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Abstract

Signal models are a cornerstone of contemporary signal and image processing

methodology. Of these models, analysis and synthesis sparse representation mod-

els have been particularly successful in a wide range of applications. Both models

take a decompositional approach, and describe signals in terms of an underly-

ing set, or dictionary, of elementary signals known as atoms. The analysis ap-

proach describes signals in terms of their inner products with the dictionary atoms,

whereas the synthesis model takes a reverse approach and describes signals as lin-

ear combinations of atoms. The driving force behind both models is sparsity — the

rapid decay of the representation coefficients over the dictionary. The two models

have been found effective in a wide array of signal and image processing tasks,

and lead to state-of-the-art results in applications such as denoising, demosaicing,

compression, inpainting, upscaling, compressive sensing, and more.

This thesis studies several aspects of the analysis and synthesis modeling

paradigms. We begin with the question of the relation between the two dictionary-

based models, which arises due to the mathematical resemblance between the two.

We show, through geometrical reasoning, that contrary to the mathematical sim-

ilarity, the two approaches are in fact generally distinct, with a significant gap

separating the two. The results of this study ignite a renewed interest in the

analysis formulation, and provide several insights about the model.

In the main part of the thesis we focus on the core component of these mod-

els — the dictionary. The dictionary represents the materialization of all our

1



Abstract

knowledge about the signal behavior, and its choice determines the success of the

entire model. We describe the two main disciplines of designing such dictionaries

— harmonic analysis and machine learning — and discuss the recent trend of con-

verging the two through parametric dictionaries. We develop a specific parametric

dictionary which we name the sparse dictionary, and which provides a simple and

expressive structure for designing adaptable and efficient dictionaries. Among the

applications of this new structure, we describe a complete system for compress-

ing generic images, which is unique in that it encodes each input image over a

specifically-trained dictionary, sent as part of the compressed stream.

In the last part of this thesis, we return to the analysis formulation and con-

sider the problem of dictionary training for analysis models. This is a relatively

recent field, motivated by the theoretical results mentioned above, as well as the

widespread success of parallel machinery for the synthesis model. We present two

approaches to the training problem. The first trains a dictionary for a new `0

analysis model, which is largely motivated by the geometrical understanding of

the analysis structure. The second method trains a pair of analysis and synthe-

sis dictionaries for thresholding-based image recovery, and provides a simple and

effective framework for developing image recovery processes. We find that the

analysis framework thus presents a promising new field, which is well-situated to

complement or compete with the synthesis approach.

2



List of Symbols

x Signal – a column vector over the real numbers

y Degraded signal

n Noise vector, typically Gaussian i.i.d.
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ai The i-th column of A (in the context of sparse dictionaries)
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γ Sparse representation vector
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Chapter 1

Introduction

1.1 Signal Models

Signal processing applications are typically concerned with only a specific subset

(or family) of signals Ω ⊂ RN which forms the informative content. Examples of

such families include natural images, facial images, fingerprints, audio recordings,

video clips, medical scans, geological readings, neurological signals, and financial

series, to name just a few. In practice, such a family will occupy only a small

volume within the signal domain RN . It is this scarcity of the interesting signals

which forms the core of all signal and image processing techniques, and is exploited

to guide recovery, enhancement, and representation of signal data.

Signal models are a fundamental tool for facilitating this distinctiveness of the

interesting signals. A signal model formulates a mathematical description of the

family of interesting signals, which allows to distinguish them from the rest of the

signal space. Indeed, due to the complexity of natural phenomena, these models

are bound to remain approximate, and are subject to constant refinement. The

aim of signal modeling research is to design increasingly accurate models, which

faithfully capture the behavior of real signal data.

Signal models can be expressed in a variety of mathematical forms. One of the

7



Chapter 1: Introduction

simplest and most common forms is as a penalty function

R(x) : RN → R+ , (1.1)

which assigns smaller penalties to signals more likely to belong to Ω. In statisti-

cal estimation theory, such a function is explained as coming from some a-priori

probability distribution assumed on the signal space,

P(x) =
1

Z
· e−R(x) , (1.2)

with the two related through elementary Bayesian estimation rules (see e.g., [1]

which is part of this thesis). While this probabilistic interpretation is useful when

employing statistical or information-theoretic signal processing methods, in this

work we do not assume such an association in general. Indeed, many signal models

in practical use cannot be directly related to a distribution of the form (1.2), as the

resulting P(x) may not be square integrable over RN . Thus, we prefer to identify

signal models with the definition (1.1), which allows more general constructions.

1.1.1 Applications of Signal Models

Signal models are used in a wide array of contexts. Information theory teaches

us that the existence of a prior P(x) of the form (1.2) implies the ability to

compress signals, with the average codeword length E{ ln(1/P(x)) } decreasing as

P approaches the ”true” data density P̂ . Lossy compression is achieved by mapping

the input signals of lower P(x) to higher probability ones. Similar techniques

are sometimes used with models that do not admit to form (1.2) — such as the

sparseland model [2] — when the model explicitly induces compact representations

of its preferred signals.

Inverse problem regularization is another important use of signal models. The

standard inverse problem describes the acquisition process of a measured signal

y ∈ RM by transforming and distorting some origin signal x ∈ RN ,

y = T x + n . (1.3)
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Here, T : RN → RM is a known (not necessarily linear) transform, and n ∈ RM

is the system noise. In this work we assume n to be white Gaussian i.i.d., though

generalizations to colored Gaussian noise and other noise models often exist. The

inverse problem formulation (1.3) describes a wide range of fundamental signal pro-

cessing tasks, such as deconvolution, demosaicing, interpolation, super-resolution,

source separation, compressive sensing, and tomography reconstruction, among

others. The special choice T = I represents the denoising problem, which is of

particular interest for analysis purposes.

Recovering x from y, even in the denoising case, is an impossible task with-

out further assumptions on x. The degradation operator T introduces further

complexity as it is typically lossy, making its direct inversion ill-posed and highly

unstable. The missing information is filled-in by the signal model, which is used to

guide the solver towards solutions closer to Ω. Specifically, by penalizing undesired

signals, the model R(x) gives rise to the estimation process

x̂ = Argmin
x′

1

2
‖y− T x′‖2

2 + λR(x′) , (1.4)

where λ > 0 is a regularization parameter balancing the fidelity and regularity

terms. Indeed, for a model related to a probability distribution of the form (1.2),

this formulation can be interpreted as a maximum-a-posterior (MAP) estimator

of x [1, 3, 4]. In general, though, this formulation can exist independently of such

an interpretation. As can be seen, R(x) in the above expresses all our knowledge

about the set Ω, and its accuracy directly determines the success of the process.

1.1.2 Sparsity-Based Models

A central notion in the design of signal models is sparsity. This notion has its roots

in fundamental scientific methodology (e.g., Occam’s razor), and is closely related

to concepts such as Minimum Description Length (MDL) [5] and Kolmogorov com-

plexity [6]. The idea is to model signals through a sparsifying transform x→ γ(x),

where γ(x) ∈ RL may have a different length than x (specifically, L ≥ N). For

9
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signals in Ω, the representation γ(x) is expected to be sparse, in the sense that its

sorted coefficients decay rapidly1. For signals not in Ω, the representation vectors

should become denser. Indeed, the ability to define such a transform depends

directly on the assumption that Ω has very small ”volume” within RN , as clearly

the set of sparse representations occupies a very small portion of RL. In practice,

signal models rarely fully achieve these stated goals, and classify some unwanted

signals as sparse, or misclassify some signals in Ω as dense; this is a main cause of

artifacts and loss of information in signal recovery and compression processes.

Given the transform γ(x), the sparsity of γ describes the estimated likeliness

of x belonging to Ω. Thus, a signal model R(x) can be derived from this transform

via a sparsity measure C(γ), which penalizes denser representations:

R(x) = C(γ(x)) . (1.5)

When C(γ) forms a norm, such as the `2 norm, the model aims to decrease the

overall length of γ(x), and thus penalizes mostly the large coefficients in γ, while

giving less attention to the smaller ones2. Alternatively, robust sparsity mea-

sures, which have gained substantial popularity in the past two decades, penalize

more the non-vanishing small coefficients, while tolerating a limited number of

large ones. Such measures are much better at capturing the rate of decay of a

vector, and are more useful for describing modern sparsifying transforms, which

are known to produce heavy-tailed coefficient distributions in natural signal data

(see [8–10], and references therein). Examples of robust functions include the

Huber, Cauchy, and Tukey functions, as well as the family of `p cost function

with 0 ≤ p ≤ 1 (see Table 1.1). The use of robust penalty functions has become

increasingly prominent in many areas of statistical estimation, machine learning,

and signal processing, including singular vector machines, principal component
1Formal measures of decay rates are established in the form of asymptotic decay bounds, but are

beyond the scope of this text. An excellent reference on this topic is Mallat’s book [7].
2Indeed the `1 norm is an exception, as it equally penalizes all magnitudes of coefficients. As such,

it establishes the boundary between robust and non-robust sparsity measures.
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`p ρ(x) = |x|p

Huber ρ(x) =

 x2/2 |x| ≤ c

c(|x| − c/2) |x| ≥ c

Cauchy ρ(x) = log(1 + (x/c)2)

Tukey ρ(x) =

 1− (1− (x/c)2)3 |x| ≤ c

1 |x| ≥ c

Table 1.1: Some robust penalty functions. For all cases, C(γ) =
∑

i ρ(γi).

analysis, regression, clustering, and more.

1.2 Signal Modeling Using Dictionaries

With these definitions, it is clear that the careful design of the sparsifying trans-

form is critical for the success of the model. So, how does one go about constructing

a sparsifying transform? Well, a good starting point is linear operators. This ap-

proach naturally leads to the concept of a dictionary [11–13], which is the name

given to the set of vectors, or atoms, describing the operator.

The dictionary is arranged as a matrix, with the atoms constituting its columns

or rows. In this work we use the notations D = [a1 a2 . . . aL] ∈ RN×L and

Ω = [a1 a2 . . . aL]T ∈ RL×N , respectively, to distinguish the two options. When

the dictionary forms a basis, it is said to be complete. In this case every sig-

nal has a unique representation as a linear combination of the dictionary atoms,

x = Dγ, with the linear coefficients given by γ(x) = D−1x. The representation

γ(x) can be equivalently viewed as coming from the inner products of x and the

atoms of Ω = D−1, known as the bi-orthogonal dictionary. Some of the most

well-known transforms constitute complete dictionaries, including the Fourier and

DCT transforms, which sparsify uniformly smooth signals, as well as the wavelet
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transform, which sparsifies piecewise-smooth 1-D signals with a finite number of

discontinuities [7].

1.2.1 Overcomplete Dictionaries: Analysis and Synthesis Models

Invertible dictionaries, though mathematically appealing, impose a strict limit

(L = N) on the number of atoms in the dictionary. Consequently, complete dic-

tionaries are limited in their ability to represent diverse natural signal behavior.

Lifting this constraint, by allowing L ≥ N , leads to more general overcomplete

dictionary constructions, which are more descriptive than invertible dictionaries.

Over the past two decades, much research has been invested in developing such dic-

tionaries, which can increase sparsity as well as provide desirable properties such

as translation and rotation invariance. Overcomplete dictionaries such as steer-

able pyramids [14], complex wavelets [15], curvelets [16, 17], contourlets [18, 19],

surfacelets [20] and shearlets [21], as well as a wide range of trained dictionar-

ies [22–35] are especially advantageous for multi-dimensional signal data, where

invertible dictionaries lose much of their effectiveness.

In the overcomplete case, dualities of the form x = Dγ ⇔ γ = Ωx can

no longer hold. Thus, compared to the complete case, representation with over-

complete dictionaries must be more carefully defined. Indeed, the two equivalent

views of the transform in the invertible case lead to two distinct representation

paths in the overcomplete case: the analysis path, where a signal x is represented

via its inner products with the dictionary atoms,

γa = Ωx , (1.6)

and the synthesis path, where the signal is represented as a linear combination of

the atoms,

x = Dγs . (1.7)

In the synthesis case, further refinement is necessary due to the null space of

D, which leads to a non-unique choice of γs in (1.7). In order to obtain a well-
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defined representation γs(x) for use in (1.5), one simple approach is to utilize the

Moore-Penrose pseudo-inverse dictionary Ω = D+, and select γs = Ωx. This

choice essentially reduces the model to an analysis one, and is mostly used when

D forms a tight frame, in which case Ω = DT is easy to compute.

Another strategy, leading to a non-linear representation, is to choose γs as the

sparsest possible representation based on the sparsity measure C(γ):

γs = Argmin
γ

C(γ) Subject To x = Dγ . (1.8)

This approach assigns to each signal its highest possible likelihood according to

the model, and requires more advanced machinery, developed mostly in the past

fifteen or so years [7, 36]. Of specific interest is the `0 case, where C(γ) = ‖γ‖0

counts the number of non-zeros in the representation. For this case, problem (1.8)

becomes the combinatorial sparse coding problem,

γs = Argmin
γ
‖γ‖0 Subject To x = Dγ , (1.9)

which aims to represent x using the smallest number of atoms possible. This

problem, known to be NP-hard in general [37], can be efficiently approximated

using a wide array of algorithms, including greedy pursuits [37–41], convex relax-

ation [12, 42], iterative shrinkage [43–45], and others [46–48].

Another compelling choice for C(·) is the `1 norm C(γ) = ‖γ‖1, which provides

a powerful combination of robustness and convexity. The `1 option is also touted

as a stable approximation of the `0 choice [42, 49, 50]. The resulting problem is

given by

γs = Argmin
γ
‖γ‖1 Subject To x = Dγ . (1.10)

This formulation forms a convex Linear Programming (LP) problem, for which

a variety of solvers are available. An interesting property of this formulation,

derived from the behavior of LP problems, is that it naturally leads to a solution

γs supported over a basis of Rn within D [12], and thus, this approach is named

Basis Pursuit (BP).
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It is worth mentioning that as an alternative to a unique representation, a

stochastic approach which considers multiple solutions to (1.7) has also been

recently proposed [51]. This approach constructs a representation γ̃s which is

the weighted average of several individual sparse solutions, and converges to the

MMSE estimator given a noisy signal. Indeed, research in this direction is still

ongoing, and is beyond the scope of this work.

1.2.2 Inverse Problem Solution Using Analysis and Synthesis Models

Dictionary-based signal models form powerful regularizers for inverse problem so-

lution. Plugging the analysis transform in (1.4) leads to the analysis-based recov-

ery process

x̂ = Argmin
x′

1

2
‖y− T x′‖2

2 + λC(Ωx′) . (1.11)

For the proper choice of C(·), this problem is convex and can be solved with stan-

dard algorithms. Of specific interest is the choice C(γ) = ‖γ‖1, as it represents the

slowest growing (and hence, in a sense, the ”most robust”) convex option. For the `1

case, (1.11) becomes a Quadratic Programming (QP) problem, which is efficiently

solved by interior-point methods. Algorithms based on Iterated Re-weighted Least

Squares (IRLS) can also be used [52]. For specific cases, more efficient solvers exist

as well [53, 54]. The analysis approach has been employed in a variety of image

processing tasks, including denoising [4, 55–58], image scaling [59], tomography

reconstruction [60], super-resolution [61, 62], demosaicing [62], inpainting [58], and

compressed sensing [63], to name a few.

For the synthesis case, the parallel formulation leads to an optimization prob-

lem on the sparse representation γs:

x̂ = D · Argmin
γs

1

2
‖y− TDγs‖2

2 + λC(γs) . (1.12)

Similar to the representation problem (1.8), common choices for C(·) include the

`0 and `1 penalty functions, among others (Table 1.1). For linear T , the `0 case
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is typically solved using suitable variants of the sparse coding algorithms men-

tioned above. In the `1 case, problem (1.12) becomes a QP problem with effi-

cient solvers. Alternatively, more specialized algorithms include FOCUSS [46],

feature-sign search [30], and iterative thresholding methods [43–45]. The synthe-

sis formulation has been successfully applied in a wide range of inverse problems,

including image denoising [2, 31, 33, 64, 65], video denoising [31, 66], demosaic-

ing [64, 65], inpainting [64, 67], image upscaling [68, 69], source separation [70–72],

music transcription [72, 73], and tomography reconstruction [74, 75], to name just

a few.

A hybrid approach, known as thresholding (or shrinking), is also in frequent

use. This method, originally introduced in [76] for wavelet dictionaries, is typi-

cally employed for denoising, and arises as the analytic solution to (1.11) for an

orthogonal dictionary Ω and a separable penalty function C(γ) =
∑

i ρ(γi). For

this case, it can be shown [44] that the solution to

x̂ = Argmin
x′

1

2
‖y− x′‖2

2 + λC(Ωx′) (1.13)

is given by

x̂ = Ω−1Sλ(Ωy) , (1.14)

where Sλ is an element-wise attenuation (or shrinking) of the coefficients in Ωy,

dependent on the magnitude of λ. As overcomplete and non-orthogonal dictio-

naries evolved, this method was burrowed for these cases as well, replacing Ω−1

in (1.14) with Ω+ (see e.g., [77–80]). In the overcomplete case, we can view this

as a sparse approximation process over the dictionary D = Ω+, computed from

the analysis coefficients Ωy. In this sense, the process forms a type of hybrid

analysis-synthesis approach. Formally, this process was later justified as consti-

tuting the first iteration of an iterative shrinkage method, which is known to solve

the synthesis denoising problem [44, 81].
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1.3 Dictionary Choice

The discussion so far has assumed that the dictionaries of the analysis and syn-

thesis models are known. In practice, these dictionaries form the core component

of these models, and embody all our knowledge of the signal domain Ω. Thus,

choosing the dictionary carefully is an important and involving task, in which

substantial research has been invested.

The scientific community has developed two main routes for designing dic-

tionaries for signal modeling. The first is the analytic route, which derives the

dictionary from a set of mathematical assumptions made on the signal family.

This approach approximates the signals of interest as coming from simpler classes

of mathematical functions, and designs efficient (and typically provably optimal)

dictionaries for these simplified classes. The second route is the learning route,

which infers the dictionary from signal realizations via machine-learning tech-

niques. This approach replaces prior assumptions on the signal behavior with

a training process which constructs the dictionary based on the observed signal

properties. In [13], which is part of this thesis, we discuss these two options in

detail, and highlight the advantages of each.

As outlined in [13], some of the most important elements of effective dictio-

nary design include localization, geometric invariance, and adaptivity. Modern

dictionaries typically provide localization in both the analytic and training routes.

However, geometric invariance is usually better supported by analytic structures,

whereas adaptivity is mostly found in training methods. Additional advantages of

analytic dictionaries include algorithmic efficiency as well as compact representa-

tion. The main advantage of trained dictionaries is their ability to provide a much

higher degree of specificity to the particular signal properties, allowing them to

produce better results in many practical applications.

Most recently, attempts to combine the two approaches have led to the devel-

opment of several parametric dictionary structures. These dictionary structures
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are controlled by a predefined set of tunable parameters, and by balancing struc-

ture and parameter count, can achieve a spectrum of complexities, invariances,

and adaptivity levels. Examples of parametric dictionaries include the union-of-

orthobases dictionary [27], the Generalized PCA [82], the semi-multiscale dictio-

nary [31], the translation-invariant ILS-DLA [29], the signature dictionary [32],

the hybrid Wavelet/K-SVD dictionary [35], and the sparse dictionary [33] which

is part of this thesis.

1.4 Thesis Overview and Main Contributions

This thesis studies several theoretical and practical aspects of dictionary-based

signal modeling. The theoretical aspects include dictionary design methodology

and the analysis-synthesis relationship. The practical aspects include the sparse

dictionary structure as well as algorithms for analysis and thresholding dictionary

training.

1.4.1 Thesis Outline

The thesis consists of four papers and two chapters. We begin with [1], presenting

the analysis and synthesis signal models and exploring their relationship in detail.

We continue with [13], by considering the core component of these two models

— the dictionary, and highlighting the main paradigms and concepts guiding the

design of effective dictionaries. We describe the two fundamental paths — ana-

lytic and learning — used to design dictionaries, and discuss the emerging trend

of fusing the two paths through parametric structures. In [33] we present a spe-

cific flexible parametric dictionary structure which we name the sparse dictionary

structure, and discuss its benefits. A particular application of the proposed struc-

ture is discussed in [83], where a generic image compression scheme is developed

and implemented, based entirely on adaptive dictionaries.

The two additional chapters in this thesis document our recent work on analysis
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dictionary learning. In Chapter 6 we introduce the `0 analysis model, inspired by

the work in [1], and describe a training algorithm for this model which we name

Analysis K-SVD. In Chapter 7 we focus on the thresholding framework (1.14),

which we generalize to arbitrary recovery tasks, and develop a ”model-less” dictio-

nary training algorithm in which examples of origin and degraded signals replace

the need for explicit knowledge of the degradation process.

In the following we review the main contributions of this thesis in more detail.

1.4.2 Analysis and Synthesis Relationship

The analysis and synthesis models described in Section 1.2.1 share a common

conceptual foundation of sparsifying signal coefficients over a dictionary. The two

approaches become equivalent in the invertible case, and have similar formulations

in the overcomplete case. These observations have led to the conjecture that the

two are closely related, see e.g. [84].

Mathematically, the gap between the two can be formulated as follows. Begin-

ning with the analysis formulation (1.11), we define

γa = Ωx′ ,

which implies, under a full-rank assumption on Ω,

x′ = Ω+γa .

Substituting these in (1.11) results in replacing the optimization over x′ with an

optimization over γa. However, in defining γa = Ωx′ we constrain the optimiza-

tion to only consider representations γa spanned by the columns of Ω. Thus, we

introduce the constraint γa = Ωx′ = ΩΩ+γa in the optimization, leading to the

following equivalent form of the analysis estimator:

x̂ = Ω+·Argmin
γa

1

2
‖y−T Ω+γa‖2

2+λC(γa) Subject To ΩΩ+γa = γa . (1.15)
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As can be seen, this problem strongly resembles the synthesis structure (1.12) for

the choice D = Ω+, except for the added constraint on γa.

In [1] we perform a thorough investigation of the two paradigms, focusing

on the relationship between the two. Considering their algebraic similarity, it

comes as somewhat of a surprise that in reality, a large gap exists between the

two models in the overcomplete case. As it turns out, the innocently-looking

constraint in (1.15) can have a substantial effect on the result of the optimization.

A simple demonstration is provided in Fig. 1.1, which shows how a significant gap

may evolve even in a simple 2-D case.

Our work takes a geometric approach, analyzing the two models in terms of

their iso-surfaces in signal space. The result of this view is the characterization of

a large (exponential) number of signals on which the two formulations are bound

to differ, leading to the inevitable conclusion that an equivalence between the

two cannot exist. This result is general in the sense that it does not assume a

specific relation (such as the pseudo-inverse) between the analysis and synthesis

dictionaries, nor does it assume they have the same number of atoms (though it

is assumed they have a similar number of atoms, e.g., up to a constant factor).

In practice, the significance of these results is two-fold. First, the realization

that the two models are distinct spawns renewed interest in the analysis model,

which has received less attention in recent years in favor of the synthesis model.

As an example, we show in [1] a simple denoising case where the analysis option

outperforms the synthesis one. Second, the improved understanding of the analysis

model paves the way to further research on this model, such as analysis dictionary

training, which is discussed later in this thesis.

On the other hand, the results of [1] should also be taken in perspective. Indeed,

it remains possible that for specific dictionaries and specific signal families, tighter

relations could be derived. Our analysis is very much a worst-case one, focusing

on the signals for which the two approaches differ the most; other signals may
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Figure 1.1: A simple 2-D example where analysis and synthesis depart. Here, D =
(
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,

Ω = D+, T = I, and y = (1, 0)T . The penalty function is the `1 norm C(·) = ‖ · ‖1. The

plot shows the analysis and synthesis estimates (1.11) and (1.12) for varying λ between 0 and 2,

advancing from right to left. The dotted line is the unit sphere, shown for reference. As can be

seen, the two estimates depart from y at quite different directions. The gap quickly increases,

reaching a maximal difference ‖xa − xs‖2 of over 30% the energy of xs at λ ≈ 0.65.

exhibit a smaller gap. However, the fundamental conclusion remains. Specifically,

our results dictate that the sets of signals for which the two approaches differ exist

for any pair of analysis and synthesis dictionaries, and not just for specific cases.

1.4.3 Sparse Dictionaries

As discussed in Section 1.3, parametric dictionaries are gaining interest due to their

ability to benefit from both the analytic and machine-learning design paradigms.

The sparse dictionary structure presented in [33] is a particular parametric dic-

tionary aimed at bridging this gap between the analytic and learning routes. The

sparse dictionary structure suggests representing the dictionary as a composition

of an analytic base dictionary and a sparse trained dictionary. In synthesis nota-

tion, this dictionary takes the form

D = ΦA , (1.16)

where Φ is a fixed analytic dictionary, and A is an adaptable sparse matrix. We

note that the dictionary structure may be employed in both analysis and synthesis
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scenarios, though we focus on the synthesis case in [33].

The sparse dictionary is shown to achieve similar or superior estimation results

to an ordinary (non-structured) trained dictionary, while providing substantial

gains in complexity and generalization due to the imposed structure. In this, the

dictionary structure exhibits many of the benefits of both design routes. Also,

by modifying the number of non-zeros in A, the sparse dictionary can achieve an

essentially continuous transition from analytic dictionaries (very sparseA) to fully

unconstrained dictionaries (dense A). In this sense, the sparse structure is truly

a ”bridge” between the two approaches.

An additional advantage of sparse dictionaries is their compact representation

compared to non-structured dictionaries. This compactness makes their use fea-

sible for compression tasks. In [83] we present an image-adaptive compression

scheme which encodes an input image over a specifically trained dictionary sent

along with the compressed stream. Such a scheme has so far been impractical

due to the overhead of transmitting the dictionary. In this work we show that the

scheme based on sparse dictionaries can convincingly outperform JPEG compres-

sion and approach JPEG2000 performance in some cases. Though our results do

not reach state-of-the-art, this preliminary work clearly positions image-adaptive

dictionaries as a plausible option for generic image compression. Directions for

future improvement, including multi-scale extensions and hybrid trained and an-

alytic dictionaries, are mentioned in [83].

Finally, the sparse dictionary structure provides a convenient framework for

training parametric dictionaries with additional desired properties, by imposing

specific and meaningful structures on the matrix A. This option is not explored

in this work, but has been studied by others [35, 85].
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1.4.4 Analysis and Thresholding Dictionary Learning

Following substantial achievements in synthesis dictionary training, researchers

are recently gaining interest in the question of dictionary training for analysis

models [86, 87]. Indeed, the formalization of the gap between the analysis and

synthesis frameworks in [1] provides significant incentive for this quest, as it opens

the door to an array of new opportunities with the analysis formulation. One of

the first and most influential attempts to train a (non-orthogonal) dictionary for

the analysis model was the pioneering work of Black and Roth [88], who trained

a Markov Random Field (MRF) image prior of the form:

P(x) ∼ exp

{
−
∑
k

λTC(Ωxk)

}
.

In this expression, the sum is over all overlapping blocks xk in the image x, and

C(γ) =
∑

i ρ(γi) is a robust cost function with ρ(α) = ln
(

1 + α2

2

)
. The proposed

training algorithm minimizes the Kullback-Leibler divergence of the learned and

data distributions via a specialized gradient descent method, and shows promising

results in image denoising and inpainting.

In this thesis we adopt a different approach to the analysis training problem,

based on `0 sparsity. This sparsity measure allows the development of more ef-

ficient training algorithms, and leads to interesting relations with the synthesis

formulation. Specifically, our methods trains overcomplete dictionaries, compared

to the undercomplete dictionaries trained by [88].

We present two approaches to the training task. The first focuses on the

recently proposed `0 analysis model, and is presented in Chapter 6. This new

model is interested in signals which nullify a large number of coefficients in Ωx, and

is motivated by the observation in [1] that the favorable signals of the `1 analysis

prior are orthogonal to many rows in the analyzing dictionary. In this chapter we

introduce the `0 analysis model, discuss signal coding under the new model, and

present the Analysis K-SVD algorithm for dictionary training, which is named
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after the original K-SVD due to the resemblance between the two. Simulations

show the ability of our algorithm to successfully recover an underlying model given

sparse examples, as well as discover meaningful structures in natural image data.

Next, in Chapter 7 we study a generalization of the thresholding process (1.14),

which we name analysis-synthesis thresholding due to its use of two separate dic-

tionaries for the analysis and synthesis stages of the estimation. The resulting

process can be applied in a variety of recovery tasks, and is given by:

x̂ = DSλ(Ωy) .

In this work we consider specifically the `0 hard thresholding case, where we can

exploit the exact sparsity to develop an efficient training algorithm in the spirit of

the K-SVD and Analysis K-SVD. We show that our algorithm is able to efficiently

optimize the resulting target function, and present favorable recovery results for

small-kernel image deblurring. Compared to traditional synthesis-based recovery

methods, a notable advantage of the thresholding recovery process is its signifi-

cantly lower complexity due to the low cost of the thresholding operator. Another

advantage of our recovery process is its parameterless nature, as all parameters,

including threshold values, are tuned during the training process. A unique prop-

erty of the proposed framework is its example-based approach to the degradation

modeling, which requires no explicit specification of the degradation process, and

instead deduces its properties from the training data itself (which is assumed to un-

dergo a uniform degradation). We conclude by outlining some possible directions

for future research, including extensions to more complex degradation models,

MRF recovery processes, and others.
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Abstract

The concept of prior probability for signals plays a key role in the successful so-

lution of many inverse problems. Much of the literature on this topic can be

divided between analysis-based and synthesis-based priors. Analysis-based priors

assign probability to a signal through various forward measurements of it, while

synthesis-based priors seek a reconstruction of the signal as a combination of atom

signals. The algebraic similarity between the two suggests that the two could be

strongly related; however, in the absence of a detailed study, contradicting ap-

proaches have emerged. While the computationally-intensive synthesis approach

is receiving ever-increasing attention and is notably preferred, other works hy-

pothesize that the two might actually be much closer, going as far as to suggest

that one can approximate the other. In this paper we describe the two prior

classes in detail, focusing on the distinction between them, and our results put to
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question, in fact, both these assumptions. We show that although in the simpler

complete and under-complete formulations the two approaches are equivalent, in

their overcomplete formulation they depart. Focusing on the `1 case, we present a

novel approach for comparing the two types of priors based on high-dimensional

polytopal geometry. We arrive at a series of theoretical and numerical results

establishing the existence of an unbridgeable gap between the two.

2.1 Introduction

The general inverse problem seeks the recovery of an unknown signal x ∈ RN (a

vector of dimension N over the real numbers) based on indirect measurements of

it given in the vector y ∈ RM . A typical model for describing the relation between

x and y is

y = T{x}+ v , (2.1)

where T : RN → RM is a (possibly non-linear) known operator, and v ∈ RM is a

zero-mean white Gaussian additive noise vector (other models for the noise could

also be considered, but here we restrict the discussion to the assumptions made

above for simplicity). Many important problems in signal and image processing

are represented using this structure: these include denoising, interpolation, scal-

ing, super-resolution, inverse Radon transform, reconstruction from projections

in general, and motion estimation, to name just few. In all these problems, the

general task is an inversion of the operator T.

Inverting the above process can be done in many different ways. When lacking

any a-priori knowledge about the unknown, Maximum Likelihood (ML) estimation

suggests finding the x that leads to the most probable set of measurements y. We
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get a solution of the form

x̂ML = Argmax
x

Prob{y |x}

= Argmax
x

exp

{
− 1

2σ2
v

‖y−T{x}‖2

}
= Argmin

x
‖y−T{x}‖2

2 .

As an example, if T{x} = Hx, where H is a known degradation operator rep-

resented as a full rank matrix with more columns than rows, the ML solution

amounts to the pseudo-inverse of the degrading operator, thus x̂ML = H+y. For

the denoising problem (H = I), ML suggests the solution x̂ML = y, which clearly

demonstrates the weakness of ML.

Generally speaking, the literature today offers through the Bayesian approach

a stabilized solution to the inverse problem posed above. We concentrate on the

use of the Maximum-A-posteriori Probability (MAP) estimator, which regularizes

the estimation process using an assumed prior distribution on the signal space.

Indeed, such signal priors are implicitly used in many other signal processing

applications such as compression, signal decomposition, recognition, and more.

2.1.1 MAP-Analysis Approach

When studying the variety of published work in the field, two main prior types

emerge. The first utilizes an analysis-based approach, deriving the probability

of a signal from a set of forward transforms applied to it. Such priors form the

backbone of many classic as well as more recent algorithms, and most commonly

appear as regularizing elements in optimization problems or PDE methods. In

this paper, we focus on a robust Gibbs-like distribution, of the form

Prob{x} = Const · exp{−α · ‖Ωx‖pp} ,

where Ω ∈ M [L×N ] is some pre-specified matrix, and ‖ · ‖pp is the `p norm. The

term ‖Ωx‖pp is an energy functional that is supposed to be low for highly probable
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signals, and higher as the signal is less probable. We refer to Ω as the analyzing

operator. Merged with the Gaussianity assumption on the additive noise, this

poses the MAP recovery process as the minimization problem

x̂MAP−A = Argmax
x

Prob{x |y}

= Argmax
x

P{y |x} P{x} /P{y}

= Argmin
x
− log P{y |x} − log P{x}

= Argmin
x
‖y−T{x}‖2

2 + λ · ‖Ωx‖pp (2.2)

where λ = 2ασ2
v. When robust norms are used (p < 2 or some robust M-function

[57]), an iterative algorithm is typically employed for the minimization of (2.2).

Preference is generally given to p ≥ 1 so that the overall penalty function is

convex, thus guaranteeing a unique solution. We name this method the MAP-

Analysis approach since the prior is based on a sequence of linear filters applied

to the signal, essentially analyzing its behaviour.

The analysis structure is quite common in inverse problems in signal processing,

image processing, and computer vision. In a typical image processing application

where an image is an unknown, Ω is chosen as some sort of derivative operator,

promoting spatial smoothness in the image x. As to the choice of p, choosing the

`2 norm is known to lead to a simplified analytic treatment, but also known to give

non-robust results (i.e. smoothing of discontinuities). Thus, recent contributions

concentrate on robustness by using `p norms with p < 2, leading to non-linear

filtering algorithms [55–57, 59, 60, 62, 89–91].

2.1.2 MAP-Synthesis Approach

The second type of prior arises from employing a synthesis-based approach. Synthesis-

based methods are a more recent contribution, and stem in a large part from the

Basis Pursuit method pioneered by Chen, Donoho & Saunders [12].

Suppose that a signal x ∈ RN is to be represented as a linear combination of
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”building-block” atoms taken as the columns of a full-rank matrix D ∈ M [N×L],

with L ≥ N (notice the different size compared to Ω). This matrix has N rows and

L columns, and we refer to the columns of D as the atom signals. This leads to the

linear under-determined equation set x = Dγ, where γ ∈ RL is overcomplete. We

assume for the idealized signal x that its representation γ is sparse, implying that

only a few atoms are involved in its construction. Assuming y is a noisy version

of this signal, then the following is the MAP-Synthesis option for the recovery

of x:

x̂MAP−S = D · Argmin
γ
‖y−T{Dγ}‖2

2 + λ · ‖γ‖pp . (2.3)

In this expression, the `p-norm with p < 2 seeks the sparsest representation vector

γ that explains y in terms of the dictionary columns. Note that if the solution of

the optimization problem is denoted as γ̂, the estimated output signal is given by

x̂MAP−S = Dγ̂.

Synthesis-based methods have evolved rapidly over the past decade. Significant

progress has been seen in the development of modern dictionaries for sparse image

representation, such as the Ridgelet, Curvelet and Contourlet dictionaries [16, 18,

92]; training from example sets has also been successfully explored [28]. Parallel

advancements, many of them theoretical in nature, have been achieved in the

areas of sparse coding (i.e. finding sparse representations) and sparsity-based

signal recovery [42, 93].

Through the MAP framework, the synthesis approach may be generalized to

incomplete dictionaries. We let Γx = {γ | x = Dγ} denote the set of represen-

tations of x in D, where Γx may be infinite, empty, or a singleton. The a-priori

probability assumed for x depends on its sparsest representation in D. In this set-

ting, signals not spanned by the columns of D are assigned a-priori probability 0.

The MAP-Synthesis prior is therefore given as a Gibbs distribution on the
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optimal representations:

Prob{x} =


Const · exp{−α · ‖γ̂(x)‖pp} if Γx 6= ∅

0 otherwise
(2.4)

where

γ̂(x) = Argmin
γ∈Γx

‖γ‖pp .

This prior, when plugged into the MAP formulation, leads precisely to the process

described in (2.3). From a practical point of view, an iterative algorithm is required

for the solution of (2.3), and there are many methods to do so effectively. For p ≥ 1,

we are guaranteed to have a unique solution.

2.1.3 Analysis versus Synthesis

Comparing the two recovery processes in (2.2) and (2.3), we see that the two

describe very similar structures. The heuristic behind each remains sparsifying

the representation of the signal — be this its forward projection on the basis

elements, or its reconstruction as their linear combination.

How do the two methods compare? The conjecture that natural images can be

effectively described as sparse combinations of atomic elements has found empir-

ical support [94] which the analysis-based approach lacks. The concept also has

clear advantages in applications such as image compression, feature extraction,

content-based image retrieval and others. Furthermore, as opposed to the analy-

sis approach, the synthesis approach has a constructive form providing an explicit

description of the signals it represents, and as such, is more intuitive to interpret

and design.

A different concern about the analysis approach is its capacity to benefit from

the increased redundancy. As this approach requires a signal to simultaneously

agree with all the rows of Ω, this might become impossible with a highly redundant

operator, rendering the prior useless. The synthesis approach, in contrast, seems
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to benefit from higher redundancy, as this enriches the prior, enabling it to describe

more complex types of signals.

On the other hand, the compactness promoted by the synthesis approach might

also come as a weakness. In such a framework where only a small number of

atoms are used to represent each signal, the significance of every atom grows

enormously; any wrong choice — in a denoising scenario for instance — could

potentially lead to a ”domino effect” where additional erroneous atoms are selected

as compensation, deviating further from the desired description. In the analysis

formulation, however, all atoms take an equal part in describing the signal, thus

minimizing the dependence on each individual one, and stabilizing the recovery

process.

Analysis-based methods, specifically in their robust form (p < 2), are a very

common structure in image processing and computer vision applications. In a

large part, this is because MAP-Analysis leads to a simple optimization problem,

which (in the overcomplete case) is considerably easier to solve — due to the

smaller dimension of the unknown — compared to a similar-sized MAP-Synthesis

form. At the same time, however, a growing number of works are employing

the synthesis approach for inverse problem regularization. The synthesis-based

approach is attractive due to its intuitive and versatile structure, and informally, is

widely considered to provide superior results. This recent trend is strengthened by

a wealth of theoretical and practical advancements, making the synthesis approach

both more appealing and computationally tractable [42, 93, 95].

Nonetheless, MAP-Synthesis remains a prohibitive option in many cases. This

has led several works to seek alternative approaches over direct minimization.

One option which has been proposed is the use of an analysis-based method to

approximate the synthesis-based one, as is done in [84] where the analysis op-

erator is taken as the pseudo-inverse of the synthesis dictionary. This approach

has only been partially justified, however, leaving the question of its generality
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much unattended.

2.1.4 This Paper’s Contribution

As can be seen from the discussion, the literature to-date is highly ambivalent

in respect to the two regularization approaches. The extensive research of the

synthesis-based methods implicitly suggests MAP-Synthesis is superior to MAP-

Analysis — especially considering the huge gap in complexity between the two

structures. At the same time, other works, building on the algebraic similarity

presented in the next section, hypothesize that the two are actually much closer,

in fact close enough to approximate one another [84].

In light of these developments, it is our goal in this paper to clarify the dis-

tinction between the two approaches, and shed some light on the conceptual and

technical gaps between them. We show that indeed for specific cases the two ap-

proaches are equivalent, utilizing a pseudo-inverse relation between the analysis

operator and synthesis dictionary. Such is the case for the square and under-

complete formulations, as well as for the `2 (i.e. p = 2) choice. However, as we

go to the general overcomplete formulation (L > N), we find that the equivalence

between the two MAP options breaks. Concentrating on the p = 1 case, often

favoured due to its convexity and robustness, we provide theoretical as well as nu-

merical results indicating that the two methods are fundamentally distinct. Our

results break, in fact, both of the above common assumptions: first in establishing

the gap between the two approaches, and second by presenting simulations where

the analysis approach actually supersedes its synthesis counterpart.

This paper is organized as follows. Section 2.2 describes the square and under-

determined cases, where the two methods exhibit almost complete equivalence. In

Section 2.3 we turn to discuss the overcomplete case, focusing on the `1 choice.

Taking a geometrical viewpoint, we construct the theoretical model describing

the gap between the two methods, and discuss some consequences of this model.
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Simulation results are provided in Section 2.4, and Section 2.5 concludes with a

summary of the claims made in the paper.

2.2 The Square and Under-Determined Cases

We begin by showing that in the (under-)determined case (i.e., L ≤ N), the two

methods are practically equivalent.

Theorem 2.1. Square Non-Singular Case – Complete Equivalence. MAP-

Analysis and MAP-Synthesis are equivalent if MAP-Analysis utilizes a square and

non-singular analyzing operator Ω. The equivalent MAP-Synthesis method is ob-

tained for the dictionary D = Ω−1.

Proof. We start with the MAP-Analysis approach as posed in equation (2.2).

Since Ω is square and non-singular, defining Ωx = γ leads to x = Ω−1γ. Putting

this into (2.2), we get an alternative optimization problem with γ replacing x as

unknown,

x̂ = Ω−1 · Argmin
γ
‖y−T{Ω−1γ}‖2

2 + λ · ‖γ‖pp ,

and the equivalence to the MAP-Synthesis method in (2.3) is evident. Likewise,

starting from the MAP-Synthesis formulation and using the same argument, we

can obtain a MAP-Analysis one — and thus the two methods are equivalent.

The generalization of Theorem 2.1 for the L ≤ N case requires more care, and is

only true for the denoising (T = I) case. Before stating the theorem, we point out

that complete equivalence cannot be guaranteed in this case due to the property

of MAP-Synthesis to only produce results in the column-span of D, while MAP-

Analysis poses no such restriction. Nevertheless, the following theorem represents

both conceptually and computationally a complete equivalence between the two,

as knowing the solution to either one immediately fixes the solution to the other.

We arrive at the following result, whose proof is postponed to the appendix:
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Theorem 2.2. Under-Complete Denoising Case – Near-Equivalence. MAP-

Analysis denoising with a full-rank analyzing operator Ω ∈ M [L×N ] (L ≤ N) is

nearly-equivalent to MAP-Synthesis with the dictionary D = Ω+. This is expressed

by the relation x̂MAP−A = x̂MAP−S + yD⊥, with yD⊥ representing the component of

the input orthogonal to the columns of D.

(Proof in 2.A.)

We also see that when the input is in the column-span of D (as in the square

non-singular case), we obtain x̂MAP−A = x̂MAP−S.

2.3 The Over-Determined Case

We have seen that the two methods are practically equivalent for the L ≤ N

case. Our main interest however is in the overcomplete (L > N) case, advocated

strongly by the Basis Pursuit approach. A natural starting point for analyzing

the overcomplete case is the pseudo-inverse relation, which, as we have just seen,

successfully achieves equivalence in the (under-)complete case. We assume hereon

that Ω has full column rank, and hence Ω+Ω = I. Beginning with the MAP-

Analysis formulation in (2.2), we let Ωx = γ. Since Ω+Ω = I, recovering x

from γ is done by x = Ω+γ. However, in replacing the unknown from x to γ

we must add the constraint that γ is spanned by the columns of Ω, due to its

definition (this can be represented by the constraint ΩΩ+γ = γ). Thus we obtain

the following equivalent MAP-Analysis form:

x̂MAP−A = Ω+ · Argmin
γ: ΩΩ+γ=γ

‖y−T{Ω+γ}‖2
2 + λ · ‖γ‖pp . (2.5)

Comparing this to (2.3), we see that if the MAP-Synthesis solution (with D =

Ω+) satisfies the constraint ΩΩ+γ = γ, then omitting it in (2.5) has no effect,

and both approaches arrive at the same solution. However, in the general case

this constraint is not satisfied, and thus the two methods lead to different results.
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An interesting observation is that while the representation solutions could differ

vastly, the final estimators x̂ = Ω+γ̂ in both might be very similar; this is because

in multiplying by Ω+ we null-out content not in the column-span of Ω, essentially

satisfying the constraint. However, as we will see, this does not turn out to close

the gap between the two methods. The exception to this is the non-robust `2 case,

in which equivalence still holds.

Theorem 2.3. Over-Complete Case – Equivalence for p = 2. MAP-Analysis

with a full-rank analyzing operator Ω ∈ ML×N (L > N) is equivalent to MAP-

Synthesis with D = Ω+ for p = 2.

Proof. From (2.5) the proof is trivial. When p = 2, the unknown γ can be assumed

to be the sum of two parts, γ = γΩ +γΩ⊥, where γΩ comes from the column-span

of Ω, and γΩ⊥ from the orthogonal subspace. The second penalty term (‖γ‖2
2)

clearly prefers γΩ⊥ to be zero; as to the first term (‖y−T{Ω+γ}‖2
2), γΩ⊥ has no

impact on it as it is nulled-out by Ω+. Thus, γΩ⊥ that violates the constraint in

γ is chosen as zero, and the two methods coincide.

2.3.1 MAP-Analysis and MAP-Synthesis in `1

From this point on we consider the two MAP methods with p = 1. The `1 choice

is essentially the ”meeting point” between the analysis and synthesis approaches,

which prefer p ≥ 1 and 0 ≤ p ≤ 1 respectively. The use of the `1 norm in sig-

nal and image recovery has received considerable attention beginning at the late

1980’s, with the adoption of robust statistics by the signal processing community.

Probably most notable of the analysis-based methods is the Total-Variation ap-

proach [55], 1 with some additional examples including [60, 62, 90, 91]. Classical

synthesis-based methods include the Basis Pursuit method [12] and the Lasso [96].
1Total variation takes a ”true” MAP-Analysis form only in the 1D case.
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For the `1 choice, we have the following forms of the two recovery processes:

x̂MAP−A = Argmin
x
‖y−T{x}‖2

2 + λ · ‖Ωx‖1

x̂MAP−S = D · Argmin
γ
‖y−T{Dγ}‖2

2 + λ · ‖γ‖1 .

The `1 option is a favourable choice for these methods due to its combination of

convexity, robustness, as well as proximity to `0 in the synthesis case [42, 95].

Looking at the two MAP formulations, we see that both depend on a weighting

parameter λ to control the regularizing element; for λ = 0 both reproduce the

ML estimator, and as λ → ∞ they deviate from it until finally converging to 0.

However, the rate at which this occurs may vary substantially between the two

methods, and hence this parametrization is inconvenient for our purposes. To

overcome this, we propose the following reformulations of the two problems:

x̂MAP−A(a) = Argmin
x
‖Ωx‖1 Subject To ‖y−T{x}‖2 ≤ a

x̂MAP−S(a) = D · Argmin
γ
‖γ‖1 Subject To ‖y−T{Dγ}‖2 ≤ a .

These formulations are conceptually simpler, with a directly controlling the devi-

ation from the ML estimator. The original MAP target functions are essentially

the Lagrangian functionals of these constrained versions (with λ representing the

inverse of the Lagrange multiplier), and thus the two forms are equivalent.

2.3.2 A Geometrical Viewpoint

The above formulations have a simple geometrical interpretation, which provides

an interesting way of comparing the two MAP approaches. The solutions of both

problems are obviously confined to the same region of ”radius” a about y (this is

true as we assume D to be full-rank); we also assume this region does not include

the origin, otherwise the solution is trivially zero. Considering MAP-Analysis first,

the level-sets of its target function fA(x) = ‖Ωx‖1 are a collection of concentric,

centro-symmetric polytopes {x | ‖Ωx‖1 ≤ c}. Graphically, the solution can be

obtained by taking a small level-set {‖Ωx‖1 ≤ c} about the origin, and gradually
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inflating it (by increasing c) until it first encounters the region {‖y−T{x}‖2 ≤ a}.

The point of intersection constitutes the solution to the MAP-Analysis problem,

as there cannot be a point in this region having a smaller value of ‖Ωx‖1.

As to MAP-Synthesis, a similar process may be described using the collection

of concentric, centro-symmetric polytopes D · {γ | ‖γ‖1 ≤ c}2. This is reasoned as

follows: consider the set D · {‖γ‖1 ≤ c} where c is small enough such that this set

does not intersect the region {‖y −T{x}‖2 ≤ a}. Then for any x in this region,

there does not exist a representation γ satisfying ‖γ‖1 ≤ c, or in other words,

any representation as x = Dγ must satisfy ‖γ‖1 > c. This, of course, is true for

any c which is small enough; therefore if we inflate this set (by enlarging c) until

it first touches the region at the value ĉ, then for the intersection point x̂ = Dγ̂

we know it has a representation satisfying ‖γ̂‖1 = ĉ, whereas for any c < ĉ the

signals within the region have no such representation, and hence x̂ must be the

MAP-Synthesis solution.

Conveniently, for both MAP methods these ”inflations” are performed via sim-

ple scaling: we have {‖Ωx‖1 ≤ c} = c · {‖Ωx‖1 ≤ 1} and D {‖γ‖1 ≤ c} =

c ·D {‖γ‖1 ≤ 1}. This implies that given the canonical MAP defining polytopes

ΨΩ := {‖Ωx‖1 ≤ 1} and ΦD := D · {‖γ‖1 ≤ 1}, the inflation processes are

fully defined, and so are the MAP solutions; in fact, specifying these polytopes

is completely equivalent to specifying Ω or D, respectively. We find that the

behaviour of each of the methods is governed exclusively by the geometry of a

single high-dimensional polytope, providing us with the basis for comparing the

two methods.3 We therefore continue by characterizing the geometry of these two

polytopes.

Before continuing, we briefly review some elementary polytope terminology.
2Note that these sets exist in signal space, and have the explicit form {x | ∃γ, x = Dγ ∧ ‖γ‖1 ≤ c}.
3In fact, the same arguments hold for any `p formulation, replacing the `1-norms in the definitions

of ΨΩ and ΦD with the proper `p-norms. However, analyzing these defining shapes for a general p is a

difficult task, and thus we restrict ourselves to the `1 case.
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Given an N -dimensional polytope, its boundary is an (N − 1)-dimensional mani-

fold; each of the polytope’s facets is an (N−1)-dimensional surface constituting one

segment of this manifold. A facet may also be referred to as an (N-1)-dimensional

face. Similarly, the boundary of each facet consists of (N-2)-dimensional faces —

and so on. A polytope’s vertices, edges and ridges are its faces of dimensions 0, 1

and 2, respectively.

The MAP-Analysis Defining Polytope.

The MAP-Analysis defining polytope is a level set of the MAP-Analysis target

function, fA(x) = ‖Ωx‖1:

ΨΩ = {x | ‖Ωx‖1 ≤ 1} .

Applying the gradient operator to fA, we find that the normal to this surface

satisfies

n(x) ∝ ∇fA(x) = ΩT sign(Ωx) .

Evidently n(x) is defined for any x in which all coordinates of Ωx are non-zero;

where one or more of these vanishes, n(x) exhibits a discontinuity arbitrarily

filled-in by the sign function. n(x) is therefore (as expected) piecewise-smooth.

Intuitively, consider the signals x on the boundary of the defining polytope, then

the facets correspond to the locations where n(x) is smooth, whereas the other

faces correspond to where n(x) is discontinuous. The discontinuities in n(x) ob-

viously result from x being orthogonal to rows in Ω; the following claim, whose

proof is provided in the appendix, relates the face dimension to the rank of these

rows:

Claim 2.1. Let x ∈ ∂ΨΩ (the boundary of the defining polytope), and let k denote

the rank of the rows in Ω to which x is orthogonal to. Then x resides strictly

within a face of dimension (N − k − 1) of the MAP-Analysis defining polytope.

(Proof in 2.B.)
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We use the term strictly within a face to indicate a signal located in the interior

of a face, in the sense that there exists a finite ε-ball about it — of the same dimen-

sion as the face — entirely contained within this face (note that this also covers

signals that are vertices, who reside strictly within themselves). Also, as opposed

to standard residence, strict residence is unique, as the faces are considered open

rather than closed, and thus do not overlap.

The claim implies that to obtain a vertex of ΨΩ, we choose N − 1 linearly-

independent rows in Ω, determine their 1D null-space v and normalize such that

‖Ωv‖1 = 1 (note that this defines two antipodal vertices). Edges are similarly

obtained by choosing N − 2 linearly-independent rows, and taking any properly

normalized signal in their 2D null-space. This leads to an immediate conclusion

concerning the vertex complexity of the MAP-Analysis defining polytope, as its ver-

tex count is equal to the number of possible choices of N − 1 linearly-independent

rows in Ω. In the worst-case, this may reach an exponential
(

L
N−1

)
, and in fact,

this is a tight bound for the worst-case. As an example, assume the rows of Ω

are chosen such that their directions {ŵi} are uniformly distributed on the unit

sphere. Under these conditions, the probability of any set of N − 1 rows to be

dependent vanishes for all practical purposes, and thus we obtain that for this

randomized case the expected number of MAP-Analysis vertices achieves Θ
(

L
N−1

)
.

Obviously this is also the tight bound for the worst-case vertex count.

An interesting observation is that the MAP-Analysis defining polytope exhibits

a highly regular structure. For instance, consider the set of edges associated with

some choice of N−2 independent rows from Ω. Letting {u,v} span their 2D null-

space, these edges are obtained as any linear combination of the two (for instance

of the form x = cos(θ)u + sin(θ)v), properly normalized to ensure ‖Ωx‖1 = 1. It

follows that this set of edges forms a closed edge-loop of the polytope; the planar

edge loop consists of consecutive edges, all existing on a common plane. We

conclude that the edges of ΨΩ are arranged in ”loops” about the origin, each loop
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associated with a choice of N − 2 independent rows from Ω. Similar arguments

generalize to higher-dimensional regularities, corresponding to the choices of N−k

independent rows from Ω for k > 2.

Finally, the organized structure is also found in a highly regular neighbourliness

pattern. Since every vertex is obtained as the null-space of some N − 1 rows from

Ω, and each choice of N − 2 of these defines an edge loop passing through this

vertex, we have that each vertex of ΨΩ is incident to exactly N − 1 edge loops,

and consequently, every vertex of ΨΩ has precisely 2(N − 1) neighbours.

The MAP-Synthesis Defining Polytope.

The MAP-Synthesis defining polytope is given by

ΦD = D · {γ | ‖γ‖1 ≤ 1} .

It is a known result that this polytope is obtained as the convex hull of the columns

of D and −D; a proof is brought in the appendix for completeness:

Claim 2.2. The MAP-Synthesis defining polytope ΦD = D·{‖γ‖1 ≤ 1} is obtained

as the convex hull of {±di}i=1...L, where {di} are the columns of D.

(Proof in 2.C.)

The claim simply states that the vertices of the MAP-Synthesis defining poly-

tope are those columns of ±D which cannot be represented as a convex combina-

tion of any other columns (and their antipodes); the other faces are the convex

combinations of neighbouring vertices. A vertex can therefore be represented as

v = Dγ where γ has a single non-zero element γi = ±1, and a point on an edge can

be represented similarly with γ having two non-vanishing elements γi, γj satisfying

|γi| + |γj| = 1. In general, a point on a k-dimensional face will have a represen-

tation x = Dγ with γ having k + 1 non-vanishing elements, and ‖γ‖1 = 1. We

emphasize that this is not a sufficient condition, so a signal x = Dγ synthesized
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from a sparse representation γ might not reside on a low-dimensional face if the

corresponding columns of ±D are not neighbours, or do not constitute polytope

vertices.

An immediate implication of Claim 2.2 concerns the redundancy of certain

atom signals in D. From the claim, it is clear that any column of D residing

strictly within the convex hull of the remaining columns has absolutely no effect

on the MAP-Synthesis defining polytope — and thus can be removed.

Corollary 2.1. Let dk be a column of D which is obtained as a convex combination

of the remaining columns and their antipodes, {±di}i=1..k̂..L. Then the MAP-

Synthesis problem obtained by removing dk from D is equivalent to the original

one.

Redundant columns in D can be safely removed without altering the MAP-

Synthesis solution, and by locating these we may be able to prune the dictionary,

generally obtaining a simpler formulation. The problem of determining whether

some vector x is a convex combination of the set {yi} can be formulated as a linear-

programming (LP) problem, and thus locating all redundant columns inD requires

L executions of LP. As an alternative to removal, we may choose to elongate the

redundant atom such that it becomes a vertex of the MAP-Synthesis defining

polytope, and thus expressed by the prior. However, increasing a dictionary atom

may have the effect of assimilating a different one into the convex hull. One simple

method to ensure none of the columns in D are redundant is to normalize them

to a fixed length (see section 2.3.3 below and specifically Claim 2.3).

2.3.3 Consequences of the Geometrical Viewpoint

The geometrical analysis leads to some important consequences concerning the

two MAP methods. In this section we describe a few of these conclusions.
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The Analysis-Synthesis Gap.

From the geometrical viewpoint, we find that contrary to the algebraic similar-

ity, the analysis and synthesis structures are actually very different. As we have

seen, the two polytopal structures asymptotically differ in their vertex counts.

A parallel difference exists in the neighbourliness properties of these polytopes;

since every vertex has a linear number of neighbours in the MAP-Analysis case

(while their total number is exponential) it follows that the probability of any

two vertices to be neighbours approaches 0 as N →∞. In contrast, Donoho [97]

has recently shown that for MAP-Synthesis polytopes, the probability of any 2

(non-antipodal) vertices to be neighbours approaches 1 as N →∞.4 We find that

while MAP-Analysis polytopes feature very large numbers of vertices with very low

neighbourliness, MAP-Synthesis polytopes exhibit low vertex counts and very high

neighbourliness. Combined with the high regularity of the MAP-Analysis poly-

topes, we see that the two approaches actually describe very different structures.

These theoretical gaps indeed translate to very concrete behavioural differences

between the two methods, and this will be shown in the experiments section.

MAP-Synthesis as a Superset of MAP-Analysis.

An interesting consequence of the geometrical description is that any `1 MAP-

Analysis estimator may be reformulated as an equivalent MAP-Synthesis one.

This is accomplished by simply taking all the MAP-Analysis defining polytope

vertices — one of each antipodal pair — and setting them as the MAP-Synthesis

dictionary atoms. Since both methods will have the same defining polytope, they

will be completely equivalent. This establishes the generality of MAP-Synthesis

over MAP-Analysis in `1:

4The dictionary is assumed to be of linear size in N , as well as to fulfill certain randomness conditions;

see Theorem 1 in [97].
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Theorem 2.4. Over-Complete `1 Case – Generality of MAP-Synthesis.

For any `1 MAP-Analysis form with full-rank analyzing operator Ω (L ≥ N),

there exists a dictionary D(Ω) describing an equivalent `1 MAP-Synthesis form.

The reverse is not true.

The reverse direction fails due to the strict regularity imposed on the MAP-

Analysis defining polytopes. Since this regularity does not apply to MAP-Synthesis,

it may clearly describe structures not represented in the MAP-Analysis form.

The actual equivalence transform presented here has little practical value; ex-

cept for the special case of N = 2, where the size of D(Ω) will be equal to (or

even smaller than) that of ΩT , the size of D(Ω) will generally grow exponentially.

Nonetheless, the theorem describes a definite one-way relationship between the

two formulations: the synthesis formulation is clearly more general than the anal-

ysis one, with indeed a vast collection of MAP-Synthesis priors unrepresented by

the stricter MAP-Analysis form.

MAP Principal Signals.

The constructive nature of MAP-Synthesis provides a good understanding of the

signals which are most ”favoured” by this prior; in essence, these are the dictionary

atoms and their sparse combinations. The parallel entities for the MAP-Analysis

prior, however, are difficult to derive using algebraic tools. The geometric inter-

pretation enables us to define these qualitative terms in a precise manner, and

give a description of the MAP-Analysis counterparts of the synthesis atoms.

Roughly speaking, we consider a signal to be favoured by some prior when

this prior is capable of recovering the signal well given deteriorated versions of it;

intuitively, these should be the signals with maximal a-priori probability. How-

ever, we observe that both MAP structures are energy-dependent; therefore, the

most probable signals for both are simply the zero signal and its immediate neigh-

bourhood. Moreover, the intuition itself here is not entirely accurate: a highly
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probable signal will not be well-recovered if there exists a near-by signal with even

higher probability.

To resolve this, we confine ourselves to a fixed-energy sphere; on this sphere

we seek the most effectively recovered signals by the specific MAP method. Since

the recovery is a local process, we will further be interested in the local maxima

of the distribution on this sphere rather than the global ones. Our line of thought

can be described as follows. Consider an energy-preserving denoising process,

where the denoised solution is post-processed by re-normalizing it to the magni-

tude of the input (thus eliminating its decay to zero caused by the low-energy

preference of the prior). Under these conditions, the MAP estimation essentially

searches the neighbourhood of the input on the fixed-energy sphere, outputting

a higher-probability (and presumably less noisy) signal near the input. A signal

will therefore be well-recovered when its prior probability is maximal relative to

a significant enough part of its neighbourhood on the fixed-energy sphere. Specif-

ically, the local maxima of the distribution will be the most effectively recovered

signals on the sphere.

Reducing w.l.o.g. to the unit sphere, we refer to the local maxima of the

distribution as the principal signals of the distribution. Formally,

Definition 2.1. Let Prob{x} be any MAP-Analysis or MAP-Synthesis distribu-

tion. Then the principal signals of this distribution are defined as the local maxima

of the optimization problem

Argmax
x

Prob{x} Subject To ‖x‖2 = 1 .

As we will soon see, in the synthesis case these signals are tightly related to the

MAP-Synthesis dictionary atoms.

The geometry of the MAP defining polytope directly dictates the behaviour of

the distribution on the unit sphere, and consequently the locations of the principal
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(a) (b)

Figure 2.1: Principal signals and the MAP defining polytope. The dotted circles denote the

unit sphere in 2D signal space. The two polygons are different scales of the same MAP defining

polytope. (a) A principal signal, intersected by a vertex of the defining polytope. (b) A vertex

which is not a principal signal.

signals on it. For both priors, the boundaries of the defining polytopes define iso-

surfaces of signals with equal a-priori probability; these have the form r · ∂ΨΩ or

r · ∂ΦD — where r ∈ R+ is a non-negative scaling factor — and for increasing r,

represent decreasingly probable signals. Beginning with such an iso-surface r ·∂ΨΩ

or r ·∂ΦD, with small enough r such that it is entirely bounded by the unit sphere,

then as r is increased, the surface intersects the sphere at decreasingly probably

locations, until finally completely enclosing it. Clearly, to be a local maximum

a signal must be intersected by the inflating iso-surfaces before its surrounding

neighbourhood. Consequently, such a local maximum is intersected by an extreme

point – a vertex – of the polytope. We conclude that the MAP principal signals

project to vertices of the MAP defining polytope.

We immediately point out, however, that projection onto a vertex is only a

necessary condition for principality, as demonstrated in Figure 2.1. Simulation

results show a dramatic difference in the recovery performance of principal vs.

non-principal polytope vertices.

For a vertex to be principal, it must be maximally distant from the origin

relative to all the directions about it on the boundary of the defining polytope.

Luckily, determining this only requires examining those directions from the vertex
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to its one-dimensional incident edges (this follows from the fact that for any scalar

function, the convex combination of a set of descent directions is also a descent

direction).

In the case of MAP-Synthesis, its defining polytope vertices are a subset of the

dictionary atoms, hence the principal signals are a subset of these atoms. However,

not all atoms constitute polytope vertices, and only a few of these are actually

principal. Furthermore, determining which of the atoms are vertices is a difficult

task, and so is the task of determining the incident edges of each vertex. However,

given an atom d, a simple work-around to determine its principality is to examine

all line segments connecting d with the remaining atoms and their antipodes. If

d is found to be maximally distant relative to all these line segments, clearly it is

a vertex as well as a principal signal; on the other hand, if d is found not to be

maximal relative to some segment, it immediately follows that it is not principal.

In practice, many MAP-Synthesis dictionaries have their atoms normalized to

a fixed length. As we mentioned earlier (without proof) this ensures that all

the atoms constitute defining polytope vertices. However, for such dictionaries,

a stronger claim can be made: indeed, when the atoms are normalized, they all

constitute principal signals of the MAP distribution. We have the following result,

whose proof is provided in the appendix:

Claim 2.3. Principal Signals of MAP-Synthesis with a Normalized Dic-

tionary. Let D be a MAP-Synthesis dictionary with fixed-energy columns. Then

the dictionary atoms coincide with the principal signals of the MAP-Synthesis

prior.

(Proof in 2.D.)

In the general case, however, the MAP-Synthesis principal signals remain a

subset of the dictionary atoms. Since dictionaries in practice are commonly nor-

malized, this distinction is not usually made. Nevertheless, when the dictionary

46



Chapter 2: Analysis versus Synthesis in Signal Priors

atoms are not normalized, the difference in recovery performance can be substan-

tial; while the principal signals are truly ”favoured” by the prior, other atoms

might not be at all.

In the MAP-Analysis case, the distinction becomes more significant. The num-

ber of MAP-Analysis vertices is exponentially large, and empirical evidence sug-

gests that most of these are non-principal and not well-recovered. Unfortunately,

we are not currently aware of any simple analytical method for characterizing the

MAP-Analysis principal signals. Nonetheless, these signals can be generated by

computer. For the simulations in this paper we used a simple traversal algorithm

for locating these signals; this enabled us to produce large sets of MAP-Analysis

principal signals and study their behaviour.

Our traversal algorithm locates one principal signal at a time. Beginning with

some initial vertex v, we examine its incident edge-loops, and for each loop, we

determine u such that {v,u} orthogonally span the plane in which the loop exists.

Assuming a small enough ε, v’s infinitesimal neighbours on this edge loop can

be approximated by v+ = (v + εu)/‖Ω(v + εu)‖1 and v− = (v − εu)/‖Ω(v −

εu)‖1, where the normalization is applied to ensure ‖Ωv+‖1 = ‖Ωv−‖1 = 1. By

comparing the `2 norms of v, v+ and v−, we determine whether v is maximal

relative to its two incident edges on this edge loop. Now, if v is found to be

maximal relative to all its incident edges, it is a principal signal. Otherwise, it

is not maximal relative to some incident edge. In this case we replace it with a

vertex with larger `2-norm from the violating edge loop (in our implementation,

we choose the one with largest `2-norm in the loop), and continue the traversal.

This swapping continues until a local maximum is encountered, providing one

MAP-Analysis principal signal. The entire process is then repeated using a new

vertex as a starting point.
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2.4 Numerical Results

The geometrical viewpoint reveals a large gap between the two formulations in

the over-determined `1 case. In this section we provide some simulation results,

demonstrating this theoretical gap.

2.4.1 Synthetic Experiments

The following synthetic experiments demonstrate how the gap can be easily brought

to an extreme even in a simple case. To obtain these results we compared the two

methods on their most favourable signals: their principal signals.

For the experiment, we selected the pseudo-inverse relation between the dictio-

nary and analysis operator; this is a natural choice for bridging the two methods,

however in reality, it may lead to very different behaviours of the two methods.

We selected the 128 × 256 Identity-Hadamard dictionary D = 1√
2

[
I H

]
and

its pseudo-inverse Ω = DT = 1√
2

[
I H

]T
as the synthesis dictionary and anal-

ysis operator. This is an interesting choice as the two feature the same two-ortho

structure, and furthermore D is a near-optimal Grassmanian frame, making it

favourable for MAP-Synthesis methods [98, 99].

The dictionary size immediately limits the number of distinct MAP-Synthesis

principal signals to a mere 256. In contrast, MAP-Analysis boasts an enormous

number of them: our traversal algorithm easily produced 10 000 such signals.

What’s more, our program was designed to reject new signals if these resided

in a radius of < 0.1 from any existing principal signal; however, after 10 000

generated signals, the rejection rate remained negligible, suggesting that the true

number of such signals is much greater (with an only known upper bound of order(
L

N−1

)
=
(

256
127

)
≈ 1075 ). These are obviously impressive numbers compared to the

modest number of MAP-Synthesis principal signals.

An interesting point in this experiment is that the MAP-Synthesis principal

signals in our case all double as MAP-Analysis principal signals. To sharpen the
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comparison, we therefore generated additional sets of preferable MAP-Synthesis

signals, which we obtained on low-dimensional faces of the MAP-Synthesis defining

polytope (i.e., sparse combinations of atoms). For the experiment, we generated

1000 signals on 2D faces, 1000 on 3D faces, and so on up to 12D faces.

To quantify the performance of a specific method on a set of signals, we gen-

erated noisy versions of the signals in the set, and applied the method (in its

energy-preserving form), with varying a values, to each of the contaminated sig-

nals. We then selected, for each signal individually, the optimal a value aopt and

its associated relative error erropt = ‖x̂MAP(aopt)− x‖2/‖y− x‖2 to represent the

performance of the method on this signal. We collected the optimal errors for

all signals in the set, and these were used to characterize the performance of the

method on the entire set.

Figures 2.2-2.4 summarize the results. The first two present histograms of

the optimal errors obtained on the principal signal sets and the MAP-Synthesis

2D and 3D signal sets. The final figure summarizes the results for all 12 sets of

MAP-Synthesis signals.

The results demonstrate several points. First, we see that each method is

indeed successful in recovering its own sets of principal signals; this agrees with

the predictions of the geometrical model. Also interesting is the fact that the two

methods exhibit comparable performance when evaluated each on their own set

of principal signals; this observation is particularly evident from Figure 2.2(b),

where the signals are simultaneously principal to both MAP-Analysis and MAP-

Synthesis.

On the other hand, the results also depict a clear disparity between the two

methods. We see that MAP-Analysis completely fails in recovering the MAP-

Synthesis favourable signals, while MAP-Synthesis performs notably poorly com-

pared to MAP-Analysis on its massive number of principal signals. The results

also illustrate the asymptotical nature of gap between the two approaches in the
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Figure 2.2: Denoising MAP principal signals. (a) Results for MAP-Analysis principal signal

(10 000 examples): distributions of optimal errors obtained using MAP-Analysis (above) and

MAP-Synthesis (below). (b) The same for MAP-Synthesis principal signals (256 examples).

number of principal signals each one accepts.

The acute inconsistencies lead to the inevitable conclusion that the pseudo-

inverse relation does not bridge between the two methods. Moreover, we see

here that the difference in complexity between the two structures has a strong

expression in practice, indicative of an inherent gap between the two formulations.

Though the experiment specifically utilizes the pseudo-inverse relation, the gap

depicted here cannot be associated to this specific choice; indeed, any reasonably-

sized MAP-Synthesis dictionary will be limited in the number of favourable signals

it can accommodate, and consequently in its ability to handle the large number

of MAP-Analysis principal signals. In the other direction, any attempt to adapt a

MAP-Analysis prior to a given set of MAP-Synthesis signals is bound to give rise

to an enormous number of additional (unwanted) favourable signals.

2.4.2 Real-World Experiments

In this section we present some comparative denoising results obtained for actual

image data. For these experiments we selected the overcomplete DCT transform;

this transform partitions the image into overlapping blocks, and applies to each
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Figure 2.3: Denoising signals on low-dimensional MAP-Synthesis faces. (a) Results for signals on

2D faces (1000 examples): distributions of optimal errors obtained using MAP-Analysis (above)

and MAP-Synthesis (below). (b) The same for signals on 3D faces (1000 examples).

block a unitary DCT transform. The overcomplete DCT transform constitutes

a tight frame when all image pixels are covered by an equal number of blocks.

Our experiments used 8× 8 blocks, with a shift of either 1, 2 or 4 pixels between

neighbouring blocks. We also used shifts of 8 pixels (i.e. no overlap, leading

to a unitary transform) as reference. Boundary cases were handled by assuming

periodicity, ensuring the tight frame condition.

Since the transform is tight, the synthesis dictionary was simply taken as the

transpose of the analysis operator, leading to a dictionary constructed of 8 × 8

DCT bases in all possible shifts over the image domain. Motivations for choosing

this transform include: (1) The transform is widely used in image processing, and

has been employed in both analysis and synthesis frameworks; (2) it is a tight

frame, and has an efficient implementation; and (3) it is highly redundant, whilst

offering a convenient way for controlling its redundancy (specifically, 4× for a shift

size of 4, 16× for a shift size of 2, and 64× for a shift size of 1).

We ran the experiments on a collection of standard test images, including

Lenna, Barbara and Mandrill. Each of these was downscaled to a size of 128×128
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Figure 2.4: Denoising MAP-Synthesis highly recoverable signals. The graphs show the mean

optimal errors obtained versus the MAP-Synthesis face dimension; error bars correspond to the

standard deviation of the errors.

to reduce computation costs. We added white Gaussian noise to each source image,

producing 25dB PSNR inputs. Each input was denoised using both MAP-Analysis

and MAP-Synthesis with varying λ values, and the output PSNR was determined

for each value.

The results for Lenna and Barbara are shown in Figure 2.5. The results for

Mandrill were similar. As can be seen in the figures, the results are quite sur-

prising: MAP-Analysis actually beats MAP-Synthesis — in a convincing way —

in every test. Compared to the baseline unitary transform (dotted line), where

both methods coincide, MAP-Analysis (solid) shows a significant gain when in-

troducing overcompleteness, which slightly improves as the redundancy increases;

in contrast, MAP-Synthesis (dashed) shows slightly degraded performance as the

overcompleteness is increased. As a consequence, the distance between the two

methods grows with the redundancy.

The experiments presented here were also carried out using the Contourlet

transform [18], which has a 4:3 redundancy factor. In these experiments the two

methods led to almost identical outputs, an outcome which conforms with the

low redundancy of the transform. Interestingly, however, the picture remained

the same: in all tests, MAP-Analysis actually showed a small edge over MAP-
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Figure 2.5: Image denoising using the redundant DCT transform. Solid lines, left to right:

MAP-Analysis with block shifts of 1, 2 and 4 pixels; dashed lines, left to right: MAP-Synthesis

with block shifts of 1,2 and 4 pixels; dotted line: MAP-Analysis/MAP-Synthesis with a block

shift of 8 pixels (unitary transform). Images are of size 128 × 128. (a) Results for Lenna (b)

Results for Barbara. Images downloaded from http://www.wikipedia.com, and downscaled

using bilinear interpolation.

Synthesis.

The reasons for the superiority of MAP-Analysis in the denoising scenario

require further study; however, in our context we see that the gap indeed exists,

and can become dramatic even in practical situations. One possible explanation

for this could be the advantage of MAP-Analysis discussed in Section 2.1.3: since

MAP-Analysis utilizes all its filters simultaneously to support the recovery process,

it may be more robust in the presence of noise compared to MAP-Synthesis, whose

compact representation may be unstable when noise is introduced, leading to

recovery errors. A different possibility is that the high overcompleteness in MAP-

Synthesis, rather than positively enriching its descriptiveness, leads to a reverse

effect where the dictionary becomes ”too descriptive”, representing a wide range of

undesirable signals. This effect does not apply to MAP-Analysis where increasing

the number of filters still requires the signal to agree with all existing ones.
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2.5 Conclusions: Analysis versus Synthesis Revisited

We began our discussion presenting two popular MAP-based methods for inverse

problem regularization — the MAP-Analysis and the MAP-Synthesis approaches

— and showing the algebraical similarity between the two. We saw that the two

are equivalent in the square non-singular case as well as in the under-complete

denoising case; however, in the overcomplete case the two methods were shown to

depart. We concentrated on the interesting `1 case, and found that the geometrical

structures underlying the two exhibited very different properties. This perspective

has led to a generality relation of MAP-Synthesis over MAP-Analysis, as well as to

the characterization of the MAP-Analysis parallels of the MAP-Synthesis atoms.

The geometrical model does not provide a definite answer to the question

of who is better. It does, however, shed some light on the real gap that exists

between the two approaches, a gap which is not evident from the algebra alone.

We have used the geometrical model to locate those signals where the gap is

expected to be the largest, leading us to the results of the synthetic experiments;

we saw that for these signals the gap indeed becomes large. The experiments also

demonstrated the asymptotical nature of the difference between the two structures

in their number of principal signals. Our real-world experiments showed that this

gap exists not only in theory, and, no less important, that MAP-Synthesis should

not be a-priori considered to be superior to MAP-Analysis.

Our results are not to be interpreted as a recommendation for this method or

another. The synthetic experiments indicate that each of the methods is successful,

only on different sets of signals. The real-world experiments, which demonstrated

a significant advantage to MAP-Analysis, should be regarded as a sample case

rather than a conclusion. MAP-Synthesis remains advantageous in its simplicity of

dictionary design, and we further emphasize that the interesting `0 MAP-Synthesis

case, though generally close to the `1 case, has not been treated. Nonetheless, as

MAP-Analysis is significantly simpler to solve, our results come to emphasize that
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despite the recent blossom of MAP-Synthesis methods, both approaches are still

worthy candidates for inverse problem regularization. The question of which will

actually be better for a specific application and family of signals, remains open.
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2.A Equivalence in the Undercomplete Case

Theorem 2.2. Under-Complete Denoising Case – Near-Equivalence.

MAP-Analysis denoising with a full-rank analyzing operator Ω ∈M [L×N ] (L ≤ N)

is nearly-equivalent to MAP-Synthesis with the dictionary D = Ω+. This is ex-

pressed by the relation x̂MAP−A = x̂MAP−S + yD⊥, with yD⊥ representing the com-

ponent of the input orthogonal to the columns of D.

Proof. In the following, we assume the relation D = Ω+; we additionally assume

that Ω has full row-rank (equivalently, that D has full column-rank), and thus

D = ΩT (ΩΩT )−1 and ΩD = I. We introduce the notation z = zD + zD⊥ to

denote the (single) decomposition of a signal z to the part zD in the column-span

of D and the part zD⊥ in the orthogonal subspace.

We begin with the MAP-Analysis formulation in (2.2):

x̂MAP−A = Argmin
x
‖y− x‖2

2 + λ · ‖Ωx‖pp .

Decomposing in respect to the column-span of D, we obtain

x̂MAP−A = Argmin
xD,xD⊥

‖yD + yD⊥ − xD − xD⊥‖2
2 + λ · ‖Ω(xD + xD⊥)‖pp

= Argmin
xD,xD⊥

‖yD − xD‖2
2 + ‖yD⊥ − xD⊥‖2

2 + λ · ‖ΩxD + ΩxD⊥‖pp .
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We note that z is orthogonal to the columns of D iff it is orthogonal to the

rows of Ω: since ΩΩT is invertible, we have 0 = DTz ⇐⇒ 0 = (ΩΩT )DTz =

(ΩΩT )(ΩΩT )−1Ωz = Ωz. This implies ΩxD⊥ = 0, leading to

x̂MAP−A = Argmin
xD,xD⊥

‖yD − xD‖2
2 + ‖yD⊥ − xD⊥‖2

2 + λ · ‖ΩxD‖pp .

Obviously any solution to this problem will satisfy x̂D⊥ = yD⊥, as there is no

additional penalty term for xD⊥. Therefore the MAP-Analysis problem reduces

to an optimization problem for x̂D
MAP−A :

x̂D
MAP−A = Argmin

xD
‖yD − xD‖2

2 + λ · ‖ΩxD‖pp .

Signals xD spanned by the columns of D have a representation as xD = Dγ.

We can thus reformulate the above as an optimization on γ, leading to

x̂D
MAP−A = D · Argmin

γ
‖yD −Dγ‖2

2 + λ · ‖ΩDγ‖pp

= D · Argmin
γ
‖yD −Dγ‖2

2 + λ · ‖γ‖pp

We see that the solution to x̂D
MAP−A comes from a MAP-Synthesis structure with

D = Ω+, and applied to yD. We conclude by showing that yD in this formulation

may be replaced with y. We do this using similar arguments to those applied

above, in a reverse manner:

x̂D
MAP−A = D · Argmin

γ
‖yD −Dγ‖2

2 + λ · ‖γ‖pp

= D · Argmin
γ
‖yD −Dγ‖2

2 + ‖yD⊥‖2
2 + λ · ‖γ‖pp

= D · Argmin
γ
‖yD + yD⊥ −Dγ‖2

2 + λ · ‖γ‖pp

= D · Argmin
γ
‖y−Dγ‖2

2 + λ · ‖γ‖pp

Summing up, for the (under-)determined case, and with the relation D = Ω+,

we have shown that given a signal y = yD + yD⊥, the MAP-Analysis solution

and the MAP-Synthesis solution are related by x̂MAP−A = x̂MAP−S + yD⊥, as

claimed.
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2.B MAP-Analysis Defining Polytope

Lemma 2.1. Facets of the MAP-Analysis Defining Polytope. Let x ∈

∂ΨΩ, where ΨΩ is the MAP-Analysis defining polytope {x | ‖Ωx‖1 ≤ 1}. If Ωx

has no vanishing elements, then x resides strictly within a facet (N−1-dimensional

face) of the MAP-Analysis defining polytope.

Proof. Let fA(x) = ‖Ωx‖1 (the MAP-Analysis target function), and assume Ωx

has no vanishing elements; then ∇fA(x) = ΩT sign(Ωx), and is defined at x. Also,

since all elements of Ωx are finite and non-zero, there exists a ball Bε(x) around

x such that for all x ∈ Bε(x), Ωx has no vanishing elements. Now consider

the intersection ∂ΨΩ ∩ Bε(x): this is a neighbourhood of x on the boundary of

the defining polytope, and for all x in it, Ωx has no zero coordinates. From

continuity of Ωx, we conclude that none of its coordinates change sign within this

neighbourhood, so for all x in it, sign(Ωx) = sign(Ωx) and also∇fA(x) = ∇fA(x).

As the defining polytope is a level-set of fA, ∇fA (where defined) designates the

direction of the normal to this polytope. We therefore have a finite neighbourhood

of x on the boundary of the polytope where the normal is fixed, and thus x must

reside strictly within a facet of this polytope.

We now bring the proof of Claim 2.1, generalizing the above lemma.

Claim 2.1. Faces of the MAP-Analysis Defining Polytope. Let x ∈ ∂ΨΩ,

and let k denote the rank of the rows in Ω to which x is orthogonal to. Then

x resides strictly within a face of dimension (N − k − 1) of the MAP-Analysis

defining polytope.

Proof. Assume a signal x ∈ ∂ΨΩ. Let {w1, . . . ,wk} orthonormally span the rows

in Ω to which x is orthogonal to, and let {u1, . . . ,uN−k} span their complementary

space. We denote U = Span{ui} and W = Span{wj}. Clearly x ∈ U , from

orthogonality to {wj}.

57



Chapter 2: Analysis versus Synthesis in Signal Priors

First, we consider the space U . Any vector v ∈ U may be written as v =

Uα(v), where U = [u1 | . . . | uN−k] is an N × (N − k) matrix, and α(v) = UTv.

Since v ∈ U , it is orthogonal to all the rows in Ω to which x is orthogonal to;

therefore, letting Ω̂ be the matrix obtained by discarding these rows from Ω, then

for any v ∈ U , we have ‖Ωv‖1 = ‖Ω̂v‖1. Note that since we assume Ω is full

rank, then after removing from it the rows whose span is W , the remaining rows

of Ω̂ still span at least the complement space U .

Now, define ω = Ω̂U; we have ‖Ωv‖1 = ‖Ω̂v‖1 = ‖Ω̂Uα(v)‖1 = ‖ωα(v)‖1

for any v ∈ U . Multiplying Ω̂ to the left of U is essentially an orthogonal projec-

tion of its rows on the subspace U ; since the rows of Ω̂ span U , the rank of the

result must be equal to that of U. Therefore the rank of ω is (N − k), so it must

have at least this number of rows, and is thus an overcomplete analysis operator

on the α-space.

Since x ∈ U , all the equalities above hold for x. Specifically, ‖ωα(x)‖1 =

‖Ωx‖1 = 1, so by definition α(x) ∈ ∂Ψω. In other words, α(x) must reside on the

boundary of the defining polytope corresponding to the (N−k)-dimensional MAP-

Analysis problem for the α-space with operator ω. We further know that Ω̂x has

no vanishing elements, since all such elements have been removed, so ωα(x) =

Ω̂x has no vanishing elements. We have thus established all the conditions of

Lemma 2.1 for α(x), and it follows that α(x) resides strictly within a facet of the

(N − k)-dimensional polytope Ψω.

Given this, we know there exists an (N − k − 1)-dimensional ball about α(x)

such that this ball is entirely contained within the boundary of Ψω. By applying

U to the points of this ball, we orthonormally inject it to the N -dimensional

signal space, obtaining an (N − k − 1)-dimensional ball about x = Uα(x). This

ball resides entirely on the boundary of ΨΩ, since for any signal x = Uα(x)

in this ball, x ∈ U and so ‖Ωx‖1 = ‖ωα(x)‖1 = 1. Evidently, we have an

(N − k − 1)-dimensional ball about x, residing entirely on the boundary of the
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defining polytope, therefore xmust reside on a face of dimension at least (N−k−1)

of this polytope. To conclude the proof, we show this residence is strict; in other

words, we prove that there does not exist a ball of higher dimension about x

residing entirely within the polytope’s boundary.

Consider a d-dimensional ball about x, contained entirely within the boundary

of the defining polytope; then for any point x + e in this ball, the point x − e is

also in the ball. Now, write e as

e =
∑
i

aiui +
∑
j

bjwj ,

where {ui} and {wj} are the orthonormal bases as defined above. Since both

points are on the boundary of ΨΩ, we have ‖Ωx‖1 = ‖Ω(x+e)‖1 = ‖Ω(x−e)‖1 =

1. Written explicitly, these expand to

Ω(x± e) = Ω
[
x±

(∑
aiui +

∑
bjwj

)]
.

Since (x±
∑
aiui) ∈ U , all vanishing coefficients in Ωx also vanish in

Ω (x±
∑
aiui). As to the second part, assume by contradiction that

∑
bjwj ∈ W

is non-zero. Clearly the same coefficients cannot all vanish in Ω
∑
bjwj, as the

corresponding rows in Ω span W . Therefore adding or subtracting Ωe to Ωx

necessarily increases the absolute-value-sum of these coefficients. On the other

hand, the entire `1 norm of Ω(x ± e) remains fixed; so, for the remainder of the

coefficients, the addition or subtraction of Ωe must strictly reduce their absolute-

value-sum. However, this may not occur simultaneously for both addition and

subtraction. Therefore, the only resolution to this is to require bj ≡ 0 for all

j, implying that necessarily e ∈ U . Thus, we have limited the dimension of

the ball about x to N − k (the dimension of U). Finally, x ∈ U , but clearly

‖Ω(x + δx)‖1 6= ‖Ωx‖1 for any δ 6= 0. So e cannot be proportional to x, and

hence the ball about x must be of dimension less than U . We conclude that

d ≤ (N − k− 1), so x can reside strictly within a face of dimension no more than

(N−k−1). Since we have already shown the existence of such a face, we conclude
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that x resides strictly within an (N−k−1)-dimensional face of the MAP-Analysis

defining polytope, as claimed.

2.C MAP-Synthesis Defining Polytope

Claim 2.2. Geometry of the MAP-Synthesis Defining Polytope. The

MAP-Synthesis defining polytope ΦD = D{‖γ‖1 ≤ 1} is obtained as the convex

hull of {±di}i=1...L, where {di} are the columns of D.

Proof. For the proof we note that di = Dei, where {ei} is the standard basis of

RL. We introduce the notation CH{vi} to denote the convex hull of the set {vi}.

CH{di} ⊆ ΦD: We have ±ei ∈ {‖γ‖1 ≤ 1} for all i, and therefore ±di =

D(±ei) ∈ D{‖γ‖1 ≤ 1} = ΦD. Since ΦD is convex, it must also contain the

convex hull of {±di}.

ΦD ⊆ CH{di}: Let x ∈ ΦD, then there exists a representation γ such that

x = Dγ, where ‖γ‖1 ≤ 1. Since γ ∈ {‖γ‖1 ≤ 1}, it is a convex combination of

{±ei}, and can be written as γ =
∑

i

{
aiei + bi(−ei)

}
. This implies x = Dγ =∑

i

{
aidi + bi(−di)

}
, so x is a convex combination of {±di}, and as such exists

in their convex hull.

2.D MAP-Synthesis with a Normalized Dictionary

Lemma 2.2. Let P be a polytope with fixed-length vertices, i.e., for all vertices

v of P, ‖v‖2 = c for some constant c. Then for every non-vertex point p on the

boundary of the polytope, ‖p‖2 < c.

Proof. Consider a facet ϕ of P , defined by the vertices {v1, . . . ,vn}. This facet

constitutes the intersection of some (n−1)-dimensional hyperplane with the poly-

tope. Now, consider the `2-norm function f(x) = ‖x‖2, constrained to this plane.

The iso-surfaces of f on this plane are a set of concentric ellipsoids about some
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central point of minimal `2-norm. Since {v1, . . . ,vn} are of a fixed length, they all

reside on the same ellipsoid. The facet ϕ, which is the convex hull of {v1, . . . ,vn},

must thus exist entirely within this ellipsoid by definition of the convex hull as the

minimal convex set containing {v1, . . . ,vn}. This implies that for every p ∈ ϕ,

‖p‖2 ≤ c.

To obtain sharp inequality, we assume by contradiction that ‖p‖2 = c while

p is not a vertex. Since p is not a vertex, there exist two points p1,p2 ∈ ϕ such

that p resides on the line connecting p1 and p2. However, examining the function

f , we have the following observation: for any point in space, advancing from it in

two opposite directions will always lead to at least one direction of increase in f ;

this is due to the fact that when constrained to an infinite line, f always achieves

a single minimum and no maximum on the line. This implies that at least one

of p1 and p2 will have `2-norm larger than c, leading to a contradiction. Hence

necessarily ‖p‖2 < c.

Claim 2.3. Principal Signals of MAP-Synthesis with a Normalized Dic-

tionary. Let D be a MAP-Synthesis dictionary with fixed-energy columns. Then

the dictionary atoms coincide with the principal signals of the MAP-Synthesis

prior.

Proof. From Lemma 2.2, the proof is trivial. Let us denote the length of the

dictionary atoms by c. Then for any atom d, it follows that it must be a vertex as

‖d‖2 = c. Now, assume by contradiction that d is non-principal; therefore there

exists a direction from d on the boundary of the defining polytope such that the

distance from the origin increases. However this means that if we advance from

d in this direction a short enough distance, we will obtain a non-vertex point on

the polytope boundary whose length is larger than c, contradicting the previous

lemma. We conclude that d must be a principal signal.
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Abstract

Sparse and redundant representation modeling of data assumes an ability to de-

scribe signals as linear combinations of a few atoms from a pre-specified dictionary.

As such, the choice of the dictionary that sparsifies the signals is crucial for the

success of this model. In general, the choice of a proper dictionary can be done

using one of two ways: (i) building a sparsifying dictionary based on a mathemat-

ical model of the data, or (ii) learning a dictionary to perform best on a training

set. In this paper we describe the evolution of these two paradigms. As manifes-

tations of the first approach, we cover topics such as wavelets, wavelet packets,

contourlets, and curvelets, all aiming to exploit 1-D and 2-D mathematical models

for constructing effective dictionaries for signals and images. Dictionary learning

takes a different route, attaching the dictionary to a set of examples it is supposed

to serve. From the seminal work of Field and Olshausen, through the MOD, the
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K-SVD, the Generalized PCA and others, this paper surveys the various options

such training has to offer, up to the most recent contributions and structures.

3.1 Introduction

The process of digitally sampling a natural signal leads to its representation as the

sum of Delta functions in space or time. This representation, while convenient for

the purposes of display or playback, is mostly inefficient for analysis tasks. Signal

processing techniques commonly require more meaningful representations which

capture the useful characteristics of the signal — for recognition, the representation

should highlight salient features; for denoising, the representation should efficiently

separate signal and noise; and for compression, the representation should capture

a large part of the signal with only a few coefficients. Interestingly, in many cases

these seemingly different goals align, sharing a core desire for simplification.

Representing a signal involves the choice of a dictionary, which is the set of

elementary signals – or atoms – used to decompose the signal. When the dictionary

forms a basis, every signal is uniquely represented as the linear combination of

the dictionary atoms. In the simplest case the dictionary is orthogonal, and the

representation coefficients can be computed as inner products of the signal and the

atoms; in the non-orthogonal case, the coefficients are the inner products of the

signal and the dictionary inverse, also referred to as the bi-orthogonal dictionary.

For years, orthogonal and bi-orthogonal dictionaries were dominant due to their

mathematical simplicity. However, the weakness of these dictionaries — namely

their limited expressiveness — eventually outweighed their simplicity. This led

to the development of newer overcomplete dictionaries, having more atoms than

the dimensions of the signal, which promised to represent a wider range of signal

phenomena.

The move to overcomplete dictionaries was done cautiously, in an attempt to

minimize the loss of favorable properties offered by orthogonal transforms. Many
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dictionaries formed tight frames, which ensured that the representation of the

signal as a linear combination of the atoms could still be identified with the inner

products of the signal and the dictionary. Another approach, manifested by the

Best Basis algorithm, utilized a specific dictionary structure which essentially

allowed it to serve as a pool of atoms from which an orthogonal sub-dictionary

could be efficiently selected.

Research on general overcomplete dictionaries mostly commenced over the past

decade, and is still intensely ongoing. Such dictionaries introduce an intriguing

ambiguity in the definition of a signal representation. We consider the dictionary

D = [d1 d2 . . .dL] ∈ RN×L, where the columns constitute the dictionary atoms,

and L ≥ N . Representing a signal x ∈ RN using this dictionary can take one of

two paths — either the analysis path, where the signal is represented via its inner

products with the atoms,

γa = DTx , (3.1)

or the synthesis path, where it is represented as a linear combination of the atoms,

x = Dγs . (3.2)

The two definitions coincide in the complete case (L = N), when the analysis and

synthesis dictionaries are bi-orthogonal. In the general case, however, the two may

dramatically differ.

The synthesis approach poses yet another interesting question: when D is

overcomplete, the family of representations γs satisfying (3.2) is actually infinitely

large, with the degrees of freedom identified with the null-space of D. This allows

us to seek the most informative representation of the signal with respect to some

cost function C(γ):

γs = Argmin
γ

C(γ) Subject To x = Dγ . (3.3)

Practical choices of C(γ) promote the sparsity of the representation, meaning that

we want the sorted coefficients to decay quickly. Solving (3.3) is thus commonly
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referred to as sparse coding. We can achieve sparsity by choosing C(γ) as some

robust penalty function, which we loosely define as a function that is tolerant to

large coefficients but aggressively penalizes small non-zero coefficients. Examples

include the Huber function [100] as well as the various `p cost functions with

0 ≤ p ≤ 1.

The two options (3.1) and (3.2), and specifically the problem (3.3), have been

extensively studied over the past few years. This in turn has led to the devel-

opment of new signal processing algorithms which utilize general overcomplete

transforms. However, in going from theory to practice, the challenge of choosing

the proper dictionary for a given task must be addressed. Earlier works made

use of traditional dictionaries, such as the Fourier and wavelet dictionaries, which

are simple to use and perform adequately for 1-dimensional signals. However,

these dictionaries are not well equipped for representing more complex natural

and high-dimensional signal data, and new and improved dictionary structures

were sought.

A variety of dictionaries have been developed in response to the rising need.

These dictionaries emerge from one of two sources — either a mathematical model

of the data, or a set of realizations of the data. Dictionaries of the first type are

characterized by an analytic formulation and a fast implicit implementation, while

dictionaries of the second type deliver increased flexibility and the ability to adapt

to specific signal data. Most recently, there is a growing interest in dictionaries

which can mediate between the two types, and offer the advantages of both worlds.

Such structures are just beginning to emerge, and research is still ongoing.

In this paper we present the fundamental concepts guiding modern dictionary

design, and outline the various contributions in the field. In Section 3.2 we take

a historical viewpoint, and trace the evolution of dictionary design methodology

from the early 1960’s to the late 1990’s, focusing on the conceptual advancements.

In Sections 3.3 and 3.4 we overview the state-of-the art techniques in both analytic
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and trained dictionaries. We summarize and conclude in Section 3.5.

3.2 A History of Transform Design

3.2.1 Signal Transforms: The Linear Era

Signal transforms have been around for as long as signal processing has been con-

ducted. In the 1960’s, early signal processing researchers gave significant attention

to linear time-invariant operators, which were simple and intuitive processes for

manipulating analog and digital signals. In this scenery, the Fourier transform

naturally emerged as the basis which diagonalizes these operators, and it imme-

diately became a central tool for analyzing and designing such operators. The

transform gained tremendous popularity with the introduction of the Fast Fourier

Transform (FFT) in 1965 by Cooley and Tukey [101], which provided its numerical

appeal.

The Fourier basis describes a signal in terms of its global frequency content,

as a combination of orthogonal waveforms

F =
{
φn(x) = einx

}
n∈Z .

A signal is approximated in this basis by projecting it onto the K lowest frequency

atoms, which has a strong smoothing and noise-reducing effect. The Fourier ba-

sis is thus efficient at describing uniformly smooth signals. However, the lack of

localization makes it difficult to represent discontinuities, which generate large

coefficients over all frequencies. Therefore, the Fourier transform typically pro-

duces oversmooth results in practical applications. For finite signals, the Fourier

transform implicitly assumes a periodic extension of the signal, which introduces a

discontinuity at the boundary. The Discrete Cosine Transform (DCT) is the result

of assuming an anti-symmetric extension of the signal, which results in continuous

boundaries, and hence in a more efficient approximation. Since the DCT has the

added advantage of producing non-complex coefficients, it is typically preferred in

67



Chapter 3: Dictionaries for Sparse Representation Modeling

practical applications; see Fig. 3.1 for some 2-D DCT atoms.

Signal approximation in the Fourier basis was soon recognized as a specific

instance of linear approximation: given a basis {φn}N−1
n=0 of RN , a signal x ∈ RN is

linearly approximated by projecting it onto a fixed subset ofK < N basis elements

x ≈
∑
n∈IK

(ψT
nx)φn , (3.4)

where {ψn}N−1
n=0 is in general the bi-orthogonal basis (ψn = φn in the orthonormal

case). The process is an under-complete linear transform of x, and, with the right

choice of basis, can achieve compaction — the ability to capture a significant part

of the signal with only a few coefficients. Indeed, this concept of compaction will

later be replaced with sparsity, though the two are closely related [102].

Optimizing compaction was a major driving force for the continued develop-

ment of more efficient representations. During the 1970’s and 1980’s, a new and

very appealing source of compaction was brought to light: the data itself. The

focus was on a set of statistical tools developed during the first half of the century,

known as the Karhunen-Loève Transform (KLT) [7, 103], or Principal Component

Analysis (PCA) [104]. The KLT is a linear transform which can be adapted to rep-

resent signals coming from a certain known distribution. The adaptation process

fits a low-dimensional subspace to the data which minimizes the `2 approximation

error. Specifically, given the data covariance matrix Σ (either known or empiri-

cal), the KLT atoms are the first K eigenvectors of the eigenvalue decomposition

of Σ,

Σ = UΛUT .

From a statistical point of view, this process models the data as coming from a low-

dimensional Gaussian distribution, and thus is most effective for Gaussian data.

Fig. 3.1 shows an example of the KLT basis trained from a set of image patches.

The DCT basis, shown in the same figure, is regarded as a good approximation of

the KLT for natural image patches when a non-adaptive transform is required.
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Figure 3.1: Left: a few 12×12 DCT atoms. Right: the first 40 KLT atoms, trained using 12×12

image patches from Lena.

Compared to the Fourier transform, the KLT is superior (by construction)

in terms of representation efficiency. However, this advantage comes at the cost

of a non-structured and substantially more complex transform. As we will see,

this tradeoff between efficiency and adaptivity continues to play a major role in

modern dictionary design methodology as well.

3.2.2 Non-Linear Revolution and Elements of Modern Dictionary De-

sign

In statistics research, the 1980’s saw the rise of a new powerful approach known

as robust statistics. Robust statistics advocates sparsity as a key for a wide range

of recovery and analysis tasks. The idea has its roots in classical Physics, and

more recently in Information Theory, and promotes simplicity and conciseness

in guiding phenomena descriptions. Motivated by these ideas, the 1980’s and

1990’s were characterized by a search for sparser representations and more efficient

transforms.

Increasing sparsity required departure from the linear model, towards a more

flexible non-linear formulation. In the non-linear case, each signal is allowed

to use a different set of atoms from the dictionary in order to achieve the best

approximation. Thus, the approximation process becomes

x ≈
∑

n∈IK(x)

cnφn , (3.5)
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where IK(x) is an index set adapted to each signal individually (we refer the reader

to [7, 105] for a more thorough discussion of this topic).

The non-linear view paved the way to the design of newer, more efficient trans-

forms. In the process, many of the fundamental concepts guiding modern dictio-

nary design were formed. Following the historic time line, we trace the emergence

of the most important modern dictionary design concepts, which were mostly

formed during the last two decades of the 20th century.

Localization: To achieve sparsity, transforms required better localization. Atoms

with concentrated supports allow more flexible representations based on the local

signal characteristics, and limit the effects of irregularities, which are observed to

be the main source of large coefficients. In this spirit, one of the first structures to

be used was the Short Time Fourier Transform (STFT) [106], which emerges as a

natural extension to the Fourier transform. In the STFT, the Fourier transform is

applied locally to (possibly overlapping) portions of the signal, revealing a time-

frequency (or space-frequency) description of the signal. An example of the STFT

is the JPEG image compression algorithm [107], which is based on this concept.

During the 1980’s and 1990’s, the STFT was extensively researched and gen-

eralized, becoming more known as the Gabor transform — named in homage

of Dennis Gabor, who first suggested the time-frequency decomposition back

in 1946 [108]. Gabor’s work was independently rediscovered in 1980 by Bas-

tiaans [109] and Janssen [110], who studied the fundamental properties of the

expansion.

A basic 1-D Gabor dictionary consists of windowed waveforms

G =
{
φn,m(x) = w(x− βm)ei2παnx

}
n,m∈Z ,

where w(·) is a low-pass window function localized at 0 (typically a Gaussian),

and α and β control the time and frequency resolutions of the transform. Much

of the mathematical foundations of this transform were laid out during the late

1980’s by Daubechies, Grossman and Meyer [111, 112] who studied the transform
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from the angle of frame theory, and by Feichtinger and Gröchenig [113–115] who

employed a generalized group-theoretic point of view. Study of the discrete version

of the transform and its numerical implementation followed in the early 1990’s,

with notable contributions by Wexler and Raz [116] and by Qian and Chen [117].

In higher dimensions, more complex Gabor structures were developed which

add directionality, by varying the orientation of the sinusoidal waves. This struc-

ture gained substantial support from the work of Daugman [118, 119], who dis-

covered oriented Gabor-like patterns in simple-cell receptive fields in the visual

cortex. These results motivated the deployment of the transform to image pro-

cessing tasks, led by works such as Daugman [120] and Porat and Zeevi [121].

Today, practical uses of the Gabor transform are mainly in analysis and detection

tasks, as a collection of directional filters. Fig. 3.2 shows some examples of 2-D

Gabor atoms of various orientations and sizes.

Multi-Resolution: One of the most significant conceptual advancements achieved

in the 1980’s was the rise of multi-scale analysis. It was realized that natural sig-

nals, and images specifically, exhibited meaningful structures over many scales,

and could be analyzed and described particularly efficiently by multi-scale con-

structions. One of the simplest and best known such structures is the Laplacian

pyramid, introduced in 1984 by Burt and Adelson [122]. The Laplacian pyramid

represents an image as a series of difference images, where each one corresponds

to a different scale and roughly a different frequency band.

In the second half of the 1980’s, though, the signal processing community was

particularly excited about the development of a new very powerful tool, known

as wavelet analysis [7, 123, 124]. In a pioneering work from 1984, Grossman and

Morlet [125] proposed a signal expansion over a series of translated and dilated

versions of a single elementary function, taking the form

W =
{
φn,m(x) = αn/2f(αnx− βm)

}
n,m∈Z .

This simple idea captivated the signal processing and harmonic analysis com-
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munities, and in a series of influential works by Meyer, Daubechies, Mallat and

others [111, 112, 126–131], an extensive wavelet theory was formalized. The the-

ory was formulated for both the continuous and discrete domains, with a complete

mathematical framework relating the two. A significant breakthrough came from

Meyer’s work in 1985 [126], who found that unlike the Gabor transform (and con-

trary to common belief) the wavelet transform could be designed to be orthogonal

while maintaining stability — an extremely appealing property to which much of

the initial success of the wavelets can be attributed to.

Specifically of interest to the signal processing community was the work of

Mallat and his colleagues [129–131] which established the wavelet decomposition

as a multi-resolution expansion and put forth efficient algorithms for computing

it. In Mallat’s description, a multi-scale wavelet basis is constructed from a pair

of localized functions referred to as the scaling function and the mother wavelet,

see Fig. 3.3. The scaling function is a low frequency signal, and along with its

translations, spans the coarse approximation of the signal. The mother wavelet

is a high frequency signal, and with its various scales and translations spans the

signal detail. In the orthogonal case, the wavelet basis functions at each scale are

critically sampled, spanning precisely the new detail introduced by the finer level.

Non-linear approximation in the wavelet basis was shown to be optimal for

piecewise-smooth 1-D signals with a finite number of discontinuities, see e.g., [130].

This was a striking finding at the time, realizing that this is achieved without prior

detection of the discontinuity locations. Unfortunately, in higher dimensions the

wavelet transform loses its optimality; the multi-dimensional transform is a simple

separable extension of the 1-D transform, with atoms supported over rectangular

regions of different sizes (see Fig. 3.3). This separability makes the transform

simple to apply, however the resulting dictionary is only effective for signals with

point singularities, while most natural signals exhibit elongated edge singularities.

The JPEG2000 image compression standard, based on the wavelet transform, is
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Figure 3.2: Left: a few 12 × 12 Gabor atoms at different scales and orientations. Right: a few

atoms trained by Olshausen and Field (extracted from [94]).

indeed known for its ringing (smoothing) artifacts near edges.

Adaptivity : Going to the 1990’s, the desire to push sparsity even further, and

describe increasingly complex phenomena, was gradually revealing the limits of

approximation in orthogonal bases. The weakness was mostly associated with the

small and fixed number of atoms in the dictionary — dictated by the orthogonality

— from which the optimal representation could be constructed. One option to

obtain further sparsity was thus to adapt the transform atoms themselves to the

signal content.

One of the first such structures to be proposed was the wavelet packet trans-

form, introduced by Coifman, Meyer and Wickerhauser in 1992 [132]. The trans-

form is built upon the success of the wavelet transform, adding adaptivity to allow

finer tuning to the specific signal properties. The main observation of Coifman et

al. was that the wavelet transform enforced a very specific time-frequency struc-

ture, with high frequency atoms having small supports and low frequency atoms

having large supports. Indeed, this choice has deep connections to the behavior of

real natural signals; however, for specific signals, better partitionings may be pos-

sible. The wavelet packet dictionary essentially unifies all dyadic time-frequency

atoms which can be derived from a specific pair of scaling function and mother

wavelet, so atoms of different frequencies can come in an array of time supports.

Out of this large collection, the wavelet packet transform allows to efficiently se-
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lect an optimized orthogonal sub-dictionary for any given signal, with the standard

wavelet basis being just one of an exponential number of options. The process was

thus named by the authors a Best Basis search. The wavelet packet transform is,

by definition, at least as good as wavelets in terms of coding efficiency. However,

we note that the multi-dimensional wavelet packet transform remains a separable

and non-oriented transform, and thus does not generally provide a substantial

improvement over wavelets for images.

Geometric Invariance and Overcompleteness : In 1992, Simoncelli et al. [14]

published a thorough work advocating a dictionary property they termed shifta-

bility, which describes the invariance of the dictionary under certain geometric

deformations, e.g., translation, rotation or scaling. Indeed, a well known weakness

of the wavelet transform is its strong translation-sensitivity, as well as rotation-

sensitivity in higher dimensions. The authors concluded that achieving these prop-

erties required abandoning orthogonality in favor of overcompleteness, since the

critical number of atoms in an orthogonal transform was simply insufficient. In

the same work, the authors developed an overcomplete oriented wavelet transform

— the steerable wavelet transform — which was based on their previous work on

steerable filters and consisted of localized 2-D wavelet atoms in many orientations,

translations and scales.

For the basic 1-D wavelet transform, translation-invariance can be achieved

by increasing the sampling density of the atoms. The stationary wavelet trans-

form, also known as the undecimated or non-subsampled wavelet transform, is

obtained from the orthogonal transform by eliminating the sub-sampling and col-

lecting all translations of the atoms over the signal domain. The algorithmic

foundation for this was laid by Beylkin in 1992 [133], with the development of

an efficient algorithm for computing the undecimated transform. The stationary

wavelet transform was indeed found to substantially improve signal recovery com-

pared to orthogonal wavelets, and its benefits were independently demonstrated
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Figure 3.3: Left: Coiflet 1-D scaling function (solid) and mother wavelet (dashed). Right: some

2-D separable Coiflet atoms.

in 1995 by Nason and Silverman [134] and Coifman and Donoho [135].

3.2.3 From Transforms to Dictionaries

By the second half of the 1990’s, most of the concepts for designing effective

transforms were laid out. At the same time, a conceptual change of a different

sort was gradually taking place. In their seminal work from 1993, Mallat and

Zhang [11] proposed a novel sparse signal expansion scheme based on the selection

of a small subset of functions from a general overcomplete dictionary of functions.

Shortly after, Chen, Donoho and Saunders published their influential paper on the

Basis Pursuit [136], and the two works signalled the beginning of a fundamental

move from transforms to dictionaries for sparse signal representation. An array

of works since has formed a wide mathematical and algorithmic foundation of this

new field, and established it as a central tool in modern signal processing [137].

The seemingly minor terminological change enclosed the idea that a signal was

allowed to have more than one description in the representation domain, and that

selecting the best one depended on the task. Moreover, it de-coupled the processes

of designing the dictionary and coding the signal: indeed, given the dictionary —

the collection of elemental signals — different cost functions could be proposed

in (3.3), and different coding methods could be applied.

The first dictionaries to be used in this way were the existing transforms —
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such as the Fourier, wavelet, STFT, and Gabor transforms, see e.g., [11, 136]. As

an immediate consequence, the move to a dictionary-based formalism provided

the benefit of constructing dictionary mergers, which are the unions of several

simpler dictionaries; these were proposed by Chen, Donoho and Saunders in [136],

and provide a simple way to increase the variety of features representable by the

dictionary.

3.2.4 Higher Dimensional Signals

The variety of dictionaries developed through the mid-1990’s served one-dimensional

signals relatively well. However, the dictionaries for multi-dimensional signal rep-

resentation were still unsatisfying. Particularly frustrating, for instance, was the

common knowledge that 2-D piecewise-smooth signals could be described much

more efficiently using a simple piecewise-linear approximation over an adaptive

triangle grid, than using any existing dictionary [7, 16].

In 1998, Donoho developed the wedgelet dictionary for 2-D signal representa-

tion [138], which bears some resemblance to the adaptive triangulation structure.

The wedgelet dictionary consists of constant-valued, axis-aligned squares, bisected

by straight lines, and spanning many sizes and locations. Donoho showed that this

dictionary is optimal for piecewise-constant images with regular edge discontinu-

ities, and provided a quick (though non-optimal) approximation technique. The

elegant wedgelet construction, though too simplistic for many tasks, was adopted

and generalized by several researchers, leading to such structures as wavelet-

wedgelets hybrids (wedgeprints) [139], piecewise-linear wedgelets (platelets) [140],

and higher-dimensional wedgelets (surflets) [141].

In parallel to the wedgelet transform, Candès and Donoho introduced the

ridgelet transform as a multi-dimensional extension of the wavelet transform [92].

A ridgelet atom is a translated and dilated wavelet in one direction, and fixed in

the orthogonal directions (similar to a plane wave). The transform is proven to
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be optimal for piecewise-smooth functions with plane discontinuities. Indeed, the

basic ridgelet dictionary is unsuitable for natural signals due its lack of localiza-

tion. However, with proper localization and multi-scale extension, the dictionary

forms the core of the much more powerful curvelet transform [16, 77], introduced

by the authors soon after, and which provides a comprehensive framework for rep-

resenting multi-dimensional signals. Similar efforts led to the development of the

contourlet, shearlet, and other transforms, which are described in more detail in

the next section.

3.2.5 Analytic versus Trained Dictionaries

The dictionaries described so far all roughly fall under the umbrella of Harmonic

Analysis, which suggests modeling interesting signal data by a more simple class

of mathematical functions, and designing an efficient representation around this

model. For example, the Fourier dictionary is designed around smooth functions,

while the wavelet dictionary is designed around piecewise-smooth functions with

point singularities. The dictionaries of this sort are characterized by an analytic

formulation, and are usually supported by a set of optimality proofs and error

rate bounds. An important advantage of this approach is that the resulting dic-

tionary usually features a fast implicit implementation which does not involve

multiplication by the dictionary matrix. On the other hand, the dictionary can

only be as successful as its underlying model, and indeed, these models tend to be

over-simplistic compared to the complexity of natural phenomena.

Through the 1980’s and 1990’s, Machine Learning techniques were rapidly

gaining interest, and promised to confront this exact difficulty. The basic as-

sumption behind the learning approach is that the structure of complex natural

phenomena can be more accurately extracted directly from the data than by using

a mathematical description. One direct benefit of this is that a finer adaptation

to specific instances of the data becomes possible, replacing the use of generic
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models.

A key contribution to the area of dictionary learning was provided by Olshausen

and Field in 1996 [94]. In their widely celebrated paper, the authors trained a dic-

tionary for sparse representation of small image patches collected from a number

of natural images. With relatively simple algorithmic machinery, the authors were

able to show a remarkable result — the trained atoms they obtained were incred-

ibly similar to the mammalian simple-cell receptive fields, which until then were

only weakly explained via Gabor filters. The finding was highly motivating to the

sparse representation community, as it demonstrated that the single assumption of

sparsity could account for a fundamental biological visual behavior. Also, the re-

sults demonstrated the potential in example-based methods to uncover elementary

structures in complex signal data.

The experiments of Olshausen and Field inspired a series of subsequent works

aimed at improving the example-based training process. Towards the end of the

1990’s, these works mostly focused on statistical training methods, which model

the examples as random independent variables originating from a sparse noisy

source. With X = [x1 x2 . . .xn] denoting the data matrix, the statistical ap-

proach suggests seeking for the dictionary which either maximizes the likelihood

of the data P (X|D) (Maximum Likelihood estimation), e.g., [24], or maximizes

the posterior probability of the dictionary P (D|X) (Maximum A-Posterior esti-

mation), e.g., [25]. The resulting optimization problems in these works are typi-

cally solved in an Expectation-Maximization (EM) fashion, alternating estimation

of the sparse representations and the dictionary; earlier works employed gradient

descent or similar methods for both tasks, while later ones employ more powerful

sparse-coding techniques for the estimation of the sparse representations.
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3.3 Analytic Dictionaries — State-of-the-Art

Recent advances in analytic dictionary design have mostly focused on the move

to two and higher dimensions. Multi-dimensional signals are significantly more

complex than one-dimensional ones due to the addition of orientation. Also, the

elementary singularities become curves — or manifolds in general — rather than

points, and thus have a much more complex geometry to trace. In order to handle

these complex signals, new transforms that are both localized and oriented have

been developed.

Analytic dictionaries are typically formulated as tight frames, meaning that

DDTx = x for all x, and therefore the dictionary transpose can be used to obtain

a representation over the dictionary. The analytic approach then proceeds by

analyzing the behavior of the filter-set DTx, and establishes decay rates and error

bounds.

The tight frame approach has several advantages. Analyzing the behavior of

DT as an analysis operator seems easier than deriving sparsity bounds in a syn-

thesis framework, and indeed, results obtained for the analysis formulation also

induce upper bounds for the synthesis formulation. Another benefit is that —

when formulated carefully — the algorithms for both analysis and synthesis op-

erators become nearly reversals, simplifying algorithm design. Finally, the tight

frame approach is beneficial in that it simultaneously produces a useful structure

for both the analysis and synthesis frameworks, and has a meaningful interpreta-

tion in both.

Sparse-coding in this case is typically done by computing the analysis coef-

ficients DTx, and passing them through a non-linear shrinking operator. This

method has the advantage of providing a simple and efficient way to achieve

sparse representations over the dictionary, though it is worth noting that from

a pure synthesis point of view, this process is sub-optimal, and one might benefit

from employing a more advanced sparse-coding technique, e.g., an iterated shrink-
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age technique [43], directly to the expansion coefficients. Recent efforts in this

direction have led Yaghoobi et al. [142] to propose a parameter tuning method

for analytic dictionaries, which may further improve their performance in sparse-

coding processes.

3.3.1 Curvelets

The curvelet transform was introduced by Candès and Donoho in 1999 [16], and

was later refined into its present form in 2003 [17]. When published, the transform

astonished the harmonic analysis community by achieving what was then believed

to be only possible with adaptive representations: it could represent 2-D piecewise-

smooth functions with smooth curve discontinuities at an (essentially) optimal

rate.

The curvelet transform is formulated as a continuous transform, with dis-

cretized versions developed for both formulations [17, 77, 143]. Each curvelet

atom is associated with a specific location, orientation and scale. In the 2-D

case, a curvelet atom is roughly supported over an elongated elliptical region,

and is oscillatory along its width and smooth along its length, see Fig. 3.4. The

curvelet atoms are characterized by their specific anisotropic support, which obeys

a parabolic scaling law width ∼ length2 . As it turns out, this property is useful for

the efficient representation of smooth curves [144], and indeed several subsequent

transforms follow this path. In higher dimensions, the curvelet atoms become

flattened ellipsoids, oscillatory along their short direction and smooth along the

other directions [17, 143, 145].

3.3.2 Contourlets

The curvelet transform offers an impressively solid continuous construction and

exhibits several useful mathematical properties. However, its discretization turns

out to be challenging, and the resulting algorithms are relatively complicated.
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Figure 3.4: Some curvelet atoms (left) and contourlet atoms (right). Both represent the second

version of the corresponding transform.

Also, current discretizations have relatively high redundancies, which makes them

more costly to use and less applicable for tasks like compression.

With this in mind, Do and Vetterli proposed the contourlet transform in

2002 [18, 146] as an alternative to the 2-D curvelet transform. The transform

was later refined in 2006 by Lu and Do [19], and a multi-dimensional version,

named surfacelets, was also recently introduced [20].

The contourlet transform shares many of the characteristics of the curvelet

transform, including localization, orientation, and parabolic scaling. However, as

opposed to curvelets, the contourlets are defined directly in the discrete domain,

and thus have a native and simple construction for discrete signals. Also, the stan-

dard contourlet transform has much lower redundancy, approximately in the range

[1.3, 2.3] for the second-generation implementation [19], compared to [2.8, 7.2] for

second-generation curvelets [17].

The contourlet transform implementation is based on a pyramidal band-pass

decomposition of the image followed by a directional filtering stage. The result-

ing oriented atoms are elongated and oscillatory along their width, with some

visual resemblance to the curvelet atoms (see Fig. 3.4). The main appeal of the

transform is due to its simple discrete formulation, its low complexity and re-

duced redundancy. It should be noted, though, that while the transform is well

suited for tasks such as compression, its aggressive sub-sampling has been noted

to lead to artifacts in signal reconstruction, in which case a translation-invariant
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version of the transform is preferred [79, 147]; indeed, this option significantly in-

creases redundancy and complexity, though the simpler structure of the transform

remains.

3.3.3 Bandelets

The bandelet transform was proposed in 2005 by Le Pennec and Mallat [148], with

a second version introduced soon after by Peyré and Mallat [149]. The bandelet

transform represents one of the most recent contributions in the area of signal-

adaptive transforms, and as such it differs fundamentally from the non-adaptive

curvelet and contourlet transforms.

The idea behind the bandelet construction is to exploit geometric regularity

in the image — specifically edges and directional phenomena — in order to fit a

specifically optimized set of atoms to the image. The original bandelet construc-

tion operates in the spatial domain, and is based on an adaptive subdivision of the

image to dyadic regions according to the local complexity; in each region, a set

of skewed wavelets is matched to the image flow, in such a way that the wavelet

atoms essentially ”wrap-around” the edges rather than cross them. This process

significantly reduces the number of large wavelet coefficients, as these typically

emerge from the interaction of a wavelet atom and a discontinuity.

The resulting set of atoms forms a (slightly) overcomplete set, which is specif-

ically tailored for representing the given image. In the second bandelet construc-

tion, which is formulated in the wavelet domain, the transform is further refined

to produce an orthogonal set. In terms of dictionaries, the bandelet transform

selects a set of atoms from a nearly infinite set, and in fact discretization is the

main source for limiting the size of this set. This is as opposed to the wavelet

packet transform, for instance, where the complete set of atoms is not much larger

than the signal dimension. See Fig. 3.5 for an example of bandelets.
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3.3.4 Other Analytic Dictionaries

Many additional analytic transforms have been developed during the past decade,

some of which we mention briefly. The complex wavelet transform [15, 150] is an

oriented and near-translation-invariant high-dimensional extension of the wavelet

transform, achieved through the utilization of two mother wavelets satisfying a

specific relationship between them. Similar to the original wavelet transform, the

complex wavelet transform is efficient and simple to implement, and the added

phase information delivers orientation sensitivity and other favorable properties.

The shearlet transform [21, 80, 151] is a recently proposed alternative to curvelets,

which utilizes structured shear operations rather than rotations to control orien-

tation. Similar to curvelets, the shearlet transform is based on a comprehensive

continuous mathematical construction, and it shares many of the properties of the

curvelet transform while providing some attractive new features. See Fig. 3.6 for

some examples of complex wavelet and shearlet atoms.

Recent adaptive dictionaries include the directionlet transform [152], which

is a discrete transform which constructs oriented and anisotropic wavelets based

on local image directionality, utilizing a specialized directional grouping of the

grid points for its numerical implementation. The grouplet transform [153] is

a multi-scale adaptive transform which essentially generalizes Haar wavelets to

arbitrary supports, based on image content regularity; when applied in the wavelet

domain, the transform bears some resemblance to the second-generation bandelet

transform, and thus is referred to as grouped bandelets.

3.4 Dictionary Training — State-of-the-Art

Dictionary training is a much more recent approach to dictionary design, and as

such, has been strongly influenced by the latest advances in sparse representation

theory and algorithms. The most recent training methods focus on `0 and `1
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Figure 3.5: Left: the flow in a specific image region. Right: some bandelet atoms adapted to

the region. Note how the 1-D wavelets are skewed to follow edges.

sparsity measures, which lead to simple formulations and enable the use of recently

developed efficient sparse-coding techniques [38, 39, 41, 43, 46, 136].

The main advantage of trained dictionaries is that they lead to state-of-the-art

results in many practical signal processing applications. The cost — as in the case

of the KLT — is a dictionary with no known inner structure or fast implementa-

tion. Thus, the most recent contributions to the field employ parametric models

in the training process, which produce structured dictionaries, and offer several

advantages. A different development, which we do not discuss here, is the recent

advancement in online dictionary learning [34, 154], which allows training dictio-

naries from very large sets of examples, and is found to accelerate convergence

and improve the trained result.

3.4.1 Method of Optimal Directions

The Method of Optimal Directions (MOD) was introduced by Engan et al. in

1999 [23, 155], and was one of the first methods to implement what is known

today as a sparsification process. Given a set of examples X = [x1 x2 . . . xn], the

goal of the MOD is to find a dictionary D and a sparse matrix Γ which minimize

the representation error,

Argmin
D,Γ
‖X−DΓ‖2

F Subject To ‖γi‖0 ≤ T ∀i , (3.6)
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Figure 3.6: Left: a few complex wavelet atoms (real part). Right: a few shearlets.

where {γi} represent the columns of Γ, and the `0 sparsity measure ‖·‖0 counts the

number of non-zeros in the representation. The resulting optimization problem

is combinatorial and highly non-convex, and thus we can only hope for a local

minimum at best. Similar to other training methods, the MOD alternates sparse-

coding and dictionary update steps. The sparse-coding is performed for each

signal individually using any standard technique. For the dictionary update, (3.6)

is solved via the analytic solution of the quadratic problem, given by D = XΓ+

with Γ+ denoting the Moore-Penrose pseudo-inverse.

The MOD typically requires only a few iterations to converge, and is overall

a very effective method. The method suffers, though, from the relatively high

complexity of the matrix inversion. Several subsequent works have thus focused

on reducing this complexity, leading to more efficient methods.

3.4.2 Union of Orthobases

Training a union-of-orthobases dictionary was proposed in 2005 by Lesage et

al. [27] as a means of designing a dictionary with reduced complexity and which

could be more efficiently trained. The process also represents one of the first

attempts at training a structured overcomplete dictionary — a tight frame in

this case. The model suggests training a dictionary which is the concatenation

of k orthogonal bases, so D = [D1 D2 . . .Dk] with the {Di} unitary matrices.

Sparse-coding over this dictionary can be performed efficiently through a Block
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Coordinate Relaxation (BCR) technique [47].

A drawback of this approach is that the proposed model itself is relatively

restrictive, and in practice it does not perform as well as more flexible structures.

Interestingly, there is a close connection between this structure and the more

powerful Generalized PCA model, described next. The GPCA also arises from

a union of orthogonal spaces model, though it deviates from the classical sparse

representation paradigm. Identifying such relations could thus prove valuable in

enabling a merge between the two forces.

3.4.3 Generalized PCA

Generalized PCA, introduced in 2005 by Vidal, Ma and Sastry [82], offers a differ-

ent and very interesting approach to overcomplete dictionary design. The GPCA

view is basically an extension of the original PCA formulation, which approximates

a set of examples by a low-dimensional subspace. In the GPCA setting, the set of

examples is modeled as the union of several low-dimensional subspaces — perhaps

of unknown number and variable dimensionality — and the algebraic-geometric

GPCA algorithm determines these subspaces and fits orthogonal bases to them.

The GPCA viewpoint differs from the sparsity model described in (3.2), as each

example in the GPCA setting is represented using only one of the subspaces; thus,

atoms from different subspaces cannot jointly represent a signal. This property has

the advantage of limiting over-expressiveness of the dictionary, which characterizes

other overcomplete dictionaries; on the other hand, the dictionary structure may

be too restrictive for more complex natural signals.

A unique property of the GPCA is that as opposed to other training methods,

it can detect the number of atoms in the dictionary in certain settings. Unfor-

tunately, the algorithm may become very costly this way, especially when the

amount and dimension of the subspaces increases. Indeed, intriguing models arise

by merging the GPCA viewpoint with the classical sparse representation view-
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point: for instance, one could easily envision a model generalizing (3.6) where

several distinct dictionaries are allowed to co-exists, and every signal is assumed

to be sparse over exactly one of these dictionaries.

3.4.4 The K-SVD Algorithm

The desire to efficiently train a generic dictionary for sparse signal representation

led Aharon, Elad and Bruckstein to develop the K-SVD algorithm in 2005 [28].

The algorithm aims at the same sparsification problem as the MOD (3.6), and em-

ploys a similar block-relaxation approach. The main contribution of the K-SVD

is that the dictionary update, rather than using a matrix inversion, is performed

atom-by-atom in a simple and efficient process. Further acceleration is provided

by updating both the current atom and its associated sparse coefficients simulta-

neously. The result is a fast and efficient algorithm which is less demanding than

the MOD.

The K-SVD algorithm takes its name from the Singular-Value-Decomposition

(SVD) process that forms the core of the atom update step, and which is repeated

K times, as the number of atoms. For a given atom k, the quadratic term in (3.6)

is rewritten as

‖X−
∑
j 6=k

djγTj − dkγTk ‖2
F = ‖Ek − dkγTk ‖2

F , (3.7)

where {γTj } are the rows of Γ, and Ek is the residual matrix. The atom update

is obtained by minimizing (3.7) for dk and γTk via a simple rank-1 approximation

of Ek. To avoid introduction of new non-zeros in Γ, the update process is per-

formed using only the examples whose current representations use the atom dk.

Fig. 3.7 shows an example of a K-SVD trained dictionary for 2-D image patch

representation.

In practice, the K-SVD is an effective method for representing small signal

patches. However, the K-SVD, as well as the MOD, suffer from a few common

weaknesses. The high non-convexity of the problem means that the two methods
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will get caught in local minima or even saddle points. Also, the result of the

training is a non-structured dictionary which is relatively costly to apply, and

therefore these methods are suitable for signals of relatively small size. In turn, in

recent years several parametric dictionary training methods have begun to appear,

and aim to address these issues by importing the strengths of analytic dictionaries

to the world of example-based methods.

3.4.5 Parametric Training Methods

There are several motivations for training a parametric dictionary. By reducing

the number of free parameters and imposing various desirable properties on the

dictionary, we can accelerate convergence, reduce the density of local minima, and

assist in converging to a better solution. A smaller number of parameters also

improves generalization of the learning process and reduces the number of exam-

ples needed. Another advantage of the parameterization is that the dictionary

will typically have a more compact representation, and may lend itself to a more

efficient implementation. Finally, with the proper structure, a parameterized dic-

tionary may be designed to represent infinite or arbitrary-sized signals. Several

parametric dictionary structures have been recently proposed, and in the following

we mention a few examples.

Translation-Invariant Dictionaries : Given a dictionary for a fixed-size signal

patch, a dictionary for an arbitrary-sized signal can be constructed by collecting

all the translations of the trained atoms over the signal domain and forming a large

translation-invariant dictionary. Several training methods for such structures have

been proposed in recent years. Blumensath and Davies [156] employed statistical

training methodology to design dictionaries for arbitrary time series representa-

tion; Jost et al. [157] developed a learning process based on a sequential computa-

tion of the dictionary atoms, promoting de-correlation of the trained atoms; and

the MOD has been extended by Engan et al. [29] to translation-invariant and op-
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Figure 3.7: Left: atoms from a K-SVD dictionary trained on 12× 12 image patches from Lena.

Right: a signature dictionary, trained on the same image.

tionally linearly-constrained dictionary training, which they successfully applied

to electrocardiogram (ECG) recordings.

A very different approach to translation-invariance was recently proposed by

Aharon and Elad in [32]. In the 2-D case, their proposed signature dictionary

is a small image in which each N × N sub-block constitutes an atom. Thus,

assuming a periodic extension, an M ×M signature dictionary stores M2 atoms

in a compact structure. Compared to the previous methods, this approach does

not aim to produce a dictionary for arbitrary-sized signals, and instead, describes

an interesting form of invariance at the block level. Indeed, a possible extension

of this model could allow extraction of variable-sized atoms from the signature

image, though this option remains for future research. An example of a trained

signature dictionary is shown in Fig. 3.7.

Multiscale Dictionaries : Training dictionaries with multi-scale structures is an

exciting and challenging option which has only been partially explored. In [26],

Sallee and Olshausen proposed a pyramidal wavelet-like signal expansion, gen-

erated from the dilations and translations of a set of elementary small trained

patches. The training method learns the elementary patches as well as a statis-

tical model of the coefficients. In simulations, the structure is found to compete

favorably with other pyramidal-based transforms. While the results of this method

seem slightly constrained by the small number of elementary functions trained, it is
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likely to substantially benefit from increasing the overcompleteness and employing

some more advanced sparse-coding machinery.

A different and interesting contribution in this direction is the semi-multiscale

extension of the K-SVD introduced in 2008 by Mairal, Sapiro and Elad [31]. The

semi-multiscale structure is obtained by arranging several fixed-sized learned dic-

tionaries of different scales over a dyadic grid. The resulting structure is found to

deliver a pronounced improvement over the single-scale K-SVD dictionary in ap-

plications such as denoising and inpainting, producing nearly state-of-the-art de-

noising performance. The main significance of this work, though, is the potential

it demonstrates in going to multi-scale learned structures. Such results are highly

encouraging, and motivate further research into multi-scale training models.

Sparse Dictionaries : One of the most recent contributions to the field of para-

metric dictionaries, specifically aimed at merging the advantages of trained and an-

alytic dictionaries, was recently presented by Rubinstein, Zibulevsky and Elad [33].

Their proposed sparse dictionary structure takes the form D = BA, where B is

some fixed analytic dictionary with a fast computation, and A is a sparse matrix.

Thus, the dictionary is compactly expressed and has a fast implementation, while

adaptivity is provided through the matrix A. Also, the parameterization is shown

to improve learning generalization and to reduce the training set size. Thus, the

training method can be used to learn larger dictionaries than the MOD or K-SVD,

e.g., for large image patches, or 3-D signal patches. Nonetheless, we note that the

sparse dictionary structure, as most other models, remains targeted at fixed-size

signals. Indeed, further work is required to design more general dictionary models

which will truly capture the benefits of both analytic and example-based worlds.

3.5 Conclusions

Dictionary design has significantly evolved over the past decades, beginning with

simple orthogonal transforms and leading to the complex overcomplete analytic
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and trained dictionaries now defining the state-of-the-art. Substantial conceptual

advancement has been made in understanding the elements of an efficient dic-

tionary design — most notably adaptivity, multi-scale, geometric invariance, and

overcompleteness. However, with a wealth of tools already developed, much work

remains to be done; indeed, the various components have yet to be neatly merged

into a single efficient construct. Many future research directions have been men-

tioned in the text, and demonstrate the viability and vividness of the field as well

as the large number of challenges that still await. Of specific interest, we highlight

the strong need for a multi-scale structured dictionary learning paradigm, as well

as methods to use such dictionaries in applications, which will clearly be the focus

of much research in the near future.

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable and

enlightening comments, which substantially enhanced the final result.

Images in this paper were generated using several software packages. The au-

thors would like to acknowledge the writers of these packages and thank them

for their contribution and support of reproducible research. In order of appear-

ance: Images of the curvelet transform were generated using the CurveLab tool-

box curtesy of Candès, Demanet, Donoho and Ying (http://www.curvelet.org);

images of the contourlet transform were generated using the SurfBox toolbox

curtesy of Y. M. Lu (http://lcav.epfl.ch/~lu); images related to the ban-

delet transform were generated using the Bandelet Toolbox curtesy of G. Peyré

(http://www.cmap.polytechnique.fr/~peyre/bandelets); images of the com-

plex wavelet transform were generated using the wavelet software curtesy of Cai, Li

and Selesnick (http://taco.poly.edu/WaveletSoftware). The authors would

further like to thank G. Kutyniok and W. Lim for their assistance in obtaining

images of the shearlet transform.

91



Chapter 3: Dictionaries for Sparse Representation Modeling

92



Chapter 4

Learning Sparse Dictionaries for

Sparse Signal Approximation

Published in IEEE Transactions on Signal Processing, 58(3):1553–1564, 2010.

Coauthored with Michael Zibulevsky and Michael Elad.

Abstract

An efficient and flexible dictionary structure is proposed for sparse and redundant

signal representation. The proposed sparse dictionary is based on a sparsity model

of the dictionary atoms over a base dictionary, and takes the form D = ΦA where

Φ is a fixed base dictionary and A is sparse. The sparse dictionary provides

efficient forward and adjoint operators, has a compact representation, and can be

effectively trained from given example data. In this, the sparse structure bridges

the gap between implicit dictionaries, which have efficient implementations yet

lack adaptability, and explicit dictionaries, which are fully adaptable but non-

efficient and costly to deploy. In this paper we discuss the advantages of sparse

dictionaries, and present an efficient algorithm for training them. We demonstrate

the advantages of the proposed structure for 3-D image denoising.
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4.1 Introduction

Sparse representation of signals over redundant dictionaries [11, 12, 137] is a

rapidly evolving field, with state-of-the-art results in many fundamental signal

and image processing tasks [2, 31, 65, 66, 70, 74, 84, 158]. The basic model sug-

gests that natural signals can be compactly expressed, or efficiently approximated,

as a linear combination of prespecified atom signals, where the linear coefficients

are sparse (i.e., most of them zero). Formally, letting x ∈ RN be a column signal,

and arranging the atom signals as the columns of the dictionary D ∈ RN×L, the

sparsity assumption is described by the following sparse approximation problem,

for which we assume a sparse solution exists:

γ̂ = Argmin
γ
‖γ‖0

0 Subject To ‖x−Dγ‖2 ≤ ε . (4.1)

In this expression, γ̂ is the sparse representation of x, ε is the error tolerance, and

the function ‖ · ‖0
0 , loosely referred to as the `0-norm, counts the non-zero entries

of a vector. Though known to be NP-hard in general [37], the above problem is

relatively easy to approximate using a wide variety of techniques [38–40, 42, 44–48].

A fundamental consideration in employing the above model is the choice of the

dictionary D. The majority of literature on this topic can be categorized into two

basic approaches: the analytic approach and the learning-based approach. In the

first approach, a mathematical model of the data is formulated, and an analytic

construction is developed to efficiently represent the model. This generally leads to

dictionaries that are highly structured and have a fast numerical implementation.

We refer to these as implicit dictionaries as they are described by their algorithm

rather than their explicit matrix. Dictionaries of this type include Wavelets [7],

Curvelets [16], Contourlets [18], Shearlets [21], Complex Wavelets [15], and Ban-

delets [148], among others.

The second approach suggests using machine learning techniques to infer the

dictionary from a set of examples. In this case, the dictionary is typically rep-
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resented as an explicit matrix, and a training algorithm is employed to adapt

the matrix coefficients to the examples. Algorithms of this type include PCA

and Generalized PCA [82], the Method of Optimal Directions (MOD) [23], the

K-SVD [28], and others. Advantages of this approach are the much finer-tuned

dictionaries they produce compared to the analytic approaches, and their signif-

icantly better performance in applications. However, this comes at the expense

of generating an unstructured dictionary, which is more costly to apply. Also,

complexity constraints limit the size of the dictionaries that can be trained in this

way, and the dimensions of the signals that can be processed.

In this paper, we present a novel dictionary structure that bridges some of the

gap between these two approaches, gaining the benefits of both. The structure is

based on a sparsity model of the dictionary atoms over a known base dictionary.

The new parametric structure leads to a simple and flexible dictionary repre-

sentation which is both adaptive and efficient. Advantages of the new structure

include low complexity, compact representation, stability under noise and reduced

overfitting, among others.

4.1.1 Related Work

The idea of training dictionaries with a specific structure has been proposed in

the past, though research in this direction is still in its early stages. Much of the

work so far has focused specifically on developing adaptive Wavelet transforms,

as in [159–162]. These works attempt to adapt various parameters of the Wavelet

transform, such as the mother wavelet or the scale and dilation operators, to better

suit specific given data.

More recently, an algorithm for training unions of orthonormal bases was pro-

posed in [27]. The suggested dictionary structure takes the form

D = [ D1 D2 . . . Dk ] , (4.2)

where the Di’s are unitary sub-dictionaries. The structure has the advantage of
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offering efficient sparse-coding via Block Coordinate Relaxation (BCR) [47], and

its training algorithm is simple and relatively efficient. However, the dictionary

model itself is relatively restrictive, and its training algorithm shows somewhat

weak performance. Furthermore, the structure does not lead to quick forward and

adjoint operators, as the dictionary itself remains explicit.

A different approach is proposed in [31], where a semi-multiscale structure

is employed. The dictionary model is a concatenation of several scale-specific

dictionaries over a dyadic grid, leading (in the 1-D case) to the form:

D =


D1

D2

D2

D3

D3

D3

D3

· · ·


.

(4.3)

The multiscale structure is shown to provide excellent results in applications such

as denoising and inpainting. Nonetheless, the explicit nature of the dictionary is

maintained along with most of the drawbacks of such dictionaries. Indeed, the use

of sparse dictionaries to replace the explicit ones in (4.3) is an exciting option for

future study.

Another recent contribution is the signature dictionary proposed in [32]. Ac-

cording to the suggested model, the dictionary is described via a compact signature

image, with each sub-block of this image constituting an atom of the dictionary.1

The advantages of this structure include near-translation-invariance, reduced over-

fitting, and faster sparse-coding when utilizing spatial relationships between neigh-

boring signal blocks. On the other hand, the small number of parameters in this

model — one coefficient per atom — also makes this dictionary more restrictive

than other structures. Indeed, the sparse dictionary model proposed in this paper

enhances the dictionary expressiveness by increasing the number of parameters
1Indeed, both fixed and variable-sized sub-blocks can be considered, though in [32] mostly fixed-sized

blocks are studied.
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per atom from 1 to p > 1, while maintaining other favorable properties of the

dictionary.

4.1.2 Paper Organization

This paper is organized as follows. We begin in Section 4.2 with a description

of the dictionary model and its advantages. In Section 4.3 we consider the task

of training the dictionary from examples, and present an efficient algorithm for

doing so. Section 4.4 analyzes and quantifies the complexity of sparse dictionaries,

and compares it to other dictionary forms. Simulation results are provided in

Section 4.5. We summarize and conclude in Section 4.6.

4.1.3 Notation

• Bold uppercase letters designate matrices (M, Γ), and bold lowercase letters

designate column vectors (v, γ). The columns of a matrix are referenced using

the corresponding lowercase letter, e.g. M = [m1 | . . . |mn ]; the elements of a

vector are similarly referenced using standard-type letters, e.g. v = (v1, . . . , vn)T .

The notation 0 is used to denote the zero vector, with its length inferred from the

context.

• Given a single index I = i1 or an ordered sequence of indices I = (i1, . . . , ik),

we denote by MI = [mi1 | . . . |mik ] the sub-matrix of M containing the columns

indexed by I, in the order in which they appear in I. For vectors we similarly

denote the sub-vector vI = (vi1 , . . . , vik)T . We use the notation MI,J , with J a

second index or sequence of indices, to refer to the sub-matrix of M containing

the rows indexed by I and the columns indexed by J , in their respective orders.

This notation is used for both access and assignment, so if I = (2, 4, 6, . . . , n),

the statement MI,j := 0 means nullifying the even-indexed entries in the j-th

row of M.
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4.2 Sparse Dictionaries

4.2.1 Motivation

Selecting a dictionary for sparse signal representation involves balancing between

two elementary and seemingly competing considerations. The first is the com-

plexity of the dictionary, as the dictionary forward and adjoint operators form the

dominant components of most sparse-coding techniques, and these in turn form the

core of all sparsity-based signal processing methods. Indeed, techniques such as

Matching Pursuit (MP) [11], Orthogonal Matching Pursuit (OMP) [38], Stagewise

Orthogonal Matching Pursuit (StOMP) [39], and their variants, all involve costly

dictionary-signal computations each iteration. Other common methods such as

interior-point Basis Pursuit [12] and FOCUSS [46] minimize a quadratic function

each iteration, which is commonly performed using repeated application of the dic-

tionary and its adjoint. Many additional methods rely heavily on the dictionary

operators as well.

Over the years, a variety of dictionaries with fast implementations have been

designed. For natural images, dictionaries such as Wavelets [7], Curvelets [16],

Contourlets [18], and Shearlets [21], all provide fast transforms. However, such

dictionaries are fixed and limited in their ability to adapt to different types of

data. Adaptability is thus a second desirable property of a dictionary, and in

practical applications, adaptive dictionaries consistently show better performance

than generic ones [2, 31, 65, 74, 158]. Unfortunately, adaptive methods usually

prefer explicit dictionary representations over structured ones, gaining a higher

degree of freedom in the training but sacrificing regularity and efficiency of the

result.2
2We should note that in adaptive dictionaries we are referring to dictionaries whose content can be

adapted to different families of signals, typically through a learning process. Signal-dependent repre-

sentation schemes, such as Best Wavelet Packet Bases [159] and Bandelets [148], are another type of

adaptive process, but of a very different nature. These methods produce an optimized dictionary for a
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Figure 4.1: Left: dictionary for 8× 8 image patches, trained using the K-SVD algorithm. Right:

images used for the training. Each image contributed 25,000 randomly selected patches, for a

total of 100,000 training signals.

Bridging this gap between complexity and adaptivity requires a parametric

dictionary model that provides sufficient degrees of freedom. In this work, we pro-

pose the sparse dictionary model as a simple and effective structure for achieving

this goal, based on sparsity of the atoms over a known base dictionary. Our ap-

proach can be motivated as follows. In Fig. 4.1 we see an example of a dictionary

trained using the K-SVD algorithm [28] on a set of 8 × 8 natural image patches.

The algorithm trains an explicit, fully un-constrained dictionary matrix, and yet,

we see that the resulting dictionary is highly structured, with noticeably regular

atoms. This gives rise to the hypothesis that the dictionary atoms themselves may

have some underlying sparse structure over a more fundamental dictionary, and as

we show in this paper, such a structure can indeed be recovered, and has several

favorable properties.

given signal based on its specific characteristics (e.g. frequency content or geometry, respectively), and

they are not considered here.
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4.2.2 Dictionary Model

The sparse dictionary model suggests that each atom of the dictionary has itself

a sparse representation over some prespecified base dictionary Φ. The dictionary

is therefore expressed as

D = ΦA , (4.4)

where A is the atom representation matrix, assumed to be sparse. For simplicity,

we focus on matrices A having a fixed number of non-zeros per column, so ‖ai‖0
0 ≤

p for some p. The base dictionary Φ will generally be chosen to have a quick

implicit implementation, and, while Φ may have any number of atoms, we assume

it to span the signal space. The choice of the base dictionary obviously affects the

success of the entire model, and we thus prefer one which already incorporates

some prior knowledge about the data. Indeed, if more than one possible base

dictionary exists, one may benefit from experimenting with a few different options

in order to determine the most suitable one.

In comparison to implicit dictionaries, the dictionary model (4.4) provides

adaptability via modification of the matrix A, and can be efficiently trained from

examples. Furthermore, as Φ can be any dictionary — specifically, any exist-

ing implicit dictionary — the model can be viewed as an extension to existing

dictionaries, adding them a new layer of adaptivity.

In comparison to explicit dictionaries, the sparse structure is significantly more

efficient, depending mostly on the choice of Φ. It is also more compact to store

and transmit. Furthermore, as we show later in this paper, the imposed structure

acts as a regularizer in dictionary learning processes, and reduces overfitting and

instability in the presence of noise. Training a sparse dictionary requires less

examples than an explicit one, and produces useable results even when only a few

examples are available.

The sparse dictionary model has another interesting interpretation. Assume

the signal x is sparsely represented over the dictionary D = ΦA, so x = ΦAγ for
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some sparse γ. Therefore, (Aγ) is the representation of x over Φ. Since both γ

and the columns of A are sparse — having no more than, say, t and p non-zeros,

respectively — this representation will have approximately tp non-zeros. However,

such quadratic cardinality will generally fall beyond the success range of sparse-

approximation techniques [137]. As such, it is no longer considered sparse in terms

of the formulation (4.1), and sparse-coding methods will commonly fail to recover

it. Furthermore, given a noisy version of x, attempting to recover it directly over

Φ using tp atoms will likely result in capturing a significant portion of the noise

along with the signal, due to the number of coefficients used.3

Through the sparse dictionary structure, we are able to accommodate denser

signal representations over Φ while essentially by-passing the related difficulties.

The reason is that even though every t-sparse signal over D will generally have a

denser tp-representation over Φ, not every tp-representation over Φ will necessarily

fit the model. The proposed model therefore acts as a regularizer for the allowed

dense representations over Φ, and by learning the matrix A, we are expressing in

some form the complicated dependencies between its atoms.

4.3 Learning Sparse Dictionaries

We now turn to the question of designing a sparse dictionary for sparse signal rep-

resentation. A straightforward approach would be to select some general (probably

learned) dictionary D0, choose a base dictionary Φ, and sparse-code the atoms

in D0 to obtain D = ΦA ≈ D0. This naive approach, however, is clearly sub-

optimal: specifically, the dictionary Φ must be sufficiently compatible with D0,

or else the representations in A may not be very sparse. Simulation results in-

dicate that such dictionaries indeed perform poorly in practical signal processing

applications.
3For white noise and a signal of length N , the expected remaining noise in a recovered signal using

t atoms is approximately t/N the initial noise energy, due to the orthogonal projection.
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A more desirable approach would be to learn the sparse dictionary using a

process that is aware of the dictionary’s specific structure. We adopt an approach

which continues the line of work in [28], and develop a K-SVD-like learning scheme

for training the sparse dictionary from examples. The algorithm is inspired by the

Approximate K-SVD implementation presented in [163], which we briefly review.

4.3.1 K-SVD and Its Approximate Implementation

The K-SVD algorithm accepts an initial overcomplete dictionary matrix D0 ∈

RN×L, a number of iterations k, and a set of examples arranged as the columns of

the matrix X ∈ RN×R. The algorithm aims to iteratively improve the dictionary

by approximating the solution to

Min
D,Γ
‖X−DΓ‖2

F Subject To ∀i ‖γi‖0
0 ≤ t

∀j ‖dj‖2 = 1

. (4.5)

Note that in this formulation, the atom normalization constraint is commonly

added for convenience, though it does not have any practical significance to the

result.

The K-SVD iteration consists of two basic steps: (i) sparse-coding the signals

in X given the current dictionary estimate, and (ii) updating the dictionary atoms

given the sparse representations in Γ. The sparse-coding step can be implemented

using any sparse-approximation method. The dictionary update is performed one

atom at a time, optimizing the target function for each atom individually while

keeping the remaining atoms fixed.

The atom update is carried out while preserving the sparsity constraints in (4.5).

To achieve this, the update uses only those signals in X whose sparse represen-

tations use the current atom. Denoting by I the indices of the signals in X that

use the j-th atom, the update of this atom is obtained by minimizing the target

function

‖XI −DΓI‖2
F (4.6)

102



Chapter 4: Learning Sparse Dictionaries for Sparse Signal
Approximation

for both the atom and its corresponding coefficient row in ΓI . The resulting

problem is a simple rank-1 approximation, given by

{d,g} := Argmin
d,g
‖E− dgT‖2

F Subject To ‖d‖2 = 1 , (4.7)

where E = XI −
∑

i 6=j diΓi,I is the error matrix without the j-th atom, and d and

gT are the updated atom and coefficient row, respectively. The problem can be

solved directly via an SVD decomposition, or more efficiently using some numerical

power method.

In practice, the exact solution of (4.7) can be quite computationally demanding,

especially when the number of training signals is large. As an alternative, an

approximate solution may be used to reduce the complexity of this task [163].

The simplified update step is obtained by applying a single iteration of alternated-

optimization [47, 164], given by

d := Eg/‖Eg‖2

g := ETd
. (4.8)

The above process is known to ultimately converge to the optimum,4 and when

truncated, supplies an approximation which still reduces the penalty term. Also,

this process eliminates the need to explicitly compute the matrix E, as only its

products with vectors are required.5

4.3.2 The Sparse K-SVD Algorithm

To train a sparse dictionary, we use the same basic framework as the original

K-SVD algorithm. Specifically, we aim to (approximately) solve the optimization
4Applying two consecutive iterations of this process produces dj+1 = EETdj/‖EETdj‖2, which is

the well-known power iteration for EET . The process converges, under reasonable assumptions, to the

largest eigenvector of EET — also the largest left singular vector of E.
5Specifically, Eg = XIg −

∑
i 6=j di(Γi,Ig) can be computed via a series of vector inner products

ξi = Γi,Ig, followed by a vector sum
∑

i 6=j ξidi and a matrix-vector product XIg. This is significantly

faster and more memory-efficient than the explicit computation of E, which involves matrix-matrix

operations. The same applies to the computation of ETd.
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problem

Min
A,Γ
‖X−ΦAΓ‖2

F

Subject To


∀i ‖γi‖0

0 ≤ t

∀j ‖aj‖0
0 ≤ p , ‖Φaj‖2 = 1

, (4.9)

alternating sparse-coding and dictionary update steps for a fixed number of itera-

tions. The notable change is in the atom update step: as opposed to the original

K-SVD algorithm, in this case the atom is constrained to the form d = Φa with

‖a‖0
0 ≤ p. The modified atom update is therefore given by

{a,g} := Argmin
a,g
‖E−Φa gT‖2

F Subject To ‖a‖0
0 ≤ p

‖Φa‖2 = 1

, (4.10)

with E defined as in (4.7).

Interestingly, our problem is closely related to a different problem known as

Sparse Matrix Approximation (here SMA), recently raised in the context of Kernel-

SVM methods [165]. The SMA problem is formulated similar to problem (4.10),

but replaces the rank-1 matrix agT with a general matrix T, and the sparsity

constraint on a with a constraint on the number of non-zero rows in T. Our

problem is therefore essentially a rank-constrained version of the original SMA

problem. In [165], the authors suggest a greedy OMP-like algorithm for solving the

problem, utilizing randomization to deal with the large amount of work involved.

Unfortunately, while this approach is likely extendable to the rank-constrained

case, it leads to a computationally intensive process which is impractical for large

problems.

Our approach therefore takes a different path to solving the problem, employing

an alternated-optimization technique over a and g parallel to (4.8). We point out

that as opposed to (4.8), the process here does not generally converge to the

optimum when repeated, due to the non-convexity of the problem. Nonetheless,

the method does guarantee a reduction in the target function value, which is

essentially sufficient for our purposes.
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To simplify the derivation, we note that (4.10) may be solved without the

norm constraint on Φa, and adding a post-processing step which transfers energy

between a and g to achieve ‖Φa‖2 = 1 while keeping agT fixed. The simplified

problem is given by

{a,g} := Argmin
a,g
‖E−Φa gT‖2

F Subject To ‖a‖0
0 ≤ p . (4.11)

We also note that the solution to this problem is guaranteed to be non-zero for all

E 6= 0, hence the described re-normalization of a and g is possible.

Optimizing over g in (4.11) is straightforward, and given by

g := ETΦa/‖Φa‖2
2 . (4.12)

Optimizing over a, however, requires more attention. The minimization task for

a is given by:

a := Argmin
a
‖E−Φa gT‖2

F Subject To ‖a‖0
0 ≤ p . (4.13)

The straightforward approach to this problem is to rewrite E as a column vector

e, and formulate the problem as an ordinary sparse-coding task for e (we use ⊗

to denote the Kronecker matrix product [166]):

a := Argmin
a
‖e− (g⊗Φ)a‖2

2 Subject To ‖a‖0
0 ≤ p . (4.14)

However, this leads to an intolerably large optimization problem, as the length of

the signal to sparse-code is of the same order of magnitude as the entire dataset.

Instead, we show that problem (4.13) is equivalent to a much simpler sparse-coding

problem, namely

a := Argmin
a
‖Eg−Φa‖2

2 Subject To ‖a‖0
0 ≤ p . (4.15)

Here, the vector Eg is of the same length as a single training example, and the

dictionary is the base dictionary Φ which is assumed to have an efficient implemen-

tation; therefore, this problem is significantly easier to handle than the previous
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one. Also, as discussed above, the vector Eg itself is much easier to compute than

the vector e, which is just a vectorized version of the matrix E.

To establish the equivalence between the problems (4.13) and (4.15), we use

the following Lemma:

Lemma 4.1. Let X ∈ RN×M and Y ∈ RN×K be two matrices, and v ∈ RM and

u ∈ RK be two vectors. Also assume that vTv = 1. Then the following holds:

‖X−YuvT‖2
F = ‖Xv−Yu‖2

2 + f(X, v) .

Proof. The equality follows from elementary properties of the trace function:

‖X−YuvT‖2
F =

= Tr((X−YuvT )T (X−YuvT ))

= Tr(XTX)− 2Tr(XTYuvT ) + Tr(vuTYTYuvT )

= Tr(XTX)− 2Tr(vTXTYu) + Tr(vTvuTYTYu)

= Tr(XTX)− 2vTXTYu + uTYTYu

= Tr(XTX)− 2vTXTYu + uTYTYu + vTXTXv− vTXTXv

= ‖Xv−Yu‖2
2 + Tr(XTX)− vTXTXv

= ‖Xv−Yu‖2
2 + f(X,v) .

The Lemma implies that, assuming gTg = 1, then for every representation

vector a,

‖E−ΦagT‖2
F = ‖Eg−Φa‖2

2 + f(E,g) .

Clearly the important point in this equality is that the two sides differ by a constant

independent of a. Thus, the target function in (4.13) can be safely replaced with

the right hand side of the equality (sans the constant), establishing the equivalence

to (4.15).
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When using the Lemma to solve (4.13), we note that the energy assumption on

g can be easily overcome, as dividing g by a non-zero constant simply results in a

solution a scaled by that same constant. Thus (4.13) can be solved for any g by

normalizing it to unit length, applying the Lemma, and re-scaling the solution a

by the appropriate factor. Conveniently, since a is independently re-normalized at

the end of the process, this re-scaling can be skipped completely, scaling a instead

to ‖Φa‖2 = 1 and continuing with the update of g.

Combining the pieces, the final atom update process consists of the following

steps: (i) normalizing g to unit length; (ii) solving (4.15) for a; (iii) normalizing

a to ‖Φa‖2 = 1; and (iv) updating g := ETΦa. This process may generally

be repeated, though we have found little practical advantage in doing so. The

complete Sparse K-SVD algorithm is detailed in Alg. 4.1. Figs. 4.2, 4.3 show an

example result, obtained by applying this algorithm to the same training set as

that used to train the dictionary in Fig. 4.1.

4.4 Complexity of Sparse Dictionaries

Sparse dictionaries are generally much more efficient than explicit ones, and pro-

vide significant gains especially for larger dictionaries and higher-dimensional sig-

nals. In this section we discuss the complexity of sparse dictionaries and describe

the cases where they are most advantageous. To focus the discussion, we concen-

trate on the case of Orthogonal Matching Pursuit (OMP) sparse-coding, which is

a widely used method which is relatively simple to analyze.

4.4.1 Sparse Dictionary Operator Complexity

The dictionary structure (4.4) is implemented by multiplying the sparse represen-

tation γ by A and applying Φ. In the following, we assume that A has a total of

pL non-zeros, and that Φ has an efficient implementation with complexity TΦ.

Operations with sparse matrices are not immediate to analyze, with many fac-
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Algorithm 4.1 Sparse K-SVD
1: Input: Signal set X, base dictionary Φ, initial dictionary representation A0, target

atom sparsity p, target signal sparsity t, number of iterations k.

2: Output: Sparse dictionary representation A and sparse signal representations Γ such

that X ≈ ΦAΓ

3: Init: Set A := A0

4: for n = 1 . . . k do

5: ∀i : Γi := Argmin
γ
‖xi −ΦAγ‖22 Subject To ‖γ‖00 ≤ t

6: for j = 1 . . . L do

7: Aj := 0

8: I := {indices of the signals in X whose reps. use aj}

9: g := ΓTj, I

10: g := g/‖g‖2

11: z := XIg−ΦAΓIg

12: a := Argmin
a
‖z−Φa‖22 Subject To ‖a‖00 ≤ p

13: a := a/‖Φa‖2

14: Aj := a

15: Γj, I := (XT
I Φa− (ΦAΓI)

TΦa)T

16: end for

17: end for

tors affecting actual performance (see [167] for some insights on the topic). In this

paper we make the simplifying assumption that the complexity of such operations

is proportional to the number of non-zeros in the sparse matrix, so multiplying a

vector by a sparse matrix with Z non-zeros is equivalent to multiplying it by a full

matrix with αZ (α ≥ 1) coefficients (a total of 2αZ multiplications and additions).

For a concrete figure, we use α = 7, which is roughly what our machine (an Intel

Core 2 running Matlab 2007a) produced. With this assumption, the complexity
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of the sparse dictionary D = ΦA is given by

TD {sparse-dict} = 2αpL+ TΦ . (4.16)

The base dictionary Φ will usually be chosen to have a compact representa-

tion and sub-N2 implementation. Indeed, most implicit dictionaries provide these

properties, with complexities ranging from linear to low-degree (< 2) polynomial.

In the following analysis we focus on two very common types of base dictionaries,

which roughly represent this range:

Separable dictionaries: Dictionaries which are the Kronecker product of several

1-dimensional dictionaries. Assuming Φ0 ∈ Rn×m is a dictionary for 1-D signals

of length n, the dictionary Φ = Φ0 ⊗ Φ0 ∈ Rn2×m2 can be constructed for rep-

resenting n × n signals arranged in column-major order as vectors of length n2.

The dictionary adjoint is separable as well and given by ΦT = ΦT
0 ⊗ ΦT

0 . The

dictionary and its adjoint are efficiently implemented by applying Φ0 or ΦT
0 (re-

spectively) along each of the signal dimensions, in any order. Denoting a = m/n,

and assuming Φ0 is applied via explicit matrix multiplication, the complexity of

this dictionary in the 2-D case is

TΦ = 2N
√
M(1 + a) (4.17)

where N = n2 and M = m2 are the dictionary dimensions. Examples of separable

dictionaries include the DCT (Fourier), overcomplete DCT (Fourier), and Wavelet

dictionaries, among others. Generalizations to higher dimensions are straightfor-

ward to derive.

Linear-time dictionaries: Dictionaries which are implemented with a constant

number of operations per sample, so

TΦ = βN (4.18)

for some constant value β. Examples include the Wavelet, Contourlet, and Com-

plex Wavelet dictionaries, among others.
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Figure 4.2: Left: overcomplete DCT dictionary for 8× 8 image patches. Right: sparse dictionary

trained over the overcomplete DCT using Sparse K-SVD. Dictionary atoms are represented using

6 coefficients each. Marked atoms are magnified in Fig. 4.3.

1,3 4,4

+

4,1 6,6 2,2 7,8

= + + + +

9,6 8,5 11,8 7,8 11,4 2,8

+= + + + +

+= + + + +

6,5 3,1 5,8 1,2 8,6 2,8

Figure 4.3: Some atoms from the trained dictionary in Fig. 4.2, and their overcomplete DCT

components. The index pair above each overcomplete DCT atom denotes the wave number of

the atom, with (1,1) corresponding to the upper-left atom, (16,1) corresponding to the lower-left

atom, etc. In each row, the components are ordered by decreasing magnitude of the coefficients,

the most significant component on the left. The coefficients themselves are not shown due to

space limitations, but are all of the same order of magnitude.
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4.4.2 Complexity of OMP

OMP is a greedy sparse-coding algorithm which has several efficient implemen-

tations. One of the most common ones is OMP-Cholesky [40, 163, 168] which

employs a progressive Cholesky decomposition to perform efficient matrix inver-

sions.

When the dictionary is represented explicitly, the number of operations per-

formed by OMP-Cholesky can be shown to be [163]

Tomp {explicit-dict} = 2tNL+ 2t2N + 2t(L+N) + t3 , (4.19)

where t is the number of OMP iterations (also the number of selected atoms),

and N and L are the dictionary dimensions. Note that since N ∼ L � t, the

dominant term in this expression is the first one, which is associated with the

explicit dictionary operator.

With a sparse dictionary, one can show that the complexity of OMP-Cholesky

becomes

Tomp {sparse-dict} = 4tTΦ + 2αtpL+ 2t(L+N) + t3 , (4.20)

where p is the sparsity of the dictionary atoms over the base dictionary, and α

is the sparse operation overhead factor discussed above (for a derivation of this

result we refer the reader to [169]). We observe that the term proportional to

tNL in (4.19) has been replaced by terms proportional to tTΦ and tpL in this

expression. Therefore, when the base dictionary Φ has an efficient implementation,

and assuming p� N , the sparse dictionary indeed provides an order-of-magnitude

complexity advantage over an explicit one.

The complexity gain of OMP-Cholesky with a sparse dictionary is depicted in

Fig. 4.4. The Figure shows the speedup factor of OMP-Cholesky with a sparse

dictionary compared to an explicit one, for 2-D and 3-D signals, and using either

a separable or linear base dictionary. The x-axis corresponds to the signal length

N , where N = nd for d = 2, 3.
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As can be seen, sparse dictionaries provide a pronounced performance increase

compared to explicit ones, especially in the 3-D case where the speedup is around

×5 − ×10 for the separable case and ×10 − ×30 for the linear case. We also see

that the speedup continues to increase as the signal becomes larger. In a practical

signal processing application, where large numbers of signals are involved, this

difference may make sparse dictionaries the only feasible option.

4.4.3 Dictionary Training

Seeing the complexity gain in sparse-coding, it is unsurprising that Sparse K-SVD

is similarly much faster than the standard and approximate K-SVD methods.

Indeed, the gain mostly stems from the acceleration in the sparse-coding step

(line 5 of the algorithm). In the asymptotic case where t ∼ p � M ∼ L ∼ N �

R, with R the number of training signals, the complexity of the approximate

K-SVD becomes proportional to the complexity of its sparse-coding method [163].

Indeed, this result is easily extended to Sparse K-SVD as well; consequently, Sparse

K-SVD is faster than the approximate K-SVD by approximately the sparse-coding

speedup.

As we will see in the experimental section, a more significant (though less

obvious) advantage of Sparse K-SVD is the reduction in overfitting. This results

in a substantially smaller number of examples required for the training process,

and leads to a further reduction in training complexity.

4.5 Applications and Simulation Results

The sparse dictionary structure has several advantages. It enables larger dictionar-

ies to be trained, for instance to fill-in bigger holes in an image inpainting task [31].

Specifically of interest are dictionaries for high-dimensional data. Indeed, employ-

ing sparsity-based techniques to high-dimensional signal data is challenging, as the

complicated nature of these signals limits the availability of analytic transforms for
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Figure 4.4: Speedup of OMP-Cholesky using a sparse dictionary compared to an explicit dictio-

nary. Left: speedup for 2-D signals. Right: speedup for 3-D signals. Signal length is N = nd

where n is the block size and d = 2, 3 is the number of dimensions. Dictionary size is chosen to

be nd× (n+3)d (base dictionary is of the same size, and the matrix A is square). Atom sparsity

is set to p = n/2 in the 2-D case and to p = n in the 3-D case. Complexity of linear dictionary

is TΦ = 8N .

them, while the complexity of the training problem constrains the use of existing

adaptive techniques as well. The sparse dictionary structure — coupled with the

Sparse K-SVD algorithm — makes it possible to process such signals and design

rich dictionaries for representing them.

Another application for sparse dictionaries is signal compression. Using an

adaptive dictionary to code signal blocks leads to sparser representations than

generic dictionaries, and therefore to higher compression rates. Such dictionaries,

however, must be stored alongside the compressed data, and this becomes a limit-

ing factor when used with explicit dictionary representations. Sparse dictionaries

significantly reduce this overhead. In essence, wherever a prespecified dictionary

is used for compression, one may introduce adaptivity by training a sparse dictio-

nary over this predesigned one. The facial compression algorithm in [158] makes

a good candidate for such a technique, and research in this direction is currently

undergoing.

In the following experiments we focus on a specific type of signal, namely

3-D computed tomography (CT) imagery. We compare the sparse and explicit
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dictionary structures in their ability to adapt to specific data and generalize from

it. We also provide concrete CT denoising results for the two dictionary structures,

and show that the sparse dictionary consistently outperforms the explicit one,

while operating substantially faster. Our simulations make use of the CT data

provided by the NIH Visible Human Project [170].

4.5.1 Training and Generalization

Training a large dictionary generally requires increasing the number of training

signals accordingly. Heuristically, we expect the training set to grow at least

linearly with the number of atoms, to guarantee sufficient information for the

training process. Uniqueness is in fact only known to exist for an exponential

number of training signals in the general case [171]. Unfortunately, large numbers

of training signals quickly become impractical when the dictionary size increases,

and it is therefore highly desirable to develop methods for reducing the number of

required examples.

In the following experiments we compare the generalization performance of K-

SVD versus Sparse K-SVD with small to moderate training sets. We use both

methods to train a 512 × 1000 dictionary for 8 × 8 × 8 signal patches. The

data is taken from the Visible Male - Head CT volume. We extract the training

blocks from a noisy version of the CT volume (PSNR=17dB), while the validation

blocks are extracted directly from the original volume. Training is performed us-

ing 10,000, 30,000, and 80,000 training blocks, randomly selected from the noisy

volume, and with each set including all the signals in the previous sets. The vali-

dation set consists of 20,000 blocks, randomly selected from the locations not used

for training. The initial dictionary for both methods is the overcomplete DCT

dictionary6. For Sparse K-SVD, we use the overcomplete DCT as the base dic-
6The 1-D N × L overcomplete DCT dictionary is essentially a cropped version of the orthogonal

L×L DCT dictionary matrix. The k-D overcomplete DCT dictionary is simply the Kronecker product

of k 1-D overcomplete DCT dictionaries. Note that the number of atoms in such a dictionary is Lk, and
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Figure 4.5: Training and validation results for patches from Visible Male - Head. Training

signals are taken from the noisy volume (PSNR=17dB), and validation signals are taken from

the original volume. Block size is 8× 8× 8, and dictionary size is 512× 1000. Training signals

(noisy) are sparse-coded using an error stopping criterion proportional to the noise; validation

signals (noiseless) are sparse-coded using a fixed number of atoms. Shown penalty functions

are respectively the average number of non-zeros in the sparse representations and the coding

RMSE. Sparse K-SVD with atom-sparsity p is designated in the legend as S-KSVD(p).

tionary, and set the initial A matrix to identity. The sparse dictionary is trained

using either 8, 16, or 24 coefficients per atom.

Fig. 4.5 shows our results. The top and bottom rows show the performance

of the K-SVD and Sparse K-SVD dictionaries on the training and validation sets

(respectively) during the algorithm iterations. Following [2], we code the noisy

training signals using an error target proportional to the noise, and have the

`0 sparsity of the representations as the training target function. We evaluate

performance on the validation signals (which are noiseless) by sparse-coding with

a fixed number of atoms, and measuring the resulting representation RMSE.

We can see that the average number of non-zeros for the training signals de-

creases rapidly in the K-SVD case, especially for smaller training sets. However,

must have a whole k-th root (in our case, 103 = 1000 atoms).
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this phenomena is mostly an indication of overfitting, as the drop is greatly atten-

uated when adding training data. The overfitting consequently leads to degraded

performance on the validation set, as can be seen in the bottom row.

In contrast, the sparse dictionary shows much more stable performance. Even

with only 10,000 training signals, the learned dictionary performs reasonably well

on the validation signals. As the training set increases, we find that the perfor-

mance of the sparsest (p = 8) dictionary begins to weaken, indicating the limits

of the constrained structure. However, for p = 16 and p = 24 the sparse dictio-

nary continues to gradually improve, and consistently outperforms the standard

K-SVD. It should be noted that while the K-SVD dictionary is also expected to

improve as the training set is increased — possibly surpassing the Sparse K-SVD

at some point — such large training sets are extremely difficult to process, to the

point of being impractical.

4.5.2 CT Volume Denoising

We used the adaptive K-SVD denoising algorithm [2] to evaluate CT volume

denoising performance. The algorithm trains an overcomplete dictionary using

blocks from the noisy signal, and then denoises the signal using this dictionary,

averaging the denoised blocks when they overlap in the result. We should mention

that newer, state-of-the-art variants of the K-SVD denoising scheme, such as multi-

scale K-SVD denoising [31] and non-local simultaneous sparse-coding [65], could

also be used here to further improve the results, however in this work we focus on

the original denoising formulation for simplicity.

We performed our experiments on the Visible Male - Head and Visible Female

- Ankle volumes. The intensity values of each volume were first fitted to the

range [0,255] for compatibility with image denoising results, and then subjected

to additive white Gaussian noise with varying standard deviations of 5 ≤ σ ≤ 100.

We tested both 2-D denoising, in which each CT slice is processed separately, and
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Test σ /PSNR 2-D Denoising 3-D Denoising

ODCT KSVD S-KSVD ODCT KSVD S-KSVD

Vis. F. 5 / 34.15 43.07 43.23 43.15 44.42 44.64 44.64

Ankle 10 / 28.13 39.25 39.70 39.45 40.91 41.24 41.22

20 / 22.11 35.34 36.12 35.87 37.57 37.98 38.03

30 / 18.59 33.01 33.76 33.67 35.62 36.02 36.21

50 / 14.15 30.15 30.43 30.48 33.07 33.48 33.85

75 / 10.63 27.88 27.84 27.92 31.18 31.63 31.98

100 / 8.13 26.42 26.31 26.39 29.89 30.08 30.46

Vis. M. 5 / 34.15 43.61 43.94 43.72 45.11 45.12 45.17

Head 10 / 28.13 39.34 40.13 39.70 41.46 41.56 41.57

20 / 22.11 34.97 36.08 35.81 37.77 38.02 38.10

30 / 18.59 32.48 33.13 33.08 35.54 35.91 36.18

50 / 14.15 29.62 29.67 29.74 32.79 33.08 33.56

75 / 10.63 27.84 27.75 27.82 30.73 30.69 31.09

100 / 8.13 26.51 26.40 26.48 29.60 29.47 29.72

Table 4.1: CT denoising results using K-SVD, Sparse K-SVD, and overcomplete DCT dictio-

naries. Values represent Peak SNR (dB), and are averaged over 4 executions. Bold numerals

denote the best result in each test up to a 0.1dB difference.

3-D denoising, in which the volume is processed as a whole. The atom sparsity for

these experiments was heuristically set to p = 6 for the 2-D case and p = 16 for

the 3-D case, motivated by results such as those in Fig. 4.5. Our denoising results

are actually expected to improve as these values are increased, up to a point where

overfitting becomes a factor. However, we preferred to limit the atom sparsity in

these experiments to maintain the complexity advantage of the sparse dictionary.

Further work may establish a more systematic way of selecting these values.

Our denoising results are summarized in Table 4.1. Table 4.2 shows the running

times obtained by our Intel Core 2 machine for the different algorithms in the 3-D

case. For completeness, Table 4.3 lists the full set of parameters used in these

experiments. Some actual denoising results are shown in Fig. 4.6.

The most evident result in Table 4.1 is that 3-D denoising is indeed substan-
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Vis. F. Ankle

Dictionary / σ 5 10 20 30 50 75 100

K-SVD 22:06:27 10:11:06 4:07:33 2:27:47 1:24:23 57:48 45:36

Sparse K-SVD 1:08:49 33:44 13:05 8:07 5:15 4:26 3:54

O-DCT 24:51 13:27 4:51 2:59 1:45 1:17 1:03

Vis. M. Head

Dictionary / σ 5 10 20 30 50 75 100

K-SVD 25:32:37 11:58:59 4:54:04 3:00:27 1:39:32 1:04:29 46:32

Sparse K-SVD 1:14:37 34:26 14:11 9:44 5:56 4:47 4:04

O-DCT 31:45 14:15 6:10 4:01 2:25 1:30 1:12

Table 4.2: Running times of K-SVD, Sparse K-SVD, and overcomplete DCT denoising for the

results in Table 4.2 (3-D case). Timings include dictionary training. Simulations were performed

on an Intel Core 2 processor, utilizing a single core. Note: running times listed here can be

significantly improved, and the reader is referred to section 4.5.3 for a discussion.

2-D Denoising 3-D Denoising

Block size 8× 8 8× 8× 8

Dictionary size 64× 100 512× 1000

Atom sparsity (Sparse K-SVD) 6 16

Initial dictionary Overcomplete DCT Overcomplete DCT

Training signals 30,000 80,000

K-SVD iterations 15 15

Noise gain 1.15 1.04

Lagrange multiplier 0 0

Step size 1 2

Table 4.3: Parameters of the K-SVD denoising algorithm (see [2] for more details). Note that a

Lagrange multiplier of 0 means that the noisy image is not weighted when computing the final

denoised result.

tially more effective than 2-D denoising for this task, with significant gains of

1.5dB-4dB in all cases. These results provide further motivation for the move to-

wards larger dictionaries and higher-dimensional signals, where sparse dictionaries

are truly advantageous.
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Turning to the 3-D denoising results, we find that the Sparse K-SVD matches

or outperforms the standard K-SVD in all test cases. Indeed, in the low noise range

(σ ≤ 10), both methods perform essentially the same, and provide only marginal

improvement over the fixed overcomplete DCT dictionary. However in the medium

and high noise ranges (σ ≥ 20), the training process becomes beneficial, and

leads to improved recovery compared to the fixed dictionary. In this noise range,

the increased stability of the Sparse K-SVD in the presence of noise and limited

training data becomes advantageous, and it performs consistently better than

standard K-SVD. We note that in some cases of very high noise, the standard K-

SVD actually performs worse than its initial overcomplete DCT dictionary, due

to overfitting and its weakness in the presence of noise.

Reviewing the results in Table 4.1, we note that the raw PSNR gain of Sparse

K-SVD over standard K-SVD, while consistent, is typically small. Indeed, the

main appeal of the Sparse K-SVD here is its substantially better complexity, as

depicted in Table 4.2. As can be seen, the complexity advantage of Sparse K-SVD

translates to a ×10−×20 reduction in denoising time compared to the standard

K-SVD, and in fact, the long running time of standard K-SVD makes it practically

useless for this task. In contrast, the Sparse K-SVD is much faster, performing

especially reasonably in the interesting noise range of σ ≥ 20 (in the next sec-

tion we discuss methods to further reduce running time in practical applications).

Thus, we conclude that the Sparse K-SVD is indeed able to introduce adaptivity

where the standard K-SVD is impractical, making sparse dictionaries an appealing

alternative to both fixed dictionaries and explicit learned dictionaries alike.

4.5.3 Further Acceleration and Practical Considerations

The running times in Table 4.2 may be significantly improved to allow incorpora-

tion of the Sparse K-SVD in practical applications. First, analysis of the Sparse

K-SVD denoising run-time shows that it is mostly dedicated to training, while
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the actual denoising requires similar time to the overcomplete DCT option. In

many cases, training time may be decreased (and denoising results improved) by

pre-training an initial sparse dictionary on a large set of generic data of the same

type as handled by the application. This method, employed e.g. in [65], reduces

the number of training iterations required, and can substantially accelerate the

process.

Another source of acceleration is replacing the OMP-Cholesky implementation

with a more efficient OMP implementation such as Batch-OMP [163]. This option,

which is not discussed here due to its relative technicality, is analyzed in detail

in [169]. Experiments done with Batch-OMP show that it achieves a ×2 − ×3

speedup in Sparse K-SVD and overcomplete DCT denoising over the running

times shown in Table 4.2, reducing the Sparse K-SVD denoising time to less than

5 minutes for the σ ≥ 20 noise range. The software package published with this

paper (see below) implements both OMP-Cholesky and Batch-OMP options.

Finally, we should mention that all algorithms discussed here are highly par-

allelizeable, with an expected near-linear speedup with the number of processors.

Thus we expect an 8-core processor, combined with the Batch-OMP implementa-

tion, to carry out the entire 3-D Sparse K-SVD denoising process in less than a

minute for any σ ≥ 20.

4.5.4 Reproducible Research

The complete K-SVD and Sparse K-SVD code reproducing the results in this

paper, along with the original CT volumes used, are made available for down-

load [172]. The code is provided as a set of Matlab packages that combine Matlab

code and compilable C MEX functions. The packages implement both the OMP-

Cholesky and the Batch-OMP options. See the README files and the accompanying

documentation in each of the packages for more information.
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4.6 Summary and Future Work

We have presented a novel dictionary structure which is both adaptive and effi-

cient. The sparse structure is simple and can be easily integrated into existing

sparsity-based methods. It provides fast forward and adjoint operators, enabling

its use with larger dictionaries and higher-dimensional data. Its compact form is

beneficial for tasks such as compression, communication, and real-time systems.

It may be combined with any implicit dictionary to enhance its adaptability, with

very little overhead.

We developed an efficient K-SVD-like algorithm for training the sparse dictio-

nary, and showed that the structure provides better generalization abilities than

the non-constrained one. The algorithm was applied to noisy CT data, where the

sparse structure was found to outperform and operate significantly faster than

the explicit representation under moderate and high noise. The proposed dictio-

nary structure is thus a compelling alternative to existing explicit and implicit

dictionaries alike, offering the benefits of both.

The full potential of the new dictionary structure is yet to be realized. We

have provided preliminary results for CT denoising, however other signal process-

ing tasks are expected to benefit from the new structure as well, and additional

work is required to establish these gains. As noted in the introduction, the gener-

ality of the sparse dictionary structure allows it to be easily combined with other

dictionary forms. As dictionary design receives increasing attention, the proposed

structure can become a valuable tool for accelerating, regularizing, and enhancing

adaptability in future dictionary structures.
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(a) Original (b) Noisy

(c) 2-D Sparse KSVD (d) 3-D Sparse KSVD

Figure 4.6: Denoising results for Visible Male - Head, slice #137 (σ = 50). Images are mainly

provided for qualitative evaluation, and are best viewed by zooming-in using a computer display.
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Abstract

Transform-based coding is a widely used image compression technique, where en-

tropy reduction is achieved by decomposing the image over a dictionary of atoms,

known to provide compaction. Existing algorithms assume the dictionary to be

fixed and pre-shared by the encoder and decoder. Algorithms such as JPEG

and JPEG2000 utilize generic dictionaries (e.g., the DCT and Wavelet dictionar-

ies, respectively), and support compression of arbitrary signals. More recently,

content-specific dictionaries have been used to improve compression rates by op-

timizing the dictionary to a specific image class. Such approaches lose generality,

though, as they require sharing the specialized dictionary in advance between the

encoder and decoder.

Utilizing image-adaptive dictionaries has the potential of both restoring gen-

erality and improving compression rates by encoding any given input image over
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a dictionary specifically adapted to it. However, this approach has so far been

avoided as it requires transmitting the dictionary along with the compressed data.

In this work we explore the use of the sparse dictionary structure to implement

image-adaptive compression, aimed at generic images. This dictionary structure

has a compact representation, and thus can be transmitted with relatively low

overhead. We employ this structure in a compression scheme which adaptively

trains the dictionary for the input image. Our results show that although this

method involves transmitting the dictionary, it remains competitive with fixed-

dictionary schemes such as JPEG and JPEG2000.

5.1 Introduction

Compression of natural images relies on the ability to capture and exploit redun-

dancies found in these images. The most common compression approach, known

as transform coding, utilizes a dictionary of atomic signals, such as the DCT or

wavelet dictionaries, over which the image is known to be compressible. The dic-

tionary is typically arranged as a matrix D = [d1d2 . . .dL] ∈ RN×L, with the

columns di constituting the atoms, and L ≥ N . Given a signal x ∈ RN , compres-

sion is achieved by approximating it as a linear combination of the atoms,

x ≈ Dγ , (5.1)

where the representation vector γ is expected to have lower entropy than the

entries of x.

When D is invertible, the representation γ can be computed by inverting D

and quantizing the coefficients: γ = Q(D−1x). This is the case in the JPEG [107]

and JPEG2000 [173] compression standards, where D is the DCT or wavelet

dictionary, respectively.

WhenD is overcomplete (L ≥ N), the null space ofD introduces additional de-

grees of freedom in the choice of γ, which can be exploited to improve its compress-
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ibility. The representation is typically selected by minimizing some penalty func-

tion C(γ) which estimates its compressibility, such as the `0 penalty C(γ) = ‖γ‖0

which measures the number of non-zeros in the representation:

γ̂ = Argmin
γ
‖γ‖0 Subject To ‖x−Dγ‖2

2 ≤ ε2 . (5.2)

Here, ε is the approximation error target, controlling the distortion of the com-

pressed signal. This problem is known as the sparse approximation problem [36],

and though NP-hard in general, it can be approximated by a wide range of tech-

niques [11, 38, 136]. Other choices for C(γ) include the variety of robust penalty

functions such as the `p cost functions with 0 ≤ p ≤ 1. All these functions pro-

mote the sparsity of the representation γ (i.e., the fast decay of its coefficients)

by strongly penalizing small non-zero values. Indeed, we should remark that in

practice, the compressibility of a representation is affected by additional factors

other than sparsity (e.g. quantization, entropy coding etc.). Nonetheless, sparsity

provides a simple and relatively reliable approximation of compressibility.

Transform-based coding schemes generally assume the dictionaryD to be fixed,

and built into both the encoder and decoder. This is the case for the JPEG family

of algorithms, which are based on predetermined fixed dictionaries and are targeted

at general-purpose image compression. Recently, compression schemes aimed at

more specific classes of images have been developed, and show substantial gains by

employing a content adapted dictionary which is optimized for a specific class of

images [158, 174, 175]. Unfortunately, though these approaches show substantial

potential for improving compression rates, a significant drawback of these methods

is their loss of generality, due to the need to pre-share a specialized dictionary for

every class of images.

In this work, we take a different approach and target compression of generic

images using adaptive dictionaries. Our goal is to increase sparsity by encoding

the input image over a specifically-trained dictionary adapted to it. This goal is

ambitious, as it requires transmitting the dictionary along with the compressed
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data, which introduces substantial overhead. To address this, we propose using a

parametric dictionary, which can be represented by a relatively small number of

values. Several such dictionaries have been recently proposed (see [13]).

In this work we focus on the use of the sparse dictionary structure [33] for

image compression, which we choose due to its simplicity and ability to represent

relatively rich dictionaries. Our compression scheme thus trains the sparse dic-

tionary specifically for the input image, and encodes it as part of the compressed

stream. In this way, the compression method can accommodate a wide range of

images, since it imposes few assumptions on their behavior. Our simulations show

that even though our method must transmit the dictionary, it consistently outper-

forms JPEG compression, and comes close to JPEG2000 in several cases. We view

these as significant and encouraging results, which demonstrate the feasibility of

the image-adaptive approach, and open the door to further research.

5.1.1 Related Work

Several works on image compression using content-adaptive dictionaries have been

recently published. In all these works, the trained dictionary is assumed to be

known to both the encoder and decoder. One of the first works to successfully

employ this approach is [158], where the authors propose an algorithm for facial

image compression. The algorithm employs a pre-processing geometric alignment

step, followed by a sparse approximation of the image patches over a set of pre-

trained dictionaries. The method is shown to achieve dramatically higher com-

pression rates than JPEG and JPEG2000 for facial imagery due to the optimized

dictionaries, and clearly demonstrates the potential of content-aware compression.

Unfortunately, this approach is not readily extendible to more complex classes of

images.

A different method, applicable to a wider range of image classes, is proposed

in [174]. In this work, a set of orthogonal dictionaries is pre-trained for a given
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class of images, and the compression is implemented by allowing each patch in

the input to select its optimal dictionary from the set. The authors show that

for facial images, this method typically outperforms JPEG and comes close to

JPEG2000. Experiments with natural images show varying performance, match-

ing or surpassing JPEG.

Finally, a method based on iteration-tuned dictionaries (ITDs) has been re-

cently proposed [175]. In this work, a single hierarchical ITD is pre-trained for a

specific image class, and used to encode the input image patches. The authors test

their method with facial images, and show that it can convincingly outperform

JPEG and JPEG2000 for this class of images. Other classes of images remain to

be investigated.

5.1.2 Report Organization

This report is organized as follows: In section 5.2 we review the sparse dictionary

structure, which forms the core of our algorithm. The compression scheme is

described in section 5.3, followed by results in section 5.4. We conclude and

discuss future research directions in section 5.5.

5.2 Sparse Dictionaries

The sparse dictionary structure is a parametric dictionary model recently proposed

as a means of bridging the gap between analytic and trained dictionaries [33]. It

is a simple and effective structure based on sparsity of the atoms over a known

base dictionary. The motivation for this structure comes from the observation

that dictionaries trained from natural image data are typically highly structured,

and show notable regularity. For example, Fig. 5.1 shows a dictionary trained

using the K-SVD algorithm [28] on a set of 8 × 8 natural image patches. The

regularity of the trained atoms suggests that these atoms themselves may have

some underlying sparse structure over a more fundamental base dictionary. Thus,
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Figure 5.1: Left: overcomplete dictionary for 8 × 8 image patches, trained using the K-SVD

algorithm. Right: images used for the training.

according to this view, the dictionaries describing different images may not be

completely independent, and instead have a common underlying explanation in

the form of the base dictionary. This base dictionary in turn consists of a set

of signals — which can be thought of as ”sub-atomic” signals — from which all

observable dictionary atoms are formed.

Formally, the sparse dictionary structure represents each atom of the dictionary

as a sparse combination of atoms from a prespecified base dictionary Φ. The

dictionary is therefore expressed as

D = ΦA , (5.3)

where A is the atom representation matrix, and is assumed to be sparse. For

simplicity, we assume A has a fixed number of non-zeros per column, so ‖ai‖0 ≤ p

for some p. The base dictionary Φ is a fixed non-adaptive dictionary which is part

of the model.

Benefits of this model include adaptability (via modification of A), efficiency

(assuming Φ has an efficient implementation), and compact representation (as

only A requires specification). Training the sparse dictionary is done using the

Sparse K-SVD algorithm [33], which efficiently adapts the matrix A given a set of
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examples. The algorithm alternates between sparse coding and dictionary update

steps, similar to the original K-SVD algorithm [28]. We refer the reader to [33]

for a complete description of the algorithm.

5.3 Adaptive Image Compression

The adaptive encoding process is summarized in Fig. 5.2. The process begins by

partitioning the image to non-overlapping patches and subtracting the mean (DC)

value from each. The DC values are subsequently quantized, and their running

differences are entropy coded. The DC-free patches, which contain the bulk of

the image information, are used to train a sparse dictionary using Sparse K-SVD.

As the base dictionary, we use the overcomplete DCT1, which is known to be an

efficient generic dictionary for representing small image patches.

The outcome of this training is a matrix A describing an image-specific dic-

tionary for representing the image patches. This matrix undergoes quantization

and is then used to encode the DC-free patches. We perform sparse coding over

the quantized dictionary Dq = ΦAq to allow inversion of the process at the de-

coder. For the sparse coding, we use a variant of Orthogonal Matching Pursuit

(OMP) [38] which we name Global OMP. The sparse coding step produces a sparse

matrix Γ with the sparse representations of the patches as its columns, and Γ is

subsequently quantized to form Γq. Finally, both Aq and Γq are fed to a sparse

matrix encoder which generates the compressed representation of the DC-free con-

tent. The full compressed stream consists of the encoded DC values and the two

compressed sparse matrices.

We note that the sparse dictionary is learned from zero-mean patches, how-

ever the sparse coding step is performed with patches from which quantized DC

values were subtracted, and therefore may have non-zero means. We resolve this
1The overcomplete DCT dictionary is an extension of the standard DCT dictionary which allows

non-integer wave numbers.
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Figure 5.2: The proposed encoding scheme.

discrepancy by adding a fixed constant-valued DC atom to the trained dictionary,

and implicitly assume its existence as the first atom of the dictionary in both the

encoder and decoder. Decoding the stream is straightforward and efficient, and

includes reversing the sparse matrix encoding, computing the DC-free patches

X = ΦAΓ, and restoring the encoded DC values.

In the next sections we describe in more detail the key components of the scheme.

5.3.1 Global OMP

Our implementation of the compression scheme accepts a target PSNR as the

control of the output rate. In the sparse coding stage, this target can be enforced

individually for each image patch by setting ε in (5.2) to ε2 = I2
maxb/10

PSNR
10 , where

b denotes the number of pixels in a patch. Alternatively, we can lift this constraint

and allow the error to be distributed arbitrarily among the patches. This results

in a more flexible sparse coding scheme which potentially achieves higher sparsity.

Thus, we solve a global sparse coding problem for all image patches simultaneously:

Min
Γ
‖Γ‖0 Subject To ‖Y−DqΓ‖2

F ≤ ε2g . (5.4)

Here, Y is a matrix with the image patches as its columns, and εg is the global

error target for the image.

Problem (5.4) can be formulated as a sparse-coding problem for the column-

stack representation y ofY over the dictionary I⊗Dq (the block matrix containing

instances of Dq as its main diagonal):

Min
γ
‖γ‖0 Subject To ‖y− (I⊗Dq)γ‖2

2 ≤ ε2g . (5.5)
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We perform the sparse coding using OMP, which can be implemented efficiently

since the computations can be localized to a single patch each iteration. Specif-

ically, we store for each patch its current residual vector, sparse coefficients, and

inner-products with the dictionary atoms. At the selection stage, we choose the

largest inner product among all image patches, which determines both the patch

to process and the atom to add to its representation. The addition of the atom

involves only local updates to the patch information, and thus introduces no over-

head compared to encoding the patch independently.

We name the resulting process Global OMP, as it globally processes all image

patches towards a single collective error target. We use it in the dictionary training

as well as the sparse coding steps, in order to better tune the learned result to the

global process.

5.3.2 Quantization

We quantize the non-zero values in A and Γ using a uniform quantizer. While the

distribution of these values is highly non-uniform, it is known that using uniform

quantization followed by entropy coding generally outperforms non-uniform quan-

tization. Of course, a side effect of the quantization of Γ is that the PSNR target

achieved by the sparse coding step is lost. To restore the desired PSNR target, we

employ a simple iterative refinement process, in which coefficients are added to Γ

to compensate for the quality loss.

We begin with the original PSNR target and its associated error value εg. We

denote this original (user-specified) PSNR target by p0 and the achieved PSNR

after quantization by q0 (< p0), and let r0 = p0−q0. Assuming r0 is relatively small,

we estimate that the quantization-induced PSNR loss will be approximately the

same for any target PSNR close to p0. This implies that the target PSNR p1 = p0+

r0 should roughly achieve the user-specified PSNR target after quantization. We

therefore add coefficients to Γ until reaching the updated target p1, by continuing
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the greedy Global OMP from the point it terminated at p0. After quantization, if

the result is still below the desired PSNR target, the Global OMP target can be

raised again using a similar process, based on the updated PSNR loss r1 = p1−q1.

The process repeats as necessary until reaching the user-specified PSNR target

p0 ± δ for some δ. The overall process is efficient and requires relatively few

repetitions (typically 2-5). It should be noted that since the Global OMP is

continued rather than restarted, the overhead of these repetitions (compared to

having known the ”correct” sparse coding target to begin with) is small.

5.3.3 Sparse Matrix Encoding

Our sparse matrix encoder represents the matrices Aq and Γq in column com-

pressed (CCS) form. It encodes the quantized values of the coefficients via en-

tropy coding, and the locations of these coefficients via difference coding of the

row indices, followed by entropy coding.

A useful observation is that the order of the columns in A is arbitrary, and is

essentially a degree of freedom of the representation. Indeed, we can apply any

permutation to the columns of A, along with the same permutation to the rows

of Γ, without altering the product AΓ. This freedom can be used to improve the

compressibility of the row indices in Γ. In this work we reorder the columns of A

such that they become ordered in decreasing order of popularity. In other words,

the rows of Γ are sorted in descending order of non-zero count. This sorting results

in concentration of the non-zero values in Γ near the top of the matrix, and thus

the overall entropy of the index differences is reduced.

To facilitate the difference-coding of the row indices in Γ, we transmit for each

column the index of the first non-zero value, followed by a sequence of differences

for the remaining indices. Owing to the above sorting, the order of the rows in

Γ is such that the index of the first non-zero value in each column is typically

small, and hence has a particulary low entropy. We thus use a dedicated entropy
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coder for the indices of the first value in each column, and a separate entropy

coder for the index differences. We indicate an empty column in Γ by sending the

special symbol 0 as the index of the first non-zero value in that column (we index

valid matrix rows from 1). For a non-empty column — which can have a variable

number of non-zero values — we indicate the end of its index sequence by sending

the special symbol 0 as the index difference.

For the coefficient values, we entropy-code their absolute value as a consecutive

stream (a different stream for A and Γ). The signs are sent unprocessed.

5.3.4 Entropy Coding

The entropy coding in this work is implemented using an arithmetic coder. We

note that given a set of symbols, the arithmetic coder and decoder require the

symbol probabilities {pi} as side information. These probabilities are determined

by the encoder, and must be transmitted to the decoder. To avoid sending floating-

point numbers, we quantize and transmit the log-probabilities log2(1/pi). These

values represent the optimal codeword lengths of the symbols, and thus have a

relatively small range which can be uniformly quantized. We have found that using

very few bits (5−6) for the quantized values results in practically no increase to the

code length, while providing an effective way of transmitting the side information.

5.3.5 Parameter Tuning

One can imagine that compression schemes, such as the one described in [158],

rely on many parameters that need to be set before actual coding. Some of these

parameters can be predetermined, while others depend on the image content and

the requested output quality. The proposed scheme involves several such parame-

ters as well. In this section we discuss the main parameters in the scheme — the

patch size, the dictionary size, the atom sparsity and the quantization step sizes

— and their selection process in our implementation.
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Patch Size Dictionary Size Atom Sparsity

3× 3 300 8

4× 4 300 10

5× 5 200 12

6× 6 200 12

7× 7 200 14

8× 8 200 16

9× 9 150 16

10× 10 150 16

11× 11 150 18

12× 12 120 18

13× 13 100 20

14× 14 100 20

Table 5.1: Dictionary size and atom sparsity for each patch size.

Our experiments have shown that of the mentioned parameters, only a few have

a significant effect on compression performance. Based on these experiments, our

system implements a semi-automatic parameter tuning process which requires no

manual intervention. We should remark that although this heuristic process has

been found relatively effective, manual experimentation has verified that it is still

sub-optimal, and improved results can be achieved by further refining it.

For the dictionary size and atom sparsity, our system employs hard-coded

values which depend only on the patch size, as detailed in Table 5.1. Based on our

experiments, we have found that the optimal values for these parameters are quite

consistent among images assigned with the same patch sizes, with compression

results remaining stable when deviating from these values. Thus, fixed values for

these two parameters suffice for our encoding system. In the same way, our base

dictionary size is fixed as well, and depends only on the patch size. For a patch

size of N×N , our overcomplete DCT base dictionary is of size N2× (N +2)2, i.e.,

the Kronecker product of two 1-D N × (N + 2) overcomplete DCT dictionaries.
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Selecting the quantization steps is a more elaborate process. Our scheme in-

volves three quantization step sizes which must be chosen: one for the DC values,

and two for the non-zero values in A and Γ. Beginning with the DC quantization

step, we recall that our scheme adds a fixed DC atom to the trained dictionary to

overcome DC quantization effects. Thus, coarser DC quantization results in more

non-zero values appearing in Γ, associated with this DC atom. Our selection rule

for the DC quantization step heuristically chooses this value such that the increase

in non-zero count in Γ due to the DC quantization is around 6%.

Regarding the quantization steps for the non-zeros in A and Γ, we notice

that for both these values there is a direct trade-off between the harshness of the

quantization and the number of coefficients that will be required in Γ to achieve

a given PSNR target. Specifically, by coarsening the quantization, it remains

possible (up to some point) to satisfy the PSNR target, but at the expense of

more non-zero values added to Γ. Our system employs a heuristic process which

simultaneously selects both step sizes, with the goal of achieving a ∼ 0.85dB

PSNR loss due to the quantization. This loss is then compensated for by adding

coefficients to Γ. To achieve this goal, we extend the iterative process in 5.3.2 to

repeatedly refine both step sizes based on the current PSNR loss, modifying the

step sizes as necessary according to a set of empirically designed rules.

Of all the compression parameters, we have found the most influential one to

be the patch size. As mentioned above, given the optimal patch size, many other

parameters of the process can be immediately set. Unfortunately, we have not

yet found a sufficiently effective heuristic for selecting this size. Thus, our system

determines the optimal size for each image by applying several predetermined

patch sizes in a highly reduced compression scheme, and choosing the size that

achieves the optimal rate for the target PSNR. We consider patch sizes from 3× 3

pixels to 14 × 14, as listed in Table 5.1. As expected, we have found that lower

PSNR targets generally prefer larger patch sizes, due to the reduced accuracy
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Figure 5.3: The effect of the patch size choice on the compressed file size, for the image Barbara.

For each PSNR target, the corresponding column shows the ratios between the obtained file sizes

for different patch size choices, and the optimal file size for that PSNR.

required by the compression. Fig. 5.3 illustrates the relation between the patch

size and the resulting file size for the image Barbara. For each PSNR target, the

figure shows the relative increase in file size incurred by different patch size choices,

compared to the optimal size. As can be seen, compression performance is quite

stable under minor deviations from the optimal patch size, though selecting an

unsuitable size can result in a substantially large file.

For further details on the parameter tuning process, we refer the reader to [176].

5.4 Results

We have tested the proposed scheme on a variety of images, and the results for

seven standard test images are presented below. The Sparse K-SVD results were

produced using the parameter selection process described in the previous section.

The JPEG and JPEG2000 images were produced using MATLAB R2010a.

Representative compression results are listed in Table 5.2. Figs. 5.4-5.6 show

the corresponding compressed images, and Fig. 5.7 presents comparative rate-

distortion graphs. The three parts in the table correspond to the three figures
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5.4,5.5,5.6. In each part, all test images are compressed to the same target PSNR

by the Sparse K-SVD compression scheme, and the JPEG and JPEG2000 algo-

rithms are tuned to match the resulting file size. The three cases represent low,

medium and high bit-rates, corresponding to PSNR targets of 25dB, 29dB and

34dB for the Sparse K-SVD. The rate-distortion graphs summarize our complete

results for the seven test images.

As can be seen, our scheme consistently outperforms JPEG, and comes close

to JPEG2000 in several cases. Our method typically performs better on images

containing more texture, owing to the ability of the dictionary to capture and effi-

ciently represent repetitive behavior. Similar to the JPEG algorithm, our method

suffers from blockiness due to partitioning of the image. This artifact can likely

be reduced by employing a post-processing deblocking scheme.

Finally, Fig. 5.8 demonstrates a typical decomposition of the compressed stream

resulting from our encoder. As can be seen, the indices of the representation co-

efficients in Γ occupy the majority of the compressed file. This behavior is due to

the random structure of the coefficients in Γ, which exhibits little organization or

repetitiveness, and is thus difficult to compress efficiently.
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File Size PSNR (dB)

Figure Image (KB) JPEG2 Sparse K-SVD JPEG2000

barbara 5.9± 0.1 22.3 25 26.96

lena 3.4± 0.1 — 25 30.11

peppers 3.9± 0.1 — 25 30.57

5.4 pirate 5.1± 0.1 23.28 25 26.63

zentime 5.4± 0.1 23.12 25 25.83

table 14.5± 0.1 23.17 25 25.6

dollar 23.4± 0.1 22.92 25 25.58

barbara 11.1± 0.1 25.8 29 29.79

lena 4.77± 0.1 25.56 29 31.69

peppers 6.33± 0.1 28.23 29 32.09

5.5 pirate 13.3± 0.1 28.36 29 30.31

zentime 16.3± 0.1 27.86 29 29.97

table 30.2± 0.1 26.45 29 29.9

dollar 41.9± 0.1 26.23 29 30.2

barbara 26.7± 0.1 31.65 34 35.65

lena 12.6± 0.1 33.41 34 35.83

peppers 14.8± 0.1 33.61 34 35.49

5.6 pirate 36.6± 0.1 32.91 34 35.92

zentime 39.3± 0.1 32.77 34 36.6

table 59± 0.1 30.74 34 35.11

dollar 72± 0.1 31.32 34 36.6

Table 5.2: Quantitative comparison of JPEG2, JPEG2000 and Sparse K-SVD compression. Each

part of the table corresponds to a single target PSNR for the Sparse K-SVD (25dB, 29dB and

34dB), and the JPEG and JPEG2000 are tuned to match the resulting file size.

2The empty entries in the table correspond to cases where the Sparse K-SVD file sizes were below the

possible minimum of the JPEG algorithm. The smallest file sizes achieved by JPEG for Lena and Peppers

were 4.27KB (24.25dB) and 4.42KB (24.3dB), respectively. The corresponding images are shown in

Fig. 5.4.
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Figure 5.4: Visual comparison of the schemes (low bit-rate). Left to right: Original, JPEG,

Sparse K-SVD and JPEG2000. For the images Lena and Peppers, where JPEG could not

achieve the target file size, the shown images use the lowest possible quality settings.
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Figure 5.5: Visual comparison of the schemes (medium bit-rate). Left to right: Original, JPEG,

Sparse K-SVD and JPEG2000.
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Figure 5.6: Visual comparison of the schemes (high bit-rate). Left to right: Original, JPEG,

Sparse K-SVD and JPEG2000.
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Figure 5.7: Rate-distortion curves for the seven test images. Comparison of JPEG, Sparse

K-SVD, and JPEG2000 compression.
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Figure 5.8: Decomposition of the compressed stream for the image Dollar.

5.5 Conclusion and Future Directions

This work has presented a new image compression scheme based on image-adaptive

dictionaries. The system is unique in that it encodes the image over a dictionary

specifically trained for the input. This approach, which requires transmission of

the dictionary as part of the compressed stream, is made possible owing to the

compact representation of the sparse dictionary structure.

We have shown that despite the overhead in sending the dictionary, our sys-

tem consistently outperforms the JPEG algorithm, which is a similar patch-based

scheme, but utilizes a pre-shared fixed dictionary. Indeed, while our current imple-

mentation does not reach JPEG2000 performance, our results remain significant

in that they demonstrate the feasibility and potential of the adaptive approach.

Such an approach, as far as the authors are aware of, has so far been considered

impractical.

Many enhancements to the scheme could be introduced. Most notably, working

with several image scales could more efficiently represent differently-sized features,

as well as eliminate the need to select a patch size for each input individually.

Alternatively, enabling variable-sized patches based on local image complexity

could also accomplish this. Another interesting way to achieve multi-scale behavior

is to apply the scheme on the wavelet (or other multi-scale) transform of the image,

which could at the same time reduce blockiness effects.

In another direction, an important observation is that the encoded indices

143



Chapter 5: Adaptive Image Compression Using Sparse Dictionaries

occupy a significant part of the resulting compressed stream. Thus, discovering

hidden patterns in Γ, or alternatively, modifying the sparse coding process to

create more regular patterns, could dramatically improve compression efficiency.

Finally, the scheme could be extended to allow fixed pre-shared parts in the dic-

tionary alongside adaptive ones, thus reducing the overall cost of sending the

dictionary.
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Learning `0 Analysis Dictionaries

Joint work with Michael Elad.

Abstract

The synthesis-based sparse representation signal model has drawn considerable

attention over the past decade. The synthesis approach models signals as coming

from linear combinations of a few columns, or atoms, from a given dictionary. In

this work we concentrate on an alternative analysis model, where signal repre-

sentations come from the inner products of the signals and the dictionary atoms,

producing a sparse outcome. According to this approach, the atoms are arranged

as the rows of the analysis dictionary, and the signals of interest are described as

orthogonal to sets of rows from this dictionary. In this chapter we present this

new modeling approach, and propose an algorithm for learning the analysis op-

erator from sparse examples. The algorithm we develop is closely related to the

K-SVD training algorithm for synthesis dictionaries, and we thus name it Anal-

ysis K-SVD. Our experiments demonstrate the effectiveness of the algorithm in

recovering an underlying analysis dictionary from examples, as well as its ability

to discover meaningful structures in natural image data.
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6.1 Introduction

The `0 analysis model is a new signal model in which signals are described in terms

of orthogonality to the dictionary atoms. Very little is currently known about

this model, with only a handful of works published on the topic [86, 87, 177].

The model describes the signals of interest x ∈ Ω as coming from subspaces

orthogonal to sets of rows in the analysis dictionary. Thus, ‖Ωx‖0 = L − P ,

where P is the number of atoms x is orthogonal to. For natural signals, it is

well-known that localized derivative operators exhibit highly sparse behavior, i.e.,

many inner-products are near-zero. Dictionaries such as short-time Fourier [106],

wavelets [7], curvelets [16], contourlets [18], and high-order derivatives, constitute

good examples of this behavior.

Particular motivation for the `0 analysis model comes from the observation

in [1] that the local modes (the high probability signals) of the `1 analysis model

are orthogonal to large sets of rows in the analysis dictionary. This is parallel to

the synthesis model, where it is known that the high probability signals of the `1

model constitute sparse combinations of columns from the synthesis dictionary.

Indeed, the outstanding success of the resulting `0 synthesis formulation naturally

raises interest in the yet unexplored `0 variant of the analysis model.

The new analysis signal model raises several interesting questions. The first

concerns recovery: given a possibly noisy measurement of the signal x, can we

recover its analysis representation Ωx? Clearly when we have an exact measure-

ment of x this becomes trivial. However, if we add noise to the measurements,

we arrive at an estimation process which we name analysis sparse approximation.

We describe two algorithms for this in the next section.

The second interesting question concerns dictionary learning: given a set of

noisy training examples coming from an analysis sparse model, can we estimate the

underlying dictionary? We consider this question in Section 6.3, where we propose

the Analysis K-SVD algorithm for analysis dictionary training. Initial experiment
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results presented in Section 6.4 demonstrate the ability of our algorithm to recover

underlying analysis structures in both synthetic and natural signal data.

6.2 Analysis Sparse Approximation

In the analysis framework, computing signal representations γ(x) = Ωx is a re-

markably simple process. However, if we assume some contamination in the signal,

recovering its analysis representation from the noisy measurements y = x+n be-

comes a non-trivial optimization task, which takes the form:

ẑ = Argmin
z
‖y− z‖2 Subject To ‖Ωz‖0 ≤ L− P . (6.1)

Here we assume that the sparsity of the original signal is known, and thus the

optimization process searches for P -sparse signals in the vicinity of y which min-

imize the representation error. We refer to this problem, as well as to its error-

constrained equivalent, as the analysis sparse approximation problem.

Similar to the synthesis sparse approximation problem, problem (6.1) is com-

binatorial in nature and can thus only be approximated. One approach to approx-

imating the solution is to relax the `0 norm and replace it with some `p penalty

function with p > 0, producing

ẑ = Argmin
z
‖y− z‖2 Subject To ‖Ωz‖pp ≤ L− P . (6.2)

This approach is parallel to the basis pursuit approach for synthesis approxima-

tion [12], and the resulting problem may be solved e.g., via an iterated re-weighted

least squares (IRLS) method. Going to p = 1 results in the `1 analysis approxi-

mation problem, which is solvable using a variety of algorithms (Section 1.2.2).

A second approach, parallel to the synthesis greedy pursuit approaches [11, 38],

suggests selecting rows from Ω one-by-one in a greedy fashion. The process begins

by setting z = y and initializing an empty set of rows. Each iteration, the inner

products Ωz are computed, and the row with the smallest non-zero inner product
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Algorithm 6.1 Analysis-OMP

1: Input: Dictionary Ω ∈ RL×N , signal y ∈ RN , target sparsity P

2: Output: Signal z ∈ RN satisfying ‖Ωz‖0 ≤ L− P and minimizing ‖y− z‖2

3: Init: Set Φ := ∅, Ψ := {1, 2, . . . L}, z := y

4: for i = 1 . . . P do

5: k̂ := Argmin
k∈Ψ

|wT
k z |

6: Φ := Φ ∪ { k̂ }

7: Ψ := Ψ \ { k̂ }

8: z := y− (ΩΦ)+ΩΦy

9: end for

10: return z

is selected and added to the set. The solution z is then updated by projecting y

on the orthogonal space of the selected rows. This process is repeated until the

target sparsity (or error) is achieved. We refer to this method as Analysis-OMP,

and detail it in Algorithm 6.1.

We compare the two options in Fig. 6.1. The plot shows the results of a

synthetic experiment comparing the fraction of correctly recovered vanishing coef-

ficients for a few noise and sparsity levels. As can be seen, in all cases the recovery

performance improves with the sparsity of the signal, as could be expected. Among

the two options, we see that their performance is mostly comparable, with a small

advantage to the relaxation approach with p ≤ 0.5. However, we note that the

Analysis OMP is a much simpler and faster option, and thus we generally prefer

it over the relaxation alternative.
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Figure 6.1: Analysis sparse approximation performance. The bars show the fraction of correctly

recovered vanishing coefficients for different sparsity levels, using the relaxation (p = 0.2, 0.5, 1)

and Analysis OMP algorithms. In this experiment, Ω is of size 40 × 30 and contains random

Gaussian entries. For each sparsity level P , we generate a test set of 1, 000 random signals, each

orthogonal to P different rows in Ω, and contaminated with white Gaussian noise. The bars

show the mean recovery rate achieved for each sparsity level, for noise levels of SNR=8dB (left)

and SNR=15dB (right).

6.3 Dictionary Training

We now turn to the question of dictionary learning. Our goal is to assess the

possibility of recovering an underlying analysis dictionary Ω given a set of analysis-

sparse realizations. We therefore consider the following setting: given a set of

examples Y = [y1 y2 . . . yR ], we assume each example is a noisy version of a

signal orthogonal to P rows from the unknown dictionary Ω. Thus, yi = xi + ni,

where ni is additive Gaussian noise, and xi satisfies ‖Ωxi‖0 = L − P . Our goal

is to find the dictionary Ω giving rise to these signals, which can be translated to

the following optimization task:

Argmin
Ω,Z

‖Y− Z‖2
F Subject To ∀i ‖Ωzi‖0 ≤ L− P (6.3)

∀j ‖wj‖2 = 1 .

Here, zi are our estimates of the noiseless signals, arranged as the columns of

the matrix Z. The vectors wj denote the rows of Ω (as column vectors). The
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normalization constraint on the rows of Ω is introduced to avoid degeneracy, but

has no other influence on the result. We note that our formulation closely follows

the structure of the `0 synthesis training problem, given by [28]:

Argmin
D,Γ

‖Y−DΓ‖2
F Subject To ∀i ‖γi‖0 ≤ T (6.4)

∀j ‖dj‖2 = 1 .

Problem (6.3) is highly non-convex, and thus we cannot hope for a global

solution. The optimization scheme we adopt here assumes an initial estimate Ω0

of the analysis operator, and is based on a two-phase block-coordinate-relaxation

approach, similar to the MOD [23] and K-SVD [28]. In the first phase we optimize

for Z while keeping Ω fixed, and in the second phase we update Ω using the

computed signals Z. The process repeats until some stopping criterion (typically

a fixed number of iterations) is achieved.

Optimizing for Z is done independently for each of its columns zi, defining a

set of `0 analysis denoising problems which may be solved using any one of the

sparse approximation methods:

ẑi = Argmin
zi
‖yi − zi‖2 Subject To ‖Ωzi‖0 ≤ L− P . (6.5)

Once this step is complete, Ω and Z are updated simultaneously in the second

step. The optimization is carried out sequentially for each of the rows wj in Ω. We

note that the update of wj only affects those columns of Z which are orthogonal

to it, while the remaining columns are indifferent to the update (they may only

gain from it). Thus, letting ZJ denote the submatrix of Z containing the columns

orthogonal to wj, and denoting by YJ the corresponding submatrix of Y, the

update step for wj can be written as:

Arg min
wj ,ZJ

‖YJ − ZJ‖2
F Subject To ∀i ∈ J , ‖Ωzi‖0 ≤ L− P (6.6)

‖wj‖2 = 1 .

The straightforward approach to maintaining the sparsity constraints on the

analysis representations is to force each zi to remain orthogonal to the rows in Ω
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it is already orthogonal to. This is parallel to the K-SVD atom update process

where the representation supports are kept fixed. To formalize this, we use the

notation Ωi to denote the submatrix of Ω containing the rows which zi is currently

orthogonal to, excluding wj. This leads to the optimization task:

Arg min
wj ,ZJ

‖YJ − ZJ‖2
F Subject To ∀i ∈ J , Ωizi = 0 (6.7)

wT
j ZJ = 0

‖wj‖2 = 1 .

However, solving this problem directly turns out to be a difficult task. As we show

in the Appendix, the atom update process resulting from this expression is given

by

Argmin
wj

∑
i∈J

wT
j y⊥i (y⊥i )Twj

wT
j Piwj

Subject To ‖wj‖2 = 1 ,

where Pi is the orthogonal projection operator on the null-space of Ωi. As can be

seen, in contrast to the K-SVD, this problem is difficult to optimize, and has no

closed-form solution.

We therefore take a different route here. Rather than fix all current orthog-

onality relations, as suggested by the K-SVD-like path, we return to the original

problem statement (6.6), and require only orthogonality to wj to be maintained.

The modified update process is thus given by:

Arg min
wj ,ZJ

‖YJ − ZJ‖2
F Subject To ∀i ∈ J , ‖Ωĵzi‖0 ≤ L− P + 1 (6.8)

wT
j ZJ = 0

‖wj‖2 = 1 ,

where Ωĵ is the analysis operator without the j-th row.

To solve this problem, we adopt a projected-optimization approach. In the

first step, we relax (6.8) by optimizing for wj and ZJ without the first constraint.

In the second step, we project ZJ back to the feasible domain, reinstating the
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constraints. For the first step we thus obtain a simple task:

Arg min
wj ,ZJ

‖YJ − ZJ‖2
F Subject To wT

j ZJ = 0 (6.9)

‖wj‖2 = 1 .

This problem is a standard rank-reduction problem for YJ , and its solution is

given by the rank-(N − 1) matrix ZJ closest to YJ , and its null-space wj. The

updated wj is thus the left singular vector corresponding to the smallest singular

value of YJ , which can be computed from the SVD of YJ , or using a more efficient

inverse power method. The second (projection) step is given by:

Argmin
ZJ

‖YJ − ZJ‖2
F Subject To ∀i ∈ J , ‖Ωĵzi‖0 ≤ L− P + 1 (6.10)

wT
j ZJ = 0 ,

which can be solved by an analysis sparse approximation method.

We now note that the update step for wj, as suggested by (6.9), depends

only on the input signals YJ , and not on the denoised signals XJ . This suggests

a parallel update step for the dictionary atoms, in which each row is independently

set to the singular vector defined by its associated set of examples. Following the

row updates, the projection steps are bypassed by continuing directly to the sparse-

coding stage, which restores the sparsity constraints. Adopting this approach, we

can thus rewrite the atom update (6.9) as

ŵj = Argmin
wj

‖wT
j YJ‖2

2 Subject To ‖wj‖2 = 1 , (6.11)

whose solution coincides with that of (6.9) for wj, but avoids computing ZJ .

The complete training process thus alternates analysis sparse-approximation

steps for the columns of Z (Eq. (6.5)), and SVD-based atom updates for the rows

of Ω (Eq. (6.11)). We name the resulting process Analysis K-SVD, due to its

resemblance to the original K-SVD algorithm, and specifically, the similar use of

K SVD processes per iteration (K representing the number of dictionary atoms).

The full algorithm is detailed in Algorithm 6.2.
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Algorithm 6.2 Analysis K-SVD

1: Input: Training signals Y ∈ RN×R, initial dictionary Ω0 ∈ RL×N , target sparsity P ,

number of iterations k

2: Output: Dictionary Ω and signal set Z minimizing (6.3)

3: Init: Set Ω := Ω0

4: for n = 1 . . . k do

5: ∀i : zi := Argmin
z
‖yi − z|22 Subject To ‖Ωz‖0 ≤ L− P

6: for all j ∈ {1 . . . L} do

7: J := {indices of the columns of Z orthogonal to wj}

8: wj := Argmin
w
‖wTYJ‖2 Subject To ‖w‖2 = 1

9: Ω{j-th row} := wT
j

10: end for

11: end for

We mention that as an alternative to the parallel approach, a serial update

of the dictionary atoms could also be considered, in which case the projection

steps (6.10) are applied between the atom updates. These projections result in a

re-assignment of the examples to the dictionary atoms, which affects subsequent

atom updates by modifying the subsets of examples used. We have not explored

the serial option in this work, however, due to its substantial computational cost.

6.4 Simulation Results

In the remainder of this chapter we present experiment results with the proposed

training algorithm. In the first part we provide results for synthetic signals, demon-

strating the ability of the method to recover a true underlying operator Ω given

a sparse training set. In the second part we show qualitative training results for

natural image data, and observe the emergence of meaningful structures in the
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trained dictionary, indicating the ability of the algorithm to capture fundamental

behaviors in natural signals.

6.4.1 Synthetic Experiments

To demonstrate the performance of the proposed algorithm in recovering an un-

derlying dictionary Ω, we performed a set of synthetic experiments with a known

ground-truth. We designed the experiments to follow those carried out in [86],

which similarly targets the `0 analysis model, in order to allow a direct comparison.

In these experiments, a known dictionary Ω ∈ RL×N is generated with random

Gaussian entries. R sparse examples are then generated from this dictionary, and

the training algorithm is employed to produce an estimate of the original dictio-

nary. Each example is generated as a sparse analysis signal by randomly selecting

P rows from Ω, computing their null-space, and sampling a random Gaussian

vector within this null-space. The sparse signals are normalized to unit energy,

and optionally subjected to additive white Gaussian noise, to produce the final

training set.

In the following experiments, the analysis dictionary is of size 20 × 10, the

sparsity level (number of vanishing coefficients) is P = 8, and the training set

size is R = 10, 000, in line with [86]. In the first set of simulations the training

signals are noiseless, and in the second set we add noise with standard deviation

σ = 0.1/
√
N (SNR≈20dB). For each of the two cases, we run the algorithm

with five different sets of inputs, to verify consistency of the results. The initial

dictionary Ω0 for the training is constructed in all cases by randomly selecting L

sets of N − 1 examples and computing their 1-dimensional null-spaces.

Fig. 6.2 shows representative training results for the noiseless and noisy cases,

using Analysis-OMP for the sparse coding. As can be seen, in the noiseless case

the algorithm fully recovers the original dictionary, while in the noisy case the

algorithm recovers 19 out of 20 atoms (95%). Over the five noiseless experi-

154



Chapter 6: Learning `0 Analysis Dictionaries

ments, the algorithm recovered Ω with complete accuracy (machine level accuracy,

MSE< 10−30) in all executions. In the noisy case, the algorithm recovered 19 out

of 20 atoms in 4 of the 5 executions, producing an MSE< 0.005, and in the re-

maining execution it recovered 17 of the 20 atoms, producing an MSE= 0.012. In

comparison, [86] reports an accuracy of 10−8 for the noiseless case and an accuracy

of 10−4 for the noisy case.

For the noisy case, we performed an additional set of experiments using the

relaxation sparse approximation approach (6.2) with p = 0.5. Since the noise level

is known, we optimize the error-constrained version of the sparse-coding problem

in step 5 of the training algorithm:

ẑi = Argmin
zi
‖Ωzi‖pp Subject To ‖zi − yi‖2 ≤ ε . (6.12)

In this case, however, the denoised signal ẑi is not expected to be precisely orthog-

onal to any of the rows in Ω. Thus, to achieve exact P -sparsity, we subsequently

detect for each estimate ẑi the P rows in Ω it is most orthogonal to (i.e., has

minimal correlation with), and use this set Φ to define the final denoised result

as ẑi = yi −Ω+
ΦΩΦyi.

Using the relaxation approach improves recovery results in the noisy case,

producing an accurate estimate of Ω in 2 out of 5 executions (100% of the atoms

recovered, MSE<2 · 10−5), and recovering 19 of 20 atoms in the remaining three

execution (MSE<0.005). Fig. 6.3 shows an example result. As can be seen, the

method smoothes the penalty function behavior and the convergence to the true

dictionary. Optimizing the relaxed target function, however, is significantly slower

than the greedy alternative.

6.4.2 Experiments with Natural Images

We now present experiment results with natural image patches, aiming to quali-

tatively evaluate the behavior of the training algorithm on real image data. For

these experiments, we randomly extracted 5, 000 8×8 image patches from each of
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Figure 6.2: Example training results for a noiseless case (top row) and noisy case (bottom row).

Left to right: penalty function value (‖Y−Z‖F ), distance to true dictionary (MSE), percent of

recovered atoms. All plots show evolution over algorithm iterations.
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Figure 6.3: Example training result for a noisy case, using the relaxation sparse-coding technique

with p = 0.5. Left to right: penalty function value, distance to true dictionary (MSE), percent

of recovered atoms.
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five standard test images (Fig. 6.4), for a total of 25, 000 training signals. We then

applied the Analysis K-SVD on these signals, using Analysis-OMP sparse-coding,

to train dictionaries of size 100 × 64 using varying levels of sparsity P . We note

that as opposed to many synthesis training methods, in the analysis case it is not

necessary to remove the mean (DC) from the training signals in a preprocessing

step, as the training target tends towards zero-mean atoms by construction.

Training results for the sparsity levels of P = 16, 32 are presented in Fig. 6.5. In

both cases the algorithm was executed for 100 training iterations. As can be seen,

the Analysis K-SVD algorithm efficiently reduces the penalty function in both

cases, achieving much of the reduction in the first few iterations. The resulting

trained atoms capture high-frequency signal characteristics, which are known to

be sparse in natural images (see e.g., [9]). For the higher sparsity level, we see

the formation of more localized and oriented structures in the analysis atoms,

reminiscent of Gabor and wavelet-type filters. Such properties are fundamental in

sparsifying transforms, as discussed in [13]. Interestingly, the atoms of the pseudo-

inverse dictionary D = Ω+ bear some visual resemblance to the K-SVD synthesis

atoms, as can be found in [28]. We can reasonably assume that this phenomenon

is related to the similarity between the two algorithms, though the details of the

relationship remain to be studied.

6.5 Conclusions

The `0 analysis model is an intriguing new signal model motivated by ideas from

`0 synthesis models, natural image statistics, and insights from the `1 analysis

model. In this work we presented two methods for approximating the analysis

sparse-coding problem, and developed an efficient algorithm for analysis dictio-

nary training. Our training algorithm shares much of the structure of the K-SVD

synthesis training algorithm, with the replacement of a maximum eigenvalue prob-

lem with a minimum eigenvalue one. We have shown that our training method
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Figure 6.4: Test images used to generate the training set for Analysis K-SVD.
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Figure 6.5: Training results for natural image patches using sparsity levels of P = 16 (top row)

and P = 32 (bottom row). Left to right: convergence of the target function, atoms of the trained

dictionary, and atoms of the dictionary pseudo-inverse.

is able to effectively minimize the `0 analysis target, and successfully recover an

underlying model given data examples. We have also shown training results for

natural image data, where the learned dictionary exhibited localized and oriented

behavior, known to characterize natural images.

Our work is an initial effort which opens the door to many future research

directions. Clearly, uniqueness theorems as well as formal success bounds for the `0

pursuit algorithms are highly desirable, similar to the vast literature on `0 synthesis

models. Some work in this direction has already commenced, with uniqueness
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results obtained for a related `0 analysis formulation [177]. Practical applications

in the fields of image recovery, understanding, compression and analysis remain to

be explored. Finally, recent trends in dictionary design, which tend towards more

structured and robust dictionary forms [13], could be implemented in the analysis

framework as well. Many of these new structures have natural extensions to the

analysis framework, and exploring the benefits and properties of such structures

in the context of analysis models is an interesting future research goal.

6.A Formulation of Explicit Atom Update

In this appendix we derive the explicit form of the atom update problem:

Arg min
wj ,ZJ

‖YJ − ZJ‖2
F Subject To ∀i ∈ J , Ωizi = 0 (6.13)

wT
j ZJ = 0

‖wj‖2 = 1 ,

by eliminate ZJ from the optimization process and expressing the task as an

optimization problem for wj alone.

To achieve this, we begin by computing a closed-form expression for the de-

pendence ZJ(wj) for any wj. We note that given wj, the optimization can be

carried out separately for each column zi ∈ ZJ :

Argmin
zi
‖yi − zi‖2

2 Subject To Ωizi = 0 (6.14)

wT
j zi = 0 .

The solution to this problem is the projection of yi on the space orthogonal to

the rows of Ωi ∈ RLi×N and the atom wj. To express this analytically, we let

Wi ∈ RN×L̃i be a matrix whose columns orthonormally span the row-space of Ωi

(note that L̃i ≤ Li with an inequality if the rows of Ωi are linearly dependent),

and similarly let the columns ofVi = W⊥
i ∈ RN×(N−L̃i) span the orthogonal space.

Note that span{Wi} ⊕ span{Vi} = RN .
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The training signal yi has a unique decomposition as yi = Wiαi + Viβi =

y‖i + y⊥i , with y‖i denoting the component of yi spanned by the rows of Ωi, and

y⊥i denoting the orthogonal component. Now, if we initially ignore the constraint

wT
j zi = 0, the solution to (6.14) is clearly zi = y⊥i , the component of yi orthogonal

to the row-span of Ωi. Reintroducing the constraintwT
j zi = 0, it is easy to see that

the solution can be computed within the subspace Vi, by projecting wj onto this

subspace and orthogonalizing y⊥i in respect to the projected atom. Specifically,

since the solution must be spanned by Vi, it can be written as zi = Viγi, leading

to the minimization:

Argmin
γi

‖Wiαi + Viβi −Viγi‖2
2 Subject To wT

j Viγi = 0 .

From the orthogonality of Wi and Vi, and utilizing the fact that Wiαi does not

affect the minimization, the above reduces to

Argmin
γi

‖βi − γi‖2
2 Subject To (VT

i wj)
Tγi = 0 .

The solution to this problem is obtained by orthogonalizing βi in respect toVT
i wj,

i.e.,

γi = βi −
(VT

i wj)
Tβi

‖VT
i wj‖2

2

VT
i wj .

Finally, recalling that zi = Viγi, the solution of (6.14) is thus given by

zi = Viγi = Viβi −
(VT

i wj)
Tβi

‖VT
i wj‖2

2

ViVT
i wj

= y⊥i −
wT
j y⊥i

wT
j ViVT

i wj

ViVT
i wj

= y⊥i −
wT
j y⊥i

wT
j Piwj

Piwj . (6.15)

Here, we denoted by Pi = ViVT
i the projection operation on the span of Vi.

Eq. (6.15) defines the analytical solution for the zi’s given wj. We can now

substitute this in (6.13) to obtain the following optimization problem for the

atom wj:

Argmin
wj

∑
i∈J

∥∥∥∥∥yi − y⊥i +

(
wT
j y⊥i

wT
j Piwj

)
Piwj

∥∥∥∥∥
2

2

Subject To ‖wj‖2 = 1 .
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Since yi − y⊥i = Wiαi, it is constant in the optimization and orthogonal to the

third term (which is spanned by Vi from the definition of Pi). Thus we can reduce

the minimization to:

Argmin
wj

∑
i∈J

∥∥∥∥∥
(

wT
j y⊥i

wT
j Piwj

)
Piwj

∥∥∥∥∥
2

2

Subject To ‖wj‖2 = 1 . (6.16)

The target function in this minimization simplifies to:∥∥∥∥∥
(

wT
j y⊥i

wT
j Piwj

)
Piwj

∥∥∥∥∥
2

F

=
(wT

j y⊥i )2

(wT
j Piwj)2

wT
j P

T
i Piwj =

wT
j y⊥i (y⊥i )Twj

wT
j Piwj

, (6.17)

where we used PT
i Pi = Pi as Pi is a symmetric projection matrix.

Combining (6.17) with (6.16), the atom update (6.13) finally becomes:

Argmin
wj

∑
i∈J

wT
j y⊥i (y⊥i )Twj

wT
j Piwj

Subject To ‖wj‖2 = 1 . (6.18)

It is interesting to note that in this process, two forces are simultaneously acting on

wj: The first force comes from the numerator, which pushes wj to be orthogonal

to y⊥i — the current solution without wj; this force is expected. At the same

time, the denominator tries to make wj orthogonal to the rows in Ωi, as a large

denominator means wj is close to the span of Vi, which spans the complement

space to the rows of Ωi. Thus, we see that the `0 analysis problem naturally

incorporates a regularizing force which aims to ”spread out” the rows in Ω.
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Chapter 7

Learning Thresholding Dictionaries

Joint work with Michael Elad.

Abstract

Wavelet thresholding is a classical and widely used algorithm for signal denoising.

This process decomposes a noisy signal over an orthogonal dictionary, eliminates

the smallest coefficients, and applies the dictionary inverse to produce an esti-

mate of the noiseless signal. More recently, the process has been extended to

non-orthogonal overcomplete dictionaries, in which case the dictionary inverse is

replaced by a pseudo-inverse. The use of overcomplete dictionaries improves es-

timation results for images and high-dimensional signal data, due to the ability

of such dictionaries to better capture complex multi-dimensional signal behavior.

Nonetheless, using fixed dictionaries in these processes remains a limiting factor on

the recovery performance, due to the non-adaptive nature of generic transforms.

The incorporation of adaptive, trained dictionaries in thresholding methods

has the potential of improving recovery performance by tailoring the dictionary to

the specific signal data and estimation task. In this work we propose a framework

for training dictionaries for thresholding-based recovery processes. We present a

generalization of the basic thresholding framework which utilizes a pair of over-
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complete dictionaries, and can be applied to a wider range of tasks. The two

dictionaries are associated with the analysis and synthesis stages of the algo-

rithm, and we thus name the process analysis-synthesis thresholding. The pro-

posed training algorithm simultaneously trains both dictionaries given examples

of origin and degraded signals, and requires no prior knowledge of the degradation

model. Experiments with small-kernel image deblurring demonstrate the ability

of our method to favorably compete with dedicated deconvolution processes, using

a simple, stable, and fast recovery process.

7.1 Introduction

The shrinkage-based denoising process is based on a non-linear operation applied

to each of the analysis coefficients of a noisy signal. Given the measured signal

y = x + n, this process is given by

x̂ = Ω+Sλ(Ωy) , (7.1)

where Sλ(·) is a scalar shrink operator governed by the parameter λ. As discussed

in section 1.2.2, in the overcomplete case this estimator does not generally emerge

as a solution to an analysis task of the form (1.13). Instead, it constitutes the

formal solution to a representation-domain sparsification process, of the form

ẑ = Ω+ · Argmin
γ
‖γ −Ωy‖2

2 + λC(γ) , (7.2)

with C(γ) a suitably chosen separable penalty function.

A specific widely-used choice for Sλ is the hard thresholding operator, which

applies a fixed threshold to each of the representation coefficients:

Sλ(α) =

 α |α| ≥ λ

0 |α| < λ
. (7.3)

This operator is associated with the choice C(γ) = ‖γ‖0 in (7.2), and nullifies the

smallest coefficients in Ωy, essentially performing an `0 sparsification of the anal-

ysis coefficients. However, we note that whereas the `0 analysis formulation (6.1)

164



Chapter 7: Learning Thresholding Dictionaries

seeks a signal ẑ whose analysis coefficients are truly `0-sparse, the shrinkage pro-

cess above simply performs an unconstrained sparsification of the representation

coefficients, followed by a projection of the result back to the feasible domain

{Ωx | x ∈ RN} ⊂ RL through the dictionary pseudo-inverse.

The simplicity and efficiency of the thresholding operator make it an attractive

technique for denoising. The dictionary Ω is typically chosen to be an analytic

dictionary such as wavelets [135], curvelets [77] or contourlets [18]. However, a

desirable goal would be to learn the dictionary from actual data instances. In

this work we focus on the specific case of `0 (hard) thresholding, where we exploit

the resemblance to the analysis and synthesis `0 frameworks to develop a simple

and efficient dictionary training technique. We apply our training method to an

image deblurring application to demonstrate the effectiveness and usefulness of

the proposed method.

We should mention that while dictionary training has not yet been addressed

in the context of thresholding, a different aspect of this process — the scalar

shrinking operator — was recently considered in [178]. Given a fixed dictionary Ω

and a set of training examples, an individual shrink operator Si is learned for each

of the dictionary atoms using a piecewise-linear approximation. An interesting

outcome of this process, relevant to the current work, is the notable resemblance

of the resulting shrinkage operators to the hard thresholding operator used here

(though with a small and intriguing non-monotonicity around the center in some

cases, see Fig. 8 there). Indeed, this is an encouraging result that demonstrates the

potential usefulness of the hard thresholding operator in practical applications.

7.2 Analysis-Synthesis Thresholding

Reviewing the denoising process (7.1), we notice that it can be easily extended to

handle more general recovery tasks by simply decoupling the analysis and synthesis
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dictionaries. Such a modification leads to a recovery process of the form:

x̂ = DSλ(Ωy) , (7.4)

where D ∈ RM×L, Ω ∈ RL×N , and M 6= N in general. An added advantage

of this decoupling is that it results in a simpler dictionary training task, due to

the elimination of the pseudo-inverse constraint between the dictionaries. This

decoupling of the dictionaries makes the process a true analysis-synthesis hybrid,

and we thus name it analysis-synthesis thresholding.

An important point which must be addressed in any process of the type (7.4)

is the choice of the threshold λ. Common threshold-selection processes include the

SureShrink [179], VisuShrink [180], BayesShrink [181], K-Sigma shrink [182], and

FDR-based shrink [183]. In this work , however, we adopt a learning approach in

which the threshold is trained as part of the dictionary learning process. Indeed,

the threshold value will generally depend on the noise level. In the following, we

take a simplistic approach and train an individual triplet (Ω, D, λ) for each noise

level. In practice, it is likely that a single dictionary pair could be trained for

all noise levels, adapting only the threshold value to each noise level individually

using the proposed threshold training process.

7.3 Dictionary Training

7.3.1 Training Target

The process definition (7.4) naturally gives rise to a training formulation for the

recovery parameters [184]. Given a set of training pairs {(xi,yi)}, representing

origin signals xi and their degraded versions yi, we wish to find a triplet (D,Ω, λ)

which best recovers the xi’s from the yi’s. Letting X = [x1x2 . . .xR] and Y =

[y1y2 . . .yR], the training process takes the form:

{ Ω̂, D̂, λ̂ } = Argmin
Ω,D,λ

‖X−DSλ(ΩY)‖2
F . (7.5)
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Note that this problem is actually defined up to a factor, as we are free to rescale

Ω → (αΩ), D → (1/αD), λ → (αλ) for any α > 0. Thus, we could normalize

this problem by selecting, e.g., λ = 1, and allowing the optimization process to set

the norms of the rows in Ω to fit this threshold. Alternatively, the normalization

we choose here (mainly for simplicity of presentation) is to fix the norm of each

row in Ω to unit length, and allow the threshold to vary. Clearly, to accommodate

such a normalization we must allow the threshold to differ for each row. Thus, we

introduce individual thresholds λi for each of the rows in Ω, providing L degrees

of freedom of the form wi → (αiwi), di → (1/αi di), λi → (αiλi) for i = 1 . . . L.

This allows us to set each αi such that ‖wi‖2 = 1. Adopting this normalization,

our training target becomes:

{ Ω̂, D̂, λ̂ } = Arg min
Ω,D,λ

‖X−DSλ(ΩY)‖2
F (7.6)

Subject To ∀i ‖wi‖2 = 1 ,

with λ = (λ1, . . . λL) constituting a vector of thresholds for the L atoms.

7.3.2 Optimization Scheme

We optimize (7.6) by adopting a sequential approach similar to the K-SVD and

Analysis K-SVD algorithms. At the j-th step, we keep all but the j-th pair of

atoms fixed, and optimize:

{ ŵj, d̂j, λ̂j } = Argmin
wj ,dj ,λj

‖X−DSλ(ΩY)‖2
F (7.7)

Subject To ‖wj‖2 = 1 .

Simplifying the cost function, we obtain:

‖X−DSλ(ΩY)‖2
F = ‖X−

∑
k

dkSλk(wT
kY)‖2

F

= ‖X−
∑
k 6=j

dkSλk(wT
kY)− djSλj(w

T
j Y)‖2

F

= ‖Ej − djSλj(w
T
j Y)‖2

F ,
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with Ej = X−
∑

k 6=j dkSλk(wT
kY). Thus, our optimization goal for the j-the atom

pair becomes:

{ ŵj, d̂j, λ̂j } = Argmin
wj ,dj ,λj

‖Ej − djSλj(w
T
j Y)‖2

F (7.8)

Subject To ‖wj‖2 = 1 .

We note that the hard thresholding operator, controlled by wj and λj, parti-

tions the signals in Y to two sets, depending on their relation with the threshold.

We denote the indices of the examples that survive the threshold (|wT
j yi| ≥ λj) by

J = J(wj, λj), and split the matrix Y to the signals YJ that survive the thresh-

old, and the remaining signals YJ . We similarly split Ej to the corresponding

submatrices EJ
j and EJ

j . With these notations, the above can be rearranged as:

{ ŵj, d̂j, λ̂j } = Argmin
wj ,dj ,λj

‖EJ
j − djwT

j Y
J‖2

F + ‖EJ
j ‖2

F (7.9)

Subject To ‖wj‖2 = 1 .

Obviously, minimizing this expression is an ambitious task, as the target

function is non-convex and highly discontinuous. The main difficulty in the opti-

mization is due to the fact that updating wj and λj may modify the signal parti-

tioning J , causing a non-smooth change to the cost function. One straightforward

approach is thus to perform the update while constraining the partitioning of the

signals to remain fixed. Under such a constraint, the atom update task can be

formulated as a convex Quadratic Programming (QP) problem, and can be glob-

ally solved. Unfortunately, this approach can clearly accommodate only a small

deviation of the solution from the initial estimate, and thus we take a different

approach here. For completeness, we detail the derivation of the QP formulation

in Appendix 7.A.

Optimization via Rank-One Approximation

A simple and surprisingly effective alternative to the constrained partitioning ap-

proach involves making the approximation that the update process does not change
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much the partitioning of the signals about the threshold. This approach assumes

that the set J remains roughly constant during the update process, and thus, the

target function in (7.9) can be approximated by the function

Arg min
wj ,dj ,λj

‖EJ0
j − djwT

j Y
J0‖2

F + ‖EJ0
j ‖2

F Subject To ‖wj‖2 = 1 , (7.10)

with J0 denoting the current partitioning of the signals. Formally, this approach

is equivalent to optimizing (7.8) under a first-order expansion of Sλj , which is

relatively accurate for coefficients far from the threshold.

Deriving a formal bound on the error of the proposed approximation is difficult:

in fact, when the set J is small, the approximation becomes useless as the signal

partitioning may substantially change by the update process. However, when the

set J covers a significant enough portion of the examples, we expect the majority

of the examples to follow this assumption due to the nature of the update which

favors signals already using the atom. Our simulations support this assumption,

indicating that the typical fraction of signals moving between J and J in practice

is quite small. A representative case is provided in Fig. 7.1: as can be seen, the

fraction of signals moving between J and J in this case is < 12% for the first

iteration, and goes down to just 2− 6% for the remaining iterations. We see that

in this case the proposed approximation is quite reliable, while at the same time

leading to a substantially easier optimization goal.

By refraining from explicit constraints on the partitioning, we not only simplify

the optimization problem, but also gain flexibility by allowing some outlier signals

to ”switch sides” relative to the threshold. Returning to the approximate optimiza-

tion target (7.10), EJ0
j in this formulation is now a constant in the optimization,

and thus the update task reduces to:

{ ŵj, d̂j } = Argmin
wj ,dj

‖EJ0
j − djwT

j Y
J0‖2

F (7.11)

Subject To ‖wj‖2 = 1 .

Note that in this formulation λj is omitted, as J0 is fixed and thus the value of λj
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Figure 7.1: Fraction of signals changing sides relative to the threshold at different training

iterations. The figure shows results for training a pair of thresholding dictionaries with 256

atoms each for denoising 8× 8 image patches with a noise level of σ = 10. The training patches

were extracted from eight arbitrary images in the CVG Granada [185] data set, 40, 000 patches

from each image, for a total of 320, 000 training patches. During the training, the fraction of

training patches moving between J and J was recorded for each atom pair, and the bars (on the

left) show the median of these values for each training iteration. Note that the typical fraction

of signals changing sides is < 12% for the first iteration, and around 2 − 6% for the remaining

iterations. The corresponding error evolution for this training process in depicted on the right.

has no effect. The threshold value will indeed require individual optimization

following the update of wj and dj, as it should be tuned to the values of the

updated atoms.

Problem (7.11) is a simple rank-one approximation task whose solution can be

obtained via the SVD. Due to the presence of the matrix YJ0 to the right of the

atom pair, the solution process entails a few technical details which we leave for the

appendix (see Appendix 7.B). The resulting rank-one approximation procedure is

listed in Algorithm 7.1.

Updating the Threshold

Oncewj,dj have been updated according to (7.11), we must recompute the thresh-

old λj to match the new atom values. Based on our previous assumption, we expect

most of the analysis coefficients |wT
j yi| to be well separated in respect to J0 and
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Algorithm 7.1 Thresholding — Rank-One Approximation

1: Input: Matrices E,Y ∈ RN×R

2: Output: Solution to Argmin
d,w
‖E− dwTY‖2F Subject To ‖w‖2 = 1

3: procedure:

4: Compute the SVD: Y = USVT

5: ∆ := diag(s−1
1 , . . . , s−1

N )

6: Ỹ := ∆UTY

7: {d, w̃} := Argmin
d,w̃

‖EỸ
T
− dw̃T ‖2F

8: wT := w̃T∆UT

9: d := d · ‖w‖2

10: wT := wT /‖w‖2

11: end

J0 around some threshold point. However, rather than seek this separation point,

a more straightforward and effective way to select λj is to simply minimize the

original error target:

λ̂j = Argmin
λj
‖Ej − djSλj(w

T
j Y)‖2

F . (7.12)

In practice, this process typically produces a partitioning close to the original one,

due to the relatively good separation of the signals in J0 and J0. This is illustrated

in Fig. 7.1, which employs this technique for choosing λj.

Owing to the discrete nature of the hard threshold operator, problem (7.12) can

be globally and efficiently solved via a simple process. Without loss of generality,

we assume the signals are ordered such that |wT
j y1| ≤ |wT

j y2| ≤ · · · ≤ |wT
j yR|.

Thus, for any value of λj ∈ (|wT
j y1|, |wT

j yR|), there exists a unique index k = k(λj)

such that |wT
j yk−1| < λj ≤ |wT

j yk|. The examples which survive the threshold are
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therefore given by yk, yk+1, . . . , yR, and we can rewrite (7.12) as:

λ̂j = Argmin
λj

k(λj)−1∑
i=1

‖ei‖2
2 +

R∑
i=k(λj)

‖ei − djwT
j yi‖2

2 .

In this formulation, k encloses all the necessary information about λj. The opti-

mization can therefore be carried out over the discrete breakpoint k, which is a

simple task. Introducing the notations αi = ‖ei‖2
2 and βi = ‖ei − djwT

j yi‖2
2, the

optimization for k is given by:

k̂ = Argmin
k

k−1∑
i=1

αi +
R∑
i=k

βi . (7.13)

This expression is minimized directly by computing the values sk =
∑k−1

i=1 αi +∑R
i=k βi for all k and taking the global minimum. The values sk are computed via

the recursion s1 =
∑R

i=1 βi and sk+1 = sk + αk − βk. Once the value k̂ is known,

any suitable value for λj can be selected, e.g., λj = (|wT
j yk̂−1| + |wT

j yk̂|)/2. The

threshold update process is summarized in Algorithm 7.2.

Full Training Process and Implementation Details

Putting the pieces together, the atom update process for the j-th atom pair con-

sists of the following three steps: (a) detecting the set J0 of signals using the

current atom pair; (b) updating wj and dj using (7.11); and (c) recomputing

the threshold by solving (7.13). The algorithm processes the dictionary atoms

in sequence, and thus benefits from having the updated atoms and error matrix

available for the subsequent updates. The full training process is detailed in Algo-

rithm 7.3. Note that the algorithm assumes some initial choice for Ω0, D0 and λ0.

In practice, our implementation only requires an initial Ω0; for D0 we initialize

D0 = X(Ω0Y)+, and for λ0 we begin with an arbitrary choice λ0 = (λ̂, . . . λ̂)

where λ̂ is the median of the coefficients in |ΩY|. We then run one sweep of

Algorithm 7.2 over all threshold values to adapt them to the initial dictionaries.

As previously mentioned, the proposed atom update process is subject to the

condition that J0 have some minimal size. In practice, we set this minimum size
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Algorithm 7.2 Thresholding — Threshold Update

1: Input: Matrices E,Y ∈ RN×R, atoms d,w ∈ RN

2: Output: Solution to Argmin
λ
‖E− dSλ(wTY)‖2F

3: Preprocess: Sort the columns of E and Y in increasing order of |wTY|

4: procedure:

5: ∀i : αi := ‖ei‖22

6: ∀i : βi := ‖ei − dwTyi‖22

7: s1 :=
∑R

i=1 βi

8: for k = 1 . . . R do

9: sk+1 := sk + αk − βk

10: end for

11: k̂ := Argmin
k

sk

12: λ :=


0 k̂ = 1

|wTyR|+ 1 k̂ = R+ 1

(|wTyk̂−1|+ |w
Tyk̂|)/2 otherwise

13: end

to a liberal 5% of the examples, which is satisfied in most cases. When this is not

satisfied, however, we use a default procedure which discards the current atom

pair, and applies steps (b) and (c) above with J0 being the entire set of signals.

This heuristic process replaces the atom pair with a new pair, which is typically

used by more examples. A complementing approach, which we do not currently

employ but is also potentially useful, is to allow a few atoms with a smaller number

of associated examples to prevail, and optimize these using the constrained QP

process described in the Appendix.
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Algorithm 7.3 Thresholding Dictionary Training

1: Input: Training signals X ∈ RM×R, degraded signals Y ∈ RN×R, initial dictionaries

Ω0 ∈ RL×N ,D0 ∈ RM×L, initial thresholds λ0, number of iterations k

2: Output: Dictionary pair Ω,D and threshold vector λ minimizing (7.6)

3: Init: Set Ω := Ω0,D := D0, λ = λ0

4: for n = 1 . . . k do

5: for j = 1 . . . L do

6: J := { i ∈ {1 . . . R}
∣∣ |wT

j yi| ≥ λ}

7: Ej = X−
∑

k 6=j dkSλk(wT
kY)

8: {dj ,wj} := Argmin
d,w
‖EJj − dwTYJ‖2F s.t. ‖w‖2 = 1 (Algorithm 7.1)

9: λj := Argmin
λ
‖Ej − djSλ(wT

j Y)‖2F (Algorithm 7.2)

10: Ω{j-th row} := wT
j

11: D{j-th col} := dj

12: λ{j-th elem} := λj

13: end for

14: end for

7.4 Empirical Evaluation and Discussion

7.4.1 Experiment Setup

To evaluate the performance of the proposed formulation, we employed the de-

scribed training process for image deblurring. Our training set consists of eight

natural images taken from the CVG-Granada [185] data set. Four of these images

are shown in Fig. 7.2. Each of the training images was blurred and subjected to

additive white Gaussian noise, to produce eight pairs of origin and degraded input

images. We then extracted from each pair 40,000 random training blocks along

with their degraded versions, for a total of 320,000 example pairs. We subtract

the mean from each example to obtain the final training set.
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The initial dictionary Ω0 for the training is the overcomplete DCT dictionary,

and training is performed for 20 iterations. An example result of the training

process is shown in Fig. 7.3. The top row shows the trained Ω (left) and D (right).

The bottom-left figure shows the absolute values of the coefficients in DΩ, and

as can be seen, the matrix DΩ exhibits a diagonal structure as expected from an

operator for recovery of a localized convolution process. Finally, the bottom-right

figure depicts the error evolution during the algorithm iterations.

For the deblurring process, we begin by extracting all overlapping blocks from

the degraded image, and subtracting their mean. We then apply the learned

thresholding process to the mean-subtracted blocks. Finally, the block means

are restored, and we compute the deblurred result by averaging the overlapping

recovered blocks. We evaluate our method on seven standard test images, all of

which are not included in the training set: Barbara, Cameraman, Chemical Plant,

House, Lena, Peppers and Man.

7.4.2 Results

Results of our deblurring process for two different blurring kernels are shown in

Figs. 7.4 and 7.5. The two cases are taken from the work [186], whose inputs

are made available online [187]. The figures compare our results with those of

ForWaRD [188], LPA-ICI [189] and AKTV [186], the latter considered the current

state-of-the-art in deblurring. The first case (Fig. 7.4) represents strong noise and

small blur, and the second case (Fig. 7.5) represents moderate noise and moderate

blur. In the current work we limit ourselves to handling small to moderate blur

kernels, as large kernels would require much larger block sizes which are impractical

in the current formulation. We thus do not replicate the two other cases considered

in [186], which employ very large blur kernels. We note that large blur kernels

could possibly be handled by our framework via downsampling of the input images,

though we do not pursue this option here.
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Figure 7.2: Four training images from the CVG Granada data set.
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Figure 7.3: Results of the hard thresholding training algorithm for image deblurring. Top

left: trained Ω. Top right: trained D. Bottom left: absolute value of the coefficients in DΩ.

Bottom right: Error evolution during the algorithm iterations (y-axis is the average RMSE of

the recovered patches). Training was performed for 20 iterations, using 320,000 training signals.

Omega is of size 256 × 100. Blurring kernel is a 5 × 5 Gaussian with standard deviation 1.5,

Gaussian noise has standard deviation 8.25.
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As can be seen, our results in both cases surpass ForWaRD and LPA-ICI in

raw RMSE by a small margin, loosing only to the AKTV. Visually, our result in

Fig. 7.4 maintains more of the noise than the other methods, though subjectively

it also appears less ”processed”, and we note that lines and curves, for instance,

appear straighter and less ”jaggy”. Continuing with Fig. 7.5, our result in this case

seems more visually pleasing than that of ForWaRD and LPA-ICI, and reproduces

more fine details (see for instance the field area at the top right). Compared to the

AKTV, our result maintains slightly more noise, though it also avoids introducing

the artificial smear and ”brush stroke” effects characteristic of the AKTV, and

likely associated with its steering regularization kernel.

7.4.3 Discussion

Compared to the other methods, our deblurring process is very simple and efficient,

and involves no parameter tuning. In these respects, the ForWaRD algorithm

is the most comparable to our system as it is fast and its parameters can be

automatically tuned, as described in [188]. The ForWaRD algorithm is also the

most similar to our work as it is based on a scaling (shrinkage) process of the

image coefficients in the Fourier and wavelet domains. The LPA-ICI and AKTV,

on the other hand, both involve parameters which must be manually tuned to

optimize performance. Also, while the LPA-ICI is relative fast, the AKTV in

particular is extremely computationally intensive, requiring e.g., in the case shown

in Fig. 7.4, at least 12 minutes to achieve a reasonable result, and nearly an hour

to reproduce the final result shown in the figure. In comparison, our method on

the same hardware completed in just 8 seconds, due to the diversion of most of

the computational burden to the offline training phase. Furthermore, our recovery

method is highly parallelizable, and can likely be optimized to achieve real-time

performance.

Another notable difference between our method and the others is its ”model-
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less” nature, as previously mentioned. Indeed, all three methods (the ForWaRD,

LPA-ICI and AKTV) assume accurate knowledge of the blurring kernel, which is

typical of deconvolution frameworks. Our method is fundamentally different, as

it replaces this assumption with a very different one — the availability of a set

of training images undergoing the same degradation, which implicitly represent

the convolution kernel. In practice, the difference between these two modeling

paradigms may not be as large as it seems, as in both cases, a real-world application

would require either a prior calibration process or an online degradation estimation

method. However, in some cases, acquiring a training set for our method may be a

simpler and more robust process (e.g., using a pair of low quality and high quality

equipment) than a precise measurement of the point spread function.

Finally, our method is inherently indifferent to boundary issues, which plague

some deconvolution methods. Our deconvolution process can be applied with no

modification to images undergoing non-circular convolution, and will produce no

visible artifacts near the image borders. Of the three methods we compare to,

only the AKTV provides a similar level of immunity to boundary conditions.

Full deblurring results for the seven standard test images are summarized in

Table 7.1. We compare our results to those of the ForWaRD algorithm, which we

choose due to its combination of efficiency, lack of manual parameter tuning, and

relation to our method. The thresholding results in these tables were produces

using the same trained dictionaries used to produce the results in Figs. 7.4 and 7.5.

The ForWaRD results were generated using the Matlab package available at [190].

7.5 Summary and Conclusions

This work has presented a novel technique for training the analysis and synthesis

dictionaries of a thresholding-based image recovery process. Our method assumes

a hard-thresholding operator, which leads to `0-sparse representations. We exploit

this exact sparsity to design a simple training algorithm based on a sequence of
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Image Degraded Thresh. ForWaRD

Barbara 17.64 15.44 15.84

Camera. 17.36 13.28 13.46

Chem.Plant 14.45 10.51 11.48

House 8.76 3.93 5.03

Lena 10.78 6.69 7.44

Peppers 10.81 6.90 7.33

Man 12.34 8.89 9.54

Image Degraded Thresh. ForWaRD

Barbara 16.57 14.72 14.81

Camera. 17.78 11.99 11.82

Chem.Plant 15.09 8.78 8.58

House 4.94 2.43 2.50

Lena 8.92 5.45 5.54

Peppers 8.60 5.94 6.06

Man 11.12 7.67 7.73

Table 7.1: Deblurring results for seven standard test images, using the degradation and dictio-

nary parameters from Figs. 7.4 (left) and 7.5 (right). All values in the tables represent RMSE.

rank-one approximations, in the spirit of the K-SVD algorithm.

The training process simultaneously learns the dictionaries and the threshold

values, making the resulting recovery process simple, efficient, and parameterless.

Thresholding-based recovery is also naturally parallelizable, enabling for substan-

tial acceleration. The proposed thresholding technique was applied to small-kernel

image deblurring, where it was found to match or surpass leading dedicated de-

convolution methods, and loose only to the highly computationally demanding

AKTV. Also, our recovery process is stable under boundary condition changes,

which some deconvolution methods are sensitive to.

A unique characteristic of our framework is its example-based approach to the

degradation modeling process. Whereas most deconvolution and regularized in-

version processes assume explicit knowledge of the signal degradation, our method

assumes no prior knowledge of this process, and implicitly learns it from pairs of

examples. Our approach can thus be applied in cases where an exact model of

the degradation is unavailable, but a limited training set can be produced in a

controlled environment.

179



Chapter 7: Learning Thresholding Dictionaries

7.6 Future Directions

Our work gives rise to several possible improvements and future research direc-

tions. First, the block-based nature of the recovery process imposes a limit on the

size of the convolution kernels which can be handled, a limitation which could be

approached by incorporating downscaling and upscaling operations within the re-

covery scheme. Alternatively, larger dictionaries could be trained using structured

dictionary models such as the sparse dictionary [33].

To handle images of arbitrary size, our method employs block-processing fol-

lowed by an averaging step. A possible technique to improve recovery quality

is therefore to incorporate knowledge of the block averaging step in the training

process, as suggested in [178]. Such a modification adds significant complexity to

the training phase, but no additional complexity to the recovery process. Indeed,

in [178] this approach is found to provide an additional gain in quality compared

to the simpler approach.

Other straightforward extensions include training spatially-dependent dictio-

naries to handle non-translation-invariant degradations of a fixed pattern, and

training single dictionary pairs for multiple noise levels. Multi-scale thresholding

is also an attractive option which could improve performance as well as assist

in handling wider-supported degradations. Multi-scale processing could be imple-

mented e.g., using variable-sized blocks, by thresholding in a multi-scale transform

domain, or by training dictionaries with a multi-scale structure.

Finally, extending the process to more general thresholding operators remains

an open question, with the potential of dramatically improving results. Specifically,

developing a unified framework which would perform both dictionary training and

threshold operator adaptation is an exciting possibility with far-reaching potential.
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7.A Quadratic Programming Atom Update

In this appendix we describe the formulation of the atom update process (7.8) as

a constrained Quadratic Programming (QP) problem. We begin with the update

task

{d̂j, ŵj λ̂j} = Argmin
dj ,wj ,λj

‖Ej − djSλj(w
T
j Y)‖2

F Subject To ‖wj‖2 = 1 ,

and take a block-coordinate-relaxation approach in which dj is updated indepen-

dently of wj and λj. In this scheme, updating dj is a simple least-squares task

given by

dj = Ejγj/(γ
T
j γj) , (7.14)

with γj = Sλj(Y
Twj).

Moving to the update of wj and λj, in the QP approach we constrain the

update such that it maintains the partitioning of the training signals about the

threshold. Thus, we split Y to the signals YJ that survive the current threshold

and the remaining signals YJ , and similarly split Ej to EJ
j and EJ

j , obtaining:

{ŵj, λ̂j} = Argmin
wj ,λj

‖EJ
j − djwT

j Y
J‖2

F + ‖EJ
j ‖2

F

Subject To |wT
j yi| ≥ λj ∀i ∈ J

|wT
j yi| < λj ∀i ∈ J

‖wj‖2 = 1

. (7.15)

The constraints ensure that the signal partitioning is maintained by the update

process. Note that due to the constraining, J is constant in the optimization.

To bring the problem to QP form, we recall that the norm constraint on wj

is an arbitrary normalization choice which we can replace, e.g., with a fixed value

for λj. Thus, we choose to lift the norm constraint on wj and instead fix the

threshold λj at its current value. Indeed, the outcome of this optimization can

be subsequently re-scaled to satisfy the original unit-norm constraint. Adding the

fact that EJ
j is fixed in the above optimization (as J is fixed), the update task can
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be written as:

ŵj = Argmin
wj

‖EJ
j − djwT

j Y
J‖2

F

Subject To |wT
j yi| ≥ λj ∀i ∈ J

|wT
j yi| < λj ∀i ∈ J

.

This formulation does not yet constitute a QP problem, as the first set of

constraints is clearly non-convex. To remedy this, we must add the requirement

that the coefficients wT
j yi do not change sign during the update process, for the

signals in the set J . In other words, we require that wj does not ”change sides”

relative to the signals in YJ . While this choice adds further constraining to the

problem, in practice many local optimization techniques would be oblivious to

the discontinuous optimization regions anyway, and we thus accept the added

constraints in return for a manageable optimization task. Of course, an important

point about this specific choice of constraints is that it necessarily leads to a non-

empty feasible region, with the current wj constituting a good starting point for

the optimization.

With the updated set of constraints, the optimization domain becomes convex,

and the problem can be formulated as a true QP problem. To express the new

constraints, we denote by σi = sign(wT
j yi) the signs of the inner products of the

signals with the current atom. We can now write the update process for wj as:

ŵj = Argmin
wj

‖EJ
j − djwT

j Y
J‖2

F

Subject To σiwT
j yi ≥ λj ∀i ∈ Yj

−λj < wT
j yi < λj ∀i ∈ Ȳj

. (7.16)

This problem is a standard QP optimization task, and can be solved using a variety

of techniques. Once wj is computed according to (7.16), we restore the original

constraint on wj by normalizing {wj, λj} → {αjwj, αjλj} with αj = 1/‖wj‖2,

and compute dj using (7.14), which concludes the process.

182



Chapter 7: Learning Thresholding Dictionaries

7.B Rank-One Approximation Solution

In this appendix we consider the solution to the problem

Argmin
d,w

‖E− dwTY‖2
F Subject To ‖w‖2 = 1 , (7.17)

where E,Y ∈ RN×R, and are assumed to be full-rank. To derive the solution, we

first assume that YYT = I (i.e., YT is a tight frame). In this case we have1:

‖E− dwTY‖2
F = tr

{
ETE− 2ETdwTY + YTwdTdwTY

}
= tr

{
ETE− 2YETdwT + YYTwdTdwT

}
= tr

{
ETE− 2YETdwT + wdTdwT + YETEYT −YETEYT

}
= tr

{
ETE−YETEYT

}
+ tr

{
YETEYT − 2YETdwT + wdTdwT

}
= tr

{
ETE−YETEYT

}
+ ‖EYT − dwT‖2

F .

Since the left term is constant in the optimization, we find that when YT is a tight

frame, (7.17) is equivalent to:

Argmin
d,w

‖EYT − dwT‖2
F Subject To ‖w‖2 = 1 . (7.18)

This is a standard rank-one approximation of EYT , and its solution is given by

the singular vector pair corresponding to the largest singular value of EYT .

For a general full-rank Y, we use the SVD of Y, and write Y = USVT .

We denote the singular values on the diagonal of S by s1 . . . sN , and let ∆ =

diag(s−1
1 , . . . , s−1

N ). We note that the matrix

Ỹ = ∆UTY = ∆SVT = IN×RVT

satisfies ỸỸ
T

= I, and thus Ỹ
T
is a tight frame.

Returning to problem (7.17), we can now write

‖E− dwTY‖2
F = ‖E− dwT (∆UT )−1∆UTY‖2

F = ‖E− dwTU∆−1Ỹ‖2
F ,

1For simplicity of presentation, we slightly abuse notation by allowing differently-sized matrices to

be summed within the trace operator. These should be interpreted summing the matrix traces.
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which leads to the optimization task:

Argmin
d,w

‖E− dwTU∆−1Ỹ‖2
F . (7.19)

Since Ỹ
T

is a tight frame, (7.19) can be solved for d and w̃T := wTU∆−1

using (7.18). Once w̃T is computed, the computation is completed by setting

wT = w̃T∆UT , and renormalizing the obtained d and w such that ‖w‖2 = 1.

The resulting procedure is summarized in Algorithm 7.1.
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(a) Original (b) Blurry and noisy (c) ForWaRD

(d) LPA-ICI (e) AKTV (f) Thresholding

Figure 7.4: Deblurring results for Lena. Blurring kernel is a 5 × 5 Gaussian with standard

deviation 1.5, additive noise is white Gaussian with standard deviation 8.25 (BSNR=15dB).

RMSE values are 10.78 (blurry), 7.55 (ForWaRD), 6.76 (LPA-ICI), 6.12 (AKTV) and 6.69

(Thresholding). Thresholding parameters: block size is 10× 10, dictionary size is 256× 100.
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(a) Original (b) Blurry and noisy (c) ForWaRD

(d) LPA-ICI (e) AKTV (f) Thresholding

Figure 7.5: Deblurring results for Chemical Plant. Blurring kernel is an 11 × 11 Gaussian

with standard deviation 1.75, additive noise is white Gaussian with standard deviation 1.15

(BSNR=30dB). RMSE values are 15.09 (blurry), 8.98 (ForWaRD), 8.98 (LPA-ICI), 8.57 (AKTV)

and 8.78 (Thresholding). Thresholding parameters: block size is 12 × 12, dictionary size is

576× 144.
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Discussion and Conclusions

Dictionary-based signal modeling is a powerful and widely successful approach for

describing natural signal phenomena. The modeling approach is based on profound

notions of simplicity and conciseness, and has deep connections with fundamental

concepts such as dimensionality reduction and minimal description length. The

idea of describing signals through a dictionary of elementary atoms, controlled

by sparsity forces, has had a profound impact on the research community, with

applications spanning a wide scope of fields and tasks.

Analysis and synthesis models. The two main incarnations of the dictionary-

based models are the analysis and synthesis models, which seek sparsity in either

the decomposition or reconstruction of a signal over the set of atoms, respec-

tively. As we have seen in this work, these two complementary approaches are

not equivalent once overcomplete dictionaries are involved. Through a geomet-

rical description, we have characterized a large set of signals for which the two

are bound to differ, which we named MAP principal signals. Specifically of in-

terest were the analysis principal signals, which are orthogonal to many rows in

the analysis dictionary, and are treated most effectively by this model. The plen-

titude of these signals, however — exponential in the dictionary size — indicates

that no similarly-sized synthesis model could effectively treat all these signals at
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once. Thus, an unavoidable gap is revealed between the two modeling approaches.

Simulation results, depicted in Figs. 2.2–2.4, demonstrate the extent of this gap.

Reviewing our results for the analysis-synthesis gap, we note that they have a

clear worst-case nature, focusing on the signals for which the two models differ the

most. Indeed, tighter relations could be discovered for less sparse, non-principal

signals. However, the realization of this fundamental gap between the two formula-

tions opens the door to new research opportunities focused on the analysis model.

Combined with additional indications of the potential of this model, such as those

provided in Fig. 2.5, the formalization of this gap revives interest in the analysis

model, which has been overshadowed in the past decade by the widespread suc-

cess of the synthesis approach. With new tools acquired from the vast literature

on synthesis models, new works on the analysis model are beginning to emerge,

among which are two chapters in this thesis. As the interest in analysis models

continues to grow, we expect additional works to gradually appear and explore

the full potential of this exciting new field.

Dictionary design and parametric dictionaries. Applying a dictionary-based

model in practice requires the selection of a concrete dictionary which describes

the signals of interest. This choice is clearly critical to the performance of the

dictionary-based approach, as its name so distinctly suggests. In this thesis we

have given much attention to the selection of the dictionary. We have outlined

the main ingredients in designing effective dictionaries — namely localization,

geometric invariance, and adaptivity — and discussed the two main dictionary

design paths — the analytic and the learning paths.

Many analytic dictionaries have been proposed over the years. Among the most

notable are the Fourier, wavelet, and curvelet dictionaries (Figs. 3.1, 3.3, 3.4).

Such dictionaries are designed around a specific well-understood family of signals

(e.g., smooth, piecewise-smooth, or multi-dimensional piecewise-smooth, respec-

tively), and deliver optimality for this simplified signal class. Analytic dictionaries
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typically provide good localization and geometric invariance, and are efficient and

well-structured. On the other hand, such dictionaries lack one key property —

adaptivity — due to the generic mathematical assumptions made in the design pro-

cess. Adaptivity is the essence of learned dictionaries, which aim to capture more

subtle signal behaviors through the example-based training process. Notable con-

tributions in this area include the PCA, MOD, and K-SVD, as well as Olshausen

and Field’s experiments (Figs. 3.1, 3.2, 3.7). Learned dictionaries typically lack

explicit structure and are less efficient than analytic dictionaries, however, the

finer adaptation to the signal data leads to superior results in many applications.

A key conclusion from this discussion was the identification of a rising need

for new dictionary structures which could merge the advantages of the two design

paradigms. This need is most adequately addressed by parametric dictionaries,

which are dictionaries described by a relatively small, well-defined set of values.

Such dictionaries have the potential of combining structure, efficiency, and ge-

ometric invariances with adaptivity provided by the parameter tuning. Several

such dictionaries have been recently proposed, among which we note the union-of-

orthobases, semi-multiscale, and image-signature dictionaries (Eqs. (4.2) and (4.3),

and Fig. 3.7, respectively). We expect such approaches to draw increasing atten-

tion in the coming years, with new dictionary designs providing a variety of blends

of structure and adaptivity.

Sparse dictionaries. Specific efforts in the direction of parametric dictionary de-

sign have led to the development of the sparse dictionary model, proposed in this

thesis as a particular flexible, adaptive and efficient dictionary structure for sparse

signal representation (Eq. (4.4)). Underlying this model is the idea of a global set

of sub-atomic signals whose combinations explain the formation of all observable

dictionary atoms, using the same sparsity rules as those governing signal cre-

ation. The sparse dictionary combines efficiency and compact structure with a

high degree of adaptivity, and, by supporting a variable number of parameters,
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provides a nearly smooth transition from analytic to fully-trained dictionaries. An

added benefit of this structure, which was illustrated in Fig. 4.5, is its improved

generalization ability in the presence of few and noisy examples. This property

can become critical when handling large and high-dimensional signal data, where

substantial training sets are infeasible.

The sparse dictionary structure was tested with 3-D computed tomography

data, where it was found to provide equivalent or superior denoising results — at

substantially shorter run-times — compared to a non-structured trained dictio-

nary (Tables 4.1 and 4.2). Indeed, the sparse structure is particularly useful for

such multi-dimensional data, where a fully unconstrained dictionary requires an

impractical number of examples for effective training. Thus, much of the success

of the sparse dictionary in this case can be associated with its improved general-

ization ability, due to the small and noisy nature of the training set.

A second application of the sparse dictionary was presented in Chapter 5,

where the compact representation of the dictionary was exploited to design a novel

adaptive image compression scheme. The uniqueness of the proposed system is

in the replacement of the fixed dictionary, commonly used in transform-based

compression schemes, with an online-learned, input-adaptive trained dictionary,

sent as part of the compressed data. Such set-ups, to the best of the authors’

knowledge, have so far been regarded as impractical due to the cost of transmitting

the dictionary. Our system was shown to provide a consistent gain over JPEG

compression, though below JPEG2000 performance (Fig. 5.7). While indeed below

state-of-the-art, the described system remains significant in that it demonstrates

the feasibility of the adaptive approach for generic image compression, positioning

it as a viable alternative to traditional fixed-dictionary schemes.

Analysis dictionary training. While dictionary training for synthesis-based mod-

els has received thorough attention in the literature, the quest for a dictionary

specific to analysis models is a recent and challenging undertaking. In this thesis,
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analysis dictionary training has been explored from two directions, correspond-

ing to two novel forms of the analysis model — the `0 analysis model and the

analysis-synthesis thresholding model. The two models are of particular interest

as both employ exact sparsity measures parallel to the well-established `0 synthesis

model, and thus allow harnessing similar methodology and approaches in the anal-

ysis setting. The results of these efforts demonstrate the potential and usefulness

of employing such modern algorithmic machinery in analysis-based frameworks,

motivating further research into this promising new direction.

The `0 analysis model, which describes signals as orthogonal to sets atoms in

the analysis dictionary, has emerged as a natural outcome of the geometrical in-

terpretation of the `1 analysis model. This interpretation has characterized the

analysis principal signals as having many vanishing inner-products with the dic-

tionary, meaning that they are `0-analysis sparse. This is parallel to the synthesis

model, where the principal signals of the `1 formulation are `0-synthesis sparse.

This view has led to the development of an efficient K-SVD-like training method

for the `0 analysis approach, which involves a minimum-singular-value task in place

of the maximum-singular-value one in the original K-SVD. The resulting Analy-

sis K-SVD algorithm was shown to recover underlying dictionaries from training

examples with high accuracy (Figs. 6.2 and 6.3). Additional experiments with

natural images have demonstrated the recovery of localized and oriented dictio-

nary atoms (Fig. 6.5), indicating the ability of the process to reveal fundamental

behaviors in the training data. Indeed, additional research is required to develop

applications for this new model, as well as more rigorous mathematical tools for

handling it. Nonetheless, the results presented here show the potential in the `0

analysis path, and are expected to raise interest in this new approach.

The analysis-synthesis thresholding model (Eq. (7.4)) was proposed in this the-

sis as an extension to the widely-popular hard thresholding denoising method

introduced nearly two decades ago. The process utilizes a pair of analysis and
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synthesis dictionaries, and can accommodate a variety of recovery tasks by lift-

ing the pseudo-inverse constraint between the two dictionaries. We presented a

training method for simultaneously learning both dictionaries for a specific inverse

problem from pairs of origin and degraded examples. In this way, the method sub-

stitutes the need for a precise degradation model with a training process which

concludes it from examples. The effectiveness of the process was demonstrated

for small-kernel image deblurring, where it was found to be competitive with re-

cent dedicated deconvolution methods (Table 7.1, Figs. 7.4 and 7.5). Compared

to alternative methods, the thresholding approach provides a particularly simple,

efficient, parameterless, and readily parallelizeable recovery process, and is inher-

ently stable to boundary conditions. Also, though our implementation assumes a

stationary process, the thresholding framework can equally support more complex

degradations by utilizing different dictionaries for different regions in the image

(though the spatial pattern of the degradation must be known). We thus find the

thresholding-based process to be a simple, flexible and effective option for inverse

problem solution. A variety of possible improvements, such as employing para-

metric dictionaries to handle larger image blocks, or simultaneous training of the

dictionaries and the shrinking functions, provide additional opportunities to en-

hance this process and expand its applicability, making it an appealing technique

for signal restoration and recovery.

Epilogue. This thesis has been but one step in a long journey of signal modeling

methodology and applications, dating back over half a decade. The two main

directions set by this work are the analysis modeling path, and the parametric

dictionary design path. As additional research accumulates, we expect both di-

rections to mature and become essential tools in signal modeling. Many future

directions and objectives have been mentioned throughout the text, and promise

new opportunities, challenges and successes in both fields.
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שיטה הבכך מהווה  .הדחוסלתמונה, ואשר נשלח כחלק מהמידע  באופן פרטני ותאםמשקלט מעל מילון 

 מילונים נלמדים ומתאימה לתמונות כלליות.המבוססת על מסוגה טכניקת דחיסה ראשונה 

ייחודי בחלק האחרון של התיזה, אנו חוזרים למודל האנליזה ומתייחסים לשאלה של אימון מילון 

צובר הושל מודל הסינטיזה המקביל, הניכרת מההצלחה רבות המושפע תחום חדש למדי, זהו למודל זה. 

בעבודה אנו מציגים . שהוזכרו מעלהמודל האנליזה עבור בין היתר הודות לתוצאות התיאורטיות  תאוצה

המשותף לשתי הגישות . לשתי גישות חדשות למודל האנליזה המתאימות, שתי גישות לבעיית האימוןזו 

בכלים להשתמש והמאפשר לכן  –הסינטיזה המשמש גם את מודל  – מדוייק הוא השימוש במדד דלילות

 מודל האנליזה.עבור  ,מודל הסינטיזהעל הרב מחקר בתובנות שהצטברו ו

בין היתר  מתעוררשהעניין בו , של האנליזה החדש   -הגישה הראשונה מאמנת מילון עבור מודל ה

האותות המועדפים על מודל  . על פי תוצאות אלה,שתוארו קודם מההבנות הגיאומטריותכתוצאה 

במודל למצב דומה מאוד . מצב זה   מציגים גם תכונות של דלילות  (הנפוץ)    -הבמקרה האנליזה 

לאור ההצלחה הרבה של מודל .   מדד בגם דלילים    -, בו האותות המועדפים עבור מקרה ההסינטיזה

גם  דלילות זהלחקור את מודל האנליזה עם מדד רבה ציה אלה מספקות מוטיב מסקנות,   הסינטיזה עם 

 וכן של אותאלגוריתמים לייצוג דליל  ןמציעים,    מדד מודל האנליזה עם מציגים אתבעבודה אנו . כן

ביעילות לשחזר האימון ששות את היכולת של אלגוריתם א. תוצאות נסיוניות מעבור המודללאימון מילון 

. כמו כן, נסיונות עם תמונות טבעיות מדגימות את יכולת דלילים אותותמילון אנליזה מתוך דוגמאות של 

 .וכיווניתמקומית האלגוריתם לזהות מבנים משמעותיים בהתנהגותן של תמונות, כגון התנהגות 

בעבודה  המפותחסף, -נליזה וסינטיזה עבור שחזור אותות מבוססהגישה השנייה מאמנת זוג מילוני א

בעבודה אלגוריתם אנו מציגים  כלליות.שחזור בעיות עבור  ,שים הידועזו כהכללה של תהליך ניקוי הרע

התהליך  פגומות.זוגות של דוגמאות מקוריות ומתוך האנליזה והסינטיזה,  זמנית את מילוני-המאמן בו

יתרון מרכזי  .מגוון בעיותותיקון עבור תהליכי שחזור פיתוח  מאפשרה יעיל ופשוט למנגנוןהמוצע מוביל 

של השיטה הוא שתהליך האימון מקבע את  כל הפרמטרים המעורבים בתהליך השחזור, כולל ערכי הסף, 

 תדורשאינה  שהיאבכך השיטה של  הייחודולכן פעולת השחזור פשוטה, יעילה וחסרת פרמטרים. כמו כן, 

התהליך מתוך זוגות פרטי את מסיקה  ,, ובמקום זאתהאותותשל ההנזקות ידע מוקדם לגבי תהליך מ

המוצעת השיטה כי  מראהמטישטוש תמונות בשחזור ניסיונות סדרת  .במהלך האימון עצמם הדוגמאות

קטנה משמעותית השחזור סיבוכיות כאשר  ,עם שיטות קיימות תחרותיותמוצלחות ומובילה לתוצאות 

 שטוש.יייעודיות לשחזור מטמשיטות 

 תקציר
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, מה שמעורר ות טובות יותר ממודל הסינטיזה המקבילתוצאמספק דוגמאות בהם מודל האנליזה מספר 

בשיטת בשנים האחרונות לאור ההתעניינות הרבה  שהעניין בה ירדעניין מחודש בשיטת האנליזה, 

מדגימות את הפוטנציאל והחשיבות שבמודל האנליזה, מחקר זה התוצאות של הסינטיזה החדשה יותר. 

 .מודלהמספקות מספר תובנות שימושיות לגבי ו

מרכיב המילון.  –המודלים הללו שני אנו מתמקדים במרכיב העיקרי של  המחקרבחלק המרכזי של 

המילון  ו שלהאותות, ובחירת ם שלשלנו על התנהגותוההבנה את התגשמות כל הידע למעשה מייצג זה 

  – תכנון מילוניםהרווחות להגישות המרכזיות שתי דנים באנו בתיזה  את הצלחת המודל כולו.מכתיבה 

על ידי המעניינים כאשר אנליזה הרמונית שואפת לקרב את האותות  – אנליזה הרמונית ולמידה חישובית

את  ללמודת שואפת יהיטב, ואילו למידה חישובידועה בעלות התנהגות  פונקציות מתימטיותמשפחה של 

העיקריים היתרונות  .של האותות את ההתנהגות הרצויה המציג אוסף דוגמאותהתנהגות האותות מתוך 

כן של המילון עבור משפחת האותות המקורבת, ו אופטימאליותהגישה הראשונה הינם היכולת להוכיח של 

. לעומת זאת, על פי רוב באופן אנליטיהמתקבל , האפשרות לפתח אלגוריתמים יעילים למימוש המילון

הינו ההתאמה הטובה יותר של המילון המתקבל לאותות האמיתיים גישת הלימוד היתרון המרכזי של 

צוברת תאוצה בפועל. לאחרונה לתוצאות טובות יותר רבים מקרים בבהם המערכת מטפלת, מה שמוביל 

מילונים מבניים . בנייםממילונים שתי הגישות באמצעות היתרונות של את  למזגשואפת מגמה נוספת, ה

מאפשרים, ל ידי מספר פרמטרים הקטן ממספר האיברים במטריצת המילון, והינם מילונים המאופיינים ע

 .רצויותוהתנהגויות להשיג מגוון של תכונות  ,המילון באמצעות תכנון נבון של מבנה

השואף למזג בין היתרונות של שתי הגישות כמילון מבני  המילון הדלילאת מציעים בעבודה זו אנו 

ובאופן . המילון הדליל מתקבל כהרכבה של מילון אנליטי יעיל עם מטריצה דלילה נלמדת, לתכנון מילונים

המקדמים מספר , באמצעות שינוי כמו כןיכולת לימוד של המילון. כן , ומבניותמספק שילוב של יעילות, זה 

בין מילון אנליטי לחלוטין )מטריצה באופן כמעט רציף לנוע המילון הדליל מאפשר במטריצה הדלילה, 

המבנה המוצע גשר של ממש בין הגישה מספק )מטריצה צפופה(. בכך, מלא מאומן דלילה מאוד( לבין מילון 

הינם יכולת הכללה משופרת בתהליך הדליל יתרונות נוספים של המילון האנליטית והגישה הנלמדת. 

אנו  כתלות ביישום. ,מילוןהעל משמעותיים מבנים לכפות יכולת הייצוג יעיל של המילון, וכן קיום , האימון

(, CT) בתמונות טומוגרפיה ממוחשבת יםהמילון הדליל עבור ניקוי רעששל שימושיות המדגימים את 

מהמבנה הנלמד המקביל, כאשר המבנה או טובות שקולות תוצאות הדליל מספק המבנה ומראים כי 

מערכת שלמה בצורת לדחיסה, לון הדליל ייישום של הממתארים בפרק נוסף אנו . הדליל מהיר בהרבה

בכך שהיא מקודדת כל תמונת של השיטה ייחודה  .המילון הדלילמבוססת על התמונות כלליות לדחיסת 
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, ומשמשים למגוון רחב מודרניה ותתמונהו ותאותהעיבוד תחום מאבני הבניין של  הם אותותמודלים של 

של התנהגות האותות  תאור מתמטימספק מודל של אות  .שיפורניתוח ושל מטלות שחזור, ייצוג, 

לאור המורכבות הרבה של . האפשריים המעניינים במערכת באופן המאפשר להבדיל אותם מכלל האותות

. המטרה של תחום מידול האותות הינו לפתח מודלים מיסודם מקורביםאותות טבעיים, מודלים אלו הינם 

 בנאמנות את התנהגותם של אותות אמיתיים.מדוייקים ככל האפשר, המתארים 

במגוון רחב של  רבההצלחה  נוחלים מבוססי מילון מודלים, פרותימבין מגוון המודלים שפותחו בס

של  מילון באמצעותאותו , ומתארים למרכיביםהאות של פירוק מאמצים גישה  ם אלומודלייישומים. 

מילון. מבוסס למידול אותות פרות יבסרווחות משלימות שתי גישות  .אטומיםהידועים כ אותות בסיסיים

במילון. לעומתו,  עם האטומים של האותות פנימיותמכפלות במונחים של  מתאר אותות האנליזה מודל

הבסיסי הכוח אטומים. השל  צירופים ליניארייםומתאר אותות כ ,נוקט גישה הפוכה מודל הסינטיזה

שני דהיינו, דעיכה מהירה של מקדמי הייצוג מעל המילון.  – דלילות הינואלו שני מודלים של ביסודם 

, ומביאים לתוצאות אות ותמונהעיבוד בעיות יעילים ביותר במגוון רחב של מוכיחים את עצמם כמודלים ה

, חוריםשחזור צבע מפסיפס, השלמת , דחיסה, הסרת רעשביניהם רבים, יישומים ב בתחומןמובילות 

 , ועוד.(compressed sensing) דלילהחישה הגדלה, 

בין  הקשרבשאלת  העבודה פותחתזו עוסקת במספר פנים של מודלי האנליזה והסינטיזה.  עבודה

במקרה ההפיך, בין השתיים. הרב מתעוררת עקב הדמיון המתמטי ה, המילון-שתי הגישות מבוססות

מקרה בראות ששני המודלים מתלכדים. עם זאת, המטריצה הפיכה, קל ל מהווהכלומר כאשר המילון 

 תוך שימוש בכלים גיאומטריים אנו מראים –כאשר מספר האטומים עולה על מימד האות  –הבלתי הפיך 

מפריד בין השתיים. שפער ניכר עם , מזוזו מהותית  שתי הגישות למעשה שונות ,האלגברידמיון כי על אף ה

בהכרח  קייםדומה, אסימפטוטי גודל בעלי כי לכל זוג מודלים של אנליזה וסינטיזה אנו מראים בפרט, 

מביאים אנו  ,כמו כן. מהותית של אותות עליהם שני המודלים יתנהגו באופן שונה)מעריכי( מספר עצום 
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מודה אני  יעקב כגן.והיקר חברי הקרוב לבאופן אישי ולהודות להוקיר במיוחד זכות גדולה אני חש 

, עזרה מסורה,  שיחות מרתקות, ותמיכה מסוייגתעל השנים הרבות של חברות בלתי מכל לב עקב יל

 לבקש חבר טוב ממנו. יכולתיאינסופית. תודתי העמוקה ביותר שלוחה ליעקב. לא 

והמעודדת ביותר. החמה עבודה זו לא הייתה מתאפשרת ללא המשפחה המסורה, התומכת, לבסוף, 

, העידוד נדליתי את תודתי והערכתי העמוקות ביותר על התמיכה הבלת אני שולח, ישראל ובלהה, ילהורי

דרך, למודל ללכת לאורו,  ילעוגן, למשענת, למורהייתם לי , והאהבה ללא גבול. האיתנות , העצותהעיקש

על התמיכה, ההבנה, תודה לאחיותיי, יעל, טלי ותמי, ועל כל אלה ועוד אני מוקיר לכם תודה עמוקה. 

הרבות לדודותיי ניצה ונורית על העצות  מקרב לבהרבים. תודות השמחים  םרגעיהההערכה, ועל 

לסבי וסבתי האהובים, תודה עמוקה גם  .האדירהוהאהבה  ,העזרההעידוד, התמיכה, על החשובות, ו

תודות לכל בני האהבה המסורה. על העזרה, ועל , הרבה אליוט ולוסי, על האמונה שלהם בי, על התמיכה

 אהבתי שלוחה לכולכם. – באופן אישיכאן שאת שמם לא ציינתי  משפחתי
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טכניוןב למדעי המחשבבפקולטה  מיכאל אלעד בהנחיית פרופ'מחקר נעשה ה  

 

 

 תודות

 להםואני שמח ונרגש להוקיר  ,דות לעזרתם הנדיבה של אנשים רביםוהחיבור זה התאפשרה כתיבת 

 כאן. תודה

מנחה שלי, פרופ' מיכאל אלעד. מורה ולל ותשמורביותר  הגדולות התודה וההוקרהבראש ובראשונה, 

 .מעורר השראהו מעשיר, אבחנתימתחשב, לעבוד עם אדם כה מסור, מלומד,  הגדולהייתה זכות זו מיקי, 

דרכי אורך כל להאיתנה הדרכתך לו עצותיךלתמיכתך, ל, הרבה עזרתךלהערכתי לתאר את אין מילים 

 .נתונה לך עמוקהה תיתוד ,ועוד כל אלועל האקדמית, ו

נדירה לשתף פעולה. ההזדמנות הלדר' מיכאל ציבולבסקי, עימו הייתה לי גם שלוחה  תודה מיוחדת

העזרה הנדיבה, על  ,ות והרעיונות מאירי העינייםיהפורלדר' ציבולבסקי על השיחות  מודה מקרב לבאני 

 לאורך שנותיי בטכניון.והיחס החם התובנות המעמיקות, 

אני חב ר שאובמהלך השנים, רבות למדתי מהם להודות למספר אנשים ורוצה לנצל הזדמנות זו אני 

לפרופ' אלפרד  העמוקות נתונותוהערכתי  תודתי. עד היום שצברתיוההבנה מן הידע חלק ניכר להם 

 ,נפתלי תשביפ' שמואל פלג ופרופ' ברוקשטיין, פרופ' רון קימל, פרופ' אברהם סידי, פרופ' עירד יבנה, פרו

 והטמיעו בי את הלהט למדע. ,מפזיקר מרתק והעשירו אותי בידע ר שא

התמיכה על ץ מן המעבדה לעיבוד תמונה גיאומטרי, כיאנה לשלוחות לירון חונן וחמות תודות 

נמרוד פלג מן המעבדה לעיבוד לגם לפרופ' דוד מלאך ו תודות הדופן לאורך השנים. הסיוע יוצאוהנפלאה 

לירדנה קולט, שמורה  לבסוף, תודה מיוחדת  .והמועילים פורייםהפעולה השיתופי  על ,ותמונותאותות 

, על העזרה המסורה והתמיכה האינסופית לאורך כל בפקולטה למדעי המחשב לימודי מוסמכים מזכירת

 בטכניון.שנותיי 

המאתגרת הלימודים תקופת טכניון, אשר הפכו את מהומכריי מאוד לכל חבריי רוצה להודות אני 

נין, את רועי אנגלברג, יניב חמו, קרן וואקאישי אופן ב אצייןמבין אלו . במיוחד ומעשירהחוויה מהנה ל

באופן משמעותי השפיע ש ,וקרוב מוערך, יקרחבר הינו מהם  כל אחדר שא סבטלנה רבוי ואירנה זברסקי,

, הפורייםהשיחות המועילות, שיתופי הפעולה על  ,אורי בריטידידי ועמיתי לשלוחה תודה מיוחדת  על חיי.

 .לאורך השנים העזרה הרבהו
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