of the form (1.2), as the
resulting P(x) may not be square integrable over RY. Thus, we prefer to identify

signal models with the definition (1.1), which allows more general constructions.

1.1.1 Applications of Signal Models

Signal models are used in a wide array of contexts. Information theory teaches
us that the existence of a prior P(x) of the form (1.2) implies the ability to
compress signals, with the average codeword length E{In(1/P(x)) } decreasing as
‘P approaches the "true” data density P. Lossy compression is achieved by mapping
the input signals of lower P(x) to higher probability ones. Similar techniques
are sometimes used with models that do not admit to form (1.2) — such as the
sparseland model [2] — when the model explicitly induces compact representations
of its preferred signals.

Inverse problem regularization is another important use of signal models. The
standard inverse problem describes the acquisition process of a measured signal

y € RM™ by transforming and distorting some origin signal x € RY,

y=Tx+n. (1.3)
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Here, T : RY — RM is a known (not necessarily linear) transform, and n € RM
is the system noise. In this work we assume n to be white Gaussian i.i.d., though
generalizations to colored Gaussian noise and other noise models often exist. The
inverse problem formulation (1.3) describes a wide range of fundamental signal pro-
cessing tasks, such as deconvolution, demosaicing, interpolation, super-resolution,
source separation, compressive sensing, and tomography reconstruction, among
others. The special choice 7 = I represents the denoising problem, which is of
particular interest for analysis purposes.

Recovering x from y, even in the denoising case, is an impossible task with-
out further assumptions on x. The degradation operator 7 introduces further
complexity as it is typically lossy, making its direct inversion ill-posed and highly
unstable. The missing information is filled-in by the signal model, which is used to
guide the solver towards solutions closer to 2. Specifically, by penalizing undesired

signals, the model R(x) gives rise to the estimation process
1
X = Argmin §Hy—Tx’\|§+AR(x’), (1.4)

where A > 0 is a regularization parameter balancing the fidelity and regularity
terms. Indeed, for a model related to a probability distribution of the form (1.2),
this formulation can be interpreted as a maximum-a-posterior (MAP) estimator
of x [1, 3, 4]. In general, though, this formulation can exist independently of such
an interpretation. As can be seen, R(x) in the above expresses all our knowledge

about the set {2, and its accuracy directly determines the success of the process.

1.1.2 Sparsity-Based Models

A central notion in the design of signal models is sparsity. This notion has its roots
in fundamental scientific methodology (e.g., Occam’s razor), and is closely related
to concepts such as Minimum Description Length (MDL) [5] and Kolmogorov com-
plexity [6]. The idea is to model signals through a sparsifying transform x — v(x),

where v(x) € RY may have a different length than x (specifically, L > N). For
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signals in €, the representation v(x) is expected to be sparse, in the sense that its
sorted coefficients decay rapidly!. For signals not in €2, the representation vectors
should become denser. Indeed, the ability to define such a transform depends
directly on the assumption that © has very small "volume” within R”, as clearly
the set of sparse representations occupies a very small portion of R”. In practice,
signal models rarely fully achieve these stated goals, and classify some unwanted
signals as sparse, or misclassify some signals in €2 as dense; this is a main cause of
artifacts and loss of information in signal recovery and compression processes.
Given the transform ~(x), the sparsity of v describes the estimated likeliness
of x belonging to €. Thus, a signal model R(x) can be derived from this transform

via a sparsity measure C(7y), which penalizes denser representations:

R(x) = C(y(x)) . (1.5)

When C(«) forms a norm, such as the ¢2 norm, the model aims to decrease the
overall length of «y(x), and thus penalizes mostly the large coefficients in -+, while
giving less attention to the smaller ones?. Alternatively, robust sparsity mea-
sures, which have gained substantial popularity in the past two decades, penalize
more the non-vanishing small coefficients, while tolerating a limited number of
large ones. Such measures are much better at capturing the rate of decay of a
vector, and are more useful for describing modern sparsifying transforms, which
are known to produce heavy-tailed coefficient distributions in natural signal data
(see [8-10], and references therein). Examples of robust functions include the
Huber, Cauchy, and Tukey functions, as well as the family of ¢/ cost function
with 0 < p < 1 (see Table 1.1). The use of robust penalty functions has become

increasingly prominent in many areas of statistical estimation, machine learning,

and signal processing, including singular vector machines, principal component

!Formal measures of decay rates are established in the form of asymptotic decay bounds, but are

beyond the scope of this text. An excellent reference on this topic is Mallat’s book [7].
Indeed the ¢! norm is an exception, as it equally penalizes all magnitudes of coefficients. As such,

it establishes the boundary between robust and non-robust sparsity measures.

10



CHAPTER 1: INTRODUCTION

& p(x) = |z[” \/
z%/2 T ¢

Huber p(z) = / |lz| < v
c(lz] —¢/2) Jz|>c

Cauchy p(z) = log(1 + (z/c)?) \/

Tukey p(x) = { 1= (1= (z/c)?)” |z|<ec _v
1 [z] > ¢

Table 1.1: Some robust penalty functions. For all cases, C(vy) =3, p(7;)-

analysis, regression, clustering, and more.

1.2 Signal Modeling Using Dictionaries

With these definitions, it is clear that the careful design of the sparsifying trans-
form is critical for the success of the model. So, how does one go about constructing
a sparsifying transform? Well, a good starting point is linear operators. This ap-
proach naturally leads to the concept of a dictionary [11-13|, which is the name
given to the set of vectors, or atoms, describing the operator.

The dictionary is arranged as a matrix, with the atoms constituting its columns
or rows. In this work we use the notations D = [ajay ... a;] € RNXL and

T e REXN respectively, to distinguish the two options. When

Q=[ajay...ag]
the dictionary forms a basis, it is said to be complete. In this case every sig-
nal has a unique representation as a linear combination of the dictionary atoms,
x = Dy, with the linear coefficients given by ~4(x) = D™'x. The representation
~(x) can be equivalently viewed as coming from the inner products of x and the
atoms of Q = D™, known as the bi-orthogonal dictionary. Some of the most

well-known transforms constitute complete dictionaries, including the Fourier and

DCT transforms, which sparsify uniformly smooth signals, as well as the wavelet
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transform, which sparsifies piecewise-smooth 1-D signals with a finite number of

discontinuities [7].

1.2.1 Overcomplete Dictionaries: Analysis and Synthesis Models

Invertible dictionaries, though mathematically appealing, impose a strict limit
(L = N) on the number of atoms in the dictionary. Consequently, complete dic-
tionaries are limited in their ability to represent diverse natural signal behavior.
Lifting this constraint, by allowing L > N, leads to more general overcomplete
dictionary constructions, which are more descriptive than invertible dictionaries.
Over the past two decades, much research has been invested in developing such dic-
tionaries, which can increase sparsity as well as provide desirable properties such
as translation and rotation invariance. Overcomplete dictionaries such as steer-
able pyramids [14], complex wavelets [15], curvelets [16, 17|, contourlets [18, 19],
surfacelets [20] and shearlets [21], as well as a wide range of trained dictionar-
ies [22-35| are especially advantageous for multi-dimensional signal data, where
invertible dictionaries lose much of their effectiveness.

In the overcomplete case, dualities of the form x = Dy < ~ = Qx can
no longer hold. Thus, compared to the complete case, representation with over-
complete dictionaries must be more carefully defined. Indeed, the two equivalent
views of the transform in the invertible case lead to two distinct representation
paths in the overcomplete case: the analysis path, where a signal x is represented

via its inner products with the dictionary atoms,
Yo = 02X, (1.6)

and the synthesis path, where the signal is represented as a linear combination of
the atoms,

x = Dr, . (1.7)

In the synthesis case, further refinement is necessary due to the null space of

D, which leads to a non-unique choice of 7, in (1.7). In order to obtain a well-
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defined representation v (x) for use in (1.5), one simple approach is to utilize the
Moore-Penrose pseudo-inverse dictionary Q = D™, and select v, = 2x. This
choice essentially reduces the model to an analysis one, and is mostly used when
D forms a tight frame, in which case Q = D” is easy to compute.

Another strategy, leading to a non-linear representation, is to choose ~, as the

sparsest possible representation based on the sparsity measure C(=y):
v, = Argmin C(v) Subject To x = D~ . (1.8)
¥

This approach assigns to each signal its highest possible likelihood according to
the model, and requires more advanced machinery, developed mostly in the past
fifteen or so years |7, 36]. Of specific interest is the (° case, where C(v) = ||vlo
counts the number of non-zeros in the representation. For this case, problem (1.8)

becomes the combinatorial sparse coding problem,
v, = Argmin ||7|lo Subject To x = D~ , (1.9)
¥

which aims to represent x using the smallest number of atoms possible. This
problem, known to be NP-hard in general [37|, can be efficiently approximated
using a wide array of algorithms, including greedy pursuits [37-41], convex relax-
ation [12, 42|, iterative shrinkage [43-45|, and others [46—48].

Another compelling choice for C(+) is the ¢! norm C(v) = ||v||1, which provides
a powerful combination of robustness and convexity. The ¢! option is also touted
as a stable approximation of the ¢° choice [42, 49, 50]. The resulting problem is
given by

v, = Argmin ||7|; Subject To x =D~ . (1.10)
Y

This formulation forms a convex Linear Programming (LP) problem, for which
a variety of solvers are available. An interesting property of this formulation,
derived from the behavior of LP problems, is that it naturally leads to a solution
~, supported over a basis of R™ within D [12|, and thus, this approach is named
Basis Pursuit (BP).
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It is worth mentioning that as an alternative to a unique representation, a
stochastic approach which considers multiple solutions to (1.7) has also been
recently proposed [51]. This approach constructs a representation 4, which is
the weighted average of several individual sparse solutions, and converges to the
MMSE estimator given a noisy signal. Indeed, research in this direction is still

ongoing, and is beyond the scope of this work.

1.2.2 Inverse Problem Solution Using Analysis and Synthesis Models

Dictionary-based signal models form powerful regularizers for inverse problem so-
lution. Plugging the analysis transform in (1.4) leads to the analysis-based recov-

ery process

1
% = Argmin §HY—TX'H§+)\C’(QX’). (1.11)

For the proper choice of C/(+), this problem is convex and can be solved with stan-
dard algorithms. Of specific interest is the choice C'(vy) = ||7||1, as it represents the
slowest growing (and hence, in a sense, the “most robust”) convex option. For the ¢!
case, (1.11) becomes a Quadratic Programming (QP) problem, which is efficiently
solved by interior-point methods. Algorithms based on Iterated Re-weighted Least
Squares (IRLS) can also be used [52|. For specific cases, more efficient solvers exist
as well [53, 54|. The analysis approach has been employed in a variety of image
processing tasks, including denoising [4, 55-58|, image scaling [59], tomography
reconstruction [60], super-resolution [61, 62|, demosaicing [62], inpainting [58], and
compressed sensing [63], to name a few.

For the synthesis case, the parallel formulation leads to an optimization prob-

lem on the sparse representation ~y,:
] 1 2
x = D - Argmin §||y — TD~,|l5 + A\C(v,) - (1.12)
¥s

Similar to the representation problem (1.8), common choices for C(-) include the

(Y and ¢! penalty functions, among others (Table 1.1). For linear T, the ¢° case
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is typically solved using suitable variants of the sparse coding algorithms men-
tioned above. In the (' case, problem (1.12) becomes a QP problem with effi-
cient solvers. Alternatively, more specialized algorithms include FOCUSS [46],
feature-sign search [30], and iterative thresholding methods [43-45]. The synthe-
sis formulation has been successfully applied in a wide range of inverse problems,
including image denoising [2, 31, 33, 64, 65|, video denoising [31, 66|, demosaic-
ing |64, 65|, inpainting [64, 67|, image upscaling [68, 69], source separation [70-72],
music transcription |72, 73|, and tomography reconstruction |74, 75|, to name just
a few.

A hybrid approach, known as thresholding (or shrinking), is also in frequent
use. This method, originally introduced in [76] for wavelet dictionaries, is typi-
cally employed for denoising, and arises as the analytic solution to (1.11) for an
orthogonal dictionary €2 and a separable penalty function C(v) = ). p(v;). For

this case, it can be shown [44] that the solution to
1
% = Argmin [y - x'[|2 + AC(2x') (1.13)

is given by
X =Q7'5,(Qy), (1.14)

where S, is an element-wise attenuation (or shrinking) of the coefficients in Qy,
dependent on the magnitude of A\. As overcomplete and non-orthogonal dictio-
naries evolved, this method was burrowed for these cases as well, replacing Q"
in (1.14) with Q7" (see e.g., [77-80]). In the overcomplete case, we can view this
as a sparse approximation process over the dictionary D = Q%, computed from
the analysis coefficients 2y. In this sense, the process forms a type of hybrid
analysis-synthesis approach. Formally, this process was later justified as consti-
tuting the first iteration of an iterative shrinkage method, which is known to solve

the synthesis denoising problem [44, 81].
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1.3 Dictionary Choice

The discussion so far has assumed that the dictionaries of the analysis and syn-
thesis models are known. In practice, these dictionaries form the core component
of these models, and embody all our knowledge of the signal domain €2. Thus,
choosing the dictionary carefully is an important and involving task, in which
substantial research has been invested.

The scientific community has developed two main routes for designing dic-
tionaries for signal modeling. The first is the analytic route, which derives the
dictionary from a set of mathematical assumptions made on the signal family.
This approach approximates the signals of interest as coming from simpler classes
of mathematical functions, and designs efficient (and typically provably optimal)
dictionaries for these simplified classes. The second route is the learning route,
which infers the dictionary from signal realizations via machine-learning tech-
niques. This approach replaces prior assumptions on the signal behavior with
a training process which constructs the dictionary based on the observed signal
properties. In [13], which is part of this thesis, we discuss these two options in
detail, and highlight the advantages of each.

As outlined in [13], some of the most important elements of effective dictio-
nary design include localization, geometric invariance, and adaptivity. Modern
dictionaries typically provide localization in both the analytic and training routes.
However, geometric invariance is usually better supported by analytic structures,
whereas adaptivity is mostly found in training methods. Additional advantages of
analytic dictionaries include algorithmic efficiency as well as compact representa-
tion. The main advantage of trained dictionaries is their ability to provide a much
higher degree of specificity to the particular signal properties, allowing them to
produce better results in many practical applications.

Most recently, attempts to combine the two approaches have led to the devel-

opment of several parametric dictionary structures. These dictionary structures
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are controlled by a predefined set of tunable parameters, and by balancing struc-
ture and parameter count, can achieve a spectrum of complexities, invariances,
and adaptivity levels. Examples of parametric dictionaries include the union-of-
orthobases dictionary |27], the Generalized PCA [82], the semi-multiscale dictio-
nary [31], the translation-invariant ILS-DLA [29], the signature dictionary [32],
the hybrid Wavelet/K-SVD dictionary [35], and the sparse dictionary [33] which

is part of this thesis.

1.4 Thesis Overview and Main Contributions

This thesis studies several theoretical and practical aspects of dictionary-based
signal modeling. The theoretical aspects include dictionary design methodology
and the analysis-synthesis relationship. The practical aspects include the sparse
dictionary structure as well as algorithms for analysis and thresholding dictionary

training.

1.4.1 Thesis Outline

The thesis consists of four papers and two chapters. We begin with [1], presenting
the analysis and synthesis signal models and exploring their relationship in detail.
We continue with [13], by considering the core component of these two models
— the dictionary, and highlighting the main paradigms and concepts guiding the
design of effective dictionaries. We describe the two fundamental paths — ana-
lytic and learning — used to design dictionaries, and discuss the emerging trend
of fusing the two paths through parametric structures. In [33] we present a spe-
cific flexible parametric dictionary structure which we name the sparse dictionary
structure, and discuss its benefits. A particular application of the proposed struc-
ture is discussed in [83|, where a generic image compression scheme is developed
and implemented, based entirely on adaptive dictionaries.

The two additional chapters in this thesis document our recent work on analysis
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dictionary learning. In Chapter 6 we introduce the ¢° analysis model, inspired by
the work in [1], and describe a training algorithm for this model which we name
Analysis K-SVD. In Chapter 7 we focus on the thresholding framework (1.14),
which we generalize to arbitrary recovery tasks, and develop a "model-less” dictio-
nary training algorithm in which examples of origin and degraded signals replace

the need for explicit knowledge of the degradation process.

In the following we review the main contributions of this thesis in more detail.

1.4.2 Analysis and Synthesis Relationship

The analysis and synthesis models described in Section 1.2.1 share a common
conceptual foundation of sparsifying signal coefficients over a dictionary. The two
approaches become equivalent in the invertible case, and have similar formulations
in the overcomplete case. These observations have led to the conjecture that the
two are closely related, see e.g. |84].

Mathematically, the gap between the two can be formulated as follows. Begin-

ning with the analysis formulation (1.11), we define

!/

Yo =X,
which implies, under a full-rank assumption on €2,
x =Qty, .

Substituting these in (1.11) results in replacing the optimization over x’ with an
optimization over «,. However, in defining v, = 2x’ we constrain the optimiza-
tion to only consider representations v, spanned by the columns of €2. Thus, we
introduce the constraint v, = Qx’ = QQ '+, in the optimization, leading to the

following equivalent form of the analysis estimator:

1
X = Q7-Argmin §Hy—TQ+7aH§+)\C’('ya) Subject To QQTv, =7, . (1.15)
Ya
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As can be seen, this problem strongly resembles the synthesis structure (1.12) for
the choice D = Q7 except for the added constraint on ~,.

In [1] we perform a thorough investigation of the two paradigms, focusing
on the relationship between the two. Considering their algebraic similarity, it
comes as somewhat of a surprise that in reality, a large gap exists between the
two models in the overcomplete case. As it turns out, the innocently-looking
constraint in (1.15) can have a substantial effect on the result of the optimization.
A simple demonstration is provided in Fig. 1.1, which shows how a significant gap
may evolve even in a simple 2-D case.

Our work takes a geometric approach, analyzing the two models in terms of
their iso-surfaces in signal space. The result of this view is the characterization of
a large (exponential) number of signals on which the two formulations are bound
to differ, leading to the inevitable conclusion that an equivalence between the
two cannot exist. This result is general in the sense that it does not assume a
specific relation (such as the pseudo-inverse) between the analysis and synthesis
dictionaries, nor does it assume they have the same number of atoms (though it
is assumed they have a similar number of atoms, e.g., up to a constant factor).

In practice, the significance of these results is two-fold. First, the realization
that the two models are distinct spawns renewed interest in the analysis model,
which has received less attention in recent years in favor of the synthesis model.
As an example, we show in [1] a simple denoising case where the analysis option
outperforms the synthesis one. Second, the improved understanding of the analysis
model paves the way to further research on this model, such as analysis dictionary
training, which is discussed later in this thesis.

On the other hand, the results of [1] should also be taken in perspective. Indeed,
it remains possible that for specific dictionaries and specific signal families, tighter
relations could be derived. Our analysis is very much a worst-case one, focusing

on the signals for which the two approaches differ the most; other signals may
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Figure 1.1: A simple 2-D example where analysis and synthesis depart. Here, D = (1) (1) g,l ),

Q=D 7 =1 and y = (1,0)”. The penalty function is the ¢! norm C(-) = || - ||;. The
plot shows the analysis and synthesis estimates (1.11) and (1.12) for varying X\ between 0 and 2,
advancing from right to left. The dotted line is the unit sphere, shown for reference. As can be
seen, the two estimates depart from y at quite different directions. The gap quickly increases,

reaching a maximal difference ||x, — xs||2 of over 30% the energy of x, at A = 0.65.

exhibit a smaller gap. However, the fundamental conclusion remains. Specifically,
our results dictate that the sets of signals for which the two approaches differ exist

for any pair of analysis and synthesis dictionaries, and not just for specific cases.

1.4.3 Sparse Dictionaries

As discussed in Section 1.3, parametric dictionaries are gaining interest due to their
ability to benefit from both the analytic and machine-learning design paradigms.
The sparse dictionary structure presented in [33| is a particular parametric dic-
tionary aimed at bridging this gap between the analytic and learning routes. The
sparse dictionary structure suggests representing the dictionary as a composition
of an analytic base dictionary and a sparse trained dictionary. In synthesis nota-

tion, this dictionary takes the form
D = ®A (1.16)

where @ is a fixed analytic dictionary, and A is an adaptable sparse matrix. We

note that the dictionary structure may be employed in both analysis and synthesis
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scenarios, though we focus on the synthesis case in [33].

The sparse dictionary is shown to achieve similar or superior estimation results
to an ordinary (non-structured) trained dictionary, while providing substantial
gains in complexity and generalization due to the imposed structure. In this, the
dictionary structure exhibits many of the benefits of both design routes. Also,
by modifying the number of non-zeros in A, the sparse dictionary can achieve an
essentially continuous transition from analytic dictionaries (very sparse A) to fully
unconstrained dictionaries (dense A). In this sense, the sparse structure is truly
a "bridge” between the two approaches.

An additional advantage of sparse dictionaries is their compact representation
compared to non-structured dictionaries. This compactness makes their use fea-
sible for compression tasks. In [83] we present an image-adaptive compression
scheme which encodes an input image over a specifically trained dictionary sent
along with the compressed stream. Such a scheme has so far been impractical
due to the overhead of transmitting the dictionary. In this work we show that the
scheme based on sparse dictionaries can convincingly outperform JPEG compres-
sion and approach JPEG2000 performance in some cases. Though our results do
not reach state-of-the-art, this preliminary work clearly positions image-adaptive
dictionaries as a plausible option for generic image compression. Directions for
future improvement, including multi-scale extensions and hybrid trained and an-
alytic dictionaries, are mentioned in [83].

Finally, the sparse dictionary structure provides a convenient framework for
training parametric dictionaries with additional desired properties, by imposing
specific and meaningful structures on the matrix A. This option is not explored

in this work, but has been studied by others [35, 85].
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1.4.4 Analysis and Thresholding Dictionary Learning

Following substantial achievements in synthesis dictionary training, researchers
are recently gaining interest in the question of dictionary training for analysis
models [86, 87]. Indeed, the formalization of the gap between the analysis and
synthesis frameworks in [1| provides significant incentive for this quest, as it opens
the door to an array of new opportunities with the analysis formulation. One of
the first and most influential attempts to train a (non-orthogonal) dictionary for
the analysis model was the pioneering work of Black and Roth [88], who trained
a Markov Random Field (MRF) image prior of the form:

P(x) ~ exp {— > )\T(J(ka)} .

k

In this expression, the sum is over all overlapping blocks x; in the image x, and
C(v) = >, p(v;) is a robust cost function with p(a) = In (1 + %2) The proposed
training algorithm minimizes the Kullback-Leibler divergence of the learned and
data distributions via a specialized gradient descent method, and shows promising
results in image denoising and inpainting.

In this thesis we adopt a different approach to the analysis training problem,
based on /° sparsity. This sparsity measure allows the development of more ef-
ficient training algorithms, and leads to interesting relations with the synthesis
formulation. Specifically, our methods trains overcomplete dictionaries, compared
to the undercomplete dictionaries trained by [88§].

We present two approaches to the training task. The first focuses on the
recently proposed ° analysis model, and is presented in Chapter 6. This new
model is interested in signals which nullify a large number of coefficients in 2x, and
is motivated by the observation in [1] that the favorable signals of the ¢! analysis
prior are orthogonal to many rows in the analyzing dictionary. In this chapter we
introduce the ¢° analysis model, discuss signal coding under the new model, and

present the Analysis K-SVD algorithm for dictionary training, which is named
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after the original K-SVD due to the resemblance between the two. Simulations
show the ability of our algorithm to successfully recover an underlying model given
sparse examples, as well as discover meaningful structures in natural image data.

Next, in Chapter 7 we study a generalization of the thresholding process (1.14),
which we name analysis-synthesis thresholding due to its use of two separate dic-
tionaries for the analysis and synthesis stages of the estimation. The resulting

process can be applied in a variety of recovery tasks, and is given by:
x =DS,\(Qy) .

In this work we consider specifically the ° hard thresholding case, where we can
exploit the exact sparsity to develop an efficient training algorithm in the spirit of
the K-SVD and Analysis K-SVD. We show that our algorithm is able to efficiently
optimize the resulting target function, and present favorable recovery results for
small-kernel image deblurring. Compared to traditional synthesis-based recovery
methods, a notable advantage of the thresholding recovery process is its signifi-
cantly lower complexity due to the low cost of the thresholding operator. Another
advantage of our recovery process is its parameterless nature, as all parameters,
including threshold values, are tuned during the training process. A unique prop-
erty of the proposed framework is its example-based approach to the degradation
modeling, which requires no explicit specification of the degradation process, and
instead deduces its properties from the training data itself (which is assumed to un-
dergo a uniform degradation). We conclude by outlining some possible directions
for future research, including extensions to more complex degradation models,

MRF recovery processes, and others.
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Abstract

The concept of prior probability for signals plays a key role in the successful so-
lution of many inverse problems. Much of the literature on this topic can be
divided between analysis-based and synthesis-based priors. Analysis-based priors
assign probability to a signal through various forward measurements of it, while
synthesis-based priors seek a reconstruction of the signal as a combination of atom
signals. The algebraic similarity between the two suggests that the two could be
strongly related; however, in the absence of a detailed study, contradicting ap-
proaches have emerged. While the computationally-intensive synthesis approach
is receiving ever-increasing attention and is notably preferred, other works hy-
pothesize that the two might actually be much closer, going as far as to suggest
that one can approximate the other. In this paper we describe the two prior

classes in detail, focusing on the distinction between them, and our results put to
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question, in fact, both these assumptions. We show that although in the simpler
complete and under-complete formulations the two approaches are equivalent, in
their overcomplete formulation they depart. Focusing on the ¢! case, we present a
novel approach for comparing the two types of priors based on high-dimensional
polytopal geometry. We arrive at a series of theoretical and numerical results

establishing the existence of an unbridgeable gap between the two.

2.1 Introduction

The general inverse problem seeks the recovery of an unknown signal x € RV (a
vector of dimension N over the real numbers) based on indirect measurements of
it given in the vector y € RM. A typical model for describing the relation between

x and y is
y=T{x}+v, (2.1)

where T : RY — RM is a (possibly non-linear) known operator, and v € R¥ is a
zero-mean white Gaussian additive noise vector (other models for the noise could
also be considered, but here we restrict the discussion to the assumptions made
above for simplicity). Many important problems in signal and image processing
are represented using this structure: these include denoising, interpolation, scal-
ing, super-resolution, inverse Radon transform, reconstruction from projections
in general, and motion estimation, to name just few. In all these problems, the
general task is an inversion of the operator T.

Inverting the above process can be done in many different ways. When lacking
any a-priori knowledge about the unknown, Maximum Likelihood (ML) estimation

suggests finding the x that leads to the most probable set of measurements y. We
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get a solution of the form

XML = Argm}z{%x Prob{y | x}

1
oz lly — PO

= Argmin [ly - T{x}Z

= Argmax exp{—

As an example, if T{x} = Hx, where H is a known degradation operator rep-
resented as a full rank matrix with more columns than rows, the ML solution
amounts to the pseudo-inverse of the degrading operator, thus %y, = Hy. For
the denoising problem (H = I), ML suggests the solution Xy, =y, which clearly
demonstrates the weakness of ML.

Generally speaking, the literature today offers through the Bayesian approach
a stabilized solution to the inverse problem posed above. We concentrate on the
use of the Maximum-A-posteriori Probability (MAP) estimator, which regularizes
the estimation process using an assumed prior distribution on the signal space.
Indeed, such signal priors are implicitly used in many other signal processing

applications such as compression, signal decomposition, recognition, and more.

2.1.1 MAP-Analysis Approach

When studying the variety of published work in the field, two main prior types
emerge. The first utilizes an analysis-based approach, deriving the probability
of a signal from a set of forward transforms applied to it. Such priors form the
backbone of many classic as well as more recent algorithms, and most commonly
appear as regularizing elements in optimization problems or PDE methods. In

this paper, we focus on a robust Gibbs-like distribution, of the form
Prob{x} = Const - exp{—a - [|Q2x|V} ,

where Q € MI*NM is some pre-specified matrix, and || - [P is the £ norm. The

term ||Qx||P is an energy functional that is supposed to be low for highly probable
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signals, and higher as the signal is less probable. We refer to €2 as the analyzing
operator. Merged with the Gaussianity assumption on the additive noise, this

poses the MAP recovery process as the minimization problem

XMAP_A = Argm&x Prob{x |y}

= Argmax P{y[x} P{x}/P{y}
= Argrr;in —logP{y |x} — logP{x}

= Argmin [ly — T{x}/;+ A [ Qx]]} (2.2)

where A = 2ac2. When robust norms are used (p < 2 or some robust M-function
[57]), an iterative algorithm is typically employed for the minimization of (2.2).
Preference is generally given to p > 1 so that the overall penalty function is
convex, thus guaranteeing a unique solution. We name this method the MA P-
Analysis approach since the prior is based on a sequence of linear filters applied
to the signal, essentially analyzing its behaviour.

The analysis structure is quite common in inverse problems in signal processing,
image processing, and computer vision. In a typical image processing application
where an image is an unknown, €2 is chosen as some sort of derivative operator,
promoting spatial smoothness in the image x. As to the choice of p, choosing the
¢? norm is known to lead to a simplified analytic treatment, but also known to give
non-robust results (i.e. smoothing of discontinuities). Thus, recent contributions
concentrate on robustness by using /” norms with p < 2, leading to non-linear

filtering algorithms [55-57, 59, 60, 62, 89-91].

2.1.2 MAP-Synthesis Approach

The second type of prior arises from employing a synthesis-based approach. Synthesis-

based methods are a more recent contribution, and stem in a large part from the
Basis Pursuit method pioneered by Chen, Donoho & Saunders [12].

Suppose that a signal x € R” is to be represented as a linear combination of
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"building-block” atoms taken as the columns of a full-rank matrix D € MIN*L
with L > N (notice the different size compared to €2). This matrix has N rows and
L columns, and we refer to the columns of D as the atom signals. This leads to the
linear under-determined equation set x = D7, where v € R’ is overcomplete. We
assume for the idealized signal x that its representation = is sparse, implying that
only a few atoms are involved in its construction. Assuming y is a noisy version
of this signal, then the following is the MAP-Synthesis option for the recovery

of x:
Xmap_s = D - Argngn ly — T{D~}H3 + X [I7]l} . (2.3)

In this expression, the /P-norm with p < 2 seeks the sparsest representation vector
~ that explains y in terms of the dictionary columns. Note that if the solution of
the optimization problem is denoted as 4, the estimated output signal is given by
Xmapr-s = D¥.

Synthesis-based methods have evolved rapidly over the past decade. Significant
progress has been seen in the development of modern dictionaries for sparse image
representation, such as the Ridgelet, Curvelet and Contourlet dictionaries [16, 18,
92|; training from example sets has also been successfully explored [28]. Parallel
advancements, many of them theoretical in nature, have been achieved in the
areas of sparse coding (i.e. finding sparse representations) and sparsity-based
signal recovery [42, 93].

Through the MAP framework, the synthesis approach may be generalized to
incomplete dictionaries. We let I'y = {7 | x = D~} denote the set of represen-
tations of x in D, where I'y may be infinite, empty, or a singleton. The a-priori
probability assumed for x depends on its sparsest representation in D. In this set-
ting, signals not spanned by the columns of D are assigned a-priori probability 0.

The MAP-Synthesis prior is therefore given as a Gibbs distribution on the
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optimal representations:

Const - exp{—a - [|[¥(x)|? if Ty # 0
Prob{x} — onst - exp{—a - ||¥(x)|[7} # (2.4)

0 otherwise

where

y =A i b

Y(x) = Argmin [ly[[;
This prior, when plugged into the MAP formulation, leads precisely to the process
described in (2.3). From a practical point of view, an iterative algorithm is required

for the solution of (2.3), and there are many methods to do so effectively. For p > 1,

we are guaranteed to have a unique solution.

2.1.3 Analysis versus Synthesis

Comparing the two recovery processes in (2.2) and (2.3), we see that the two
describe very similar structures. The heuristic behind each remains sparsifying
the representation of the signal — be this its forward projection on the basis
elements, or its reconstruction as their linear combination.

How do the two methods compare? The conjecture that natural images can be
effectively described as sparse combinations of atomic elements has found empir-
ical support [94] which the analysis-based approach lacks. The concept also has
clear advantages in applications such as image compression, feature extraction,
content-based image retrieval and others. Furthermore, as opposed to the analy-
sis approach, the synthesis approach has a constructive form providing an explicit
description of the signals it represents, and as such, is more intuitive to interpret
and design.

A different concern about the analysis approach is its capacity to benefit from
the increased redundancy. As this approach requires a signal to simultaneously
agree with all the rows of €2, this might become impossible with a highly redundant

operator, rendering the prior useless. The synthesis approach, in contrast, seems
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to benefit from higher redundancy, as this enriches the prior, enabling it to describe
more complex types of signals.

On the other hand, the compactness promoted by the synthesis approach might
also come as a weakness. In such a framework where only a small number of
atoms are used to represent each signal, the significance of every atom grows
enormously; any wrong choice — in a denoising scenario for instance — could
potentially lead to a "domino effect” where additional erroneous atoms are selected
as compensation, deviating further from the desired description. In the analysis
formulation, however, all atoms take an equal part in describing the signal, thus
minimizing the dependence on each individual one, and stabilizing the recovery
process.

Analysis-based methods, specifically in their robust form (p < 2), are a very
common structure in image processing and computer vision applications. In a
large part, this is because MAP-Analysis leads to a simple optimization problem,
which (in the overcomplete case) is considerably easier to solve — due to the
smaller dimension of the unknown — compared to a similar-sized MAP-Synthesis
form. At the same time, however, a growing number of works are employing
the synthesis approach for inverse problem regularization. The synthesis-based
approach is attractive due to its intuitive and versatile structure, and informally, is
widely considered to provide superior results. This recent trend is strengthened by
a wealth of theoretical and practical advancements, making the synthesis approach
both more appealing and computationally tractable [42, 93, 95].

Nonetheless, MAP-Synthesis remains a prohibitive option in many cases. This
has led several works to seek alternative approaches over direct minimization.
One option which has been proposed is the use of an analysis-based method to
approximate the synthesis-based one, as is done in [84] where the analysis op-
erator is taken as the pseudo-inverse of the synthesis dictionary. This approach

has only been partially justified, however, leaving the question of its generality
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much unattended.

2.1.4 This Paper’s Contribution

As can be seen from the discussion, the literature to-date is highly ambivalent
in respect to the two regularization approaches. The extensive research of the
synthesis-based methods implicitly suggests MAP-Synthesis is superior to MAP-
Analysis — especially considering the huge gap in complexity between the two
structures. At the same time, other works, building on the algebraic similarity
presented in the next section, hypothesize that the two are actually much closer,
in fact close enough to approximate one another [84].

In light of these developments, it is our goal in this paper to clarify the dis-
tinction between the two approaches, and shed some light on the conceptual and
technical gaps between them. We show that indeed for specific cases the two ap-
proaches are equivalent, utilizing a pseudo-inverse relation between the analysis
operator and synthesis dictionary. Such is the case for the square and under-
complete formulations, as well as for the ¢? (i.e. p = 2) choice. However, as we
go to the general overcomplete formulation (L > N), we find that the equivalence
between the two MAP options breaks. Concentrating on the p = 1 case, often
favoured due to its convexity and robustness, we provide theoretical as well as nu-
merical results indicating that the two methods are fundamentally distinct. Our
results break, in fact, both of the above common assumptions: first in establishing
the gap between the two approaches, and second by presenting simulations where
the analysis approach actually supersedes its synthesis counterpart.

This paper is organized as follows. Section 2.2 describes the square and under-
determined cases, where the two methods exhibit almost complete equivalence. In
Section 2.3 we turn to discuss the overcomplete case, focusing on the ¢! choice.
Taking a geometrical viewpoint, we construct the theoretical model describing

the gap between the two methods, and discuss some consequences of this model.
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Simulation results are provided in Section 2.4, and Section 2.5 concludes with a

summary of the claims made in the paper.

2.2 The Square and Under-Determined Cases

We begin by showing that in the (under-)determined case (i.e., L < N), the two

methods are practically equivalent.

Theorem 2.1. Square Non-Singular Case — Complete Equivalence. MA P-
Analysis and MAP-Synthesis are equivalent if MAP-Analysis utilizes a square and
non-singular analyzing operator . The equivalent MAP-Synthesis method is ob-

tained for the dictionary D = Q7.

Proof. We start with the MAP-Analysis approach as posed in equation (2.2).
Since Q is square and non-singular, defining Qx = ~ leads to x = Q '~. Putting
this into (2.2), we get an alternative optimization problem with = replacing x as

unknown,

£=0°". Argmin ||y - T{Q 'Y+ A vl

and the equivalence to the MAP-Synthesis method in (2.3) is evident. Likewise,
starting from the MAP-Synthesis formulation and using the same argument, we

can obtain a MAP-Analysis one — and thus the two methods are equivalent. []

The generalization of Theorem 2.1 for the L < N case requires more care, and is
only true for the denoising (T = I) case. Before stating the theorem, we point out
that complete equivalence cannot be guaranteed in this case due to the property
of MAP-Synthesis to only produce results in the column-span of D, while MAP-
Analysis poses no such restriction. Nevertheless, the following theorem represents
both conceptually and computationally a complete equivalence between the two,
as knowing the solution to either one immediately fixes the solution to the other.

We arrive at the following result, whose proof is postponed to the appendix:
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Theorem 2.2. Under-Complete Denoising Case — Near-Equivalence. MA P-
Analysis denoising with a full-rank analyzing operator & € MUIN (I < N) is
nearly-equivalent to MAP-Synthesis with the dictionary D = Q7. This is expressed

D

by the relation Tyxap—a = Tavap—s + yP+, with yP+ representing the component of

the input orthogonal to the columns of D.
(Proof in 2.A.)

We also see that when the input is in the column-span of D (as in the square

non-singular case), we obtain Xyap_a = XumAp-_s-

2.3 The Over-Determined Case

We have seen that the two methods are practically equivalent for the L < N
case. Our main interest however is in the overcomplete (L > N) case, advocated
strongly by the Basis Pursuit approach. A natural starting point for analyzing
the overcomplete case is the pseudo-inverse relation, which, as we have just seen,
successfully achieves equivalence in the (under-)complete case. We assume hereon
that Q has full column rank, and hence 27Q = I. Beginning with the MAP-
Analysis formulation in (2.2), we let Qx = ~. Since 27Q = I, recovering x
from ~ is done by x = QT~. However, in replacing the unknown from x to ~
we must add the constraint that ~ is spanned by the columns of €2, due to its
definition (this can be represented by the constraint 2%~ = «). Thus we obtain

the following equivalent MAP-Analysis form:
Xpap-a = Q7+ Argmin[ly — T{Q 3 + A 7]} - (2.5)

v QQty=y

Comparing this to (2.3), we see that if the MAP-Synthesis solution (with D =
Q") satisfies the constraint Q2"+ = ~, then omitting it in (2.5) has no effect,
and both approaches arrive at the same solution. However, in the general case

this constraint is not satisfied, and thus the two methods lead to different results.
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An interesting observation is that while the representation solutions could differ
vastly, the final estimators & = Q74 in both might be very similar; this is because
in multiplying by Q" we null-out content not in the column-span of 2, essentially
satisfying the constraint. However, as we will see, this does not turn out to close
the gap between the two methods. The exception to this is the non-robust ¢? case,

in which equivalence still holds.

Theorem 2.3. Over-Complete Case — Equivalence for p = 2. MAP-Analysis
with a full-rank analyzing operator Q@ € MY*N (I, > N) is equivalent to MAP-

Synthesis with D = QT for p = 2.

Proof. From (2.5) the proof is trivial. When p = 2, the unknown = can be assumed
to be the sum of two parts, v = v +~*, where 4 comes from the column-span
of 2, and 4 from the orthogonal subspace. The second penalty term (||7]|3)
clearly prefers 45 to be zero; as to the first term (||y — T{Q2"~}|2), ¥* has no
impact on it as it is nulled-out by Q%. Thus, v** that violates the constraint in

~ is chosen as zero, and the two methods coincide. O]

2.3.1 MAP-Analysis and MAP-Synthesis in /!

From this point on we consider the two MAP methods with p = 1. The ¢! choice
is essentially the "meeting point” between the analysis and synthesis approaches,
which prefer p > 1 and 0 < p < 1 respectively. The use of the ¢! norm in sig-
nal and image recovery has received considerable attention beginning at the late
1980’s, with the adoption of robust statistics by the signal processing community.
Probably most notable of the analysis-based methods is the Total-Variation ap-
proach [55], ! with some additional examples including [60, 62, 90, 91]. Classical

synthesis-based methods include the Basis Pursuit method [12] and the Lasso [96].

ITotal variation takes a “true” MAP-Analysis form only in the 1D case.
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For the ¢! choice, we have the following forms of the two recovery processes:

Xuap-a = Argmin [ly — T{x}|3+ A - [|Qx]|;

ap-s = D Argmin [ly = T{DY} + - ] -

The ¢! option is a favourable choice for these methods due to its combination of
convexity, robustness, as well as proximity to £° in the synthesis case [42, 95].
Looking at the two MAP formulations, we see that both depend on a weighting
parameter A to control the regularizing element; for A = 0 both reproduce the
ML estimator, and as A — oo they deviate from it until finally converging to 0.
However, the rate at which this occurs may vary substantially between the two
methods, and hence this parametrization is inconvenient for our purposes. To

overcome this, we propose the following reformulations of the two problems:

faap-a(e) = Argmin [Qx]|, Subject To [y — T{x}[. <a

Xpmap-s(a) = D- Argmvin |7|l1  Subject To ||y — T{D~}|. <a.

These formulations are conceptually simpler, with a directly controlling the devi-
ation from the ML estimator. The original MAP target functions are essentially
the Lagrangian functionals of these constrained versions (with A representing the

inverse of the Lagrange multiplier), and thus the two forms are equivalent.

2.3.2 A Geometrical Viewpoint

The above formulations have a simple geometrical interpretation, which provides
an interesting way of comparing the two MAP approaches. The solutions of both
problems are obviously confined to the same region of "radius” a about y (this is
true as we assume D to be full-rank); we also assume this region does not include
the origin, otherwise the solution is trivially zero. Considering MAP-Analysis first,
the level-sets of its target function fa(x) = ||Q2x||; are a collection of concentric,
centro-symmetric polytopes {x | ||2x|; < c¢}. Graphically, the solution can be

obtained by taking a small level-set {||Q2x]|; < ¢} about the origin, and gradually
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inflating it (by increasing ¢) until it first encounters the region {||ly — T{x}||» < a}.
The point of intersection constitutes the solution to the MAP-Analysis problem,
as there cannot be a point in this region having a smaller value of ||2x]|;.

As to MAP-Synthesis, a similar process may be described using the collection
of concentric, centro-symmetric polytopes D-{~ | ||7¥|[1 < ¢}?. This is reasoned as
follows: consider the set D - {||7||; < ¢} where ¢ is small enough such that this set
does not intersect the region {|ly — T{x}||2 < a}. Then for any x in this region,
there does not exist a representation = satisfying |||l < ¢, or in other words,
any representation as x = D~ must satisfy ||7||; > ¢. This, of course, is true for
any ¢ which is small enough; therefore if we inflate this set (by enlarging ¢) until
it first touches the region at the value ¢, then for the intersection point X = D%
we know it has a representation satisfying ||||; = ¢, whereas for any ¢ < ¢ the
signals within the region have no such representation, and hence X must be the
MAP-Synthesis solution.

Conveniently, for both MAP methods these "inflations” are performed via sim-
ple scaling: we have {||Qx|; < ¢} = ¢ {||2%]; < 1} and D{||v|; < ¢} =
c¢-D{|lv|l1 < 1}. This implies that given the canonical MAP defining polytopes
Vg = {||2%]; < 1} and ®p := D - {||7|l1 < 1}, the inflation processes are
fully defined, and so are the MAP solutions; in fact, specifying these polytopes
is completely equivalent to specifying €2 or D, respectively. We find that the
behaviour of each of the methods is governed exclusively by the geometry of a
single high-dimensional polytope, providing us with the basis for comparing the
two methods.® We therefore continue by characterizing the geometry of these two
polytopes.

Before continuing, we briefly review some elementary polytope terminology.

*Note that these sets exist in signal space, and have the explicit form {x | 3y, x = Dy A ||v|1 < ¢}
3In fact, the same arguments hold for any ¢? formulation, replacing the ¢*-norms in the definitions

of Vo and ®p with the proper ¢’-norms. However, analyzing these defining shapes for a general p is a

difficult task, and thus we restrict ourselves to the ¢! case.
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Given an N-dimensional polytope, its boundary is an (N — 1)-dimensional mani-
fold; each of the polytope’s facets is an (N —1)-dimensional surface constituting one
segment of this manifold. A facet may also be referred to as an (N-1)-dimensional
face. Similarly, the boundary of each facet consists of (N-2)-dimensional faces —
and so on. A polytope’s vertices, edges and ridges are its faces of dimensions 0, 1

and 2, respectively.

The MAP-Analysis Defining Polytope.

The MAP-Analysis defining polytope is a level set of the MAP-Analysis target

function, fa(x) = || Qx|
Wo = {x | [@x]) <1} .

Applying the gradient operator to fa, we find that the normal to this surface
satisfies

n(x) o« Vfa(x) = Q' sign(0x) .

Evidently n(x) is defined for any x in which all coordinates of €2x are non-zero;
where one or more of these vanishes, n(x) exhibits a discontinuity arbitrarily
filled-in by the sign function. n(x) is therefore (as expected) piecewise-smooth.
Intuitively, consider the signals x on the boundary of the defining polytope, then
the facets correspond to the locations where n(x) is smooth, whereas the other
faces correspond to where n(x) is discontinuous. The discontinuities in n(x) ob-
viously result from x being orthogonal to rows in €2; the following claim, whose
proof is provided in the appendix, relates the face dimension to the rank of these

TOWS:

Claim 2.1. Let x € 0V gq (the boundary of the defining polytope), and let k denote
the rank of the rows in € to which x is orthogonal to. Then x resides strictly

within a face of dimension (N —k — 1) of the MAP-Analysis defining polytope.

(Proof in 2.B.)
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We use the term strictly within a face to indicate a signal located in the interior
of a face, in the sense that there exists a finite e-ball about it — of the same dimen-
sion as the face — entirely contained within this face (note that this also covers
signals that are vertices, who reside strictly within themselves). Also, as opposed
to standard residence, strict residence is unique, as the faces are considered open
rather than closed, and thus do not overlap.

The claim implies that to obtain a vertex of Wgq, we choose N — 1 linearly-
independent rows in €2, determine their 1D null-space v and normalize such that
|Qv][; = 1 (note that this defines two antipodal vertices). Edges are similarly
obtained by choosing N — 2 linearly-independent rows, and taking any properly
normalized signal in their 2D null-space. This leads to an immediate conclusion
concerning the vertex complezity of the MAP-Analysis defining polytope, as its ver-
tex count is equal to the number of possible choices of N — 1 linearly-independent

and in fact,

rows in 2. In the worst-case, this may reach an exponential ( N_Ll),

this is a tight bound for the worst-case. As an example, assume the rows of €2
are chosen such that their directions {w;} are uniformly distributed on the unit
sphere. Under these conditions, the probability of any set of N — 1 rows to be
dependent vanishes for all practical purposes, and thus we obtain that for this
randomized case the expected number of MAP-Analysis vertices achieves @( N_Ll).
Obviously this is also the tight bound for the worst-case vertex count.

An interesting observation is that the MAP-Analysis defining polytope exhibits
a highly regular structure. For instance, consider the set of edges associated with
some choice of N —2 independent rows from Q. Letting {u, v} span their 2D null-
space, these edges are obtained as any linear combination of the two (for instance
of the form x = cos(f)u + sin(f)v), properly normalized to ensure |Qx]|; = 1. It
follows that this set of edges forms a closed edge-loop of the polytope; the planar

edge loop consists of consecutive edges, all existing on a common plane. We

conclude that the edges of Vg are arranged in "loops” about the origin, each loop
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associated with a choice of N — 2 independent rows from €2. Similar arguments
generalize to higher-dimensional regularities, corresponding to the choices of N —k
independent rows from € for k > 2.

Finally, the organized structure is also found in a highly regular neighbourliness
pattern. Since every vertex is obtained as the null-space of some N — 1 rows from
2, and each choice of N — 2 of these defines an edge loop passing through this
vertex, we have that each vertex of Wgq is incident to exactly N — 1 edge loops,

and consequently, every vertex of Wq has precisely 2(N — 1) neighbours.

The MAP-Synthesis Defining Polytope.

The MAP-Synthesis defining polytope is given by

Op =D {7 ||yl <1}.

It is a known result that this polytope is obtained as the convex hull of the columns

of D and —D; a proof is brought in the appendix for completeness:

Claim 2.2. The MAP-Synthesis defining polytope ®p = D-{||7v||1 < 1} is obtained
as the convex hull of {£d;};—1. 1, where {d;} are the columns of D.

(Proof in 2.C.)

The claim simply states that the vertices of the MAP-Synthesis defining poly-
tope are those columns of =D which cannot be represented as a convex combina-
tion of any other columns (and their antipodes); the other faces are the convex
combinations of neighbouring vertices. A vertex can therefore be represented as
v = D~ where ~ has a single non-zero element v; = +1, and a point on an edge can
be represented similarly with « having two non-vanishing elements ~;, v, satisfying
17il + |7j] = 1. In general, a point on a k-dimensional face will have a represen-
tation x = D~ with « having k& + 1 non-vanishing elements, and [|v||; = 1. We

emphasize that this is not a sufficient condition, so a signal x = D~ synthesized
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from a sparse representation v might not reside on a low-dimensional face if the
corresponding columns of +D are not neighbours, or do not constitute polytope
vertices.

An immediate implication of Claim 2.2 concerns the redundancy of certain
atom signals in D. From the claim, it is clear that any column of D residing
strictly within the convex hull of the remaining columns has absolutely no effect

on the MAP-Synthesis defining polytope — and thus can be removed.

Corollary 2.1. Let dy, be a column of D which is obtained as a convex combination
of the remaining columns and their antipodes, {*d;},_, ; ;. Then the MAP-
Synthesis problem obtained by removing dj, from D is equivalent to the original

one.

Redundant columns in D can be safely removed without altering the MAP-
Synthesis solution, and by locating these we may be able to prune the dictionary,
generally obtaining a simpler formulation. The problem of determining whether
some vector X is a convex combination of the set {y,} can be formulated as a linear-
programming (LP) problem, and thus locating all redundant columns in D requires
L executions of LP. As an alternative to removal, we may choose to elongate the
redundant atom such that it becomes a vertex of the MAP-Synthesis defining
polytope, and thus expressed by the prior. However, increasing a dictionary atom
may have the effect of assimilating a different one into the convex hull. One simple
method to ensure none of the columns in D are redundant is to normalize them

to a fized length (see section 2.3.3 below and specifically Claim 2.3).

2.3.3 Consequences of the Geometrical Viewpoint

The geometrical analysis leads to some important consequences concerning the

two MAP methods. In this section we describe a few of these conclusions.
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The Analysis-Synthesis Gap.

From the geometrical viewpoint, we find that contrary to the algebraic similar-
ity, the analysis and synthesis structures are actually very different. As we have
seen, the two polytopal structures asymptotically differ in their vertex counts.
A parallel difference exists in the neighbourliness properties of these polytopes;
since every vertex has a linear number of neighbours in the MAP-Analysis case
(while their total number is exponential) it follows that the probability of any
two vertices to be neighbours approaches 0 as N — oo. In contrast, Donoho [97]
has recently shown that for MAP-Synthesis polytopes, the probability of any 2
(non-antipodal) vertices to be neighbours approaches 1 as N — co.* We find that
while MAP-Analysis polytopes feature very large numbers of vertices with very low
neighbourliness, MAP-Synthesis polytopes exhibit low vertex counts and very high
neighbourliness. Combined with the high regularity of the MAP-Analysis poly-
topes, we see that the two approaches actually describe very different structures.
These theoretical gaps indeed translate to very concrete behavioural differences

between the two methods, and this will be shown in the experiments section.

MAP-Synthesis as a Superset of M AP-Analysis.

An interesting consequence of the geometrical description is that any ¢ MAP-
Analysis estimator may be reformulated as an equivalent MAP-Synthesis one.
This is accomplished by simply taking all the MAP-Analysis defining polytope
vertices — one of each antipodal pair — and setting them as the MAP-Synthesis
dictionary atoms. Since both methods will have the same defining polytope, they
will be completely equivalent. This establishes the generality of MAP-Synthesis

over MAP-Analysis in ¢!

4The dictionary is assumed to be of linear size in N, as well as to fulfill certain randomness conditions;

see Theorem 1 in [97].
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Theorem 2.4. Over-Complete /! Case — Generality of MAP-Synthesis.
For any (* MAP-Analysis form with full-rank analyzing operator Q@ (L > N),
there erists a dictionary D(QQ) describing an equivalent * MAP-Synthesis form.

The reverse is not true.

The reverse direction fails due to the strict regularity imposed on the MAP-
Analysis defining polytopes. Since this regularity does not apply to MAP-Synthesis,
it may clearly describe structures not represented in the MAP-Analysis form.

The actual equivalence transform presented here has little practical value; ex-
cept for the special case of N = 2, where the size of D(2) will be equal to (or
even smaller than) that of Q7 the size of D(Q) will generally grow exponentially.
Nonetheless, the theorem describes a definite one-way relationship between the
two formulations: the synthesis formulation is clearly more general than the anal-
ysis one, with indeed a wvast collection of MAP-Synthesis priors unrepresented by

the stricter MAP-Analysis form.

MAP Principal Signals.

The constructive nature of MAP-Synthesis provides a good understanding of the
signals which are most "favoured” by this prior; in essence, these are the dictionary
atoms and their sparse combinations. The parallel entities for the MAP-Analysis
prior, however, are difficult to derive using algebraic tools. The geometric inter-
pretation enables us to define these qualitative terms in a precise manner, and
give a description of the MAP-Analysis counterparts of the synthesis atoms.
Roughly speaking, we consider a signal to be favoured by some prior when
this prior is capable of recovering the signal well given deteriorated versions of it;
intuitively, these should be the signals with maximal a-priori probability. How-
ever, we observe that both MAP structures are energy-dependent; therefore, the
most probable signals for both are simply the zero signal and its immediate neigh-

bourhood. Moreover, the intuition itself here is not entirely accurate: a highly
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probable signal will not be well-recovered if there exists a near-by signal with even
higher probability.

To resolve this, we confine ourselves to a fized-energy sphere; on this sphere
we seek the most effectively recovered signals by the specific MAP method. Since
the recovery is a local process, we will further be interested in the local maxima
of the distribution on this sphere rather than the global ones. Our line of thought
can be described as follows. Consider an energy-preserving denoising process,
where the denoised solution is post-processed by re-normalizing it to the magni-
tude of the input (thus eliminating its decay to zero caused by the low-energy
preference of the prior). Under these conditions, the MAP estimation essentially
searches the neighbourhood of the input on the fixed-energy sphere, outputting
a higher-probability (and presumably less noisy) signal near the input. A signal
will therefore be well-recovered when its prior probability is maximal relative to
a significant enough part of its neighbourhood on the fixed-energy sphere. Specif-
ically, the local maxima of the distribution will be the most effectively recovered
signals on the sphere.

Reducing w.l.o.g. to the unit sphere, we refer to the local maxima of the

distribution as the principal signals of the distribution. Formally,

Definition 2.1. Let Prob{x} be any MAP-Analysis or MAP-Synthesis distribu-
tion. Then the principal signals of this distribution are defined as the local maxima

of the optimization problem

Argmax Prob{x} Subject To ||x[la=1.

As we will soon see, in the synthesis case these signals are tightly related to the
MAP-Synthesis dictionary atoms.
The geometry of the MAP defining polytope directly dictates the behaviour of

the distribution on the unit sphere, and consequently the locations of the principal
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Figure 2.1: Principal signals and the MAP defining polytope. The dotted circles denote the
unit sphere in 2D signal space. The two polygons are different scales of the same MAP defining
polytope. (a) A principal signal, intersected by a vertex of the defining polytope. (b) A vertex

which is not a principal signal.

signals on it. For both priors, the boundaries of the defining polytopes define iso-
surfaces of signals with equal a-priori probability; these have the form r - 0Wq or
r-0®p — where r € RT is a non-negative scaling factor — and for increasing r,
represent decreasingly probable signals. Beginning with such an iso-surface r-0Wgq
or r-0®p, with small enough r such that it is entirely bounded by the unit sphere,
then as r is increased, the surface intersects the sphere at decreasingly probably
locations, until finally completely enclosing it. Clearly, to be a local maximum
a signal must be intersected by the inflating iso-surfaces before its surrounding
neighbourhood. Consequently, such a local maximum is intersected by an extreme
point — a vertex — of the polytope. We conclude that the MAP principal signals
project to vertices of the MAP defining polytope.

We immediately point out, however, that projection onto a vertex is only a
necessary condition for principality, as demonstrated in Figure 2.1. Simulation
results show a dramatic difference in the recovery performance of principal vs.
non-principal polytope vertices.

For a vertex to be principal, it must be maximally distant from the origin
relative to all the directions about it on the boundary of the defining polytope.

Luckily, determining this only requires examining those directions from the vertex
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to its one-dimensional incident edges (this follows from the fact that for any scalar
function, the convex combination of a set of descent directions is also a descent
direction).

In the case of MAP-Synthesis, its defining polytope vertices are a subset of the
dictionary atoms, hence the principal signals are a subset of these atoms. However,
not all atoms constitute polytope vertices, and only a few of these are actually
principal. Furthermore, determining which of the atoms are vertices is a difficult
task, and so is the task of determining the incident edges of each vertex. However,
given an atom d, a simple work-around to determine its principality is to examine
all line segments connecting d with the remaining atoms and their antipodes. If
d is found to be maximally distant relative to all these line segments, clearly it is
a vertex as well as a principal signal; on the other hand, if d is found not to be
maximal relative to some segment, it immediately follows that it is not principal.

In practice, many MAP-Synthesis dictionaries have their atoms normalized to
a fixed length. As we mentioned earlier (without proof) this ensures that all
the atoms constitute defining polytope vertices. However, for such dictionaries,
a stronger claim can be made: indeed, when the atoms are normalized, they all
constitute principal signals of the MAP distribution. We have the following result,

whose proof is provided in the appendix:

Claim 2.3. Principal Signals of MAP-Synthesis with a Normalized Dic-
tionary. Let D be a MAP-Synthesis dictionary with fived-energy columns. Then
the dictionary atoms coincide with the principal signals of the MAP-Synthesis

prior.
(Proof in 2.D.)

In the general case, however, the MAP-Synthesis principal signals remain a
subset of the dictionary atoms. Since dictionaries in practice are commonly nor-

malized, this distinction is not usually made. Nevertheless, when the dictionary
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atoms are not normalized, the difference in recovery performance can be substan-
tial; while the principal signals are truly “favoured” by the prior, other atoms
might not be at all.

In the MAP-Analysis case, the distinction becomes more significant. The num-
ber of MAP-Analysis vertices is exponentially large, and empirical evidence sug-
gests that most of these are non-principal and not well-recovered. Unfortunately,
we are not currently aware of any simple analytical method for characterizing the
MAP-Analysis principal signals. Nonetheless, these signals can be generated by
computer. For the simulations in this paper we used a simple traversal algorithm
for locating these signals; this enabled us to produce large sets of MAP-Analysis
principal signals and study their behaviour.

Our traversal algorithm locates one principal signal at a time. Beginning with
some initial vertex v, we examine its incident edge-loops, and for each loop, we
determine u such that {v,u} orthogonally span the plane in which the loop exists.
Assuming a small enough €, v’s infinitesimal neighbours on this edge loop can
be approximated by v, = (v + eu)/||2(v + eu)||; and v_ = (v — eu)/||Q(v —
eu)||;, where the normalization is applied to ensure |[|Q2vy|; = [|2v_]|; = 1. By
comparing the ¢? norms of v, v, and v_, we determine whether v is maximal
relative to its two incident edges on this edge loop. Now, if v is found to be
maximal relative to all its incident edges, it is a principal signal. Otherwise, it
is not maximal relative to some incident edge. In this case we replace it with a
vertex with larger /2-norm from the violating edge loop (in our implementation,
we choose the one with largest ¢%.-norm in the loop), and continue the traversal.
This swapping continues until a local maximum is encountered, providing one
MAP-Analysis principal signal. The entire process is then repeated using a new

vertex as a starting point.
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2.4 Numerical Results

The geometrical viewpoint reveals a large gap between the two formulations in
the over-determined ¢! case. In this section we provide some simulation results,

demonstrating this theoretical gap.

2.4.1 Synthetic Experiments

The following synthetic experiments demonstrate how the gap can be easily brought
to an extreme even in a simple case. To obtain these results we compared the two
methods on their most favourable signals: their principal signals.

For the experiment, we selected the pseudo-inverse relation between the dictio-
nary and analysis operator; this is a natural choice for bridging the two methods,
however in reality, it may lead to very different behaviours of the two methods.

We selected the 128 x 256 Identity-Hadamard dictionary D = \/Li [ 1 H ] and

T
its pseudo-inverse 2 = DT = \/Li [ I H ] as the synthesis dictionary and anal-

ysis operator. This is an interesting choice as the two feature the same two-ortho
structure, and furthermore D is a near-optimal Grassmanian frame, making it
favourable for MAP-Synthesis methods [98, 99].

The dictionary size immediately limits the number of distinct MAP-Synthesis
principal signals to a mere 256. In contrast, MAP-Analysis boasts an enormous
number of them: our traversal algorithm easily produced 10000 such signals.
What’s more, our program was designed to reject new signals if these resided
in a radius of < 0.1 from any existing principal signal; however, after 10000
generated signals, the rejection rate remained negligible, suggesting that the true
number of such signals is much greater (with an only known upper bound of order
(v _Ll) = (fgg) ~ 107 ). These are obviously impressive numbers compared to the
modest number of MAP-Synthesis principal signals.

An interesting point in this experiment is that the MAP-Synthesis principal

signals in our case all double as MAP-Analysis principal signals. To sharpen the
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comparison, we therefore generated additional sets of preferable MAP-Synthesis
signals, which we obtained on low-dimensional faces of the MAP-Synthesis defining
polytope (i.e., sparse combinations of atoms). For the experiment, we generated
1000 signals on 2D faces, 1000 on 3D faces, and so on up to 12D faces.

To quantify the performance of a specific method on a set of signals, we gen-
erated noisy versions of the signals in the set, and applied the method (in its
energy-preserving form), with varying a values, to each of the contaminated sig-
nals. We then selected, for each signal individually, the optimal a value a,, and
its associated relative error erry, = || Xmap(@opt) — X||2/||y — X||2 to represent the
performance of the method on this signal. We collected the optimal errors for
all signals in the set, and these were used to characterize the performance of the
method on the entire set.

Figures 2.2-2.4 summarize the results. The first two present histograms of
the optimal errors obtained on the principal signal sets and the MAP-Synthesis
2D and 3D signal sets. The final figure summarizes the results for all 12 sets of
MAP-Synthesis signals.

The results demonstrate several points. First, we see that each method is
indeed successful in recovering its own sets of principal signals; this agrees with
the predictions of the geometrical model. Also interesting is the fact that the two
methods exhibit comparable performance when evaluated each on their own set
of principal signals; this observation is particularly evident from Figure 2.2(b),
where the signals are simultaneously principal to both MAP-Analysis and MAP-
Synthesis.

On the other hand, the results also depict a clear disparity between the two
methods. We see that MAP-Analysis completely fails in recovering the MAP-
Synthesis favourable signals, while MAP-Synthesis performs notably poorly com-
pared to MAP-Analysis on its massive number of principal signals. The results

also illustrate the asymptotical nature of gap between the two approaches in the
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Figure 2.2: Denoising MAP principal signals. (a) Results for MAP-Analysis principal signal
(10000 examples): distributions of optimal errors obtained using MAP-Analysis (above) and

MAP-Synthesis (below). (b) The same for MAP-Synthesis principal signals (256 examples).

number of principal signals each one accepts.

The acute inconsistencies lead to the inevitable conclusion that the pseudo-
inverse relation does not bridge between the two methods. Moreover, we see
here that the difference in complexity between the two structures has a strong
expression in practice, indicative of an inherent gap between the two formulations.
Though the experiment specifically utilizes the pseudo-inverse relation, the gap
depicted here cannot be associated to this specific choice; indeed, any reasonably-
sized MAP-Synthesis dictionary will be limited in the number of favourable signals
it can accommodate, and consequently in its ability to handle the large number
of MAP-Analysis principal signals. In the other direction, any attempt to adapt a
MAP-Analysis prior to a given set of MAP-Synthesis signals is bound to give rise

to an enormous number of additional (unwanted) favourable signals.

2.4.2 Real-World Experiments

In this section we present some comparative denoising results obtained for actual
image data. For these experiments we selected the overcomplete DCT transform,;

this transform partitions the image into overlapping blocks, and applies to each
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Figure 2.3: Denoising signals on low-dimensional MAP-Synthesis faces. (a) Results for signals on
2D faces (1000 examples): distributions of optimal errors obtained using MAP-Analysis (above)

and MAP-Synthesis (below). (b) The same for signals on 3D faces (1000 examples).

block a unitary DCT transform. The overcomplete DCT transform constitutes
a tight frame when all image pixels are covered by an equal number of blocks.
Our experiments used 8 x 8 blocks, with a shift of either 1, 2 or 4 pixels between
neighbouring blocks. We also used shifts of 8 pixels (i.e. no overlap, leading
to a unitary transform) as reference. Boundary cases were handled by assuming
periodicity, ensuring the tight frame condition.

Since the transform is tight, the synthesis dictionary was simply taken as the
transpose of the analysis operator, leading to a dictionary constructed of 8 x 8
DCT bases in all possible shifts over the image domain. Motivations for choosing
this transform include: (1) The transform is widely used in image processing, and
has been employed in both analysis and synthesis frameworks; (2) it is a tight
frame, and has an efficient implementation; and (3) it is highly redundant, whilst
offering a convenient way for controlling its redundancy (specifically, 4x for a shift
size of 4, 16x for a shift size of 2, and 64x for a shift size of 1).

We ran the experiments on a collection of standard test images, including

Lenna, Barbara and Mandrill. Each of these was downscaled to a size of 128 x 128
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Figure 2.4: Denoising MAP-Synthesis highly recoverable signals. The graphs show the mean
optimal errors obtained versus the MAP-Synthesis face dimension; error bars correspond to the

standard deviation of the errors.

to reduce computation costs. We added white Gaussian noise to each source image,
producing 25dB PSNR inputs. Each input was denoised using both MAP-Analysis
and MAP-Synthesis with varying A values, and the output PSNR was determined
for each value.

The results for Lenna and Barbara are shown in Figure 2.5. The results for
Mandrill were similar. As can be seen in the figures, the results are quite sur-
prising: MAP-Analysis actually beats MAP-Synthesis — in a convincing way —
in every test. Compared to the baseline unitary transform (dotted line), where
both methods coincide, MAP-Analysis (solid) shows a significant gain when in-
troducing overcompleteness, which slightly improves as the redundancy increases;
in contrast, MAP-Synthesis (dashed) shows slightly degraded performance as the
overcompleteness is increased. As a consequence, the distance between the two
methods grows with the redundancy.

The experiments presented here were also carried out using the Contourlet
transform [18|, which has a 4:3 redundancy factor. In these experiments the two
methods led to almost identical outputs, an outcome which conforms with the
low redundancy of the transform. Interestingly, however, the picture remained

the same: in all tests, MAP-Analysis actually showed a small edge over MAP-
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Figure 2.5: Image denoising using the redundant DCT transform. Solid lines, left to right:
MAP-Analysis with block shifts of 1, 2 and 4 pixels; dashed lines, left to right: MAP-Synthesis
with block shifts of 1,2 and 4 pixels; dotted line: MAP-Analysis/MAP-Synthesis with a block
shift of 8 pixels (unitary transform). Images are of size 128 x 128. (a) Results for Lenna (b)
Results for Barbara. Images downloaded from http://www.wikipedia.com, and downscaled

using bilinear interpolation.

Synthesis.

The reasons for the superiority of MAP-Analysis in the denoising scenario
require further study; however, in our context we see that the gap indeed exists,
and can become dramatic even in practical situations. One possible explanation
for this could be the advantage of MAP-Analysis discussed in Section 2.1.3: since
MAP-Analysis utilizes all its filters simultaneously to support the recovery process,
it may be more robust in the presence of noise compared to MAP-Synthesis, whose
compact representation may be unstable when noise is introduced, leading to
recovery errors. A different possibility is that the high overcompleteness in MAP-
Synthesis, rather than positively enriching its descriptiveness, leads to a reverse
effect where the dictionary becomes "too descriptive”, representing a wide range of
undesirable signals. This effect does not apply to MAP-Analysis where increasing

the number of filters still requires the signal to agree with all existing ones.
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2.5 Conclusions: Analysis versus Synthesis Revisited

We began our discussion presenting two popular MAP-based methods for inverse
problem regularization — the MAP-Analysis and the MAP-Synthesis approaches
— and showing the algebraical similarity between the two. We saw that the two
are equivalent in the square non-singular case as well as in the under-complete
denoising case; however, in the overcomplete case the two methods were shown to
depart. We concentrated on the interesting ¢! case, and found that the geometrical
structures underlying the two exhibited very different properties. This perspective
has led to a generality relation of MAP-Synthesis over MAP-Analysis, as well as to
the characterization of the MAP-Analysis parallels of the MAP-Synthesis atoms.

The geometrical model does not provide a definite answer to the question
of who s better. It does, however, shed some light on the real gap that exists
between the two approaches, a gap which is not evident from the algebra alone.
We have used the geometrical model to locate those signals where the gap is
expected to be the largest, leading us to the results of the synthetic experiments;
we saw that for these signals the gap indeed becomes large. The experiments also
demonstrated the asymptotical nature of the difference between the two structures
in their number of principal signals. Our real-world experiments showed that this
gap exists not only in theory, and, no less important, that MAP-Synthesis should
not be a-priori considered to be superior to MAP-Analysis.

Our results are not to be interpreted as a recommendation for this method or
another. The synthetic experiments indicate that each of the methods is successful,
only on different sets of signals. The real-world experiments, which demonstrated
a significant advantage to MAP-Analysis, should be regarded as a sample case
rather than a conclusion. MAP-Synthesis remains advantageous in its simplicity of
dictionary design, and we further emphasize that the interesting /° MAP-Synthesis
case, though generally close to the ¢! case, has not been treated. Nonetheless, as

MAP-Analysis is significantly simpler to solve, our results come to emphasize that
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despite the recent blossom of MAP-Synthesis methods, both approaches are still
worthy candidates for inverse problem regularization. The question of which will

actually be better for a specific application and family of signals, remains open.
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2.A Equivalence in the Undercomplete Case

Theorem 2.2. Under-Complete Denoising Case — Near-Equivalence.
MAP-Analysis denoising with a full-rank analyzing operator @ € MN (L, < N)
is nearly-equivalent to MAP-Synthesis with the dictionary D = QF. This is ex-
pressed by the relation Zyiap_a = Zavap_s + Y2+, with yP+ representing the com-

ponent of the input orthogonal to the columns of D.

Proof. In the following, we assume the relation D = Q7 we additionally assume
that © has full row-rank (equivalently, that D has full column-rank), and thus
D = Q7(QQ")"! and QD = I. We introduce the notation z = zP + zP* to
denote the (single) decomposition of a signal z to the part zP in the column-span
of D and the part zP* in the orthogonal subspace.

We begin with the MAP-Analysis formulation in (2.2):
Sauap-a = Argmin [y - x[3 + A - [2x]
Decomposing in respect to the column-span of D, we obtain

Xuap-a = Argmin [[yP +yPt —xP —xPHT+ A QP + x|
xD xDL

= Argmin [[y° —xP[5+ [y = xPH3+ A [lQxP + QxPHp
D

x>, x
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We note that z is orthogonal to the columns of D iff it is orthogonal to the
rows of Q: since Q7 is invertible, we have 0 = D'z < 0 = (2Q7)D’z =
(227 (QQ")'Qz = Qz. This implies QxP* = 0, leading to
Xnap—a = Argmin [y —xP |3+ lyP* = xPH[3 + A - QxP[p .
xD xDL
Obviously any solution to this problem will satisfy P+ = yP* as there is no
additional penalty term for xP*. Therefore the MAP-Analysis problem reduces

to an optimization problem for Xpap_

XAP-A = Argmin Iy® = xP3 + A loxP]} .

Signals xP spanned by the columns of D have a representation as xP = D~.

We can thus reformulate the above as an optimization on -y, leading to

XMAp_A = D - Argmin ly® = D3+ A+ |QD~|

_ D-Argmﬁin Iy = D[54+ X ||

We see that the solution to Xpj,p_» comes from a MAP-Synthesis structure with
D = Q" and applied to yP. We conclude by showing that yP in this formulation
may be replaced with y. We do this using similar arguments to those applied

above, in a reverse manner:

XMAp_A = D - Argmin [y —=DAl3+ X+ |1y

= D-Argmin [[y” =Dy[l5 + [y” 5 +A- [
= D Argmin [ly® +y%* =Dy + 2 [l
= D-Argmin [y = Dv[5+ A |71}
Summing up, for the (under-)determined case, and with the relation D = Q%
we have shown that given a signal y = yP + yP*, the MAP-Analysis solution

and the MAP-Synthesis solution are related by Xyap_a = Xmap_s + y°r, as

claimed. u
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2.B MAP-Analysis Defining Polytope

Lemma 2.1. Facets of the M AP-Analysis Defining Polytope. Let x €
OVq, where Vg is the MAP-Analysis defining polytope {z | [|Qx|, < 1}. If Qz
has no vanishing elements, then x resides strictly within a facet (N —1-dimensional

face) of the MAP-Analysis defining polytope.

Proof. Let fa(x) = ||x]|; (the MAP-Analysis target function), and assume Qx
has no vanishing elements; then V f (x) = Q”sign(2x), and is defined at x. Also,
since all elements of 2x are finite and non-zero, there exists a ball B.(x) around
x such that for all x € B.(x), x has no vanishing elements. Now consider
the intersection 0Wgq N B.(x): this is a neighbourhood of x on the boundary of
the defining polytope, and for all x in it, £2x has no zero coordinates. From
continuity of {2x, we conclude that none of its coordinates change sign within this
neighbourhood, so for all x in it, sign(2x) = sign(2x) and also V fa(x) = V fa(x).
As the defining polytope is a level-set of fa, V fa (where defined) designates the
direction of the normal to this polytope. We therefore have a finite neighbourhood
of x on the boundary of the polytope where the normal is fixed, and thus x must

reside strictly within a facet of this polytope. ]

We now bring the proof of Claim 2.1, generalizing the above lemma.

Claim 2.1. Faces of the M AP-Analysis Defining Polytope. Let x € 0Vq,
and let k denote the rank of the rows in €2 to which x is orthogonal to. Then
x resides strictly within a face of dimension (N — k — 1) of the MAP-Analysis

defining polytope.

Proof. Assume a signal x € 0Vgq. Let {wy,..., wy} orthonormally span the rows
in Q to which x is orthogonal to, and let {uy, ..., uy_x} span their complementary
space. We denote &/ = Span{u;} and W = Span{w;}. Clearly x € U, from

orthogonality to {w;}.
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First, we consider the space U. Any vector v € U may be written as v =
Ua(v), where U = [u; | ... | uy_z] is an N x (N — k) matrix, and a(v) = U”v.
Since v € U, it is orthogonal to all the rows in €2 to which x is orthogonal to;
therefore, letting Q be the matrix obtained by discarding these rows from €2, then
for any v € U, we have ||Qv]|; = ||§V||1 Note that since we assume €2 is full
rank, then after removing from it the rows whose span is W, the remaining rows
of © still span at least the complement space U.

Now, define W = QU; we have ||Qv]; = [|Qv]; = [|QUa((v)|; = |[wWa((v)];
for any v € U. Multiplying Q to the left of U is essentially an orthogonal projec-
tion of its rows on the subspace U; since the rows of Q span U, the rank of the
result must be equal to that of U. Therefore the rank of W is (N — k), so it must
have at least this number of rows, and is thus an overcomplete analysis operator
on the a-space.

Since x € U, all the equalities above hold for x. Specifically, ||Wa(x)|1 =
|Qx||; = 1, so by definition a(x) € O¥. In other words, c(x) must reside on the
boundary of the defining polytope corresponding to the (/N —k)-dimensional MAP-
Analysis problem for the a-space with operator W. We further know that Qx has
no vanishing elements, since all such elements have been removed, so Wa(x) =
Qx has no vanishing elements. We have thus established all the conditions of
Lemma 2.1 for a(x), and it follows that a(x) resides strictly within a facet of the
(N — k)-dimensional polytope ¥,.

Given this, we know there exists an (N — k — 1)-dimensional ball about a(x)
such that this ball is entirely contained within the boundary of ¥,. By applying
U to the points of this ball, we orthonormally inject it to the N-dimensional
signal space, obtaining an (N — k — 1)-dimensional ball about x = Ua(x). This
ball resides entirely on the boundary of Wgq, since for any signal x = Ua(x)
in this ball, x € U and so ||Qx]|; = ||Wa(x)||; = 1. Evidently, we have an

(N — k — 1)-dimensional ball about x, residing entirely on the boundary of the
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defining polytope, therefore x must reside on a face of dimension at least (N —k—1)
of this polytope. To conclude the proof, we show this residence is strict; in other
words, we prove that there does not exist a ball of higher dimension about x
residing entirely within the polytope’s boundary.

Consider a d-dimensional ball about x, contained entirely within the boundary
of the defining polytope; then for any point x + e in this ball, the point x — e is

also in the ball. Now, write e as

e:ZaiuH—ijwj ,
i J

where {u;} and {w;} are the orthonormal bases as defined above. Since both
points are on the boundary of Wq, we have ||Qx]|; = [|Q2(x+e)|; = |[|Q(x—e)|; =

1. Written explicitly, these expand to

Qxte)=0 |:X:|: (Z a;u; + ijwjﬂ

Since (x4 ) a;u;) € U, all vanishing coefficients in €2x also vanish in
Q (x £ ) a;u;). As to the second part, assume by contradiction that > b;w; € W
is non-zero. Clearly the same coeflicients cannot all vanish in ) b;w;, as the
corresponding rows in {2 span W. Therefore adding or subtracting e to Q2x
necessarily increases the absolute-value-sum of these coefficients. On the other
hand, the entire ¢! norm of Q(x + e) remains fixed; so, for the remainder of the
coefficients, the addition or subtraction of {2e must strictly reduce their absolute-
value-sum. However, this may not occur simultaneously for both addition and
subtraction. Therefore, the only resolution to this is to require b; = 0 for all
j, implying that necessarily e € U. Thus, we have limited the dimension of
the ball about x to N — k (the dimension of /). Finally, x € U, but clearly
Qx4+ 0x)||1 # [|Q2x]|; for any § # 0. So e cannot be proportional to x, and
hence the ball about x must be of dimension less than ¢/ . We conclude that
d < (N —k—1), so x can reside strictly within a face of dimension no more than

(N —k—1). Since we have already shown the existence of such a face, we conclude
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that x resides strictly within an (N —k — 1)-dimensional face of the MAP-Analysis

defining polytope, as claimed. O]

2.C MAP-Synthesis Defining Polytope

Claim 2.2. Geometry of the MAP-Synthesis Defining Polytope. The
MAP-Synthesis defining polytope ®p = D{||y|ly < 1} is obtained as the convex
hull of {£d;}i=1. 1, where {d;} are the columns of D.

Proof. For the proof we note that d; = De;, where {e;} is the standard basis of

R%. We introduce the notation CH{v;} to denote the convex hull of the set {v;}.

CH{di} C ®p: We have te; € {|v]1 < 1} for all ¢, and therefore +d; =
D(xe;) € D{||v|1 < 1} = ®p. Since ®p is convex, it must also contain the

convex hull of {£d;}.

®p C CH{di}: Let x € ®p, then there exists a representation = such that
x = Dy, where ||v[; < 1. Since v € {[|v|l < 1}, it is a convex combination of
{+e;}, and can be written as v = >, {a;e; + b;(—e;) }. This implies x = Dy =
> {aidi + bi(—di)}, so x is a convex combination of {£d;}, and as such exists

in their convex hull. O

2.D MAP-Synthesis with a Normalized Dictionary

Lemma 2.2. Let P be a polytope with fixed-length vertices, i.e., for all vertices
v of P, ||v||]a = ¢ for some constant c. Then for every non-vertez point p on the

boundary of the polytope, ||p|l2 < c.

Proof. Consider a facet ¢ of P, defined by the vertices {vy,...,v,}. This facet
constitutes the intersection of some (n — 1)-dimensional hyperplane with the poly-
tope. Now, consider the /2-norm function f(x) = ||x||2, constrained to this plane.

The iso-surfaces of f on this plane are a set of concentric ellipsoids about some
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central point of minimal #2-norm. Since {vy,...,v,} are of a fixed length, they all
reside on the same ellipsoid. The facet ¢, which is the convex hull of {vy,...,v,},
must thus exist entirely within this ellipsoid by definition of the convex hull as the
minimal convex set containing {vy,...,v,}. This implies that for every p € ¢,
Iplz < c.

To obtain sharp inequality, we assume by contradiction that ||p|lz = ¢ while
p is not a vertex. Since p is not a vertex, there exist two points p;, py € ¢ such
that p resides on the line connecting p; and p,. However, examining the function
f, we have the following observation: for any point in space, advancing from it in
two opposite directions will always lead to at least one direction of increase in f;
this is due to the fact that when constrained to an infinite line, f always achieves
a single minimum and no maximum on the line. This implies that at least one
of p; and p, will have ¢*>-norm larger than c, leading to a contradiction. Hence

necessarily ||pll2 < c. O

Claim 2.3. Principal Signals of M AP-Synthesis with a Normalized Dic-
tionary. Let D be a MAP-Synthesis dictionary with fived-energy columns. Then
the dictionary atoms coincide with the principal signals of the MAP-Synthesis

pTLOT.

Proof. From Lemma 2.2, the proof is trivial. Let us denote the length of the
dictionary atoms by ¢. Then for any atom d, it follows that it must be a vertex as
|d||2 = ¢. Now, assume by contradiction that d is non-principal; therefore there
exists a direction from d on the boundary of the defining polytope such that the
distance from the origin increases. However this means that if we advance from
d in this direction a short enough distance, we will obtain a non-vertex point on
the polytope boundary whose length is larger than ¢, contradicting the previous

lemma. We conclude that d must be a principal signal. n
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Abstract

Sparse and redundant representation modeling of data assumes an ability to de-
scribe signals as linear combinations of a few atoms from a pre-specified dictionary.
As such, the choice of the dictionary that sparsifies the signals is crucial for the
success of this model. In general, the choice of a proper dictionary can be done
using one of two ways: (i) building a sparsifying dictionary based on a mathemat-
ical model of the data, or (ii) learning a dictionary to perform best on a training
set. In this paper we describe the evolution of these two paradigms. As manifes-
tations of the first approach, we cover topics such as wavelets, wavelet packets,
contourlets, and curvelets, all aiming to exploit 1-D and 2-D mathematical models
for constructing effective dictionaries for signals and images. Dictionary learning
takes a different route, attaching the dictionary to a set of examples it is supposed

to serve. From the seminal work of Field and Olshausen, through the MOD, the

63



CHAPTER 3: DICTIONARIES FOR SPARSE REPRESENTATION MODELING

K-SVD, the Generalized PCA and others, this paper surveys the various options

such training has to offer, up to the most recent contributions and structures.

3.1 Introduction

The process of digitally sampling a natural signal leads to its representation as the
sum of Delta functions in space or time. This representation, while convenient for
the purposes of display or playback, is mostly inefficient for analysis tasks. Signal
processing techniques commonly require more meaningful representations which
capture the useful characteristics of the signal — for recognition, the representation
should highlight salient features; for denoising, the representation should efficiently
separate signal and noise; and for compression, the representation should capture
a large part of the signal with only a few coefficients. Interestingly, in many cases
these seemingly different goals align, sharing a core desire for simplification.

Representing a signal involves the choice of a dictionary, which is the set of
elementary signals — or atoms — used to decompose the signal. When the dictionary
forms a basis, every signal is uniquely represented as the linear combination of
the dictionary atoms. In the simplest case the dictionary is orthogonal, and the
representation coefficients can be computed as inner products of the signal and the
atoms; in the non-orthogonal case, the coefficients are the inner products of the
signal and the dictionary inverse, also referred to as the bi-orthogonal dictionary.

For years, orthogonal and bi-orthogonal dictionaries were dominant due to their
mathematical simplicity. However, the weakness of these dictionaries — namely
their limited expressiveness — eventually outweighed their simplicity. This led
to the development of newer overcomplete dictionaries, having more atoms than
the dimensions of the signal, which promised to represent a wider range of signal
phenomena.

The move to overcomplete dictionaries was done cautiously, in an attempt to

minimize the loss of favorable properties offered by orthogonal transforms. Many
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dictionaries formed tight frames, which ensured that the representation of the
signal as a linear combination of the atoms could still be identified with the inner
products of the signal and the dictionary. Another approach, manifested by the
Best Basis algorithm, utilized a specific dictionary structure which essentially
allowed it to serve as a pool of atoms from which an orthogonal sub-dictionary
could be efficiently selected.

Research on general overcomplete dictionaries mostly commenced over the past
decade, and is still intensely ongoing. Such dictionaries introduce an intriguing
ambiguity in the definition of a signal representation. We consider the dictionary
D =[d;d,...d;] € RN*L where the columns constitute the dictionary atoms,
and L > N. Representing a signal x € R" using this dictionary can take one of
two paths — either the analysis path, where the signal is represented via its inner
products with the atoms,

v, =D"x , (3.1)
or the synthesis path, where it is represented as a linear combination of the atoms,
x =D~, . (3.2)

The two definitions coincide in the complete case (L = N), when the analysis and
synthesis dictionaries are bi-orthogonal. In the general case, however, the two may
dramatically differ.

The synthesis approach poses yet another interesting question: when D is
overcomplete, the family of representations v, satisfying (3.2) is actually infinitely
large, with the degrees of freedom identified with the null-space of D. This allows
us to seek the most informative representation of the signal with respect to some

cost function C'(7):
v, = Argmin C(5) Subject To x =D~ . (3.3)
v

Practical choices of C'() promote the sparsity of the representation, meaning that

we want the sorted coefficients to decay quickly. Solving (3.3) is thus commonly
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referred to as sparse coding. We can achieve sparsity by choosing C'(v) as some
robust penalty function, which we loosely define as a function that is tolerant to
large coefficients but aggressively penalizes small non-zero coefficients. Examples
include the Huber function [100] as well as the various (7 cost functions with
0<p<L

The two options (3.1) and (3.2), and specifically the problem (3.3), have been
extensively studied over the past few years. This in turn has led to the devel-
opment of new signal processing algorithms which utilize general overcomplete
transforms. However, in going from theory to practice, the challenge of choosing
the proper dictionary for a given task must be addressed. Earlier works made
use of traditional dictionaries, such as the Fourier and wavelet dictionaries, which
are simple to use and perform adequately for 1-dimensional signals. However,
these dictionaries are not well equipped for representing more complex natural
and high-dimensional signal data, and new and improved dictionary structures
were sought.

A variety of dictionaries have been developed in response to the rising need.
These dictionaries emerge from one of two sources — either a mathematical model
of the data, or a set of realizations of the data. Dictionaries of the first type are
characterized by an analytic formulation and a fast implicit implementation, while
dictionaries of the second type deliver increased flexibility and the ability to adapt
to specific signal data. Most recently, there is a growing interest in dictionaries
which can mediate between the two types, and offer the advantages of both worlds.
Such structures are just beginning to emerge, and research is still ongoing.

In this paper we present the fundamental concepts guiding modern dictionary
design, and outline the various contributions in the field. In Section 3.2 we take
a historical viewpoint, and trace the evolution of dictionary design methodology
from the early 1960’s to the late 1990’s, focusing on the conceptual advancements.

In Sections 3.3 and 3.4 we overview the state-of-the art techniques in both analytic
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and trained dictionaries. We summarize and conclude in Section 3.5.

3.2 A History of Transform Design

3.2.1 Signal Transforms: The Linear Era

Signal transforms have been around for as long as signal processing has been con-
ducted. In the 1960’s, early signal processing researchers gave significant attention
to linear time-invariant operators, which were simple and intuitive processes for
manipulating analog and digital signals. In this scenery, the Fourier transform
naturally emerged as the basis which diagonalizes these operators, and it imme-
diately became a central tool for analyzing and designing such operators. The
transform gained tremendous popularity with the introduction of the Fast Fourier
Transform (FFT) in 1965 by Cooley and Tukey [101], which provided its numerical
appeal.

The Fourier basis describes a signal in terms of its global frequency content,

as a combination of orthogonal waveforms

F = {gbn(x) = eim}nez .

A signal is approximated in this basis by projecting it onto the K lowest frequency
atoms, which has a strong smoothing and noise-reducing effect. The Fourier ba-
sis is thus efficient at describing uniformly smooth signals. However, the lack of
localization makes it difficult to represent discontinuities, which generate large
coefficients over all frequencies. Therefore, the Fourier transform typically pro-
duces oversmooth results in practical applications. For finite signals, the Fourier
transform implicitly assumes a periodic extension of the signal, which introduces a
discontinuity at the boundary. The Discrete Cosine Transform (DCT) is the result
of assuming an anti-symmetric extension of the signal, which results in continuous
boundaries, and hence in a more efficient approximation. Since the DCT has the

added advantage of producing non-complex coefficients, it is typically preferred in
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practical applications; see Fig. 3.1 for some 2-D DCT atoms.

Signal approximation in the Fourier basis was soon recognized as a specific
instance of linear approximation: given a basis {(bn}ff:}l of RN, asignal x € R" is
linearly approximated by projecting it onto a fized subset of K' < N basis elements

x~ ) (Yx)e, . (34)
nelx
where {1, })"! is in general the bi-orthogonal basis (1, = ¢,, in the orthonormal
case). The process is an under-complete linear transform of x, and, with the right
choice of basis, can achieve compaction — the ability to capture a significant part
of the signal with only a few coefficients. Indeed, this concept of compaction will
later be replaced with sparsity, though the two are closely related [102].

Optimizing compaction was a major driving force for the continued develop-
ment of more efficient representations. During the 1970’s and 1980’s, a new and
very appealing source of compaction was brought to light: the data itself. The
focus was on a set of statistical tools developed during the first half of the century,
known as the Karhunen-Loéve Transform (KLT) [7, 103], or Principal Component
Analysis (PCA) [104]. The KLT is a linear transform which can be adapted to rep-
resent signals coming from a certain known distribution. The adaptation process
fits a low-dimensional subspace to the data which minimizes the ¢? approximation
error. Specifically, given the data covariance matrix 3 (either known or empiri-
cal), the KLT atoms are the first K eigenvectors of the eigenvalue decomposition
of X,

¥ =UAU".

From a statistical point of view, this process models the data as coming from a low-
dimensional Gaussian distribution, and thus is most effective for Gaussian data.
Fig. 3.1 shows an example of the KLT basis trained from a set of image patches.
The DCT basis, shown in the same figure, is regarded as a good approximation of

the KLT for natural image patches when a non-adaptive transform is required.
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Figure 3.1: Left: a few 12 x 12 DCT atoms. Right: the first 40 KLT atoms, trained using 12 x 12

image patches from Lena.

Compared to the Fourier transform, the KLT is superior (by construction)
in terms of representation efficiency. However, this advantage comes at the cost
of a non-structured and substantially more complex transform. As we will see,
this tradeoff between efficiency and adaptivity continues to play a major role in

modern dictionary design methodology as well.

3.2.2 Non-Linear Revolution and Elements of Modern Dictionary De-

sign

In statistics research, the 1980’s saw the rise of a new powerful approach known
as robust statistics. Robust statistics advocates sparsity as a key for a wide range
of recovery and analysis tasks. The idea has its roots in classical Physics, and
more recently in Information Theory, and promotes simplicity and conciseness
in guiding phenomena descriptions. Motivated by these ideas, the 1980’s and
1990’s were characterized by a search for sparser representations and more efficient
transforms.

Increasing sparsity required departure from the linear model, towards a more
flexible non-linear formulation. In the non-linear case, each signal is allowed
to use a different set of atoms from the dictionary in order to achieve the best
approximation. Thus, the approximation process becomes

X ~ Z cn®,, (3.5)

nelgk (x)
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where [ (x) is an index set adapted to each signal individually (we refer the reader
to [7, 105] for a more thorough discussion of this topic).

The non-linear view paved the way to the design of newer, more efficient trans-
forms. In the process, many of the fundamental concepts guiding modern dictio-
nary design were formed. Following the historic time line, we trace the emergence
of the most important modern dictionary design concepts, which were mostly

formed during the last two decades of the 20th century.

Localization: To achieve sparsity, transforms required better localization. Atoms
with concentrated supports allow more flexible representations based on the local
signal characteristics, and limit the effects of irregularities, which are observed to
be the main source of large coefficients. In this spirit, one of the first structures to
be used was the Short Time Fourier Transform (STFT) [106], which emerges as a
natural extension to the Fourier transform. In the STF'T, the Fourier transform is
applied locally to (possibly overlapping) portions of the signal, revealing a time-
frequency (or space-frequency) description of the signal. An example of the STFT
is the JPEG image compression algorithm [107|, which is based on this concept.

During the 1980’s and 1990’s, the STFT was extensively researched and gen-
eralized, becoming more known as the Gabor transform — named in homage
of Dennis Gabor, who first suggested the time-frequency decomposition back
in 1946 [108]. Gabor’s work was independently rediscovered in 1980 by Bas-
tiaans [109] and Janssen [110|, who studied the fundamental properties of the
expansion.

A basic 1-D Gabor dictionary consists of windowed waveforms

G = {Pnm(r) = w(z — pm)e™™r}

where w(-) is a low-pass window function localized at 0 (typically a Gaussian),
and « and f control the time and frequency resolutions of the transform. Much
of the mathematical foundations of this transform were laid out during the late

1980’s by Daubechies, Grossman and Meyer [111, 112] who studied the transform
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from the angle of frame theory, and by Feichtinger and Grochenig [113-115] who
employed a generalized group-theoretic point of view. Study of the discrete version
of the transform and its numerical implementation followed in the early 1990’s,
with notable contributions by Wexler and Raz [116] and by Qian and Chen [117].

In higher dimensions, more complex Gabor structures were developed which
add directionality, by varying the orientation of the sinusoidal waves. This struc-
ture gained substantial support from the work of Daugman [118, 119], who dis-
covered oriented Gabor-like patterns in simple-cell receptive fields in the visual
cortex. These results motivated the deployment of the transform to image pro-
cessing tasks, led by works such as Daugman [120] and Porat and Zeevi [121].
Today, practical uses of the Gabor transform are mainly in analysis and detection
tasks, as a collection of directional filters. Fig. 3.2 shows some examples of 2-D

Gabor atoms of various orientations and sizes.

Multi-Resolution: One of the most significant conceptual advancements achieved
in the 1980’s was the rise of multi-scale analysis. It was realized that natural sig-
nals, and images specifically, exhibited meaningful structures over many scales,
and could be analyzed and described particularly efficiently by multi-scale con-
structions. One of the simplest and best known such structures is the Laplacian
pyramid, introduced in 1984 by Burt and Adelson [122]. The Laplacian pyramid
represents an image as a series of difference images, where each one corresponds
to a different scale and roughly a different frequency band.

In the second half of the 1980’s, though, the signal processing community was
particularly excited about the development of a new very powerful tool, known
as wavelet analysis |7, 123, 124]. In a pioneering work from 1984, Grossman and
Morlet [125] proposed a signal expansion over a series of translated and dilated

versions of a single elementary function, taking the form

W= {(bn,m(x) = an/Qf(anx - ﬁm)}n,mez :

This simple idea captivated the signal processing and harmonic analysis com-
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munities, and in a series of influential works by Meyer, Daubechies, Mallat and
others [111, 112, 126-131], an extensive wavelet theory was formalized. The the-
ory was formulated for both the continuous and discrete domains, with a complete
mathematical framework relating the two. A significant breakthrough came from
Meyer’s work in 1985 [126], who found that unlike the Gabor transform (and con-
trary to common belief) the wavelet transform could be designed to be orthogonal
while maintaining stability — an extremely appealing property to which much of
the initial success of the wavelets can be attributed to.

Specifically of interest to the signal processing community was the work of
Mallat and his colleagues [129-131] which established the wavelet decomposition
as a multi-resolution expansion and put forth efficient algorithms for computing
it. In Mallat’s description, a multi-scale wavelet basis is constructed from a pair
of localized functions referred to as the scaling function and the mother wavelet,
see Fig. 3.3. The scaling function is a low frequency signal, and along with its
translations, spans the coarse approximation of the signal. The mother wavelet
is a high frequency signal, and with its various scales and translations spans the
signal detail. In the orthogonal case, the wavelet basis functions at each scale are
critically sampled, spanning precisely the new detail introduced by the finer level.

Non-linear approximation in the wavelet basis was shown to be optimal for
piecewise-smooth 1-D signals with a finite number of discontinuities, see e.g., [130].
This was a striking finding at the time, realizing that this is achieved without prior
detection of the discontinuity locations. Unfortunately, in higher dimensions the
wavelet transform loses its optimality; the multi-dimensional transform is a simple
separable extension of the 1-D transform, with atoms supported over rectangular
regions of different sizes (see Fig. 3.3). This separability makes the transform
simple to apply, however the resulting dictionary is only effective for signals with
point singularities, while most natural signals exhibit elongated edge singularities.

The JPEG2000 image compression standard, based on the wavelet transform, is
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Figure 3.2: Left: a few 12 x 12 Gabor atoms at different scales and orientations. Right: a few

atoms trained by Olshausen and Field (extracted from [94]).

indeed known for its ringing (smoothing) artifacts near edges.

Adaptivity: Going to the 1990’s, the desire to push sparsity even further, and
describe increasingly complex phenomena, was gradually revealing the limits of
approximation in orthogonal bases. The weakness was mostly associated with the
small and fixed number of atoms in the dictionary — dictated by the orthogonality
— from which the optimal representation could be constructed. One option to
obtain further sparsity was thus to adapt the transform atoms themselves to the
signal content.

One of the first such structures to be proposed was the wavelet packet trans-
form, introduced by Coifman, Meyer and Wickerhauser in 1992 [132]|. The trans-
form is built upon the success of the wavelet transform, adding adaptivity to allow
finer tuning to the specific signal properties. The main observation of Coifman et
al. was that the wavelet transform enforced a very specific time-frequency struc-
ture, with high frequency atoms having small supports and low frequency atoms
having large supports. Indeed, this choice has deep connections to the behavior of
real natural signals; however, for specific signals, better partitionings may be pos-
sible. The wavelet packet dictionary essentially unifies all dyadic time-frequency
atoms which can be derived from a specific pair of scaling function and mother
wavelet, so atoms of different frequencies can come in an array of time supports.

Out of this large collection, the wavelet packet transform allows to efficiently se-
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lect an optimized orthogonal sub-dictionary for any given signal, with the standard
wavelet basis being just one of an exponential number of options. The process was
thus named by the authors a Best Basis search. The wavelet packet transform is,
by definition, at least as good as wavelets in terms of coding efficiency. However,
we note that the multi-dimensional wavelet packet transform remains a separable
and non-oriented transform, and thus does not generally provide a substantial

improvement over wavelets for images.

Geometric Invariance and Overcompleteness: In 1992, Simoncelli et al. [14]
published a thorough work advocating a dictionary property they termed shifta-
bility, which describes the invariance of the dictionary under certain geometric
deformations, e.g., translation, rotation or scaling. Indeed, a well known weakness
of the wavelet transform is its strong translation-sensitivity, as well as rotation-
sensitivity in higher dimensions. The authors concluded that achieving these prop-
erties required abandoning orthogonality in favor of overcompleteness, since the
critical number of atoms in an orthogonal transform was simply insufficient. In
the same work, the authors developed an overcomplete oriented wavelet transform
— the steerable wavelet transform — which was based on their previous work on
steerable filters and consisted of localized 2-D wavelet atoms in many orientations,
translations and scales.

For the basic 1-D wavelet transform, translation-invariance can be achieved
by increasing the sampling density of the atoms. The stationary wavelet trans-
form, also known as the undecimated or non-subsampled wavelet transform, is
obtained from the orthogonal transform by eliminating the sub-sampling and col-
lecting all translations of the atoms over the signal domain. The algorithmic
foundation for this was laid by Beylkin in 1992 [133], with the development of
an efficient algorithm for computing the undecimated transform. The stationary
wavelet transform was indeed found to substantially improve signal recovery com-

pared to orthogonal wavelets, and its benefits were independently demonstrated
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Figure 3.3: Left: Coiflet 1-D scaling function (solid) and mother wavelet (dashed). Right: some

2-D separable Coiflet atoms.

in 1995 by Nason and Silverman [134] and Coifman and Donoho [135].

3.2.3 From Transforms to Dictionaries

By the second half of the 1990’s, most of the concepts for designing effective
transforms were laid out. At the same time, a conceptual change of a different
sort was gradually taking place. In their seminal work from 1993, Mallat and
Zhang [11] proposed a novel sparse signal expansion scheme based on the selection
of a small subset of functions from a general overcomplete dictionary of functions.
Shortly after, Chen, Donoho and Saunders published their influential paper on the
Basis Pursuit [136], and the two works signalled the beginning of a fundamental
move from transforms to dictionaries for sparse signal representation. An array
of works since has formed a wide mathematical and algorithmic foundation of this
new field, and established it as a central tool in modern signal processing [137].

The seemingly minor terminological change enclosed the idea that a signal was
allowed to have more than one description in the representation domain, and that
selecting the best one depended on the task. Moreover, it de-coupled the processes
of designing the dictionary and coding the signal: indeed, given the dictionary —
the collection of elemental signals — different cost functions could be proposed
in (3.3), and different coding methods could be applied.

The first dictionaries to be used in this way were the existing transforms —
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such as the Fourier, wavelet, STF'T, and Gabor transforms, see e.g., [11, 136]. As
an immediate consequence, the move to a dictionary-based formalism provided
the benefit of constructing dictionary mergers, which are the unions of several
simpler dictionaries; these were proposed by Chen, Donoho and Saunders in [136],
and provide a simple way to increase the variety of features representable by the

dictionary.

3.2.4 Higher Dimensional Signals

The variety of dictionaries developed through the mid-1990’s served one-dimensional
signals relatively well. However, the dictionaries for multi-dimensional signal rep-
resentation were still unsatisfying. Particularly frustrating, for instance, was the
common knowledge that 2-D piecewise-smooth signals could be described much
more efficiently using a simple piecewise-linear approximation over an adaptive
triangle grid, than using any existing dictionary |7, 16].

In 1998, Donoho developed the wedgelet dictionary for 2-D signal representa-
tion [138], which bears some resemblance to the adaptive triangulation structure.
The wedgelet dictionary consists of constant-valued, axis-aligned squares, bisected
by straight lines, and spanning many sizes and locations. Donoho showed that this
dictionary is optimal for piecewise-constant images with regular edge discontinu-
ities, and provided a quick (though non-optimal) approximation technique. The
elegant wedgelet construction, though too simplistic for many tasks, was adopted
and generalized by several researchers, leading to such structures as wavelet-
wedgelets hybrids (wedgeprints) [139], piecewise-linear wedgelets (platelets) [140],
and higher-dimensional wedgelets (surflets) [141].

In parallel to the wedgelet transform, Candés and Donoho introduced the
ridgelet transform as a multi-dimensional extension of the wavelet transform [92].
A ridgelet atom is a translated and dilated wavelet in one direction, and fixed in

the orthogonal directions (similar to a plane wave). The transform is proven to
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be optimal for piecewise-smooth functions with plane discontinuities. Indeed, the
basic ridgelet dictionary is unsuitable for natural signals due its lack of localiza-
tion. However, with proper localization and multi-scale extension, the dictionary
forms the core of the much more powerful curvelet transform [16, 77|, introduced
by the authors soon after, and which provides a comprehensive framework for rep-
resenting multi-dimensional signals. Similar efforts led to the development of the
contourlet, shearlet, and other transforms, which are described in more detail in

the next section.

3.2.5 Analytic versus Trained Dictionaries

The dictionaries described so far all roughly fall under the umbrella of Harmonic
Analysis, which suggests modeling interesting signal data by a more simple class
of mathematical functions, and designing an efficient representation around this
model. For example, the Fourier dictionary is designed around smooth functions,
while the wavelet dictionary is designed around piecewise-smooth functions with
point singularities. The dictionaries of this sort are characterized by an analytic
formulation, and are usually supported by a set of optimality proofs and error
rate bounds. An important advantage of this approach is that the resulting dic-
tionary usually features a fast implicit implementation which does not involve
multiplication by the dictionary matrix. On the other hand, the dictionary can
only be as successful as its underlying model, and indeed, these models tend to be
over-simplistic compared to the complexity of natural phenomena.

Through the 1980’s and 1990’s, Machine Learning techniques were rapidly
gaining interest, and promised to confront this exact difficulty. The basic as-
sumption behind the learning approach is that the structure of complex natural
phenomena can be more accurately extracted directly from the data than by using
a mathematical description. One direct benefit of this is that a finer adaptation

to specific instances of the data becomes possible, replacing the use of generic
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models.

A key contribution to the area of dictionary learning was provided by Olshausen
and Field in 1996 [94]. In their widely celebrated paper, the authors trained a dic-
tionary for sparse representation of small image patches collected from a number
of natural images. With relatively simple algorithmic machinery, the authors were
able to show a remarkable result — the trained atoms they obtained were incred-
ibly similar to the mammalian simple-cell receptive fields, which until then were
only weakly explained via Gabor filters. The finding was highly motivating to the
sparse representation community, as it demonstrated that the single assumption of
sparsity could account for a fundamental biological visual behavior. Also, the re-
sults demonstrated the potential in example-based methods to uncover elementary
structures in complex signal data.

The experiments of Olshausen and Field inspired a series of subsequent works
aimed at improving the example-based training process. Towards the end of the
1990’s, these works mostly focused on statistical training methods, which model
the examples as random independent variables originating from a sparse noisy
source. With X = [xjX3...X,] denoting the data matrix, the statistical ap-
proach suggests seeking for the dictionary which either maximizes the likelihood
of the data P(X|D) (Mazimum Likelihood estimation), e.g., [24], or maximizes
the posterior probability of the dictionary P(D|X) (Maximum A-Posterior esti-
mation), e.g., [25]. The resulting optimization problems in these works are typi-
cally solved in an Expectation-Maximization (EM) fashion, alternating estimation
of the sparse representations and the dictionary; earlier works employed gradient
descent or similar methods for both tasks, while later ones employ more powerful

sparse-coding techniques for the estimation of the sparse representations.
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3.3 Analytic Dictionaries — State-of-the-Art

Recent advances in analytic dictionary design have mostly focused on the move
to two and higher dimensions. Multi-dimensional signals are significantly more
complex than one-dimensional ones due to the addition of orientation. Also, the
elementary singularities become curves — or manifolds in general — rather than
points, and thus have a much more complex geometry to trace. In order to handle
these complex signals, new transforms that are both localized and oriented have
been developed.

Analytic dictionaries are typically formulated as tight frames, meaning that
DD”x = x for all x, and therefore the dictionary transpose can be used to obtain
a representation over the dictionary. The analytic approach then proceeds by
analyzing the behavior of the filter-set D x, and establishes decay rates and error
bounds.

The tight frame approach has several advantages. Analyzing the behavior of
D” as an analysis operator seems easier than deriving sparsity bounds in a syn-
thesis framework, and indeed, results obtained for the analysis formulation also
induce upper bounds for the synthesis formulation. Another benefit is that —
when formulated carefully — the algorithms for both analysis and synthesis op-
erators become nearly reversals, simplifying algorithm design. Finally, the tight
frame approach is beneficial in that it simultaneously produces a useful structure
for both the analysis and synthesis frameworks, and has a meaningful interpreta-
tion in both.

Sparse-coding in this case is typically done by computing the analysis coef-
ficients D'x, and passing them through a non-linear shrinking operator. This
method has the advantage of providing a simple and efficient way to achieve
sparse representations over the dictionary, though it is worth noting that from
a pure synthesis point of view, this process is sub-optimal, and one might benefit

from employing a more advanced sparse-coding technique, e.g., an iterated shrink-
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age technique [43], directly to the expansion coefficients. Recent efforts in this
direction have led Yaghoobi et al. [142] to propose a parameter tuning method
for analytic dictionaries, which may further improve their performance in sparse-

coding processes.

3.3.1 Curvelets

The curvelet transform was introduced by Candés and Donoho in 1999 [16], and
was later refined into its present form in 2003 [17]. When published, the transform
astonished the harmonic analysis community by achieving what was then believed
to be only possible with adaptive representations: it could represent 2-D piecewise-
smooth functions with smooth curve discontinuities at an (essentially) optimal
rate.

The curvelet transform is formulated as a continuous transform, with dis-
cretized versions developed for both formulations [17, 77, 143]. Each curvelet
atom is associated with a specific location, orientation and scale. In the 2-D
case, a curvelet atom is roughly supported over an elongated elliptical region,
and is oscillatory along its width and smooth along its length, see Fig. 3.4. The
curvelet atoms are characterized by their specific anisotropic support, which obeys
a parabolic scaling law width ~ length?. As it turns out, this property is useful for
the efficient representation of smooth curves [144|, and indeed several subsequent
transforms follow this path. In higher dimensions, the curvelet atoms become
flattened ellipsoids, oscillatory along their short direction and smooth along the

other directions [17, 143, 145].

3.3.2 Contourlets

The curvelet transform offers an impressively solid continuous construction and
exhibits several useful mathematical properties. However, its discretization turns

out to be challenging, and the resulting algorithms are relatively complicated.
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7

Figure 3.4: Some curvelet atoms (left) and contourlet atoms (right). Both represent the second

version of the corresponding transform.

Also, current discretizations have relatively high redundancies, which makes them
more costly to use and less applicable for tasks like compression.

With this in mind, Do and Vetterli proposed the contourlet transform in
2002 [18, 146] as an alternative to the 2-D curvelet transform. The transform
was later refined in 2006 by Lu and Do [19], and a multi-dimensional version,
named surfacelets, was also recently introduced [20].

The contourlet transform shares many of the characteristics of the curvelet
transform, including localization, orientation, and parabolic scaling. However, as
opposed to curvelets, the contourlets are defined directly in the discrete domain,
and thus have a native and simple construction for discrete signals. Also, the stan-
dard contourlet transform has much lower redundancy, approximately in the range
[1.3,2.3] for the second-generation implementation [19], compared to [2.8,7.2] for
second-generation curvelets [17].

The contourlet transform implementation is based on a pyramidal band-pass
decomposition of the image followed by a directional filtering stage. The result-
ing oriented atoms are elongated and oscillatory along their width, with some
visual resemblance to the curvelet atoms (see Fig. 3.4). The main appeal of the
transform is due to its simple discrete formulation, its low complexity and re-
duced redundancy. It should be noted, though, that while the transform is well
suited for tasks such as compression, its aggressive sub-sampling has been noted

to lead to artifacts in signal reconstruction, in which case a translation-invariant
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version of the transform is preferred |79, 147|; indeed, this option significantly in-
creases redundancy and complexity, though the simpler structure of the transform

remains.

3.3.3 Bandelets

The bandelet transform was proposed in 2005 by Le Pennec and Mallat [148], with
a second version introduced soon after by Peyré and Mallat [149]. The bandelet
transform represents one of the most recent contributions in the area of signal-
adaptive transforms, and as such it differs fundamentally from the non-adaptive
curvelet and contourlet transforms.

The idea behind the bandelet construction is to exploit geometric regularity
in the image — specifically edges and directional phenomena — in order to fit a
specifically optimized set of atoms to the image. The original bandelet construc-
tion operates in the spatial domain, and is based on an adaptive subdivision of the
image to dyadic regions according to the local complexity; in each region, a set
of skewed wavelets is matched to the image flow, in such a way that the wavelet
atoms essentially "wrap-around” the edges rather than cross them. This process
significantly reduces the number of large wavelet coefficients, as these typically
emerge from the interaction of a wavelet atom and a discontinuity.

The resulting set of atoms forms a (slightly) overcomplete set, which is specif-
ically tailored for representing the given image. In the second bandelet construc-
tion, which is formulated in the wavelet domain, the transform is further refined
to produce an orthogonal set. In terms of dictionaries, the bandelet transform
selects a set of atoms from a nearly infinite set, and in fact discretization is the
main source for limiting the size of this set. This is as opposed to the wavelet
packet transform, for instance, where the complete set of atoms is not much larger

than the signal dimension. See Fig. 3.5 for an example of bandelets.
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3.3.4 Other Analytic Dictionaries

Many additional analytic transforms have been developed during the past decade,
some of which we mention briefly. The complex wavelet transform [15, 150] is an
oriented and near-translation-invariant high-dimensional extension of the wavelet
transform, achieved through the utilization of fwo mother wavelets satisfying a
specific relationship between them. Similar to the original wavelet transform, the
complex wavelet transform is efficient and simple to implement, and the added
phase information delivers orientation sensitivity and other favorable properties.
The shearlet transform |21, 80, 151] is a recently proposed alternative to curvelets,
which utilizes structured shear operations rather than rotations to control orien-
tation. Similar to curvelets, the shearlet transform is based on a comprehensive
continuous mathematical construction, and it shares many of the properties of the
curvelet transform while providing some attractive new features. See Fig. 3.6 for
some examples of complex wavelet and shearlet atoms.

Recent adaptive dictionaries include the directionlet transform [152], which
is a discrete transform which constructs oriented and anisotropic wavelets based
on local image directionality, utilizing a specialized directional grouping of the
grid points for its numerical implementation. The grouplet transform [153] is
a multi-scale adaptive transform which essentially generalizes Haar wavelets to
arbitrary supports, based on image content regularity; when applied in the wavelet
domain, the transform bears some resemblance to the second-generation bandelet

transform, and thus is referred to as grouped bandelets.

3.4 Dictionary Training — State-of-the-Art

Dictionary training is a much more recent approach to dictionary design, and as
such, has been strongly influenced by the latest advances in sparse representation

theory and algorithms. The most recent training methods focus on ¢° and ¢*
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Figure 3.5: Left: the flow in a specific image region. Right: some bandelet atoms adapted to

the region. Note how the 1-D wavelets are skewed to follow edges.

sparsity measures, which lead to simple formulations and enable the use of recently
developed efficient sparse-coding techniques [38, 39, 41, 43, 46, 136].

The main advantage of trained dictionaries is that they lead to state-of-the-art
results in many practical signal processing applications. The cost — as in the case
of the KLT — is a dictionary with no known inner structure or fast implementa-
tion. Thus, the most recent contributions to the field employ parametric models
in the training process, which produce structured dictionaries, and offer several
advantages. A different development, which we do not discuss here, is the recent
advancement in online dictionary learning [34, 154|, which allows training dictio-
naries from very large sets of examples, and is found to accelerate convergence

and improve the trained result.

3.4.1 Method of Optimal Directions

The Method of Optimal Directions (MOD) was introduced by Engan et al. in
1999 [23, 155], and was one of the first methods to implement what is known
today as a sparsification process. Given a set of examples X = [x1 X3 ... X,], the
goal of the MOD is to find a dictionary D and a sparse matrix I' which minimize

the representation error,

Argrlleilg |X —DI||7 Subject To ||v,llo <T Vi, (3.6)
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Figure 3.6: Left: a few complex wavelet atoms (real part). Right: a few shearlets.

where {~,} represent the columns of T, and the ¢° sparsity measure ||-||o counts the
number of non-zeros in the representation. The resulting optimization problem
is combinatorial and highly non-convex, and thus we can only hope for a local
minimum at best. Similar to other training methods, the MOD alternates sparse-
coding and dictionary update steps. The sparse-coding is performed for each
signal individually using any standard technique. For the dictionary update, (3.6)
is solved via the analytic solution of the quadratic problem, given by D = XI'*
with 't denoting the Moore-Penrose pseudo-inverse.

The MOD typically requires only a few iterations to converge, and is overall
a very effective method. The method suffers, though, from the relatively high
complexity of the matrix inversion. Several subsequent works have thus focused

on reducing this complexity, leading to more efficient methods.

3.4.2 Union of Orthobases

Training a union-of-orthobases dictionary was proposed in 2005 by Lesage et
al. [27] as a means of designing a dictionary with reduced complexity and which
could be more efficiently trained. The process also represents one of the first
attempts at training a structured overcomplete dictionary — a tight frame in
this case. The model suggests training a dictionary which is the concatenation
of k orthogonal bases, so D = [Dj Dy ...Dy] with the {D;} unitary matrices.

Sparse-coding over this dictionary can be performed efficiently through a Block
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Coordinate Relaxation (BCR) technique [47].

A drawback of this approach is that the proposed model itself is relatively
restrictive, and in practice it does not perform as well as more flexible structures.
Interestingly, there is a close connection between this structure and the more
powerful Generalized PCA model, described next. The GPCA also arises from
a union of orthogonal spaces model, though it deviates from the classical sparse
representation paradigm. Identifying such relations could thus prove valuable in

enabling a merge between the two forces.

3.4.3 Generalized PCA

Generalized PCA, introduced in 2005 by Vidal, Ma and Sastry [82], offers a differ-
ent and very interesting approach to overcomplete dictionary design. The GPCA
view is basically an extension of the original PCA formulation, which approximates
a set of examples by a low-dimensional subspace. In the GPCA setting, the set of
examples is modeled as the union of several low-dimensional subspaces — perhaps
of unknown number and variable dimensionality — and the algebraic-geometric
GPCA algorithm determines these subspaces and fits orthogonal bases to them.

The GPCA viewpoint differs from the sparsity model described in (3.2), as each
example in the GPCA setting is represented using only one of the subspaces; thus,
atoms from different subspaces cannot jointly represent a signal. This property has
the advantage of limiting over-expressiveness of the dictionary, which characterizes
other overcomplete dictionaries; on the other hand, the dictionary structure may
be too restrictive for more complex natural signals.

A unique property of the GPCA is that as opposed to other training methods,
it can detect the number of atoms in the dictionary in certain settings. Unfor-
tunately, the algorithm may become very costly this way, especially when the
amount and dimension of the subspaces increases. Indeed, intriguing models arise

by merging the GPCA viewpoint with the classical sparse representation view-
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point: for instance, one could easily envision a model generalizing (3.6) where
several distinct dictionaries are allowed to co-exists, and every signal is assumed

to be sparse over exactly one of these dictionaries.

3.4.4 The K-SVD Algorithm

The desire to efficiently train a generic dictionary for sparse signal representation
led Aharon, Elad and Bruckstein to develop the K-SVD algorithm in 2005 [28|.
The algorithm aims at the same sparsification problem as the MOD (3.6), and em-
ploys a similar block-relaxation approach. The main contribution of the K-SVD
is that the dictionary update, rather than using a matrix inversion, is performed
atom-by-atom in a simple and efficient process. Further acceleration is provided
by updating both the current atom and its associated sparse coefficients simulta-
neously. The result is a fast and efficient algorithm which is less demanding than
the MOD.

The K-SVD algorithm takes its name from the Singular-Value-Decomposition
(SVD) process that forms the core of the atom update step, and which is repeated
K times, as the number of atoms. For a given atom k, the quadratic term in (3.6)
is rewritten as

||X—Zdj’)’f—dk’7£||% = |Ex — divi |7 (3.7)

JF#k

where {')/JT} are the rows of I', and Ey, is the residual matrix. The atom update
is obtained by minimizing (3.7) for d;, and % via a simple rank-1 approximation
of E;. To avoid introduction of new non-zeros in I', the update process is per-
formed using only the examples whose current representations use the atom dy.
Fig. 3.7 shows an example of a K-SVD trained dictionary for 2-D image patch
representation.

In practice, the K-SVD is an effective method for representing small signal
patches. However, the K-SVD, as well as the MOD, suffer from a few common

weaknesses. The high non-convexity of the problem means that the two methods
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will get caught in local minima or even saddle points. Also, the result of the
training is a non-structured dictionary which is relatively costly to apply, and
therefore these methods are suitable for signals of relatively small size. In turn, in
recent years several parametric dictionary training methods have begun to appear,
and aim to address these issues by importing the strengths of analytic dictionaries

to the world of example-based methods.

3.4.5 Parametric Training Methods

There are several motivations for training a parametric dictionary. By reducing
the number of free parameters and imposing various desirable properties on the
dictionary, we can accelerate convergence, reduce the density of local minima, and
assist in converging to a better solution. A smaller number of parameters also
improves generalization of the learning process and reduces the number of exam-
ples needed. Another advantage of the parameterization is that the dictionary
will typically have a more compact representation, and may lend itself to a more
efficient implementation. Finally, with the proper structure, a parameterized dic-
tionary may be designed to represent infinite or arbitrary-sized signals. Several
parametric dictionary structures have been recently proposed, and in the following

we mention a few examples.

Translation-Invariant Dictionaries: Given a dictionary for a fixed-size signal
patch, a dictionary for an arbitrary-sized signal can be constructed by collecting
all the translations of the trained atoms over the signal domain and forming a large
translation-invariant dictionary. Several training methods for such structures have
been proposed in recent years. Blumensath and Davies [156] employed statistical
training methodology to design dictionaries for arbitrary time series representa-
tion; Jost et al. [157] developed a learning process based on a sequential computa-
tion of the dictionary atoms, promoting de-correlation of the trained atoms; and

the MOD has been extended by Engan et al. [29] to translation-invariant and op-
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Figure 3.7: Left: atoms from a K-SVD dictionary trained on 12 x 12 image patches from Lena.

Right: a signature dictionary, trained on the same image.

tionally linearly-constrained dictionary training, which they successfully applied
to electrocardiogram (ECG) recordings.

A very different approach to translation-invariance was recently proposed by
Aharon and Elad in [32]. In the 2-D case, their proposed signature dictionary
is a small image in which each N x N sub-block constitutes an atom. Thus,
assuming a periodic extension, an M x M signature dictionary stores M? atoms
in a compact structure. Compared to the previous methods, this approach does
not aim to produce a dictionary for arbitrary-sized signals, and instead, describes
an interesting form of invariance at the block level. Indeed, a possible extension
of this model could allow extraction of variable-sized atoms from the signature
image, though this option remains for future research. An example of a trained

signature dictionary is shown in Fig. 3.7.

Multiscale Dictionaries: Training dictionaries with multi-scale structures is an
exciting and challenging option which has only been partially explored. In [26],
Sallee and Olshausen proposed a pyramidal wavelet-like signal expansion, gen-
erated from the dilations and translations of a set of elementary small trained
patches. The training method learns the elementary patches as well as a statis-
tical model of the coefficients. In simulations, the structure is found to compete
favorably with other pyramidal-based transforms. While the results of this method

seem slightly constrained by the small number of elementary functions trained, it is
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likely to substantially benefit from increasing the overcompleteness and employing
some more advanced sparse-coding machinery.

A different and interesting contribution in this direction is the semi-multiscale
extension of the K-SVD introduced in 2008 by Mairal, Sapiro and Elad [31]. The
semi-multiscale structure is obtained by arranging several fixed-sized learned dic-
tionaries of different scales over a dyadic grid. The resulting structure is found to
deliver a pronounced improvement over the single-scale K-SVD dictionary in ap-
plications such as denoising and inpainting, producing nearly state-of-the-art de-
noising performance. The main significance of this work, though, is the potential
it demonstrates in going to multi-scale learned structures. Such results are highly

encouraging, and motivate further research into multi-scale training models.

Sparse Dictionaries: One of the most recent contributions to the field of para-
metric dictionaries, specifically aimed at merging the advantages of trained and an-
alytic dictionaries, was recently presented by Rubinstein, Zibulevsky and Elad [33].
Their proposed sparse dictionary structure takes the form D = BA, where B is
some fixed analytic dictionary with a fast computation, and A is a sparse matrix.
Thus, the dictionary is compactly expressed and has a fast implementation, while
adaptivity is provided through the matrix A. Also, the parameterization is shown
to improve learning generalization and to reduce the training set size. Thus, the
training method can be used to learn larger dictionaries than the MOD or K-SVD,
e.g., for large image patches, or 3-D signal patches. Nonetheless, we note that the
sparse dictionary structure, as most other models, remains targeted at fixed-size
signals. Indeed, further work is required to design more general dictionary models

which will truly capture the benefits of both analytic and example-based worlds.

3.5 Conclusions

Dictionary design has significantly evolved over the past decades, beginning with

simple orthogonal transforms and leading to the complex overcomplete analytic
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and trained dictionaries now defining the state-of-the-art. Substantial conceptual
advancement has been made in understanding the elements of an efficient dic-
tionary design — most notably adaptivity, multi-scale, geometric invariance, and
overcompleteness. However, with a wealth of tools already developed, much work
remains to be done; indeed, the various components have yet to be neatly merged
into a single efficient construct. Many future research directions have been men-
tioned in the text, and demonstrate the viability and vividness of the field as well
as the large number of challenges that still await. Of specific interest, we highlight
the strong need for a multi-scale structured dictionary learning paradigm, as well
as methods to use such dictionaries in applications, which will clearly be the focus

of much research in the near future.
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Abstract

An efficient and flexible dictionary structure is proposed for sparse and redundant
signal representation. The proposed sparse dictionary is based on a sparsity model
of the dictionary atoms over a base dictionary, and takes the form D = ® A where
® is a fixed base dictionary and A is sparse. The sparse dictionary provides
efficient forward and adjoint operators, has a compact representation, and can be
effectively trained from given example data. In this, the sparse structure bridges
the gap between implicit dictionaries, which have efficient implementations yet
lack adaptability, and explicit dictionaries, which are fully adaptable but non-
efficient and costly to deploy. In this paper we discuss the advantages of sparse
dictionaries, and present an efficient algorithm for training them. We demonstrate

the advantages of the proposed structure for 3-D image denoising.
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4.1 Introduction

Sparse representation of signals over redundant dictionaries [11, 12, 137] is a
rapidly evolving field, with state-of-the-art results in many fundamental signal
and image processing tasks |2, 31, 65, 66, 70, 74, 84, 158|. The basic model sug-
gests that natural signals can be compactly expressed, or efficiently approximated,
as a linear combination of prespecified atom signals, where the linear coefficients
are sparse (i.e., most of them zero). Formally, letting x € RY be a column signal,
and arranging the atom signals as the columns of the dictionary D € R¥*L, the
sparsity assumption is described by the following sparse approximation problem,

for which we assume a sparse solution exists:
4 = Argmin ||| Subject To ||x —D~|s <ce€. (4.1)
¥

In this expression, 4 is the sparse representation of x, € is the error tolerance, and
the function || - ||, loosely referred to as the ¢°-norm, counts the non-zero entries
of a vector. Though known to be NP-hard in general [37], the above problem is
relatively easy to approximate using a wide variety of techniques [38-40, 42, 44-48].

A fundamental consideration in employing the above model is the choice of the
dictionary D. The majority of literature on this topic can be categorized into two
basic approaches: the analytic approach and the learning-based approach. In the
first approach, a mathematical model of the data is formulated, and an analytic
construction is developed to efficiently represent the model. This generally leads to
dictionaries that are highly structured and have a fast numerical implementation.
We refer to these as implicit dictionaries as they are described by their algorithm
rather than their explicit matrix. Dictionaries of this type include Wavelets [7],
Curvelets [16], Contourlets [18|, Shearlets [21], Complex Wavelets [15], and Ban-
delets [148|, among others.

The second approach suggests using machine learning techniques to infer the

dictionary from a set of examples. In this case, the dictionary is typically rep-
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resented as an explicit matrix, and a training algorithm is employed to adapt
the matrix coefficients to the examples. Algorithms of this type include PCA
and Generalized PCA [82], the Method of Optimal Directions (MOD) [23], the
K-SVD [28], and others. Advantages of this approach are the much finer-tuned
dictionaries they produce compared to the analytic approaches, and their signif-
icantly better performance in applications. However, this comes at the expense
of generating an unstructured dictionary, which is more costly to apply. Also,
complexity constraints limit the size of the dictionaries that can be trained in this
way, and the dimensions of the signals that can be processed.

In this paper, we present a novel dictionary structure that bridges some of the
gap between these two approaches, gaining the benefits of both. The structure is
based on a sparsity model of the dictionary atoms over a known base dictionary.
The new parametric structure leads to a simple and flexible dictionary repre-
sentation which is both adaptive and efficient. Advantages of the new structure
include low complexity, compact representation, stability under noise and reduced

overfitting, among others.

4.1.1 Related Work

The idea of training dictionaries with a specific structure has been proposed in
the past, though research in this direction is still in its early stages. Much of the
work so far has focused specifically on developing adaptive Wawvelet transforms,
as in [159-162]. These works attempt to adapt various parameters of the Wavelet
transform, such as the mother wavelet or the scale and dilation operators, to better
suit specific given data.

More recently, an algorithm for training unions of orthonormal bases was pro-

posed in [27]. The suggested dictionary structure takes the form
where the D;’s are unitary sub-dictionaries. The structure has the advantage of
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offering efficient sparse-coding via Block Coordinate Relaxation (BCR) [47], and
its training algorithm is simple and relatively efficient. However, the dictionary
model itself is relatively restrictive, and its training algorithm shows somewhat
weak performance. Furthermore, the structure does not lead to quick forward and
adjoint operators, as the dictionary itself remains explicit.

A different approach is proposed in [31], where a semi-multiscale structure
is employed. The dictionary model is a concatenation of several scale-specific

dictionaries over a dyadic grid, leading (in the 1-D case) to the form:

(4.3)
The multiscale structure is shown to provide excellent results in applications such
as denoising and inpainting. Nonetheless, the explicit nature of the dictionary is
maintained along with most of the drawbacks of such dictionaries. Indeed, the use
of sparse dictionaries to replace the explicit ones in (4.3) is an exciting option for
future study.

Another recent contribution is the signature dictionary proposed in [32]. Ac-
cording to the suggested model, the dictionary is described via a compact signature
image, with each sub-block of this image constituting an atom of the dictionary.!
The advantages of this structure include near-translation-invariance, reduced over-
fitting, and faster sparse-coding when utilizing spatial relationships between neigh-
boring signal blocks. On the other hand, the small number of parameters in this
model — one coefficient per atom — also makes this dictionary more restrictive
than other structures. Indeed, the sparse dictionary model proposed in this paper

enhances the dictionary expressiveness by increasing the number of parameters

Tndeed, both fixed and variable-sized sub-blocks can be considered, though in [32] mostly fixed-sized

blocks are studied.
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per atom from 1 to p > 1, while maintaining other favorable properties of the

dictionary.

4.1.2 Paper Organization

This paper is organized as follows. We begin in Section 4.2 with a description
of the dictionary model and its advantages. In Section 4.3 we consider the task
of training the dictionary from examples, and present an efficient algorithm for
doing so. Section 4.4 analyzes and quantifies the complexity of sparse dictionaries,
and compares it to other dictionary forms. Simulation results are provided in

Section 4.5. We summarize and conclude in Section 4.6.

4.1.3 Notation

e Bold uppercase letters designate matrices (M, I'), and bold lowercase letters
designate column vectors (v, 7). The columns of a matrix are referenced using
the corresponding lowercase letter, e.g. M = [m; | ... |m,]; the elements of a

T

vector are similarly referenced using standard-type letters, e.g. v = (v1,...,v,)".

The notation 0 is used to denote the zero vector, with its length inferred from the

context.
e Given a single index I = 7; or an ordered sequence of indices I = (iy, ..., i),
we denote by M; = [m;, | ... |m,, | the sub-matrix of M containing the columns

indexed by I, in the order in which they appear in I. For vectors we similarly
denote the sub-vector vi = (v, ... ,vik)T. We use the notation M; ;, with J a
second index or sequence of indices, to refer to the sub-matrix of M containing

the rows indexed by I and the columns indexed by J, in their respective orders.

This notation is used for both access and assignment, so if I = (2,4,6,...,n),
the statement My ; := 0 means nullifying the even-indexed entries in the j-th
row of M.
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4.2 Sparse Dictionaries

4.2.1 Motivation

Selecting a dictionary for sparse signal representation involves balancing between
two elementary and seemingly competing considerations. The first is the com-
plexity of the dictionary, as the dictionary forward and adjoint operators form the
dominant components of most sparse-coding techniques, and these in turn form the
core of all sparsity-based signal processing methods. Indeed, techniques such as
Matching Pursuit (MP) [11], Orthogonal Matching Pursuit (OMP) [38], Stagewise
Orthogonal Matching Pursuit (StOMP) [39], and their variants, all involve costly
dictionary-signal computations each iteration. Other common methods such as
interior-point Basis Pursuit [12] and FOCUSS [46] minimize a quadratic function
each iteration, which is commonly performed using repeated application of the dic-
tionary and its adjoint. Many additional methods rely heavily on the dictionary
operators as well.

Over the years, a variety of dictionaries with fast implementations have been
designed. For natural images, dictionaries such as Wavelets [7], Curvelets [16],
Contourlets [18], and Shearlets [21], all provide fast transforms. However, such
dictionaries are fized and limited in their ability to adapt to different types of
data. Adaptability is thus a second desirable property of a dictionary, and in
practical applications, adaptive dictionaries consistently show better performance
than generic ones |2, 31, 65, 74, 158|. Unfortunately, adaptive methods usually
prefer explicit dictionary representations over structured ones, gaining a higher
degree of freedom in the training but sacrificing regularity and efficiency of the

result.?

2We should note that in adaptive dictionaries we are referring to dictionaries whose content can be
adapted to different families of signals, typically through a learning process. Signal-dependent repre-
sentation schemes, such as Best Wavelet Packet Bases [159] and Bandelets [148], are another type of

adaptive process, but of a very different nature. These methods produce an optimized dictionary for a
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Figure 4.1: Left: dictionary for 8 x 8 image patches, trained using the K-SVD algorithm. Right:
images used for the training. Each image contributed 25,000 randomly selected patches, for a

total of 100,000 training signals.

Bridging this gap between complexity and adaptivity requires a parametric
dictionary model that provides sufficient degrees of freedom. In this work, we pro-
pose the sparse dictionary model as a simple and effective structure for achieving
this goal, based on sparsity of the atoms over a known base dictionary. Our ap-
proach can be motivated as follows. In Fig. 4.1 we see an example of a dictionary
trained using the K-SVD algorithm [28] on a set of 8 x 8 natural image patches.
The algorithm trains an explicit, fully un-constrained dictionary matrix, and yet,
we see that the resulting dictionary is highly structured, with noticeably regular
atoms. This gives rise to the hypothesis that the dictionary atoms themselves may
have some underlying sparse structure over a more fundamental dictionary, and as
we show in this paper, such a structure can indeed be recovered, and has several

favorable properties.

given signal based on its specific characteristics (e.g. frequency content or geometry, respectively), and

they are not considered here.
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4.2.2 Dictionary Model

The sparse dictionary model suggests that each atom of the dictionary has itself
a sparse representation over some prespecified base dictionary ®. The dictionary
is therefore expressed as

D= A (4.4)

?

where A is the atom representation matrix, assumed to be sparse. For simplicity,
we focus on matrices A having a fixed number of non-zeros per column, so ||a;||§ <
p for some p. The base dictionary ® will generally be chosen to have a quick
implicit implementation, and, while ® may have any number of atoms, we assume
it to span the signal space. The choice of the base dictionary obviously affects the
success of the entire model, and we thus prefer one which already incorporates
some prior knowledge about the data. Indeed, if more than one possible base
dictionary exists, one may benefit from experimenting with a few different options
in order to determine the most suitable one.

In comparison to implicit dictionaries, the dictionary model (4.4) provides
adaptability via modification of the matrix A, and can be efficiently trained from
examples. Furthermore, as ® can be any dictionary — specifically, any exist-
ing implicit dictionary — the model can be viewed as an extension to existing
dictionaries, adding them a new layer of adaptivity.

In comparison to explicit dictionaries, the sparse structure is significantly more
efficient, depending mostly on the choice of ®. It is also more compact to store
and transmit. Furthermore, as we show later in this paper, the imposed structure
acts as a regularizer in dictionary learning processes, and reduces overfitting and
instability in the presence of noise. Training a sparse dictionary requires less
examples than an explicit one, and produces useable results even when only a few
examples are available.

The sparse dictionary model has another interesting interpretation. Assume

the signal x is sparsely represented over the dictionary D = ® A, so x = ® A~ for
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some sparse 7. Therefore, (A~) is the representation of x over ®. Since both
and the columns of A are sparse — having no more than, say, ¢ and p non-zeros,
respectively — this representation will have approximately ¢p non-zeros. However,
such quadratic cardinality will generally fall beyond the success range of sparse-
approximation techniques [137]. As such, it is no longer considered sparse in terms
of the formulation (4.1), and sparse-coding methods will commonly fail to recover
it. Furthermore, given a noisy version of x, attempting to recover it directly over
® using tp atoms will likely result in capturing a significant portion of the noise
along with the signal, due to the number of coefficients used.?

Through the sparse dictionary structure, we are able to accommodate denser
signal representations over ® while essentially by-passing the related difficulties.
The reason is that even though every t-sparse signal over D will generally have a
denser tp-representation over ®, not every tp-representation over ® will necessarily
fit the model. The proposed model therefore acts as a reqularizer for the allowed
dense representations over ®, and by learning the matrix A, we are expressing in

some form the complicated dependencies between its atoms.

4.3 Learning Sparse Dictionaries

We now turn to the question of designing a sparse dictionary for sparse signal rep-
resentation. A straightforward approach would be to select some general (probably
learned) dictionary Dy, choose a base dictionary ®, and sparse-code the atoms
in Dy to obtain D = ®A ~ D,. This naive approach, however, is clearly sub-
optimal: specifically, the dictionary ® must be sufficiently compatible with Dy,
or else the representations in A may not be very sparse. Simulation results in-
dicate that such dictionaries indeed perform poorly in practical signal processing

applications.

3For white noise and a signal of length N, the expected remaining noise in a recovered signal using

t atoms is approximately ¢/N the initial noise energy, due to the orthogonal projection.
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A more desirable approach would be to learn the sparse dictionary using a
process that is aware of the dictionary’s specific structure. We adopt an approach
which continues the line of work in [28|, and develop a K-SVD-like learning scheme
for training the sparse dictionary from examples. The algorithm is inspired by the

Approximate K-SVD implementation presented in [163|, which we briefly review.

4.3.1 K-SVD and Its Approximate Implementation

The K-SVD algorithm accepts an initial overcomplete dictionary matrix Dy €
RN*L "a number of iterations k, and a set of examples arranged as the columns of
the matrix X € RV*®. The algorithm aims to iteratively improve the dictionary

by approximating the solution to

Min || X — DI||2  Subject To Vi |v,]|0 <t
br . (4.5)

Vi lldll2 =1
Note that in this formulation, the atom normalization constraint is commonly
added for convenience, though it does not have any practical significance to the
result.

The K-SVD iteration consists of two basic steps: (i) sparse-coding the signals
in X given the current dictionary estimate, and (i7) updating the dictionary atoms
given the sparse representations in I'. The sparse-coding step can be implemented
using any sparse-approximation method. The dictionary update is performed one
atom at a time, optimizing the target function for each atom individually while
keeping the remaining atoms fixed.

The atom update is carried out while preserving the sparsity constraints in (4.5).
To achieve this, the update uses only those signals in X whose sparse represen-
tations use the current atom. Denoting by [ the indices of the signals in X that
use the j-th atom, the update of this atom is obtained by minimizing the target
function

IX; — D% (4.6)
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for both the atom and its corresponding coefficient row in I';. The resulting

problem is a simple rank-1 approximation, given by
{d,g} = Argr{llin |E—dg’||% Subject To ||d|,=1, (4.7)
’g

where E = X; — Zi# d,;T’; ; is the error matrix without the j-th atom, and d and
g? are the updated atom and coefficient row, respectively. The problem can be
solved directly via an SVD decomposition, or more efficiently using some numerical
power method.

In practice, the exact solution of (4.7) can be quite computationally demanding,
especially when the number of training signals is large. As an alternative, an
approximate solution may be used to reduce the complexity of this task [163].
The simplified update step is obtained by applying a single iteration of alternated-

optimization [47, 164], given by

d = Eg/|Eg|:
(4.8)
g = E’d
The above process is known to ultimately converge to the optimum,* and when
truncated, supplies an approximation which still reduces the penalty term. Also,

this process eliminates the need to explicitly compute the matrix E, as only its

products with vectors are required.’

4.3.2 The Sparse K-SVD Algorithm

To train a sparse dictionary, we use the same basic framework as the original

K-SVD algorithm. Specifically, we aim to (approximately) solve the optimization

4 Applying two consecutive iterations of this process produces d’™' = EETd?/|EETd?||2, which is
the well-known power iteration for EET. The process converges, under reasonable assumptions, to the

largest eigenvector of EET — also the largest left singular vector of E.

5Specifically, Eg = Xg — > iz;di(Ti1g) can be computed via a series of vector inner products
& =T 1g, followed by a vector sum Z#j &:d; and a matrix-vector product X;g. This is significantly
faster and more memory-efficient than the explicit computation of E, which involves matrix-matrix

operations. The same applies to the computation of ETd.
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problem

Min | X — ®AT||2
AT

Vi oyl <t 7 (4.9)
Subject To

Vi llallo <p . [|®aylla =1
alternating sparse-coding and dictionary update steps for a fixed number of itera-
tions. The notable change is in the atom update step: as opposed to the original
K-SVD algorithm, in this case the atom is constrained to the form d = ®a with

a5 < p. The modified atom update is therefore given by

{a,g} := Argmin ||E — ®ag’||% Subject To |a]|J <p
a.g , (4.10)
[®al; =1
with E defined as in (4.7).

Interestingly, our problem is closely related to a different problem known as
Sparse Matriz Approzimation (here SMA), recently raised in the context of Kernel-
SVM methods [165]. The SMA problem is formulated similar to problem (4.10),
but replaces the rank-1 matrix ag? with a general matrix T, and the sparsity
constraint on a with a constraint on the number of non-zero rows in T. Our
problem is therefore essentially a rank-constrained version of the original SMA
problem. In [165], the authors suggest a greedy OMP-like algorithm for solving the
problem, utilizing randomization to deal with the large amount of work involved.
Unfortunately, while this approach is likely extendable to the rank-constrained
case, it leads to a computationally intensive process which is impractical for large
problems.

Our approach therefore takes a different path to solving the problem, employing
an alternated-optimization technique over a and g parallel to (4.8). We point out
that as opposed to (4.8), the process here does not generally converge to the
optimum when repeated, due to the non-convexity of the problem. Nonetheless,
the method does guarantee a reduction in the target function value, which is

essentially sufficient for our purposes.
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To simplify the derivation, we note that (4.10) may be solved without the
norm constraint on ®a, and adding a post-processing step which transfers energy
between a and g to achieve ||®all, = 1 while keeping ag’ fixed. The simplified

problem is given by
{a,g} := Argmin |E — ®ag’||2 Subject To |la]|j <p . (4.11)
ag

We also note that the solution to this problem is guaranteed to be non-zero for all
E # 0, hence the described re-normalization of a and g is possible.

Optimizing over g in (4.11) is straightforward, and given by
g :=E ®a/||®al; . (4.12)

Optimizing over a, however, requires more attention. The minimization task for

a is given by:
a:= Argmin |E — ®ag’||% Subject To [laf|J <p. (4.13)
The straightforward approach to this problem is to rewrite E as a column vector

e, and formulate the problem as an ordinary sparse-coding task for e (we use ®

to denote the Kronecker matrix product [166]):
a:= Argmin |je — (g ® ®)al|3 Subject To ||a||) <p . (4.14)

However, this leads to an intolerably large optimization problem, as the length of
the signal to sparse-code is of the same order of magnitude as the entire dataset.
Instead, we show that problem (4.13) is equivalent to a much simpler sparse-coding

problem, namely
a:= Argmin |[Eg — ®a|| Subject To |al|j <p . (4.15)

Here, the vector Eg is of the same length as a single training example, and the
dictionary is the base dictionary ® which is assumed to have an efficient implemen-

tation; therefore, this problem is significantly easier to handle than the previous
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one. Also, as discussed above, the vector Eg itself is much easier to compute than
the vector e, which is just a vectorized version of the matrix E.
To establish the equivalence between the problems (4.13) and (4.15), we use

the following Lemma:

Lemma 4.1. Let X € RVM gnd Y € RV*E be two matrices, and v € RM and

u € RE be two vectors. Also assume that v'v= 1. Then the following holds:
IX - Ywo' |7 = [ Xv— Yul3 + f(X,v) .
Proof. The equality follows from elementary properties of the trace function:

IX = Yuv'|[; =
= Tr((X - Yuv)'(X — Yuv’)))
= Tr(X"X) - 2Tr(X'Yuv") + Tr(vu’ Y Yuv’)
= Tr(X'X) - 2Tr(v' X'Yu) + Tr(vivu’ Y Yu)
= Tr(X'X) = 2v'X"Yu +u’ Y Yu
= Tr(X"X) = 2v"X"Yu + "Y' Yu + v X' Xv - vIXTXv
= |Xv - Yu|2 + Tr(X*'X) - v/ X'Xv

= |IXv = Yulf; + f(X,v) .
0

The Lemma implies that, assuming g’g = 1, then for every representation
vector a,

|E - ®ag”||;: = |[Eg — ®a|; + f(E,g) .

Clearly the important point in this equality is that the two sides differ by a constant
independent of a. Thus, the target function in (4.13) can be safely replaced with
the right hand side of the equality (sans the constant), establishing the equivalence
to (4.15).
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When using the Lemma to solve (4.13), we note that the energy assumption on
g can be easily overcome, as dividing g by a non-zero constant simply results in a
solution a scaled by that same constant. Thus (4.13) can be solved for any g by
normalizing it to unit length, applying the Lemma, and re-scaling the solution a
by the appropriate factor. Conveniently, since a is independently re-normalized at
the end of the process, this re-scaling can be skipped completely, scaling a instead
to ||[®alls = 1 and continuing with the update of g.

Combining the pieces, the final atom update process consists of the following
steps: (i) normalizing g to unit length; (i7) solving (4.15) for a; (4i7) normalizing
a to |®al, = 1; and (iv) updating g := E"®a. This process may generally
be repeated, though we have found little practical advantage in doing so. The
complete Sparse K-SVD algorithm is detailed in Alg. 4.1. Figs. 4.2, 4.3 show an
example result, obtained by applying this algorithm to the same training set as

that used to train the dictionary in Fig. 4.1.

4.4 Complexity of Sparse Dictionaries

Sparse dictionaries are generally much more efficient than explicit ones, and pro-
vide significant gains especially for larger dictionaries and higher-dimensional sig-
nals. In this section we discuss the complexity of sparse dictionaries and describe
the cases where they are most advantageous. To focus the discussion, we concen-
trate on the case of Orthogonal Matching Pursuit (OMP) sparse-coding, which is

a widely used method which is relatively simple to analyze.

4.4.1 Sparse Dictionary Operator Complexity

The dictionary structure (4.4) is implemented by multiplying the sparse represen-
tation v by A and applying ®. In the following, we assume that A has a total of
pL non-zeros, and that ® has an efficient implementation with complexity 7.

Operations with sparse matrices are not immediate to analyze, with many fac-
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Algorithm 4.1 Sparse K-SVD

1:

10:

11:

12:

13:

14:

15:

16:

17:

Input: Signal set X, base dictionary @, initial dictionary representation Ag, target

atom sparsity p, target signal sparsity ¢, number of iterations k.

Output: Sparse dictionary representation A and sparse signal representations I" such

that X ~ ®AT
Init: Set A := Ay

forn=1...k do

Vi: I = Argmﬂ}n |x; — ®A~Y|%3 Subject To ||v||§ <t
for j=1...L do
A;:=0
I := {indices of the signals in X whose reps. use a;}
g = F}:I
g :=g/llgl2
z .= X;g — PATl g
a:= Argmain |z — ®al||3 Subject To |laf|) <p
a:= a/||®als
Aj:=a
T :=XI®a— (®AT,)T®a)T
end for
end for

tors affecting actual performance (see [167] for some insights on the topic). In this

paper we make the simplifying assumption that the complexity of such operations

is proportional to the number of non-zeros in the sparse matrix, so multiplying a

vector by a sparse matrix with Z non-zeros is equivalent to multiplying it by a full

matrix with aZ (a > 1) coefficients (a total of 2aeZ multiplications and additions).

For a concrete figure, we use o = 7, which is roughly what our machine (an Intel

Core 2 running Matlab 2007a) produced. With this assumption, the complexity
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of the sparse dictionary D = ® A is given by
Tp {sparse-dict} = 2apL + Tg . (4.16)

The base dictionary ® will usually be chosen to have a compact representa-
tion and sub-N? implementation. Indeed, most implicit dictionaries provide these
properties, with complexities ranging from linear to low-degree (< 2) polynomial.
In the following analysis we focus on two very common types of base dictionaries,

which roughly represent this range:

Separable dictionaries: Dictionaries which are the Kronecker product of several
1-dimensional dictionaries. Assuming ®, € R"*™ is a dictionary for 1-D signals
of length n, the dictionary ® = &, ® ®, € R"*™ can be constructed for rep-
resenting n x n signals arranged in column-major order as vectors of length n?.
The dictionary adjoint is separable as well and given by &7 = <I>0T ® <I>g. The
dictionary and its adjoint are efficiently implemented by applying ®, or <I>0T (re-
spectively) along each of the signal dimensions, in any order. Denoting a = m/n,
and assuming ® is applied via explicit matrix multiplication, the complexity of

this dictionary in the 2-D case is
Te =2NVM(1+a) (4.17)

where N = n? and M = m? are the dictionary dimensions. Examples of separable
dictionaries include the DCT (Fourier), overcomplete DCT (Fourier), and Wavelet
dictionaries, among others. Generalizations to higher dimensions are straightfor-

ward to derive.

Linear-time dictionaries: Dictionaries which are implemented with a constant

number of operations per sample, so
Te = BN (4.18)

for some constant value 8. Examples include the Wavelet, Contourlet, and Com-

plex Wavelet dictionaries, among others.
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Figure 4.2: Left: overcomplete DCT dictionary for 8 x 8 image patches. Right: sparse dictionary
trained over the overcomplete DCT using Sparse K-SVD. Dictionary atoms are represented using

6 coefficients each. Marked atoms are magnified in Fig. 4.3.
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Figure 4.3: Some atoms from the trained dictionary in Fig. 4.2, and their overcomplete DCT

components. The index pair above each overcomplete DCT atom denotes the wave number of
the atom, with (1,1) corresponding to the upper-left atom, (16,1) corresponding to the lower-left
atom, etc. In each row, the components are ordered by decreasing magnitude of the coefficients,
the most significant component on the left. The coefficients themselves are not shown due to

space limitations, but are all of the same order of magnitude.
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4.4.2 Complexity of OMP

OMP is a greedy sparse-coding algorithm which has several efficient implemen-
tations. One of the most common ones is OMP-Cholesky |40, 163, 168] which
employs a progressive Cholesky decomposition to perform efficient matrix inver-
sions.

When the dictionary is represented explicitly, the number of operations per-

formed by OMP-Cholesky can be shown to be [163]
Tomp { explicit-dict} = 2LNL + 2> N + 2t(L + N) + t* (4.19)

where t is the number of OMP iterations (also the number of selected atoms),
and N and L are the dictionary dimensions. Note that since N ~ L > t, the
dominant term in this expression is the first one, which is associated with the
explicit dictionary operator.

With a sparse dictionary, one can show that the complexity of OMP-Cholesky
becomes

Tomp {sparse-dict} = 4tTy + 2atpL + 2t(L + N) +t* | (4.20)

where p is the sparsity of the dictionary atoms over the base dictionary, and «
is the sparse operation overhead factor discussed above (for a derivation of this
result we refer the reader to [169]). We observe that the term proportional to
tNL in (4.19) has been replaced by terms proportional to tTe and tpL in this
expression. Therefore, when the base dictionary ® has an efficient implementation,
and assuming p < N, the sparse dictionary indeed provides an order-of-magnitude
complexity advantage over an explicit one.

The complexity gain of OMP-Cholesky with a sparse dictionary is depicted in
Fig. 4.4. The Figure shows the speedup factor of OMP-Cholesky with a sparse
dictionary compared to an explicit one, for 2-D and 3-D signals, and using either

a separable or linear base dictionary. The z-axis corresponds to the signal length

N, where N = n¢ for d = 2, 3.
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As can be seen, sparse dictionaries provide a pronounced performance increase
compared to explicit ones, especially in the 3-D case where the speedup is around
x5 — x10 for the separable case and x10 — x30 for the linear case. We also see
that the speedup continues to increase as the signal becomes larger. In a practical
signal processing application, where large numbers of signals are involved, this

difference may make sparse dictionaries the only feasible option.

4.4.3 Dictionary Training

Seeing the complexity gain in sparse-coding, it is unsurprising that Sparse K-SVD
is similarly much faster than the standard and approximate K-SVD methods.
Indeed, the gain mostly stems from the acceleration in the sparse-coding step
(line 5 of the algorithm). In the asymptotic case where t ~p < M ~ L ~ N <
R, with R the number of training signals, the complexity of the approximate
K-SVD becomes proportional to the complexity of its sparse-coding method [163].
Indeed, this result is easily extended to Sparse K-SVD as well; consequently, Sparse
K-SVD is faster than the approximate K-SVD by approximately the sparse-coding
speedup.

As we will see in the experimental section, a more significant (though less
obvious) advantage of Sparse K-SVD is the reduction in overfitting. This results
in a substantially smaller number of examples required for the training process,

and leads to a further reduction in training complexity.

4.5 Applications and Simulation Results

The sparse dictionary structure has several advantages. It enables larger dictionar-
ies to be trained, for instance to fill-in bigger holes in an image inpainting task [31].
Specifically of interest are dictionaries for high-dimensional data. Indeed, employ-
ing sparsity-based techniques to high-dimensional signal data is challenging, as the

complicated nature of these signals limits the availability of analytic transforms for
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Figure 4.4: Speedup of OMP-Cholesky using a sparse dictionary compared to an explicit dictio-
nary. Left: speedup for 2-D signals. Right: speedup for 3-D signals. Signal length is N = n¢
where n is the block size and d = 2,3 is the number of dimensions. Dictionary size is chosen to
be n x (n+3)? (base dictionary is of the same size, and the matrix A is square). Atom sparsity
is set to p = n/2 in the 2-D case and to p = n in the 3-D case. Complexity of linear dictionary

is T<I>:8N.

them, while the complexity of the training problem constrains the use of existing
adaptive techniques as well. The sparse dictionary structure — coupled with the
Sparse K-SVD algorithm — makes it possible to process such signals and design
rich dictionaries for representing them.

Another application for sparse dictionaries is signal compression. Using an
adaptive dictionary to code signal blocks leads to sparser representations than
generic dictionaries, and therefore to higher compression rates. Such dictionaries,
however, must be stored alongside the compressed data, and this becomes a limit-
ing factor when used with explicit dictionary representations. Sparse dictionaries
significantly reduce this overhead. In essence, wherever a prespecified dictionary
is used for compression, one may introduce adaptivity by training a sparse dictio-
nary over this predesigned one. The facial compression algorithm in [158] makes
a good candidate for such a technique, and research in this direction is currently
undergoing.

In the following experiments we focus on a specific type of signal, namely

3-D computed tomography (CT) imagery. We compare the sparse and explicit
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dictionary structures in their ability to adapt to specific data and generalize from
it. We also provide concrete CT denoising results for the two dictionary structures,
and show that the sparse dictionary consistently outperforms the explicit one,
while operating substantially faster. Our simulations make use of the CT data

provided by the NIH Visible Human Project [170].

4.5.1 Training and Generalization

Training a large dictionary generally requires increasing the number of training
signals accordingly. Heuristically, we expect the training set to grow at least
linearly with the number of atoms, to guarantee sufficient information for the
training process. Uniqueness is in fact only known to exist for an exponential
number of training signals in the general case [171|. Unfortunately, large numbers
of training signals quickly become impractical when the dictionary size increases,
and it is therefore highly desirable to develop methods for reducing the number of
required examples.

In the following experiments we compare the generalization performance of K-
SVD versus Sparse K-SVD with small to moderate training sets. We use both
methods to train a 512 x 1000 dictionary for 8 x 8 x 8 signal patches. The
data is taken from the Visible Male - Head CT volume. We extract the training
blocks from a noisy version of the CT volume (PSNR=17dB), while the validation
blocks are extracted directly from the original volume. Training is performed us-
ing 10,000, 30,000, and 80,000 training blocks, randomly selected from the noisy
volume, and with each set including all the signals in the previous sets. The vali-
dation set consists of 20,000 blocks, randomly selected from the locations not used
for training. The initial dictionary for both methods is the overcomplete DCT

dictionary®. For Sparse K-SVD, we use the overcomplete DCT as the base dic-

5The 1-D N x L overcomplete DCT dictionary is essentially a cropped version of the orthogonal
L x L DCT dictionary matrix. The k-D overcomplete DCT dictionary is simply the Kronecker product

of k 1-D overcomplete DCT dictionaries. Note that the number of atoms in such a dictionary is L*, and
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Figure 4.5: Training and validation results for patches from Visible Male - Head. Training
signals are taken from the noisy volume (PSNR=17dB), and validation signals are taken from
the original volume. Block size is 8 x 8 x 8, and dictionary size is 512 x 1000. Training signals
(noisy) are sparse-coded using an error stopping criterion proportional to the noise; validation
signals (noiseless) are sparse-coded using a fixed number of atoms. Shown penalty functions
are respectively the average number of non-zeros in the sparse representations and the coding

RMSE. Sparse K-SVD with atom-sparsity p is designated in the legend as S-KSVD(p).

tionary, and set the initial A matrix to identity. The sparse dictionary is trained
using either 8, 16, or 24 coefficients per atom.

Fig. 4.5 shows our results. The top and bottom rows show the performance
of the K-SVD and Sparse K-SVD dictionaries on the training and validation sets
(respectively) during the algorithm iterations. Following [2|, we code the noisy
training signals using an error target proportional to the noise, and have the
(Y sparsity of the representations as the training target function. We evaluate
performance on the validation signals (which are noiseless) by sparse-coding with
a fixed number of atoms, and measuring the resulting representation RMSE.

We can see that the average number of non-zeros for the training signals de-

creases rapidly in the K-SVD case, especially for smaller training sets. However,

must have a whole k-th root (in our case, 10® = 1000 atoms).
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this phenomena is mostly an indication of overfitting, as the drop is greatly atten-
uated when adding training data. The overfitting consequently leads to degraded
performance on the validation set, as can be seen in the bottom row.

In contrast, the sparse dictionary shows much more stable performance. Even
with only 10,000 training signals, the learned dictionary performs reasonably well
on the validation signals. As the training set increases, we find that the perfor-
mance of the sparsest (p = 8) dictionary begins to weaken, indicating the limits
of the constrained structure. However, for p = 16 and p = 24 the sparse dictio-
nary continues to gradually improve, and consistently outperforms the standard
K-SVD. It should be noted that while the K-SVD dictionary is also expected to
improve as the training set is increased — possibly surpassing the Sparse K-SVD
at some point — such large training sets are extremely difficult to process, to the

point of being impractical.

4.5.2 CT Volume Denoising

We used the adaptive K-SVD denoising algorithm [2| to evaluate CT volume
denoising performance. The algorithm trains an overcomplete dictionary using
blocks from the noisy signal, and then denoises the signal using this dictionary,
averaging the denoised blocks when they overlap in the result. We should mention
that newer, state-of-the-art variants of the K-SVD denoising scheme, such as multi-
scale K-SVD denoising [31] and non-local simultaneous sparse-coding [65], could
also be used here to further improve the results, however in this work we focus on
the original denoising formulation for simplicity.

We performed our experiments on the Visible Male - Head and Visible Female
- Ankle volumes. The intensity values of each volume were first fitted to the
range [0,255] for compatibility with image denoising results, and then subjected
to additive white Gaussian noise with varying standard deviations of 5 < o < 100.

We tested both 2-D denoising, in which each CT slice is processed separately, and
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Test o / PSNR 2-D Denoising 3-D Denoising
ODCT KSVD S-KSVD |ODCT KSVD S-KSVD
Vis. F. |5/34.15 | 43.07 43.23 43.15 | 44.42 44.64 44.64
Ankle [10/28.13| 39.25 39.70 39.45 | 40.91 41.24 41.22
20/22.11| 35.34 36.12 35.87 | 37.57 37.98 38.03
30/18.59| 33.01 33.76 33.67 | 35.62 36.02 36.21
50/14.15| 30.15 30.43 30.48 | 33.07 33.48 33.85
75/10.63| 27.88 27.84 2792 | 31.18 31.63 31.98
100 /8.13| 26.42 26.31  26.39 | 29.89 30.08 30.46
Vis. M.|5/34.15 | 43.61 43.94 43.72 |45.11 45.12 45.17
Head |10/28.13| 39.34 40.13 39.70 | 41.46 41.56 41.57
20/22.11| 3497 36.08 3581 | 37.77 38.02 38.10
30/18.59| 32.48 33.13 33.08 | 35.54 3591 36.18
50/14.15| 29.62 29.67 29.74 | 32.79 33.08 33.56
75/10.63| 27.84 27.75 2782 | 30.73 30.69 31.09
100 /8.13| 26.51 26.40 26.48 | 29.60 29.47 29.72

Table 4.1: CT denoising results using K-SVD, Sparse K-SVD, and overcomplete DCT dictio-
naries. Values represent Peak SNR (dB), and are averaged over 4 executions. Bold numerals

denote the best result in each test up to a 0.1dB difference.

3-D denoising, in which the volume is processed as a whole. The atom sparsity for
these experiments was heuristically set to p = 6 for the 2-D case and p = 16 for
the 3-D case, motivated by results such as those in Fig. 4.5. Our denoising results
are actually expected to improve as these values are increased, up to a point where
overfitting becomes a factor. However, we preferred to limit the atom sparsity in
these experiments to maintain the complexity advantage of the sparse dictionary.
Further work may establish a more systematic way of selecting these values.

Our denoising results are summarized in Table 4.1. Table 4.2 shows the running
times obtained by our Intel Core 2 machine for the different algorithms in the 3-D
case. For completeness, Table 4.3 lists the full set of parameters used in these
experiments. Some actual denoising results are shown in Fig. 4.6.

The most evident result in Table 4.1 is that 3-D denoising is indeed substan-
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Vis. F. Ankle
Dictionary / o 5 10 20 30 50 75 100
K-SVD 22:06:27 10:11:06 4:07:33 2:27:47 1:24:23 57:48 45:36
Sparse K-SVD | 1:08:49 33:44 13:05 8:07 5:15 4:26  3:54
O-DCT 24:51 13:27 4:51 2:59 1:45 1:17  1:03
Vis. M. Head
Dictionary / o 5 10 20 30 50 75 100
K-SVD 25:32:37 11:58:59 4:54:04 3:00:27 1:39:32 1:04:29 46:32
Sparse K-SVD 1:14:37 34:26 14:11 9:44 5:56 4:47  4:04
O-DCT 31:45 14:15 6:10 4:01 2:25 1:30  1:12

Table 4.2: Running times of K-SVD, Sparse K-SVD, and overcomplete DCT denoising for the
results in Table 4.2 (3-D case). Timings include dictionary training. Simulations were performed

on an Intel Core 2 processor, utilizing a single core. Note: running times listed here can be

significantly improved, and the reader is referred to section 4.5.3 for a discussion.

2-D Denoising 3-D Denoising
Block size 8 X8 8 x8x8
Dictionary size 64 x 100 512 x 1000
Atom sparsity (Sparse K-SVD) 6 16
Initial dictionary Overcomplete DCT Overcomplete DCT
Training signals 30,000 80,000
K-SVD iterations 15 15
Noise gain 1.15 1.04
Lagrange multiplier 0 0
Step size 1 2

Table 4.3: Parameters of the K-SVD denoising algorithm (see [2] for more details). Note that a
Lagrange multiplier of 0 means that the noisy image is not weighted when computing the final

denoised result.

tially more effective than 2-D denoising for this task, with significant gains of
1.5dB-4dB in all cases. These results provide further motivation for the move to-
wards larger dictionaries and higher-dimensional signals, where sparse dictionaries

are truly advantageous.
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Turning to the 3-D denoising results, we find that the Sparse K-SVD matches
or outperforms the standard K-SVD in all test cases. Indeed, in the low noise range
(¢ < 10), both methods perform essentially the same, and provide only marginal
improvement over the fixed overcomplete DCT dictionary. However in the medium
and high noise ranges (¢ > 20), the training process becomes beneficial, and
leads to improved recovery compared to the fixed dictionary. In this noise range,
the increased stability of the Sparse K-SVD in the presence of noise and limited
training data becomes advantageous, and it performs consistently better than
standard K-SVD. We note that in some cases of very high noise, the standard K-
SVD actually performs worse than its initial overcomplete DCT dictionary, due
to overfitting and its weakness in the presence of noise.

Reviewing the results in Table 4.1, we note that the raw PSNR gain of Sparse
K-SVD over standard K-SVD, while consistent, is typically small. Indeed, the
main appeal of the Sparse K-SVD here is its substantially better complexity, as
depicted in Table 4.2. As can be seen, the complexity advantage of Sparse K-SVD
translates to a x10 — x20 reduction in denoising time compared to the standard
K-SVD, and in fact, the long running time of standard K-SVD makes it practically
useless for this task. In contrast, the Sparse K-SVD is much faster, performing
especially reasonably in the interesting noise range of o > 20 (in the next sec-
tion we discuss methods to further reduce running time in practical applications).
Thus, we conclude that the Sparse K-SVD is indeed able to introduce adaptivity
where the standard K-SVD is impractical, making sparse dictionaries an appealing

alternative to both fixed dictionaries and explicit learned dictionaries alike.

4.5.3 Further Acceleration and Practical Considerations

The running times in Table 4.2 may be significantly improved to allow incorpora-
tion of the Sparse K-SVD in practical applications. First, analysis of the Sparse

K-SVD denoising run-time shows that it is mostly dedicated to training, while
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the actual denoising requires similar time to the overcomplete DCT option. In
many cases, training time may be decreased (and denoising results improved) by
pre-training an initial sparse dictionary on a large set of generic data of the same
type as handled by the application. This method, employed e.g. in [65], reduces
the number of training iterations required, and can substantially accelerate the
process.

Another source of acceleration is replacing the OMP-Cholesky implementation
with a more efficient OMP implementation such as Batch-OMP [163|. This option,
which is not discussed here due to its relative technicality, is analyzed in detail
in [169]. Experiments done with Batch-OMP show that it achieves a x2 — x3
speedup in Sparse K-SVD and overcomplete DCT denoising over the running
times shown in Table 4.2, reducing the Sparse K-SVD denoising time to less than
5 minutes for the ¢ > 20 noise range. The software package published with this
paper (see below) implements both OMP-Cholesky and Batch-OMP options.

Finally, we should mention that all algorithms discussed here are highly par-
allelizeable, with an expected near-linear speedup with the number of processors.
Thus we expect an 8-core processor, combined with the Batch-OMP implementa-
tion, to carry out the entire 3-D Sparse K-SVD denoising process in less than a

minute for any o > 20.

4.5.4 Reproducible Research

The complete K-SVD and Sparse K-SVD code reproducing the results in this
paper, along with the original CT volumes used, are made available for down-
load [172]|. The code is provided as a set of Matlab packages that combine Matlab
code and compilable C MEX functions. The packages implement both the OMP-
Cholesky and the Batch-OMP options. See the README files and the accompanying

documentation in each of the packages for more information.
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4.6 Summary and Future Work

We have presented a novel dictionary structure which is both adaptive and effi-
cient. The sparse structure is simple and can be easily integrated into existing
sparsity-based methods. It provides fast forward and adjoint operators, enabling
its use with larger dictionaries and higher-dimensional data. Its compact form is
beneficial for tasks such as compression, communication, and real-time systems.
It may be combined with any implicit dictionary to enhance its adaptability, with
very little overhead.

We developed an efficient K-SVD-like algorithm for training the sparse dictio-
nary, and showed that the structure provides better generalization abilities than
the non-constrained one. The algorithm was applied to noisy CT data, where the
sparse structure was found to outperform and operate significantly faster than
the explicit representation under moderate and high noise. The proposed dictio-
nary structure is thus a compelling alternative to existing explicit and implicit
dictionaries alike, offering the benefits of both.

The full potential of the new dictionary structure is yet to be realized. We
have provided preliminary results for CT denoising, however other signal process-
ing tasks are expected to benefit from the new structure as well, and additional
work is required to establish these gains. As noted in the introduction, the gener-
ality of the sparse dictionary structure allows it to be easily combined with other
dictionary forms. As dictionary design receives increasing attention, the proposed
structure can become a valuable tool for accelerating, regularizing, and enhancing

adaptability in future dictionary structures.
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(a) Original (b) Noisy

(c) 2-D Sparse KSVD (d) 3-D Sparse KSVD

Figure 4.6: Denoising results for Visible Male - Head, slice #137 (o = 50). Images are mainly

provided for qualitative evaluation, and are best viewed by zooming-in using a computer display.
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Abstract

Transform-based coding is a widely used image compression technique, where en-
tropy reduction is achieved by decomposing the image over a dictionary of atoms,
known to provide compaction. Existing algorithms assume the dictionary to be
fixed and pre-shared by the encoder and decoder. Algorithms such as JPEG
and JPEG2000 utilize generic dictionaries (e.g., the DCT and Wavelet dictionar-
ies, respectively), and support compression of arbitrary signals. More recently,
content-specific dictionaries have been used to improve compression rates by op-
timizing the dictionary to a specific image class. Such approaches lose generality,
though, as they require sharing the specialized dictionary in advance between the
encoder and decoder.

Utilizing tmage-adaptive dictionaries has the potential of both restoring gen-

erality and improving compression rates by encoding any given input image over
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a dictionary specifically adapted to it. However, this approach has so far been
avoided as it requires transmitting the dictionary along with the compressed data.

In this work we explore the use of the sparse dictionary structure to implement
image-adaptive compression, aimed at generic images. This dictionary structure
has a compact representation, and thus can be transmitted with relatively low
overhead. We employ this structure in a compression scheme which adaptively
trains the dictionary for the input image. Our results show that although this
method involves transmitting the dictionary, it remains competitive with fixed-

dictionary schemes such as JPEG and JPEG2000.

5.1 Introduction

Compression of natural images relies on the ability to capture and exploit redun-
dancies found in these images. The most common compression approach, known
as transform coding, utilizes a dictionary of atomic signals, such as the DCT or
wavelet dictionaries, over which the image is known to be compressible. The dic-
tionary is typically arranged as a matrix D = [didy...d;] € RY*E) with the
columns d; constituting the atoms, and L > N. Given a signal x € RY, compres-

sion is achieved by approximating it as a linear combination of the atoms,
x ~ D~ , (5.1)

where the representation vector ~ is expected to have lower entropy than the
entries of x.

When D is invertible, the representation v can be computed by inverting D
and quantizing the coefficients: v = Q(D ™ 'x). This is the case in the JPEG [107]
and JPEG2000 [173] compression standards, where D is the DCT or wavelet
dictionary, respectively.

When D is overcomplete (L > N), the null space of D introduces additional de-

grees of freedom in the choice of 7, which can be exploited to improve its compress-
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ibility. The representation is typically selected by minimizing some penalty func-
tion C'(+y) which estimates its compressibility, such as the ¢ penalty C(v) = ||vlo

which measures the number of non-zeros in the representation:
4 = Argmin ||v|lo Subject To |[|x —D~|3 < ¢€*. (5.2)
¥

Here, € is the approximation error target, controlling the distortion of the com-
pressed signal. This problem is known as the sparse approzimation problem [36],
and though NP-hard in general, it can be approximated by a wide range of tech-
niques [11, 38, 136]. Other choices for C() include the variety of robust penalty
functions such as the (P cost functions with 0 < p < 1. All these functions pro-
mote the sparsity of the representation v (i.e., the fast decay of its coefficients)
by strongly penalizing small non-zero values. Indeed, we should remark that in
practice, the compressibility of a representation is affected by additional factors
other than sparsity (e.g. quantization, entropy coding etc.). Nonetheless, sparsity
provides a simple and relatively reliable approximation of compressibility.

Transform-based coding schemes generally assume the dictionary D to be fixed,
and built into both the encoder and decoder. This is the case for the JPEG family
of algorithms, which are based on predetermined fixed dictionaries and are targeted
at general-purpose image compression. Recently, compression schemes aimed at
more specific classes of images have been developed, and show substantial gains by
employing a content adapted dictionary which is optimized for a specific class of
images [158, 174, 175]. Unfortunately, though these approaches show substantial
potential for improving compression rates, a significant drawback of these methods
is their loss of generality, due to the need to pre-share a specialized dictionary for
every class of images.

In this work, we take a different approach and target compression of generic
images using adaptive dictionaries. Our goal is to increase sparsity by encoding
the input image over a specifically-trained dictionary adapted to it. This goal is

ambitious, as it requires transmitting the dictionary along with the compressed
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data, which introduces substantial overhead. To address this, we propose using a
parametric dictionary, which can be represented by a relatively small number of
values. Several such dictionaries have been recently proposed (see [13]).

In this work we focus on the use of the sparse dictionary structure [33] for
image compression, which we choose due to its simplicity and ability to represent
relatively rich dictionaries. Our compression scheme thus trains the sparse dic-
tionary specifically for the input image, and encodes it as part of the compressed
stream. In this way, the compression method can accommodate a wide range of
images, since it imposes few assumptions on their behavior. Our simulations show
that even though our method must transmit the dictionary, it consistently outper-
forms JPEG compression, and comes close to JPEG2000 in several cases. We view
these as significant and encouraging results, which demonstrate the feasibility of

the image-adaptive approach, and open the door to further research.

5.1.1 Related Work

Several works on image compression using content-adaptive dictionaries have been
recently published. In all these works, the trained dictionary is assumed to be
known to both the encoder and decoder. One of the first works to successfully
employ this approach is [158], where the authors propose an algorithm for facial
image compression. The algorithm employs a pre-processing geometric alignment
step, followed by a sparse approximation of the image patches over a set of pre-
trained dictionaries. The method is shown to achieve dramatically higher com-
pression rates than JPEG and JPEG2000 for facial imagery due to the optimized
dictionaries, and clearly demonstrates the potential of content-aware compression.
Unfortunately, this approach is not readily extendible to more complex classes of
images.

A different method, applicable to a wider range of image classes, is proposed

in [174]. In this work, a set of orthogonal dictionaries is pre-trained for a given
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class of images, and the compression is implemented by allowing each patch in
the input to select its optimal dictionary from the set. The authors show that
for facial images, this method typically outperforms JPEG and comes close to
JPEG2000. Experiments with natural images show varying performance, match-
ing or surpassing JPEG.

Finally, a method based on iteration-tuned dictionaries (ITDs) has been re-
cently proposed [175]. In this work, a single hierarchical ITD is pre-trained for a
specific image class, and used to encode the input image patches. The authors test
their method with facial images, and show that it can convincingly outperform
JPEG and JPEG2000 for this class of images. Other classes of images remain to

be investigated.

5.1.2 Report Organization

This report is organized as follows: In section 5.2 we review the sparse dictionary
structure, which forms the core of our algorithm. The compression scheme is
described in section 5.3, followed by results in section 5.4. We conclude and

discuss future research directions in section 5.5.

5.2 Sparse Dictionaries

The sparse dictionary structure is a parametric dictionary model recently proposed
as a means of bridging the gap between analytic and trained dictionaries [33]. It
is a simple and effective structure based on sparsity of the atoms over a known
base dictionary. The motivation for this structure comes from the observation
that dictionaries trained from natural image data are typically highly structured,
and show notable regularity. For example, Fig. 5.1 shows a dictionary trained
using the K-SVD algorithm [28] on a set of 8 x 8 natural image patches. The
regularity of the trained atoms suggests that these atoms themselves may have

some underlying sparse structure over a more fundamental base dictionary. Thus,
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Figure 5.1: Left: overcomplete dictionary for 8 x 8 image patches, trained using the K-SVD

algorithm. Right: images used for the training.

according to this view, the dictionaries describing different images may not be
completely independent, and instead have a common underlying explanation in
the form of the base dictionary. This base dictionary in turn consists of a set
of signals — which can be thought of as ”"sub-atomic” signals — from which all
observable dictionary atoms are formed.

Formally, the sparse dictionary structure represents each atom of the dictionary
as a sparse combination of atoms from a prespecified base dictionary ®. The

dictionary is therefore expressed as
D = ®A (5.3)

where A is the atom representation matrix, and is assumed to be sparse. For
simplicity, we assume A has a fixed number of non-zeros per column, so [|a;|lo < p
for some p. The base dictionary ® is a fized non-adaptive dictionary which is part
of the model.

Benefits of this model include adaptability (via modification of A), efficiency
(assuming ® has an efficient implementation), and compact representation (as
only A requires specification). Training the sparse dictionary is done using the

Sparse K-SVD algorithm [33|, which efficiently adapts the matrix A given a set of
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examples. The algorithm alternates between sparse coding and dictionary update
steps, similar to the original K-SVD algorithm [28]. We refer the reader to [33]

for a complete description of the algorithm.

5.3 Adaptive Image Compression

The adaptive encoding process is summarized in Fig. 5.2. The process begins by
partitioning the image to non-overlapping patches and subtracting the mean (DC)
value from each. The DC values are subsequently quantized, and their running
differences are entropy coded. The DC-free patches, which contain the bulk of
the image information, are used to train a sparse dictionary using Sparse K-SVD.
As the base dictionary, we use the overcomplete DCT!, which is known to be an
efficient generic dictionary for representing small image patches.

The outcome of this training is a matrix A describing an image-specific dic-
tionary for representing the image patches. This matrix undergoes quantization
and is then used to encode the DC-free patches. We perform sparse coding over
the quantized dictionary D, = ®A, to allow inversion of the process at the de-
coder. For the sparse coding, we use a variant of Orthogonal Matching Pursuit
(OMP) [38] which we name Global OMP. The sparse coding step produces a sparse
matrix I' with the sparse representations of the patches as its columns, and T" is
subsequently quantized to form I';. Finally, both A, and I'; are fed to a sparse
matrix encoder which generates the compressed representation of the DC-free con-
tent. The full compressed stream consists of the encoded DC values and the two
compressed sparse matrices.

We note that the sparse dictionary is learned from zero-mean patches, how-
ever the sparse coding step is performed with patches from which quantized DC

values were subtracted, and therefore may have non-zero means. We resolve this

'The overcomplete DCT dictionary is an extension of the standard DCT dictionary which allows

non-integer wave numbers.
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Figure 5.2: The proposed encoding scheme.

discrepancy by adding a fixed constant-valued DC atom to the trained dictionary,
and implicitly assume its existence as the first atom of the dictionary in both the
encoder and decoder. Decoding the stream is straightforward and efficient, and
includes reversing the sparse matrix encoding, computing the DC-free patches

X = ®AT, and restoring the encoded DC values.

In the next sections we describe in more detail the key components of the scheme.

5.3.1 Global OMP

Our implementation of the compression scheme accepts a target PSNR as the
control of the output rate. In the sparse coding stage, this target can be enforced
individually for each image patch by setting € in (5.2) to €2 = I2_b/10" 10, where
b denotes the number of pixels in a patch. Alternatively, we can lift this constraint
and allow the error to be distributed arbitrarily among the patches. This results
in a more flexible sparse coding scheme which potentially achieves higher sparsity.

Thus, we solve a global sparse coding problem for all image patches simultaneously:
Min [Tl Subject To [[Y — D,I|% <€ . (5.4)

Here, Y is a matrix with the image patches as its columns, and ¢, is the global
error target for the image.

Problem (5.4) can be formulated as a sparse-coding problem for the column-
stack representation y of Y over the dictionary I D, (the block matrix containing

instances of D, as its main diagonal):
Min [yl Subject To ly = (10 Dy)yll3 < e (5.5)
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We perform the sparse coding using OMP, which can be implemented efficiently
since the computations can be localized to a single patch each iteration. Specif-
ically, we store for each patch its current residual vector, sparse coefficients, and
inner-products with the dictionary atoms. At the selection stage, we choose the
largest inner product among all image patches, which determines both the patch
to process and the atom to add to its representation. The addition of the atom
involves only local updates to the patch information, and thus introduces no over-
head compared to encoding the patch independently.

We name the resulting process Global OMP, as it globally processes all image
patches towards a single collective error target. We use it in the dictionary training
as well as the sparse coding steps, in order to better tune the learned result to the

global process.

5.3.2 Quantization

We quantize the non-zero values in A and I using a uniform quantizer. While the
distribution of these values is highly non-uniform, it is known that using uniform
quantization followed by entropy coding generally outperforms non-uniform quan-
tization. Of course, a side effect of the quantization of I" is that the PSNR target
achieved by the sparse coding step is lost. To restore the desired PSNR target, we
employ a simple iterative refinement process, in which coefficients are added to T’
to compensate for the quality loss.

We begin with the original PSNR target and its associated error value €¢,. We
denote this original (user-specified) PSNR target by py and the achieved PSNR
after quantization by qo (< po), and let 79 = po—qo. Assuming ry is relatively small,
we estimate that the quantization-induced PSNR loss will be approximately the
same for any target PSNR close to py. This implies that the target PSNR p; = po+
ro should roughly achieve the user-specified PSNR target after quantization. We

therefore add coefficients to I' until reaching the updated target p;, by continuing
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the greedy Global OMP from the point it terminated at py. After quantization, if
the result is still below the desired PSNR target, the Global OMP target can be
raised again using a similar process, based on the updated PSNR loss r, = p; —¢;.
The process repeats as necessary until reaching the user-specified PSNR target
po £ 0 for some §. The overall process is efficient and requires relatively few
repetitions (typically 2-5). It should be noted that since the Global OMP is
continued rather than restarted, the overhead of these repetitions (compared to

having known the “correct” sparse coding target to begin with) is small.

5.3.3 Sparse Matrix Encoding

Our sparse matrix encoder represents the matrices A, and I'; in column com-
pressed (CCS) form. It encodes the quantized values of the coefficients via en-
tropy coding, and the locations of these coefficients via difference coding of the
row indices, followed by entropy coding.

A useful observation is that the order of the columns in A is arbitrary, and is
essentially a degree of freedom of the representation. Indeed, we can apply any
permutation to the columns of A, along with the same permutation to the rows
of I, without altering the product AI". This freedom can be used to improve the
compressibility of the row indices in I'. In this work we reorder the columns of A
such that they become ordered in decreasing order of popularity. In other words,
the rows of I are sorted in descending order of non-zero count. This sorting results
in concentration of the non-zero values in I" near the top of the matrix, and thus
the overall entropy of the index differences is reduced.

To facilitate the difference-coding of the row indices in I'; we transmit for each
column the index of the first non-zero value, followed by a sequence of differences
for the remaining indices. Owing to the above sorting, the order of the rows in
I’ is such that the index of the first non-zero value in each column is typically

small, and hence has a particulary low entropy. We thus use a dedicated entropy
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coder for the indices of the first value in each column, and a separate entropy
coder for the index differences. We indicate an empty column in I' by sending the
special symbol 0 as the index of the first non-zero value in that column (we index
valid matrix rows from 1). For a non-empty column — which can have a variable
number of non-zero values — we indicate the end of its index sequence by sending
the special symbol 0 as the index difference.

For the coefficient values, we entropy-code their absolute value as a consecutive

stream (a different stream for A and T'). The signs are sent unprocessed.

5.3.4 Entropy Coding

The entropy coding in this work is implemented using an arithmetic coder. We
note that given a set of symbols, the arithmetic coder and decoder require the
symbol probabilities {p;} as side information. These probabilities are determined
by the encoder, and must be transmitted to the decoder. To avoid sending floating-
point numbers, we quantize and transmit the log-probabilities log,(1/p;). These
values represent the optimal codeword lengths of the symbols, and thus have a
relatively small range which can be uniformly quantized. We have found that using
very few bits (5—6) for the quantized values results in practically no increase to the

code length, while providing an effective way of transmitting the side information.

5.3.5 Parameter Tuning

One can imagine that compression schemes, such as the one described in [158],
rely on many parameters that need to be set before actual coding. Some of these
parameters can be predetermined, while others depend on the image content and
the requested output quality. The proposed scheme involves several such parame-
ters as well. In this section we discuss the main parameters in the scheme — the
patch size, the dictionary size, the atom sparsity and the quantization step sizes

— and their selection process in our implementation.
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Patch Size Dictionary Size  Atom Sparsity

3x3 300 8
4 x4 300 10
5 XD 200 12
6 x6 200 12
TxXT 200 14
8§ x 8 200 16
9x9 150 16
10 x 10 150 16
11 x 11 150 18
12 x 12 120 18
13 x 13 100 20
14 x 14 100 20

Table 5.1: Dictionary size and atom sparsity for each patch size.

Our experiments have shown that of the mentioned parameters, only a few have
a significant effect on compression performance. Based on these experiments, our
system implements a semi-automatic parameter tuning process which requires no
manual intervention. We should remark that although this heuristic process has
been found relatively effective, manual experimentation has verified that it is still
sub-optimal, and improved results can be achieved by further refining it.

For the dictionary size and atom sparsity, our system employs hard-coded
values which depend only on the patch size, as detailed in Table 5.1. Based on our
experiments, we have found that the optimal values for these parameters are quite
consistent among images assigned with the same patch sizes, with compression
results remaining stable when deviating from these values. Thus, fixed values for
these two parameters suffice for our encoding system. In the same way, our base
dictionary size is fixed as well, and depends only on the patch size. For a patch
size of N x N, our overcomplete DCT base dictionary is of size N? x (N +2)? i.e.,

the Kronecker product of two 1-D N x (N + 2) overcomplete DCT dictionaries.
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Selecting the quantization steps is a more elaborate process. Our scheme in-
volves three quantization step sizes which must be chosen: one for the DC values,
and two for the non-zero values in A and I". Beginning with the DC quantization
step, we recall that our scheme adds a fixed DC atom to the trained dictionary to
overcome DC quantization effects. Thus, coarser DC quantization results in more
non-zero values appearing in I'; associated with this DC atom. Our selection rule
for the DC quantization step heuristically chooses this value such that the increase
in non-zero count in I' due to the DC quantization is around 6%.

Regarding the quantization steps for the non-zeros in A and I', we notice
that for both these values there is a direct trade-off between the harshness of the
quantization and the number of coefficients that will be required in I' to achieve
a given PSNR target. Specifically, by coarsening the quantization, it remains
possible (up to some point) to satisfy the PSNR target, but at the expense of
more non-zero values added to I'. Our system employs a heuristic process which
simultaneously selects both step sizes, with the goal of achieving a ~ 0.85dB
PSNR loss due to the quantization. This loss is then compensated for by adding
coefficients to I'. To achieve this goal, we extend the iterative process in 5.3.2 to
repeatedly refine both step sizes based on the current PSNR loss, modifying the
step sizes as necessary according to a set of empirically designed rules.

Of all the compression parameters, we have found the most influential one to
be the patch size. As mentioned above, given the optimal patch size, many other
parameters of the process can be immediately set. Unfortunately, we have not
yet found a sufficiently effective heuristic for selecting this size. Thus, our system
determines the optimal size for each image by applying several predetermined
patch sizes in a highly reduced compression scheme, and choosing the size that
achieves the optimal rate for the target PSNR. We consider patch sizes from 3 x 3
pixels to 14 x 14, as listed in Table 5.1. As expected, we have found that lower

PSNR targets generally prefer larger patch sizes, due to the reduced accuracy
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Figure 5.3: The effect of the patch size choice on the compressed file size, for the image Barbara.
For each PSNR target, the corresponding column shows the ratios between the obtained file sizes

for different patch size choices, and the optimal file size for that PSNR.

required by the compression. Fig. 5.3 illustrates the relation between the patch
size and the resulting file size for the image Barbara. For each PSNR target, the
figure shows the relative increase in file size incurred by different patch size choices,
compared to the optimal size. As can be seen, compression performance is quite
stable under minor deviations from the optimal patch size, though selecting an

unsuitable size can result in a substantially large file.

For further details on the parameter tuning process, we refer the reader to [176].

5.4 Results

We have tested the proposed scheme on a variety of images, and the results for
seven standard test images are presented below. The Sparse K-SVD results were
produced using the parameter selection process described in the previous section.
The JPEG and JPEG2000 images were produced using MATLAB R2010a.
Representative compression results are listed in Table 5.2. Figs. 5.4-5.6 show
the corresponding compressed images, and Fig. 5.7 presents comparative rate-

distortion graphs. The three parts in the table correspond to the three figures
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5.4,5.5,5.6. In each part, all test images are compressed to the same target PSNR
by the Sparse K-SVD compression scheme, and the JPEG and JPEG2000 algo-
rithms are tuned to match the resulting file size. The three cases represent low,
medium and high bit-rates, corresponding to PSNR targets of 25dB, 29dB and
34dB for the Sparse K-SVD. The rate-distortion graphs summarize our complete
results for the seven test images.

As can be seen, our scheme consistently outperforms JPEG, and comes close
to JPEG2000 in several cases. Our method typically performs better on images
containing more texture, owing to the ability of the dictionary to capture and effi-
ciently represent repetitive behavior. Similar to the JPEG algorithm, our method
suffers from blockiness due to partitioning of the image. This artifact can likely
be reduced by employing a post-processing deblocking scheme.

Finally, Fig. 5.8 demonstrates a typical decomposition of the compressed stream
resulting from our encoder. As can be seen, the indices of the representation co-
efficients in I" occupy the majority of the compressed file. This behavior is due to
the random structure of the coefficients in I', which exhibits little organization or

repetitiveness, and is thus difficult to compress efficiently.

137



CHAPTER 5: ADAPTIVE IMAGE COMPRESSION USING SPARSE DICTIONARIES

File Size PSNR (dB)
Figure Image (KB) JPEG? Sparse K-SVD JPEG2000
barbara 5.9+0.1 22.3 25 26.96
lena 3.44+0.1 — 25 30.11
peppers 3.9+0.1 — 25 30.57
5.4  pirate 51+0.1 23.28 25 26.63
zentime 54+0.1 23.12 25 25.83
table 14.5+ 0.1 23.17 25 25.6
dollar 23.44+0.1 22.92 25 25.58
barbara 11.1+0.1 25.8 29 29.79
lena 4.77+£0.1 25.56 29 31.69
peppers 6.33+0.1 28.23 29 32.09
5.5  pirate 13.3£0.1 28.36 29 30.31
zentime 16.3 £ 0.1 27.86 29 29.97
table 30.2+0.1 26.45 29 29.9
dollar 41.9+0.1 26.23 29 30.2
barbara 26.7+0.1 31.65 34 35.65
lena 126 £0.1 33.41 34 35.83
peppers 14.8 £0.1 33.61 34 35.49
5.6  pirate 36.6 £0.1 32.91 34 35.92
zentime 39.34+0.1 32.77 34 36.6
table 59 +£0.1 30.74 34 35.11
dollar 72+0.1 31.32 34 36.6

Table 5.2: Quantitative comparison of JPEG?2, JPEG2000 and Sparse K-SVD compression. Each
part of the table corresponds to a single target PSNR for the Sparse K-SVD (25dB, 29dB and

34dB), and the JPEG and JPEG2000 are tuned to match the resulting file size.

2The empty entries in the table correspond to cases where the Sparse K-SVD file sizes were below the
possible minimum of the JPEG algorithm. The smallest file sizes achieved by JPEG for Lena and Peppers
were 4.27KB (24.25dB) and 4.42KB (24.3dB), respectively. The corresponding images are shown in

Fig. 5.4.
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barbara

pirate

zentime

dollar

Figure 5.4: Visual comparison of the schemes (low bit-rate). Left to right: Original, JPEG,
Sparse K-SVD and JPEG2000. For the images Lena and Peppers, where JPEG could not

achieve the target file size, the shown images use the lowest possible quality settings.
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Figure 5.5: Visual comparison of the schemes (medium bit-rate). Left to right: Original, JPEG,
Sparse K-SVD and JPEG2000.
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barbara

pirate

zentime

dollar

Figure 5.6: Visual comparison of the schemes (high bit-rate). Left to right: Original, JPEG,

Sparse K-SVD and JPEG2000.

141



CHAPTER 5: ADAPTIVE IMAGE COMPRESSION USING SPARSE DICTIONARIES

barbara lena
36- >
e 351
32-
o @
g 32
x 30 o
z z
4 Q31f
28-
30|
% 29|
JPEG
28 Sparse K-SVD
2 . —JPEG2000 . | |—JrEG2000
[} 0.08 0.1 0.12 014 016 018 o 004 005 006 007 0.08 0.09
bit-rate [bpp] bit-rate [bpp]
peppers pirate
36- g
. 35 "
34-
33|
33 2l
8% Tyl
£ H
301
g3~ 8
29|
30-
281
27|
28- 26
; —JPEG2000
0 0.04 0.06 0.08 04 012 1
bit-rate [bpp] bit-rate [bpp]
zentime table
36 . P
34-
32
g g
0 o
z z
% %
2 4
28
2%
== JPEG -=-JPEG
-+ Sparse K-SVD/ Sparse K-SVD
" —JPEG2000 1 . — JPEG2000
0 02 025 005 01 0.15 025 03 035 0.4

02
bit-rate [bpp]

dollar

PSNR [dB]
8

S
8

EG
Sparse K-SVD
; EG2000 |

0.2 025 03 035 0.4
bit-rate [bpp]

Figure 5.7: Rate-distortion curves for the seven test images. Comparison of JPEG, Sparse

K-SVD, and JPEG2000 compression.
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Figure 5.8: Decomposition of the compressed stream for the image Dollar.
5.5 Conclusion and Future Directions

This work has presented a new image compression scheme based on image-adaptive
dictionaries. The system is unique in that it encodes the image over a dictionary
specifically trained for the input. This approach, which requires transmission of
the dictionary as part of the compressed stream, is made possible owing to the
compact representation of the sparse dictionary structure.

We have shown that despite the overhead in sending the dictionary, our sys-
tem consistently outperforms the JPEG algorithm, which is a similar patch-based
scheme, but utilizes a pre-shared fixed dictionary. Indeed, while our current imple-
mentation does not reach JPEG2000 performance, our results remain significant
in that they demonstrate the feasibility and potential of the adaptive approach.
Such an approach, as far as the authors are aware of, has so far been considered
impractical.

Many enhancements to the scheme could be introduced. Most notably, working
with several image scales could more efficiently represent differently-sized features,
as well as eliminate the need to select a patch size for each input individually.
Alternatively, enabling variable-sized patches based on local image complexity
could also accomplish this. Another interesting way to achieve multi-scale behavior
is to apply the scheme on the wavelet (or other multi-scale) transform of the image,
which could at the same time reduce blockiness effects.

In another direction, an important observation is that the encoded indices
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occupy a significant part of the resulting compressed stream. Thus, discovering
hidden patterns in T', or alternatively, modifying the sparse coding process to
create more regular patterns, could dramatically improve compression efficiency.
Finally, the scheme could be extended to allow fixed pre-shared parts in the dic-
tionary alongside adaptive ones, thus reducing the overall cost of sending the

dictionary.
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Chapter 6

Learning ¢! Analysis Dictionaries

Joint work with Michael Elad.

Abstract

The synthesis-based sparse representation signal model has drawn considerable
attention over the past decade. The synthesis approach models signals as coming
from linear combinations of a few columns, or atoms, from a given dictionary. In
this work we concentrate on an alternative analysis model, where signal repre-
sentations come from the inner products of the signals and the dictionary atoms,
producing a sparse outcome. According to this approach, the atoms are arranged
as the rows of the analysis dictionary, and the signals of interest are described as
orthogonal to sets of rows from this dictionary. In this chapter we present this
new modeling approach, and propose an algorithm for learning the analysis op-
erator from sparse examples. The algorithm we develop is closely related to the
K-SVD training algorithm for synthesis dictionaries, and we thus name it Anal-
ysis K-SVD. Our experiments demonstrate the effectiveness of the algorithm in
recovering an underlying analysis dictionary from examples, as well as its ability

to discover meaningful structures in natural image data.
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6.1 Introduction

The ¢° analysis model is a new signal model in which signals are described in terms
of orthogonality to the dictionary atoms. Very little is currently known about
this model, with only a handful of works published on the topic [86, 87, 177].
The model describes the signals of interest x € (2 as coming from subspaces
orthogonal to sets of rows in the analysis dictionary. Thus, ||Qx|, = L — P,
where P is the number of atoms x is orthogonal to. For natural signals, it is
well-known that localized derivative operators exhibit highly sparse behavior, i.e.,
many inner-products are near-zero. Dictionaries such as short-time Fourier [106],
wavelets |7], curvelets [16], contourlets [18], and high-order derivatives, constitute
good examples of this behavior.

Particular motivation for the ¢° analysis model comes from the observation
in [1] that the local modes (the high probability signals) of the ¢! analysis model
are orthogonal to large sets of rows in the analysis dictionary. This is parallel to
the synthesis model, where it is known that the high probability signals of the ¢
model constitute sparse combinations of columns from the synthesis dictionary.
Indeed, the outstanding success of the resulting /° synthesis formulation naturally
raises interest in the yet unexplored ¢° variant of the analysis model.

The new analysis signal model raises several interesting questions. The first
concerns recovery: given a possibly noisy measurement of the signal x, can we
recover its analysis representation 2x? Clearly when we have an exact measure-
ment of x this becomes trivial. However, if we add noise to the measurements,
we arrive at an estimation process which we name analysis sparse approximation.
We describe two algorithms for this in the next section.

The second interesting question concerns dictionary learning: given a set of
noisy training examples coming from an analysis sparse model, can we estimate the
underlying dictionary? We consider this question in Section 6.3, where we propose

the Analysis K-SVD algorithm for analysis dictionary training. Initial experiment
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results presented in Section 6.4 demonstrate the ability of our algorithm to recover

underlying analysis structures in both synthetic and natural signal data.

6.2 Analysis Sparse Approximation

In the analysis framework, computing signal representations v(x) = x is a re-
markably simple process. However, if we assume some contamination in the signal,
recovering its analysis representation from the noisy measurements y = x + n be-

comes a non-trivial optimization task, which takes the form:
z = Argmin ||y —z|2 Subject To ||Qz|o<L—P. (6.1)

Here we assume that the sparsity of the original signal is known, and thus the
optimization process searches for P-sparse signals in the vicinity of y which min-
imize the representation error. We refer to this problem, as well as to its error-
constrained equivalent, as the analysis sparse approximation problem.

Similar to the synthesis sparse approximation problem, problem (6.1) is com-
binatorial in nature and can thus only be approximated. One approach to approx-
imating the solution is to relax the ¢° norm and replace it with some /7 penalty

function with p > 0, producing
z = Argmin |ly —zl]y Subject To |[|Qz|} <L-P. (6.2)

This approach is parallel to the basis pursuit approach for synthesis approxima-
tion [12], and the resulting problem may be solved e.g., via an iterated re-weighted
least squares (IRLS) method. Going to p = 1 results in the ¢! analysis approxi-
mation problem, which is solvable using a variety of algorithms (Section 1.2.2).
A second approach, parallel to the synthesis greedy pursuit approaches [11, 38|,
suggests selecting rows from €2 one-by-one in a greedy fashion. The process begins
by setting z = y and initializing an empty set of rows. Each iteration, the inner

products 2z are computed, and the row with the smallest non-zero inner product
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Algorithm 6.1 ANALYSIS-OMP

RLXN

1: Input: Dictionary Q2 € , signal y € RV target sparsity P

2: Output: Signal z € RY satisfying ||Qz|o < L — P and minimizing ||y — z|2
3: Init: Set @ :=0, V:={1,2,...L}, z:=y
4: fori=1...P do
5: ]Ai =A i T
remin Wy, z |
6: ®:=dU{k}
7 U=U\{k}

z:=y— (Qs) oy

%

9: end for

10: return z

is selected and added to the set. The solution z is then updated by projecting y
on the orthogonal space of the selected rows. This process is repeated until the
target sparsity (or error) is achieved. We refer to this method as Analysis-OMP,
and detail it in Algorithm 6.1.

We compare the two options in Fig. 6.1. The plot shows the results of a
synthetic experiment comparing the fraction of correctly recovered vanishing coef-
ficients for a few noise and sparsity levels. As can be seen, in all cases the recovery
performance improves with the sparsity of the signal, as could be expected. Among
the two options, we see that their performance is mostly comparable, with a small
advantage to the relaxation approach with p < 0.5. However, we note that the
Analysis OMP is a much simpler and faster option, and thus we generally prefer

it over the relaxation alternative.
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Figure 6.1: Analysis sparse approximation performance. The bars show the fraction of correctly
recovered vanishing coefficients for different sparsity levels, using the relaxation (p = 0.2,0.5,1)
and Analysis OMP algorithms. In this experiment, €2 is of size 40 x 30 and contains random
Gaussian entries. For each sparsity level P, we generate a test set of 1,000 random signals, each
orthogonal to P different rows in €2, and contaminated with white Gaussian noise. The bars
show the mean recovery rate achieved for each sparsity level, for noise levels of SNR=8dB (left)

and SNR—15dB (right).
6.3 Dictionary Training

We now turn to the question of dictionary learning. Our goal is to assess the
possibility of recovering an underlying analysis dictionary €2 given a set of analysis-
sparse realizations. We therefore consider the following setting: given a set of
examples Y = [y, ¥y ... ¥r], we assume each example is a noisy version of a
signal orthogonal to P rows from the unknown dictionary 2. Thus, y, = x; + n,,
where n; is additive Gaussian noise, and x; satisfies |Qx;|lo = L — P. Our goal
is to find the dictionary €2 giving rise to these signals, which can be translated to

the following optimization task:

Argréli% |Y — Z||%2 Subject To Vi ||Qzllo<L—P (6.3)

Vi [lwille =1

Here, z; are our estimates of the noiseless signals, arranged as the columns of

the matrix Z. The vectors w; denote the rows of € (as column vectors). The
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normalization constraint on the rows of €2 is introduced to avoid degeneracy, but
has no other influence on the result. We note that our formulation closely follows

the structure of the ¢ synthesis training problem, given by [28]:
Arg%li{} Y — DT||3 Subject To Vi |v,llo <T (6.4)
Vi lldjlla =1

Problem (6.3) is highly non-convex, and thus we cannot hope for a global
solution. The optimization scheme we adopt here assumes an initial estimate €2
of the analysis operator, and is based on a two-phase block-coordinate-relaxation
approach, similar to the MOD [23| and K-SVD [28]. In the first phase we optimize
for Z while keeping €2 fixed, and in the second phase we update {2 using the
computed signals Z. The process repeats until some stopping criterion (typically
a fixed number of iterations) is achieved.

Optimizing for Z is done independently for each of its columns z;, defining a
set of /¥ analysis denoising problems which may be solved using any one of the

sparse approximation methods:
z; = Argmin |y; —zll> Subject To |[[Qzllo <L - P . (6.5)

Once this step is complete, 2 and Z are updated simultaneously in the second
step. The optimization is carried out sequentially for each of the rows w; in £2. We
note that the update of w; only affects those columns of Z which are orthogonal
to it, while the remaining columns are indifferent to the update (they may only
gain from it). Thus, letting Z; denote the submatrix of Z containing the columns
orthogonal to w;, and denoting by Y; the corresponding submatrix of Y, the

update step for w; can be written as:
Arg mi%l IY;—Z;||3 Subject To ViecJ, ||Qzlo<L—-P  (6.6)
Wj, J
[wilz=1.

The straightforward approach to maintaining the sparsity constraints on the

analysis representations is to force each z; to remain orthogonal to the rows in €
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it is already orthogonal to. This is parallel to the K-SVD atom update process
where the representation supports are kept fixed. To formalize this, we use the
notation Q' to denote the submatrix of © containing the rows which z, is currently

orthogonal to, excluding w;. This leads to the optimization task:

Arg miél Y —Zs||% Subject To Vi€ J, Q'z =0 (6.7)
Wj, J
w;Z; =0
[willz =1

However, solving this problem directly turns out to be a difficult task. As we show

in the Appendix, the atom update process resulting from this expression is given

by

Argmin ZW yilvi)'w Subject To ||w;j|ls =1
W - TP W] 72 ’

where P; is the orthogonal projection operator on the null-space of Q°. As can be
seen, in contrast to the K-SVD, this problem is difficult to optimize, and has no
closed-form solution.

We therefore take a different route here. Rather than fix all current orthog-
onality relations, as suggested by the K-SVD-like path, we return to the original
problem statement (6.6), and require only orthogonality to w; to be maintained.

The modified update process is thus given by:

Arg mlél Y —Zs||% Subject To Vi€ J, [zl <L—-P+1 (6.8)

Wi,

Wi Z; =0
[wijll2=1,
where €25 is the analysis operator without the j-th row.
To solve this problem, we adopt a projected-optimization approach. In the

first step, we relaz (6.8) by optimizing for w; and Z; without the first constraint.

In the second step, we project Z; back to the feasible domain, reinstating the
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constraints. For the first step we thus obtain a simple task:

Arg mi%l 1Y, = Z,||7 Subject To w!Z; =0 (6.9)

w2y
[will =1

This problem is a standard rank-reduction problem for Y, and its solution is

given by the rank-(IN — 1) matrix Z; closest to Y, and its null-space w;. The

updated w; is thus the left singular vector corresponding to the smallest singular

value of Y 7, which can be computed from the SVD of Y ;, or using a more efficient

inverse power method. The second (projection) step is given by:

Argmin Y — Z;|% Subject To VieJ, [Qzllo<L—-P+1 (6.10)
J

wiZ; =0,

which can be solved by an analysis sparse approximation method.

We now note that the update step for w;, as suggested by (6.9), depends
only on the input signals Y ;, and not on the denoised signals X ;. This suggests
a parallel update step for the dictionary atoms, in which each row is independently
set to the singular vector defined by its associated set of examples. Following the
row updates, the projection steps are bypassed by continuing directly to the sparse-
coding stage, which restores the sparsity constraints. Adopting this approach, we

can thus rewrite the atom update (6.9) as
w,; = Argmin ||W;‘FYJ||§ Subject To |lwjlls =1, (6.11)
w;

whose solution coincides with that of (6.9) for w;, but avoids computing Z ;.
The complete training process thus alternates analysis sparse-approximation
steps for the columns of Z (Eq. (6.5)), and SVD-based atom updates for the rows
of @ (Eq. (6.11)). We name the resulting process Analysis K-SVD, due to its
resemblance to the original K-SVD algorithm, and specifically, the similar use of
K SVD processes per iteration (K representing the number of dictionary atoms).

The full algorithm is detailed in Algorithm 6.2.
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Algorithm 6.2 AnNALysis K-SVD

1: Input: Training signals Y € RV*E initial dictionary Q¢ € RL*N | target sparsity P,
number of iterations k

2: Output: Dictionary € and signal set Z minimizing (6.3)

3: Init: Set Q :=

4: forn=1...k do

5 Vi: z;:=Argmin |ly; —z|3 Subject To ||Qz|o<L—P
z

6: forallje{l...L}do

7: J := {indices of the columns of Z orthogonal to w;}
8: w; := Argmin |[wlY |2 Subject To ||w|s =1

w
9: Q{j-th row} := W?

10: end for

11: end for

We mention that as an alternative to the parallel approach, a serial update
of the dictionary atoms could also be considered, in which case the projection
steps (6.10) are applied between the atom updates. These projections result in a
re-assignment of the examples to the dictionary atoms, which affects subsequent
atom updates by modifying the subsets of examples used. We have not explored

the serial option in this work, however, due to its substantial computational cost.

6.4 Simulation Results

In the remainder of this chapter we present experiment results with the proposed
training algorithm. In the first part we provide results for synthetic signals, demon-
strating the ability of the method to recover a true underlying operator {2 given
a sparse training set. In the second part we show qualitative training results for

natural image data, and observe the emergence of meaningful structures in the

153



CHAPTER 6: LEARNING /Y ANALYSIS DICTIONARIES

trained dictionary, indicating the ability of the algorithm to capture fundamental

behaviors in natural signals.

6.4.1 Synthetic Experiments

To demonstrate the performance of the proposed algorithm in recovering an un-
derlying dictionary €2, we performed a set of synthetic experiments with a known
ground-truth. We designed the experiments to follow those carried out in [86],
which similarly targets the £° analysis model, in order to allow a direct comparison.
In these experiments, a known dictionary € € R*Y is generated with random
Gaussian entries. R sparse examples are then generated from this dictionary, and
the training algorithm is employed to produce an estimate of the original dictio-
nary. Each example is generated as a sparse analysis signal by randomly selecting
P rows from €2, computing their null-space, and sampling a random Gaussian
vector within this null-space. The sparse signals are normalized to unit energy,
and optionally subjected to additive white Gaussian noise, to produce the final
training set.

In the following experiments, the analysis dictionary is of size 20 x 10, the
sparsity level (number of vanishing coefficients) is P = 8, and the training set
size is R = 10,000, in line with [86]. In the first set of simulations the training
signals are noiseless, and in the second set we add noise with standard deviation
o = 0.1/v/N (SNR~20dB). For each of the two cases, we run the algorithm
with five different sets of inputs, to verify consistency of the results. The initial
dictionary €2, for the training is constructed in all cases by randomly selecting L
sets of N — 1 examples and computing their 1-dimensional null-spaces.

Fig. 6.2 shows representative training results for the noiseless and noisy cases,
using Analysis-OMP for the sparse coding. As can be seen, in the noiseless case
the algorithm fully recovers the original dictionary, while in the noisy case the

algorithm recovers 19 out of 20 atoms (95%). Over the five noiseless experi-

154



CHAPTER 6: LEARNING /Y ANALYSIS DICTIONARIES

ments, the algorithm recovered €2 with complete accuracy (machine level accuracy,
MSE< 1073%) in all executions. In the noisy case, the algorithm recovered 19 out
of 20 atoms in 4 of the 5 executions, producing an MSE< 0.005, and in the re-
maining execution it recovered 17 of the 20 atoms, producing an MSE= 0.012. In
comparison, [86] reports an accuracy of 1078 for the noiseless case and an accuracy
of 107 for the noisy case.

For the noisy case, we performed an additional set of experiments using the
relaxation sparse approximation approach (6.2) with p = 0.5. Since the noise level
is known, we optimize the error-constrained version of the sparse-coding problem

in step 5 of the training algorithm:
z; = Argmin [|Qz[|) Subject To |[[z; —y;ll2 <e€. (6.12)

In this case, however, the denoised signal z; is not expected to be precisely orthog-
onal to any of the rows in 2. Thus, to achieve exact P-sparsity, we subsequently
detect for each estimate z; the P rows in € it is most orthogonal to (i.e., has
minimal correlation with), and use this set ® to define the final denoised result
as z; =y, — Q3 QY.

Using the relaxation approach improves recovery results in the noisy case,
producing an accurate estimate of  in 2 out of 5 executions (100% of the atoms
recovered, MSE<2 - 107°), and recovering 19 of 20 atoms in the remaining three
execution (MSE<0.005). Fig. 6.3 shows an example result. As can be seen, the
method smoothes the penalty function behavior and the convergence to the true
dictionary. Optimizing the relaxed target function, however, is significantly slower

than the greedy alternative.

6.4.2 Experiments with Natural Images

We now present experiment results with natural image patches, aiming to quali-
tatively evaluate the behavior of the training algorithm on real image data. For

these experiments, we randomly extracted 5,000 8 x 8 image patches from each of
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Figure 6.2: Example training results for a noiseless case (top row) and noisy case (bottom row).

Left to right: penalty function value (||Y — Z||r), distance to true dictionary (MSE), percent of

recovered atoms. All plots show evolution over algorithm iterations.
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five standard test images (Fig. 6.4), for a total of 25,000 training signals. We then
applied the Analysis K-SVD on these signals, using Analysis-OMP sparse-coding,
to train dictionaries of size 100 x 64 using varying levels of sparsity P. We note
that as opposed to many synthesis training methods, in the analysis case it is not
necessary to remove the mean (DC) from the training signals in a preprocessing
step, as the training target tends towards zero-mean atoms by construction.
Training results for the sparsity levels of P = 16, 32 are presented in Fig. 6.5. In
both cases the algorithm was executed for 100 training iterations. As can be seen,
the Analysis K-SVD algorithm efficiently reduces the penalty function in both
cases, achieving much of the reduction in the first few iterations. The resulting
trained atoms capture high-frequency signal characteristics, which are known to
be sparse in natural images (see e.g., [9]). For the higher sparsity level, we see
the formation of more localized and oriented structures in the analysis atoms,
reminiscent of Gabor and wavelet-type filters. Such properties are fundamental in
sparsifying transforms, as discussed in [13|. Interestingly, the atoms of the pseudo-
inverse dictionary D = Q7 bear some visual resemblance to the K-SVD synthesis
atoms, as can be found in [28]. We can reasonably assume that this phenomenon
is related to the similarity between the two algorithms, though the details of the

relationship remain to be studied.

6.5 Conclusions

The ¢° analysis model is an intriguing new signal model motivated by ideas from
(° synthesis models, natural image statistics, and insights from the ¢! analysis
model. In this work we presented two methods for approximating the analysis
sparse-coding problem, and developed an efficient algorithm for analysis dictio-
nary training. Our training algorithm shares much of the structure of the K-SVD
synthesis training algorithm, with the replacement of a maximum eigenvalue prob-

lem with a minimum eigenvalue one. We have shown that our training method
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Figure 6.5: Training results for natural image patches using sparsity levels of P = 16 (top row)
and P = 32 (bottom row). Left to right: convergence of the target function, atoms of the trained

dictionary, and atoms of the dictionary pseudo-inverse.

is able to effectively minimize the ¢° analysis target, and successfully recover an
underlying model given data examples. We have also shown training results for
natural image data, where the learned dictionary exhibited localized and oriented
behavior, known to characterize natural images.

Our work is an initial effort which opens the door to many future research
directions. Clearly, uniqueness theorems as well as formal success bounds for the ¢°
pursuit algorithms are highly desirable, similar to the vast literature on /° synthesis

models. Some work in this direction has already commenced, with uniqueness
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results obtained for a related ¢° analysis formulation [177|. Practical applications
in the fields of image recovery, understanding, compression and analysis remain to
be explored. Finally, recent trends in dictionary design, which tend towards more
structured and robust dictionary forms [13], could be implemented in the analysis
framework as well. Many of these new structures have natural extensions to the
analysis framework, and exploring the benefits and properties of such structures

in the context of analysis models is an interesting future research goal.

6.A Formulation of Explicit Atom Update

In this appendix we derive the explicit form of the atom update problem:

Arg Hli%l Y —Zs||3 Subject To Vi€ J, Q'z; =0 (6.13)
wj, 24y
w;Z; =0
[willz =1,

by eliminate Z; from the optimization process and expressing the task as an
optimization problem for w; alone.

To achieve this, we begin by computing a closed-form expression for the de-
pendence Z;(w;) for any w;. We note that given w;, the optimization can be

carried out separately for each column z; € Z:

Argmin ||y, — z||; Subject To Q'z; =0 (6.14)

WJTZZ' =0.

The solution to this problem is the projection of y, on the space orthogonal to
the rows of Q' € RY*N and the atom w;. To express this analytically, we let
W, € RV xLi he a matrix whose columns orthonormally span the row-space of
(note that L; < L; with an inequality if the rows of Q' are linearly dependent),
and similarly let the columns of V; = Wi € RV*(V —Li) span the orthogonal space.

Note that span{W,} @ span{V,} = R".
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The training signal y, has a unique decomposition as y, = W,a; + V,8, =
yy + yi, with yy denoting the component of y; spanned by the rows of £, and
y; denoting the orthogonal component. Now, if we initially ignore the constraint
W;‘-in = 0, the solution to (6.14) is clearly z; = y;-, the component of y, orthogonal
to the row-span of ©°. Reintroducing the constraint WJTzi = 0, it is easy to see that
the solution can be computed within the subspace V;, by projecting w; onto this
subspace and orthogonalizing y;- in respect to the projected atom. Specifically,

since the solution must be spanned by V;, it can be written as z;, = V;7;, leading

to the minimization:
Argmin [|[W;a; + Vi8; — Viv,ll3  Subject To WJTVi'yZ- =0.
Vi

From the orthogonality of W; and V;, and utilizing the fact that W;«; does not

affect the minimization, the above reduces to

Argmin |8, — %[} Subject To  (VIw,)Ty;=0.
i

(2

The solution to this problem is obtained by orthogonalizing 3, in respect to ViTWj,

ie.,

VIwT3.
( 7 ;NJ> fz VZTW] ]

Vw313
Finally, recalling that z; = V;~;, the solution of (6.14) is thus given by

(VzTWj)Tﬁi Viw.
Viwls ="

¥i =B —

z, = Vi, = V’LIBZ -

Tl
1 W; Yi T
A LA V45 v
Vi w;FViV;fFWj /
Tl
N Wi Yi
— oyt I py. 6.15
Yi WJTPin J ( )

Here, we denoted by P; = ViVl-T the projection operation on the span of V;.

Eq. (6.15) defines the analytical solution for the z;’s given w;. We can now
substitute this in (6.13) to obtain the following optimization problem for the
atom w;:

Argmin 3

icJ

2

wTPw, Subject To |wj|2=1.

wlyt
1 i
Y.V, + <—j Pin

2
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Since y;, — yi = W,aq, it is constant in the optimization and orthogonal to the

third term (which is spanned by V; from the definition of P;). Thus we can reduce

Tl

wly;

jJi
—2—— | P,w;
(WTPin> !

The target function in this minimization simplifies to:

the minimization to:

Argmin 3

e

2
Subject To ||w,lla =1 . (6.16)

2

2

W, Y;
||< TPW]) v F

where we used PiTPi = P; as P; is a symmetric projection matrix.

Tl (<, I\T
Wi Y; (yi)'w

TP .w.

W Piw;

_ (Wi
(WfPZWJ ) 2

w/PTPw; = L, (6.17)

Combining (6.17) with (6.16), the atom update (6.13) finally becomes:

Tw

W) ;

Argrrvlvm g legl“)l 2 Subject To ||wjlla=1. (6.18)
i j

It is interesting to note that in this process, two forces are simultaneously acting on
w;: The first force comes from the numerator, which pushes w; to be orthogonal
to y;- — the current solution without wj; this force is expected. At the same
time, the denominator tries to make w; orthogonal to the rows in Q' as a large
denominator means w; is close to the span of V;, which spans the complement
space to the rows of ©°. Thus, we see that the ¢° analysis problem naturally

incorporates a regularizing force which aims to "spread out” the rows in 2.

161



CHAPTER 6: LEARNING /Y ANALYSIS DICTIONARIES

162



Chapter 7

Learning Thresholding Dictionaries

Joint work with Michael Elad.

Abstract

Wavelet thresholding is a classical and widely used algorithm for signal denoising.
This process decomposes a noisy signal over an orthogonal dictionary, eliminates
the smallest coefficients, and applies the dictionary inverse to produce an esti-
mate of the noiseless signal. More recently, the process has been extended to
non-orthogonal overcomplete dictionaries, in which case the dictionary inverse is
replaced by a pseudo-inverse. The use of overcomplete dictionaries improves es-
timation results for images and high-dimensional signal data, due to the ability
of such dictionaries to better capture complex multi-dimensional signal behavior.
Nonetheless, using fixed dictionaries in these processes remains a limiting factor on
the recovery performance, due to the non-adaptive nature of generic transforms.
The incorporation of adaptive, trained dictionaries in thresholding methods
has the potential of improving recovery performance by tailoring the dictionary to
the specific signal data and estimation task. In this work we propose a framework
for training dictionaries for thresholding-based recovery processes. We present a

generalization of the basic thresholding framework which utilizes a pair of over-
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complete dictionaries, and can be applied to a wider range of tasks. The two
dictionaries are associated with the analysis and synthesis stages of the algo-
rithm, and we thus name the process analysis-synthesis thresholding. The pro-
posed training algorithm simultaneously trains both dictionaries given examples
of origin and degraded signals, and requires no prior knowledge of the degradation
model. Experiments with small-kernel image deblurring demonstrate the ability
of our method to favorably compete with dedicated deconvolution processes, using

a simple, stable, and fast recovery process.

7.1 Introduction

The shrinkage-based denoising process is based on a non-linear operation applied
to each of the analysis coefficients of a noisy signal. Given the measured signal

y = X + n, this process is given by
x =05\ (Qy) , (7.1)

where S)(+) is a scalar shrink operator governed by the parameter A. As discussed
in section 1.2.2, in the overcomplete case this estimator does not generally emerge
as a solution to an analysis task of the form (1.13). Instead, it constitutes the

formal solution to a representation-domain sparsification process, of the form
2= Q" - Argmin [y — Qy|; + \C(v) , (7.2)
¥

with C'(4) a suitably chosen separable penalty function.
A specific widely-used choice for Sy is the hard thresholding operator, which

applies a fixed threshold to each of the representation coefficients:

a Jal > A
Si(a) = : (7.3)
0 |af <A
This operator is associated with the choice C'(y) = ||7||o in (7.2), and nullifies the

smallest coefficients in Qy, essentially performing an ¢° sparsification of the anal-

ysis coefficients. However, we note that whereas the ¢° analysis formulation (6.1)
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seeks a signal z whose analysis coefficients are truly ¢°-sparse, the shrinkage pro-
cess above simply performs an unconstrained sparsification of the representation
coefficients, followed by a projection of the result back to the feasible domain
{Qx | x € RV} C R through the dictionary pseudo-inverse.

The simplicity and efficiency of the thresholding operator make it an attractive
technique for denoising. The dictionary €2 is typically chosen to be an analytic
dictionary such as wavelets [135], curvelets [77| or contourlets [18]. However, a
desirable goal would be to learn the dictionary from actual data instances. In
this work we focus on the specific case of £° (hard) thresholding, where we exploit
the resemblance to the analysis and synthesis ° frameworks to develop a simple
and efficient dictionary training technique. We apply our training method to an
image deblurring application to demonstrate the effectiveness and usefulness of
the proposed method.

We should mention that while dictionary training has not yet been addressed
in the context of thresholding, a different aspect of this process — the scalar
shrinking operator — was recently considered in [178|. Given a fixed dictionary €2
and a set of training examples, an individual shrink operator S; is learned for each
of the dictionary atoms using a piecewise-linear approximation. An interesting
outcome of this process, relevant to the current work, is the notable resemblance
of the resulting shrinkage operators to the hard thresholding operator used here
(though with a small and intriguing non-monotonicity around the center in some
cases, see Fig. 8 there). Indeed, this is an encouraging result that demonstrates the

potential usefulness of the hard thresholding operator in practical applications.

7.2 Analysis-Synthesis Thresholding

Reviewing the denoising process (7.1), we notice that it can be easily extended to

handle more general recovery tasks by simply decoupling the analysis and synthesis
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dictionaries. Such a modification leads to a recovery process of the form:
x = DS,)\(Qy) , (7.4)

where D € RM*L Q € RN and M # N in general. An added advantage
of this decoupling is that it results in a simpler dictionary training task, due to
the elimination of the pseudo-inverse constraint between the dictionaries. This
decoupling of the dictionaries makes the process a true analysis-synthesis hybrid,
and we thus name it analysis-synthesis thresholding.

An important point which must be addressed in any process of the type (7.4)
is the choice of the threshold \. Common threshold-selection processes include the
SureShrink [179], VisuShrink [180], BayesShrink [181], K-Sigma shrink [182], and
FDR-based shrink [183|. In this work , however, we adopt a learning approach in
which the threshold is trained as part of the dictionary learning process. Indeed,
the threshold value will generally depend on the noise level. In the following, we
take a simplistic approach and train an individual triplet (€2, D, ) for each noise
level. In practice, it is likely that a single dictionary pair could be trained for
all noise levels, adapting only the threshold value to each noise level individually

using the proposed threshold training process.

7.3 Dictionary Training

7.3.1 Training Target

The process definition (7.4) naturally gives rise to a training formulation for the
recovery parameters [184]. Given a set of training pairs {(x;,y;)}, representing
origin signals x; and their degraded versions y,, we wish to find a triplet (D, €2, \)
which best recovers the x;’s from the y,;’s. Letting X = [x1X3...xg] and Y =

[V1¥s ... Ygl, the training process takes the form:

{€.D.A} = Argmin [X — DS,(QY)][5 . (7.5)

166



CHAPTER 7: LEARNING THRESHOLDING DICTIONARIES

Note that this problem is actually defined up to a factor, as we are free to rescale
Q — (a2), D - (1/aD), A = (a)) for any a > 0. Thus, we could normalize
this problem by selecting, e.g., A = 1, and allowing the optimization process to set
the norms of the rows in € to fit this threshold. Alternatively, the normalization
we choose here (mainly for simplicity of presentation) is to fix the norm of each
row in €2 to unit length, and allow the threshold to vary. Clearly, to accommodate
such a normalization we must allow the threshold to differ for each row. Thus, we
introduce individual thresholds \; for each of the rows in €2, providing L degrees
of freedom of the form w; — (a;w;), d; = (1/a;d;), Ai = () fori =1... L.
This allows us to set each «; such that |w;||s = 1. Adopting this normalization,

our training target becomes:

{Q, DA} = Arg min [|X —DSx(QY)|; (7.6)

Subject To Vi [|[w;lla =1,

with A = (Ay,... ) constituting a vector of thresholds for the L atoms.

7.3.2 Optimization Scheme

We optimize (7.6) by adopting a sequential approach similar to the K-SVD and
Analysis K-SVD algorithms. At the j-th step, we keep all but the j-th pair of

atoms fixed, and optimize:

{w;,d;,\;} = Argmin ||X — DS»(QY)|% (7.7)

w;,d;, A

Subject To ||w;|2=1.
Simplifying the cost function, we obtain:
IX =DS\QY)[7 = X =) diSn(WiY)|
k
= X =) diSn(W[Y) —d;S), (w]Y)|

poy
= ||E; — d;Sx, (w; Y)|I7
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with E; = X—>7, d;. S, (WLY). Thus, our optimization goal for the j-the atom

pair becomes:

{W;,d;,\;} = Argmin |[E; — d;Sy,(w!Y)|% (7.8)

wj,dj,Aj
Subject To ||w,lla =1 .

We note that the hard thresholding operator, controlled by w; and A;, parti-
tions the signals in Y to two sets, depending on their relation with the threshold.
We denote the indices of the examples that survive the threshold (|w]y,| > X;) by
J = J(wj, );), and split the matrix Y to the signals Y’ that survive the thresh-
old, and the remaining signals Y’ We similarly split E; to the corresponding

submatrices E}J and Ejj With these notations, the above can be rearranged as:

{W;,d;, N} = Argmin [E] - d;w] Y75+ |E] |7 (7.9)

wj,dj,Aj
Subject To ||w;|s=1.

Obviously, minimizing this expression is an ambitious task, as the target
function is non-convex and highly discontinuous. The main difficulty in the opti-
mization is due to the fact that updating w; and \; may modify the signal parti-
tioning J, causing a non-smooth change to the cost function. One straightforward
approach is thus to perform the update while constraining the partitioning of the
signals to remain fixed. Under such a constraint, the atom update task can be
formulated as a convex Quadratic Programming (QP) problem, and can be glob-
ally solved. Unfortunately, this approach can clearly accommodate only a small
deviation of the solution from the initial estimate, and thus we take a different
approach here. For completeness, we detail the derivation of the QP formulation

in Appendix 7.A.

Optimization via Rank-One Approximation

A simple and surprisingly effective alternative to the constrained partitioning ap-

proach involves making the approzimation that the update process does not change
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much the partitioning of the signals about the threshold. This approach assumes
that the set J remains roughly constant during the update process, and thus, the

target function in (7.9) can be approximated by the function

Arg min [|E — d;wlY”|2 + |E]°|%2 Subject To |[lw,o=1, (7.10)

wi,dj ;A
with Jy denoting the current partitioning of the signals. Formally, this approach
is equivalent to optimizing (7.8) under a first-order expansion of Sy, which is
relatively accurate for coefficients far from the threshold.

Deriving a formal bound on the error of the proposed approximation is difficult:
in fact, when the set J is small, the approximation becomes useless as the signal
partitioning may substantially change by the update process. However, when the
set J covers a significant enough portion of the examples, we expect the majority
of the examples to follow this assumption due to the nature of the update which
favors signals already using the atom. Our simulations support this assumption,
indicating that the typical fraction of signals moving between .J and .J in practice
is quite small. A representative case is provided in Fig. 7.1: as can be seen, the
fraction of signals moving between J and J in this case is < 12% for the first
iteration, and goes down to just 2 — 6% for the remaining iterations. We see that
in this case the proposed approximation is quite reliable, while at the same time
leading to a substantially easier optimization goal.

By refraining from explicit constraints on the partitioning, we not only simplify
the optimization problem, but also gain flexibility by allowing some outlier signals
to "switch sides” relative to the threshold. Returning to the approximate optimiza-
tion target (7.10), Ej70 in this formulation is now a constant in the optimization,

and thus the update task reduces to:

(W, d;} = Argmin [BP —dw! V"3 (7.11)

Wi,

Subject To |wjlla=1.

Note that in this formulation ); is omitted, as Jp is fixed and thus the value of A;
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Figure 7.1: Fraction of signals changing sides relative to the threshold at different training
iterations. The figure shows results for training a pair of thresholding dictionaries with 256
atoms each for denoising 8 x 8 image patches with a noise level of ¢ = 10. The training patches
were extracted from eight arbitrary images in the CVG Granada [185] data set, 40,000 patches
from each image, for a total of 320,000 training patches. During the training, the fraction of
training patches moving between .J and .J was recorded for each atom pair, and the bars (on the
left) show the median of these values for each training iteration. Note that the typical fraction
of signals changing sides is < 12% for the first iteration, and around 2 — 6% for the remaining

iterations. The corresponding error evolution for this training process in depicted on the right.

has no effect. The threshold value will indeed require individual optimization
following the update of w; and d;, as it should be tuned to the values of the
updated atoms.

Problem (7.11) is a simple rank-one approximation task whose solution can be
obtained via the SVD. Due to the presence of the matrix Y’ to the right of the
atom pair, the solution process entails a few technical details which we leave for the
appendix (see Appendix 7.B). The resulting rank-one approximation procedure is

listed in Algorithm 7.1.

Updating the Threshold

Once w;, d; have been updated according to (7.11), we must recompute the thresh-
old A; to match the new atom values. Based on our previous assumption, we expect

most of the analysis coefficients |w§-ﬁyi| to be well separated in respect to Jy and
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Algorithm 7.1 THRESHOLDING — RANK-ONE APPROXIMATION

1: Input: Matrices E, Y € RV*E
2: Output: Solution to Arglcrllin |E —dwlY]|2% Subject To |[w]2=1

3: procedure:

4:  Compute the SVD: Y = USV”T

5. A= diag(sl_l, . ,s]_vl)

6 Y:=AUTY

no{d.W) = Argmin [BY - dw
8. wl:=wlAUuT

9:  d:i=d-|w|2

0 wh=w/|wlz

11: end

Jo around some threshold point. However, rather than seek this separation point,
a more straightforward and effective way to select \; is to simply minimize the

original error target:
A = Argmin [|E; — d;S), (WIY)|I3 . (7.12)
J

In practice, this process typically produces a partitioning close to the original one,
due to the relatively good separation of the signals in J, and J,. This is illustrated
in Fig. 7.1, which employs this technique for choosing A;.

Owing to the discrete nature of the hard threshold operator, problem (7.12) can
be globally and efficiently solved via a simple process. Without loss of generality,
we assume the signals are ordered such that |w]y,| < [W]y,| < --- < |wlypgl.
Thus, for any value of \; € (|w]y,|, |[W] ygl|), there exists a unique index k = k(X;)

such that |w]y, ;| < A; < |wly,|. The examples which survive the threshold are
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therefore given by yx, Ykt1, - - -, Yr, and we can rewrite (7.12) as:

k(xj)—1 R

A= Argrr)l\in Z lleil|? + Z le; — djW?Yng :
J i=1 i=k(\;)

In this formulation, k& encloses all the necessary information about A;. The opti-
mization can therefore be carried out over the discrete breakpoint k, which is a
simple task. Introducing the notations a; = [|e;||3 and §; = ||e; — d;w] y,||3, the

optimization for k is given by:
k—1 R
rgmin Zl a; + Zk B (7.13)

This expression is minimized directly by computing the values s, = Zf;ll a; +
Zf;k B; for all k£ and taking the global minimum. The values s; are computed via
the recursion s; = Zil B; and spy1 = S + ap — Br. Once the value k is known,
any suitable value for A; can be selected, e.g., A\; = (|w]y;_,| + [w]y;|)/2. The

threshold update process is summarized in Algorithm 7.2.

Full Training Process and Implementation Details

Putting the pieces together, the atom update process for the j-th atom pair con-
sists of the following three steps: (a) detecting the set Jy of signals using the
current atom pair; (b) updating w; and d; using (7.11); and (c) recomputing
the threshold by solving (7.13). The algorithm processes the dictionary atoms
in sequence, and thus benefits from having the updated atoms and error matrix
available for the subsequent updates. The full training process is detailed in Algo-
rithm 7.3. Note that the algorithm assumes some initial choice for €2y, Dy and \,.
In practice, our implementation only requires an initial 2y; for Dy we initialize
Dy = X(Q20Y)", and for Ag we begin with an arbitrary choice Ag = (5\, . 5\)
where A is the median of the coefficients in [QY]. We then run one sweep of
Algorithm 7.2 over all threshold values to adapt them to the initial dictionaries.
As previously mentioned, the proposed atom update process is subject to the

condition that Jy have some minimal size. In practice, we set this minimum size
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Algorithm 7.2 THRESHOLDING — THRESHOLD UPDATE

1: Input: Matrices E, Y € RV*E atoms d, w € RV

2: Output: Solution to Argm}%n |E —dS\(wlY)|%

3: Preprocess: Sort the columns of E and Y in increasing order of |w!'Y]

4: procedure:

5: Vi: o= ||e1||%

6: Vi: Bi:=]le; — dwTyng
7 81 1= Zf{;l Bi
8 fork=1...Rdo

9: Skt1 1= Sk + o — B

10: end for

11: k= Argmkin Sk

12: A=

13: end

0

(wypl+1

(Iwlyi |+ whyil)/2

k=1
k=R+1
otherwise

to a liberal 5% of the examples, which is satisfied in most cases. When this is not
satisfied, however, we use a default procedure which discards the current atom
pair, and applies steps (b) and (c) above with Jy being the entire set of signals.
This heuristic process replaces the atom pair with a new pair, which is typically
used by more examples. A complementing approach, which we do not currently
employ but is also potentially useful, is to allow a few atoms with a smaller number

of associated examples to prevail, and optimize these using the constrained QP

process described in the Appendix.
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Algorithm 7.3 THRESHOLDING DICTIONARY TRAINING

1: Input: Training signals X € RM*® degraded signals Y € RY*® initial dictionaries

Qo € REXN Dy € RM*L initial thresholds Mg, number of iterations k

2: Output: Dictionary pair €2, D and threshold vector A minimizing (7.6)
3: Init: Set Q2 :=Qy, D :=Dg, A =X
4: forn=1...k do

5. forj=1...Ldo
6: J:={ie{l...R}| |wly;| > A}

T Ej = X—Z,ﬁéj dkS)\k(WzY)

8: {d;,w;} = Argrgi‘lil HE}I —dwlY7||Z st |wlla =1 (Algorithm 7.1)
9: Aj = Argm}%n |E; — djSA(W]TY)H% (Algorithm 7.2)

10: Qj-th row} :==w

11: D{j-th col} :=d;

12: A{j-th elem} = \;
13: end for

14: end for

7.4 Empirical Evaluation and Discussion

7.4.1 Experiment Setup

To evaluate the performance of the proposed formulation, we employed the de-
scribed training process for image deblurring. Our training set consists of eight
natural images taken from the CVG-Granada [185] data set. Four of these images
are shown in Fig. 7.2. Each of the training images was blurred and subjected to
additive white Gaussian noise, to produce eight pairs of origin and degraded input
images. We then extracted from each pair 40,000 random training blocks along
with their degraded versions, for a total of 320,000 example pairs. We subtract

the mean from each example to obtain the final training set.
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The initial dictionary €2 for the training is the overcomplete DCT dictionary,
and training is performed for 20 iterations. An example result of the training
process is shown in Fig. 7.3. The top row shows the trained €2 (left) and D (right).
The bottom-left figure shows the absolute values of the coefficients in D2, and
as can be seen, the matrix D2 exhibits a diagonal structure as expected from an
operator for recovery of a localized convolution process. Finally, the bottom-right
figure depicts the error evolution during the algorithm iterations.

For the deblurring process, we begin by extracting all overlapping blocks from
the degraded image, and subtracting their mean. We then apply the learned
thresholding process to the mean-subtracted blocks. Finally, the block means
are restored, and we compute the deblurred result by averaging the overlapping
recovered blocks. We evaluate our method on seven standard test images, all of
which are not included in the training set: Barbara, Cameraman, Chemical Plant,

House, Lena, Peppers and Man.

7.4.2 Results

Results of our deblurring process for two different blurring kernels are shown in
Figs. 7.4 and 7.5. The two cases are taken from the work [186], whose inputs
are made available online [187|. The figures compare our results with those of
ForWaRD [188], LPA-ICI [189] and AKTV [186], the latter considered the current
state-of-the-art in deblurring. The first case (Fig. 7.4) represents strong noise and
small blur, and the second case (Fig. 7.5) represents moderate noise and moderate
blur. In the current work we limit ourselves to handling small to moderate blur
kernels, as large kernels would require much larger block sizes which are impractical
in the current formulation. We thus do not replicate the two other cases considered
in [186], which employ very large blur kernels. We note that large blur kernels
could possibly be handled by our framework via downsampling of the input images,

though we do not pursue this option here.
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Figure 7.3: Results of the hard thresholding training algorithm for image deblurring. Top
left: trained €. Top right: trained D. Bottom left: absolute value of the coefficients in DS2.
Bottom right: Error evolution during the algorithm iterations (y-axis is the average RMSE of
the recovered patches). Training was performed for 20 iterations, using 320,000 training signals.
Omega is of size 256 x 100. Blurring kernel is a 5 x 5 Gaussian with standard deviation 1.5,

Gaussian noise has standard deviation 8.25.
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As can be seen, our results in both cases surpass ForWaRD and LPA-ICI in
raw RMSE by a small margin, loosing only to the AKTV. Visually, our result in
Fig. 7.4 maintains more of the noise than the other methods, though subjectively
it also appears less "processed”, and we note that lines and curves, for instance,
appear straighter and less "jaggy”. Continuing with Fig. 7.5, our result in this case
seems more visually pleasing than that of ForWaRD and LPA-ICI, and reproduces
more fine details (see for instance the field area at the top right). Compared to the
AKTV, our result maintains slightly more noise, though it also avoids introducing
the artificial smear and "brush stroke” effects characteristic of the AKTV, and

likely associated with its steering regularization kernel.

7.4.3 Discussion

Compared to the other methods, our deblurring process is very simple and efficient,
and involves no parameter tuning. In these respects, the ForWaRD algorithm
is the most comparable to our system as it is fast and its parameters can be
automatically tuned, as described in [188]. The ForWaRD algorithm is also the
most similar to our work as it is based on a scaling (shrinkage) process of the
image coefficients in the Fourier and wavelet domains. The LPA-ICI and AKTV,
on the other hand, both involve parameters which must be manually tuned to
optimize performance. Also, while the LPA-ICI is relative fast, the AKTV in
particular is extremely computationally intensive, requiring e.g., in the case shown
in Fig. 7.4, at least 12 minutes to achieve a reasonable result, and nearly an hour
to reproduce the final result shown in the figure. In comparison, our method on
the same hardware completed in just 8 seconds, due to the diversion of most of
the computational burden to the offline training phase. Furthermore, our recovery
method is highly parallelizable, and can likely be optimized to achieve real-time
performance.

Another notable difference between our method and the others is its "model-
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less” nature, as previously mentioned. Indeed, all three methods (the ForWaRD,
LPA-ICI and AKTYV) assume accurate knowledge of the blurring kernel, which is
typical of deconvolution frameworks. Our method is fundamentally different, as
it replaces this assumption with a very different one — the availability of a set
of training images undergoing the same degradation, which implicitly represent
the convolution kernel. In practice, the difference between these two modeling
paradigms may not be as large as it seems, as in both cases, a real-world application
would require either a prior calibration process or an online degradation estimation
method. However, in some cases, acquiring a training set for our method may be a
simpler and more robust process (e.g., using a pair of low quality and high quality
equipment) than a precise measurement of the point spread function.

Finally, our method is inherently indifferent to boundary issues, which plague
some deconvolution methods. Our deconvolution process can be applied with no
modification to images undergoing non-circular convolution, and will produce no
visible artifacts near the image borders. Of the three methods we compare to,
only the AKTV provides a similar level of immunity to boundary conditions.

Full deblurring results for the seven standard test images are summarized in
Table 7.1. We compare our results to those of the ForWaRD algorithm, which we
choose due to its combination of efficiency, lack of manual parameter tuning, and
relation to our method. The thresholding results in these tables were produces
using the same trained dictionaries used to produce the results in Figs. 7.4 and 7.5.

The ForWaRD results were generated using the Matlab package available at [190].

7.5 Summary and Conclusions

This work has presented a novel technique for training the analysis and synthesis
dictionaries of a thresholding-based image recovery process. Our method assumes
a hard-thresholding operator, which leads to /°-sparse representations. We exploit

this exact sparsity to design a simple training algorithm based on a sequence of
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Image Degraded | Thresh. | ForWaRD Image Degraded | Thresh. | ForWaRD
Barbara 17.64 15.44 15.84 Barbara 16.57 14.72 14.81
Camera. 17.36 13.28 13.46 Camera. 17.78 11.99 11.82
Chem.Plant 14.45 10.51 11.48 Chem.Plant 15.09 8.78 8.58
House 8.76 3.93 5.03 House 4.94 2.43 2.50
Lena 10.78 6.69 7.44 Lena 8.92 5.45 5.54
Peppers 10.81 6.90 7.33 Peppers 8.60 5.94 6.06
Man 12.34 8.89 9.54 Man 11.12 7.67 7.73

Table 7.1: Deblurring results for seven standard test images, using the degradation and dictio-

nary parameters from Figs. 7.4 (left) and 7.5 (right). All values in the tables represent RMSE.

rank-one approximations, in the spirit of the K-SVD algorithm.

The training process simultaneously learns the dictionaries and the threshold
values, making the resulting recovery process simple, efficient, and parameterless.
Thresholding-based recovery is also naturally parallelizable, enabling for substan-
tial acceleration. The proposed thresholding technique was applied to small-kernel
image deblurring, where it was found to match or surpass leading dedicated de-
convolution methods, and loose only to the highly computationally demanding
AKTV. Also, our recovery process is stable under boundary condition changes,
which some deconvolution methods are sensitive to.

A unique characteristic of our framework is its example-based approach to the
degradation modeling process. Whereas most deconvolution and regularized in-
version processes assume explicit knowledge of the signal degradation, our method
assumes no prior knowledge of this process, and implicitly learns it from pairs of
examples. Our approach can thus be applied in cases where an exact model of
the degradation is unavailable, but a limited training set can be produced in a

controlled environment.
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7.6 Future Directions

Our work gives rise to several possible improvements and future research direc-
tions. First, the block-based nature of the recovery process imposes a limit on the
size of the convolution kernels which can be handled, a limitation which could be
approached by incorporating downscaling and upscaling operations within the re-
covery scheme. Alternatively, larger dictionaries could be trained using structured
dictionary models such as the sparse dictionary [33].

To handle images of arbitrary size, our method employs block-processing fol-
lowed by an averaging step. A possible technique to improve recovery quality
is therefore to incorporate knowledge of the block averaging step in the training
process, as suggested in [178]. Such a modification adds significant complexity to
the training phase, but no additional complexity to the recovery process. Indeed,
in [178] this approach is found to provide an additional gain in quality compared
to the simpler approach.

Other straightforward extensions include training spatially-dependent dictio-
naries to handle non-translation-invariant degradations of a fixed pattern, and
training single dictionary pairs for multiple noise levels. Multi-scale thresholding
is also an attractive option which could improve performance as well as assist
in handling wider-supported degradations. Multi-scale processing could be imple-
mented e.g., using variable-sized blocks, by thresholding in a multi-scale transform
domain, or by training dictionaries with a multi-scale structure.

Finally, extending the process to more general thresholding operators remains
an open question, with the potential of dramatically improving results. Specifically,
developing a unified framework which would perform both dictionary training and

threshold operator adaptation is an exciting possibility with far-reaching potential.
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7.A  Quadratic Programming Atom Update

In this appendix we describe the formulation of the atom update process (7.8) as
a constrained Quadratic Programming (QP) problem. We begin with the update
task
{d;, w; \;} = Argmin |[E; - d;5), (WwI'Y)||3 Subject To |[|w;lla =1,
§WiiAj

and take a block-coordinate-relaxation approach in which d; is updated indepen-
dently of w; and A;. In this scheme, updating d; is a simple least-squares task
given by

d; = E;v;/(vj ;) (7.14)
with v, = Sy, (Y w;).

Moving to the update of w; and A;, in the QP approach we constrain the
update such that it maintains the partitioning of the training signals about the
threshold. Thus, we split Y to the signals Y7 that survive the current threshold
and the remaining signals Yj, and similarly split E; to E;f and E]j, obtaining:

(90} = Argmin [B) - dsw! Y+ [E]
Subject To |wjy;| > X\; VieJ (7.15)
why,| <X Vield
[willa =1
The constraints ensure that the signal partitioning is maintained by the update
process. Note that due to the constraining, J is constant in the optimization.

To bring the problem to QP form, we recall that the norm constraint on w;
is an arbitrary normalization choice which we can replace, e.g., with a fixed value
for A;. Thus, we choose to lift the norm constraint on w; and instead fix the
threshold A; at its current value. Indeed, the outcome of this optimization can
be subsequently re-scaled to satisfy the original unit-norm constraint. Adding the

fact that E]j is fixed in the above optimization (as J is fixed), the update task can
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be written as:
W, = Argmin [|E] - d;wiY7|;
Subject To |w]y;| > )\; VieJ
why,| <X Viel
This formulation does not yet constitute a QP problem, as the first set of
constraints is clearly non-convex. To remedy this, we must add the requirement
that the coefficients W]Tyi do not change sign during the update process, for the
signals in the set J. In other words, we require that w; does not "change sides”
relative to the signals in Y7. While this choice adds further constraining to the
problem, in practice many local optimization techniques would be oblivious to
the discontinuous optimization regions anyway, and we thus accept the added
constraints in return for a manageable optimization task. Of course, an important
point about this specific choice of constraints is that it necessarily leads to a non-
empty feasible region, with the current w; constituting a good starting point for
the optimization.
With the updated set of constraints, the optimization domain becomes convex,
and the problem can be formulated as a true QP problem. To express the new
constraints, we denote by o; = sign(WJTyi) the signs of the inner products of the

signals with the current atom. We can now write the update process for w; as:

w; = Argmin ||E3] — djW]TYJH%J
Wi
Subject To  o;w]y; > \; VieY; - (7.16)
—\ <wly, <X VieY;
This problem is a standard QP optimization task, and can be solved using a variety
of techniques. Once w; is computed according to (7.16), we restore the original
constraint on w; by normalizing {w;, \;} — {o;w;,o;\;} with a; = 1/[|w;||2,

and compute d; using (7.14), which concludes the process.
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7.B  Rank-One Approximation Solution

In this appendix we consider the solution to the problem
Argmin ||E — dw’Y||%2 Subject To [w|.=1, (7.17)

where E, Y € RY*% and are assumed to be full-rank. To derive the solution, we

first assume that YY? =1 (i.e,, Y' is a tight frame). In this case we have':

|IE—dw’Y|? = tr{E'"E-2E"dw’Y + Y'wd"dw’ Y}
= tr{E"E - 2YE"dw’ + YY 'wd"dw"}
= tr{E"E - 2YE"dw" + wd"dw’ + YE'EY" - YE'EY"}
= tr{E'E-YE'EY"} + tr {YE'EY" — 2YE"dw" + wd"dw" }

= tt{E"E-YE'EY"} + |[EY" —dw"|} .

Since the left term is constant in the optimization, we find that when Y7 is a tight

frame, (7.17) is equivalent to:
Argrcrllin IEYT —dw”||2 Subject To |w|>=1. (7.18)

This is a standard rank-one approximation of EY?, and its solution is given by
the singular vector pair corresponding to the largest singular value of EY™.

For a general full-tank Y, we use the SVD of Y, and write Y = USV’.
We denote the singular values on the diagonal of S by s;...sy, and let A =

diag(s;', ..., sy ). We note that the matrix
Y = AUTY = ASV” = I,z V"

satisfies ?\?T =1, and thus \?T is a tight frame.

Returning to problem (7.17), we can now write

[E—dw'Y|3 = |E - dw"(AU")'AUTY( = [E-dw"UA'Y3

1For simplicity of presentation, we slightly abuse notation by allowing differently-sized matrices to

be summed within the trace operator. These should be interpreted summing the matrix traces.
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which leads to the optimization task:
Argmin |E dw’UA'Y3% . (7.19)

Since Y is a tight frame, (7.19) can be solved for d and W’ := w/UA™*

T is computed, the computation is completed by setting

using (7.18). Omnce w
w! = wI AU and renormalizing the obtained d and w such that |[w|, = 1.

The resulting procedure is summarized in Algorithm 7.1.
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(b) Blurry and noisy (c) ForWaRD

(d) LPA-ICI (e) AKTV (f) Thresholding

Figure 7.4: Deblurring results for Lena. Blurring kernel is a 5 x 5 Gaussian with standard
deviation 1.5, additive noise is white Gaussian with standard deviation 8.25 (BSNR=15dB).
RMSE values are 10.78 (blurry), 7.55 (ForWaRD), 6.76 (LPA-ICI), 6.12 (AKTV) and 6.69

(Thresholding). Thresholding parameters: block size is 10 x 10, dictionary size is 256 x 100.
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(b) Blurry and noisy

(d) LPA-ICI (e) AKTV (f) Thresholding

Figure 7.5: Deblurring results for Chemical Plant. Blurring kernel is an 11 x 11 Gaussian
with standard deviation 1.75, additive noise is white Gaussian with standard deviation 1.15
(BSNR=30dB). RMSE values are 15.09 (blurry), 8.98 (ForWaRD), 8.98 (LPA-ICI), 8.57 (AKTV)
and 8.78 (Thresholding). Thresholding parameters: block size is 12 x 12, dictionary size is
576 x 144.
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Chapter 8

Discussion and Conclusions

Dictionary-based signal modeling is a powerful and widely successful approach for
describing natural signal phenomena. The modeling approach is based on profound
notions of simplicity and conciseness, and has deep connections with fundamental
concepts such as dimensionality reduction and minimal description length. The
idea of describing signals through a dictionary of elementary atoms, controlled
by sparsity forces, has had a profound impact on the research community, with

applications spanning a wide scope of fields and tasks.

Analysis and synthesis models. The two main incarnations of the dictionary-
based models are the analysis and synthesis models, which seek sparsity in either
the decomposition or reconstruction of a signal over the set of atoms, respec-
tively. As we have seen in this work, these two complementary approaches are
not equivalent once overcomplete dictionaries are involved. Through a geomet-
rical description, we have characterized a large set of signals for which the two
are bound to differ, which we named MAP principal signals. Specifically of in-
terest were the analysis principal signals, which are orthogonal to many rows in
the analysis dictionary, and are treated most effectively by this model. The plen-
titude of these signals, however — exponential in the dictionary size — indicates

that no similarly-sized synthesis model could effectively treat all these signals at
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once. Thus, an unavoidable gap is revealed between the two modeling approaches.
Simulation results, depicted in Figs. 2.2-2.4, demonstrate the extent of this gap.

Reviewing our results for the analysis-synthesis gap, we note that they have a
clear worst-case nature, focusing on the signals for which the two models differ the
most. Indeed, tighter relations could be discovered for less sparse, non-principal
signals. However, the realization of this fundamental gap between the two formula-
tions opens the door to new research opportunities focused on the analysis model.
Combined with additional indications of the potential of this model, such as those
provided in Fig. 2.5, the formalization of this gap revives interest in the analysis
model, which has been overshadowed in the past decade by the widespread suc-
cess of the synthesis approach. With new tools acquired from the vast literature
on synthesis models, new works on the analysis model are beginning to emerge,
among which are two chapters in this thesis. As the interest in analysis models
continues to grow, we expect additional works to gradually appear and explore

the full potential of this exciting new field.

Dictionary design and parametric dictionaries. Applying a dictionary-based
model in practice requires the selection of a concrete dictionary which describes
the signals of interest. This choice is clearly critical to the performance of the
dictionary-based approach, as its name so distinctly suggests. In this thesis we
have given much attention to the selection of the dictionary. We have outlined
the main ingredients in designing effective dictionaries — namely localization,
geometric invariance, and adaptivity — and discussed the two main dictionary
design paths — the analytic and the learning paths.

Many analytic dictionaries have been proposed over the years. Among the most
notable are the Fourier, wavelet, and curvelet dictionaries (Figs. 3.1, 3.3, 3.4).
Such dictionaries are designed around a specific well-understood family of signals
(e.g., smooth, piecewise-smooth, or multi-dimensional piecewise-smooth, respec-

tively), and deliver optimality for this simplified signal class. Analytic dictionaries
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typically provide good localization and geometric invariance, and are efficient and
well-structured. On the other hand, such dictionaries lack one key property —
adaptivity — due to the generic mathematical assumptions made in the design pro-
cess. Adaptivity is the essence of learned dictionaries, which aim to capture more
subtle signal behaviors through the example-based training process. Notable con-
tributions in this area include the PCA, MOD, and K-SVD, as well as Olshausen
and Field’s experiments (Figs. 3.1, 3.2, 3.7). Learned dictionaries typically lack
explicit structure and are less efficient than analytic dictionaries, however, the
finer adaptation to the signal data leads to superior results in many applications.

A key conclusion from this discussion was the identification of a rising need
for new dictionary structures which could merge the advantages of the two design
paradigms. This need is most adequately addressed by parametric dictionaries,
which are dictionaries described by a relatively small, well-defined set of values.
Such dictionaries have the potential of combining structure, efficiency, and ge-
ometric invariances with adaptivity provided by the parameter tuning. Several
such dictionaries have been recently proposed, among which we note the union-of-
orthobases, semi-multiscale, and image-signature dictionaries (Eqgs. (4.2) and (4.3),
and Fig. 3.7, respectively). We expect such approaches to draw increasing atten-
tion in the coming years, with new dictionary designs providing a variety of blends

of structure and adaptivity.

Sparse dictionaries. Specific efforts in the direction of parametric dictionary de-
sign have led to the development of the sparse dictionary model, proposed in this
thesis as a particular flexible, adaptive and efficient dictionary structure for sparse
signal representation (Eq. (4.4)). Underlying this model is the idea of a global set
of sub-atomic signals whose combinations explain the formation of all observable
dictionary atoms, using the same sparsity rules as those governing signal cre-
ation. The sparse dictionary combines efficiency and compact structure with a

high degree of adaptivity, and, by supporting a variable number of parameters,
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provides a nearly smooth transition from analytic to fully-trained dictionaries. An
added benefit of this structure, which was illustrated in Fig. 4.5, is its improved
generalization ability in the presence of few and noisy examples. This property
can become critical when handling large and high-dimensional signal data, where
substantial training sets are infeasible.

The sparse dictionary structure was tested with 3-D computed tomography
data, where it was found to provide equivalent or superior denoising results — at
substantially shorter run-times — compared to a non-structured trained dictio-
nary (Tables 4.1 and 4.2). Indeed, the sparse structure is particularly useful for
such multi-dimensional data, where a fully unconstrained dictionary requires an
impractical number of examples for effective training. Thus, much of the success
of the sparse dictionary in this case can be associated with its improved general-
ization ability, due to the small and noisy nature of the training set.

A second application of the sparse dictionary was presented in Chapter 5,
where the compact representation of the dictionary was exploited to design a novel
adaptive image compression scheme. The uniqueness of the proposed system is
in the replacement of the fixed dictionary, commonly used in transform-based
compression schemes, with an online-learned, input-adaptive trained dictionary,
sent as part of the compressed data. Such set-ups, to the best of the authors’
knowledge, have so far been regarded as impractical due to the cost of transmitting
the dictionary. Our system was shown to provide a consistent gain over JPEG
compression, though below JPEG2000 performance (Fig. 5.7). While indeed below
state-of-the-art, the described system remains significant in that it demonstrates
the feasibility of the adaptive approach for generic image compression, positioning

it as a viable alternative to traditional fixed-dictionary schemes.

Analysis dictionary training. While dictionary training for synthesis-based mod-
els has received thorough attention in the literature, the quest for a dictionary

specific to analysis models is a recent and challenging undertaking. In this thesis,
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analysis dictionary training has been explored from two directions, correspond-
ing to two novel forms of the analysis model — the ¢° analysis model and the
analysis-synthesis thresholding model. The two models are of particular interest
as both employ exact sparsity measures parallel to the well-established ¢° synthesis
model, and thus allow harnessing similar methodology and approaches in the anal-
ysis setting. The results of these efforts demonstrate the potential and usefulness
of employing such modern algorithmic machinery in analysis-based frameworks,
motivating further research into this promising new direction.

The ¢° analysis model, which describes signals as orthogonal to sets atoms in
the analysis dictionary, has emerged as a natural outcome of the geometrical in-
terpretation of the ¢! analysis model. This interpretation has characterized the
analysis principal signals as having many vanishing inner-products with the dic-
tionary, meaning that they are ¢%-analysis sparse. This is parallel to the synthesis
model, where the principal signals of the ¢! formulation are ¢°-synthesis sparse.
This view has led to the development of an efficient K-SVD-like training method
for the /° analysis approach, which involves a minimum-singular-value task in place
of the maximum-singular-value one in the original K-SVD. The resulting Analy-
sis K-SVD algorithm was shown to recover underlying dictionaries from training
examples with high accuracy (Figs. 6.2 and 6.3). Additional experiments with
natural images have demonstrated the recovery of localized and oriented dictio-
nary atoms (Fig. 6.5), indicating the ability of the process to reveal fundamental
behaviors in the training data. Indeed, additional research is required to develop
applications for this new model, as well as more rigorous mathematical tools for
handling it. Nonetheless, the results presented here show the potential in the ¢°
analysis path, and are expected to raise interest in this new approach.

The analysis-synthesis thresholding model (Eq. (7.4)) was proposed in this the-
sis as an extension to the widely-popular hard thresholding denoising method

introduced nearly two decades ago. The process utilizes a pair of analysis and
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synthesis dictionaries, and can accommodate a variety of recovery tasks by lift-
ing the pseudo-inverse constraint between the two dictionaries. We presented a
training method for simultaneously learning both dictionaries for a specific inverse
problem from pairs of origin and degraded examples. In this way, the method sub-
stitutes the need for a precise degradation model with a training process which
concludes it from examples. The effectiveness of the process was demonstrated
for small-kernel image deblurring, where it was found to be competitive with re-
cent dedicated deconvolution methods (Table 7.1, Figs. 7.4 and 7.5). Compared
to alternative methods, the thresholding approach provides a particularly simple,
efficient, parameterless, and readily parallelizeable recovery process, and is inher-
ently stable to boundary conditions. Also, though our implementation assumes a
stationary process, the thresholding framework can equally support more complex
degradations by utilizing different dictionaries for different regions in the image
(though the spatial pattern of the degradation must be known). We thus find the
thresholding-based process to be a simple, flexible and effective option for inverse
problem solution. A variety of possible improvements, such as employing para-
metric dictionaries to handle larger image blocks, or simultaneous training of the
dictionaries and the shrinking functions, provide additional opportunities to en-
hance this process and expand its applicability, making it an appealing technique

for signal restoration and recovery.

Epilogue. This thesis has been but one step in a long journey of signal modeling
methodology and applications, dating back over half a decade. The two main
directions set by this work are the analysis modeling path, and the parametric
dictionary design path. As additional research accumulates, we expect both di-
rections to mature and become essential tools in signal modeling. Many future
directions and objectives have been mentioned throughout the text, and promise

new opportunities, challenges and successes in both fields.
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