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1 Abstract

Real-world scenes often exhibit very high dynamic ranges, which cannot be cap-
tured by a sensing device in a single shot. Nor can an imaging device successfully
reproduce such a scene. To overcome this, these scenes must be represented as
a series of differently exposed images, representing different sub-bands of the
complete dynamic range. Unfortunately, this representation is unsuitable for
many tasks, such as human interpretation or computerized analysis. In this pa-
per we propose an effective algorithm for fusing such image sequences to a single
low dynamic range image, which may be displayed on a standard device. The
fusion process accumulates all the details, which initially span many images,
in a single image. Our algorithm is simple, highly stable and computationally
efficient. It may be applied to both gray-scale and full-color images. We ana-
lyze the method, and provide a set of parameters which enable to produce very
good results in a fully-automated process. Real-world results are presented to
demonstrate the method’s performance.

2 Introduction

The full dynamic range of a real-world scene is generally much larger than
that of the sensing devices used to capture it, as well as the imaging devices
used to reproduce it. When a large dynamic range must be processed using a
limited-range device, one is forced to split the dynamic range into several smaller
”strips”, and handle each of them separately. This process produces a sequence
of images of the same scene, covering different portions of the dynamic range.
When capturing a high dynamic range (HDR) scene, the sequence is obtained by
varying the exposure settings of the sensor. When reproducing an HDR scene,
the sequence is obtained by splitting the full range of the image into several
sub-ranges, and displaying each separately. Indeed, in both cases we turn to a
solution in the form of a variable-exposure image sequence.

The major drawback of variable-exposure image sequences is their usabil-
ity. Since details span several images, a human viewer will find it difficult to
study and interpret the scene. A computer program could do better, imple-
menting specific techniques for handling such representations; however this can
be a tedious task, since most visual applications are designed to handle single
images containing all the details. It is therefore imperative to develop tech-
niques for merging (fusing) such image sequences into single, more informative,
low dynamic range (LDR) images, maintaining all the details at the expense of
brightness accuracy.

In this project, we propose a fusion algorithm based on Laplacian pyramid
representations [1, 2]. The Laplacian pyramid is an over-complete, multi-scale
representation, in which each level roughly corresponds to a unique frequency
band. Laplacian pyramids have several advantages over other multi-scale repre-
sentations (e.g. wavelets) — they are stable under affine transformations (such
as translation, rotation and scaling), and they are computationally easy. We
show that a simple maximization process in the Laplacian pyramid domain,
provides an effective way to produce an informative high-detail image given an
aligned sequence of differently exposed images. Our method may be applied to
both gray-scale as well as full-color images.
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3 Background

Sequences of differently exposed images appear in many contexts. They are
most often produced when capturing a real-world scene, as sensing devices may
only capture a limited band of the scene’s entire dynamic range at any given
moment. When a larger dynamic range is required, we are compelled to capture
the scene as a sequence of images, using varying exposure settings.

More recently, these sequences have been related to the evolving field of high
dynamic range (HDR) imagery. HDR images are basically images in which the
range of representable intensities is larger than the standard 8-bit-per-channel
(256-level) range. HDR images are a natural extension of current standard
image representations, however their use is limited by the fact that they cannot
be accurately reproduced by any current imaging device. In fact, the typical
dynamic range of an HDR image is at least 2-3 orders of magnitude larger than
that reproducible by the most capable state-of-the-art current imaging devices.
Hence, in order to display an HDR image one must first substantially compress
its dynamic range; this is a non-trivial task which has been extensively discussed
in the literature [3]). Alternatively, the HDR image may be decomposed into
a sequence of limited-range images; such a decomposition is a relatively simple
task, but viewing the image this way is undoubtedly less convenient.

The goal of this project has been to develop and implement a method for
fusing variable-exposure image sequences. Given such a sequence (of either
gray-scale or full-color images), our program produces a single displayable LDR
image of the scene. Brightness information naturally cannot be maintained in
the fused image, however all scene details are preserved, allowing for convenient
examination, interpretation and analysis. Possible uses for our method include

• Producing full-detail images of high dynamic range scenes using low dy-
namic range sensing devices

• Viewing HDR images given their decomposition to a sequence of limited-
range images.

To date, the task of fusing variable-exposure image sequences to a single LDR
image has not been thoroughly discussed in the literature. In most papers, the
more general fusion problem is considered, where the source images may orig-
inate from different sensors, and may exhibit polarity changes (negation). For
this general case, the proposed solutions are often complex, requiring statistical
analysis, machine learning methods or global optimization algorithms. Our ap-
proach is unique in that it is specialized for the task of fusing variable-exposure
sequences, and consequently is significantly simpler, computationally efficient,
dependant on a minimal set of parameters, and fine-tuned to produce good
results even with the default settings (allowing for a fully automatic process).

4 Previous Work

The field of fusing multiple images of the same scene has received much attention
in the past two decades (although color fusion has received surprisingly little
attention). The idea of fusing images in the Laplacian pyramid domain was
first introduced by Burt and Adelson in [1, 2], and among the applications
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which they mention are image stitching and focus enhancement. Burt and
Kolczynski [5] continued this work, and developed a more advanced method
for fusing general multi-sensor images using gradient pyramids. Their method
incorporates a sophisticated selection rule in the pyramid domain, based on
pixel similarity and salience measures which they introduce.

The late 90’s have seen rapid advancement in wavelet decomposition theory.
These advances have enabled the development of wavelet-based fusion meth-
ods, similar in nature to the basic scheme pioneered by Burt and Adelson.
In 1997, Rockinger [7] introduced a method utilizing the stationary (undeci-
mated) wavelet transform, employing a choose-max merging process similar to
that applied in the Laplacian domain. The undecimated transform provided
for translation-invariance, which is a desired quality of the fusion result. Zhang
and Blum [8] proposed combining wavelet-based image fusion with higher-level
image analysis methods. They use image segmentation and labeling techniques
in order to improve the selection process in the wavelet domain.

Sharma and Pavel [6] introduce an entirely different approach. Their method
is designed for fusing continuous imagery (e.g. video), obtained from multiple
sensors1. Sharma and Pavel adopt a statistical approach based on optimal
Baysian estimation. They model the intensity transformation between the sen-
sor outputs by an affine transformation with added noise, and attempt to esti-
mate the parameters of this transformation (for each sensor individually) using
Maximum A-Posteriory (MAP) estimation. Their method operates on the con-
tinuous data, and thus is not appropriate for a fixed sequence of still images.
Their initial parameter estimates are improved over time as the data becomes
available.

Finally, the process of combining differently exposed images has been thor-
oughly discussed by Debevec and Malik [10], as well as by Mann and Picard [9].
Both develop methods for reconstructing the true HDR radiance map of a scene,
given the set of differently exposed images. Debevec and Malik assume the ex-
posure time for each of the images in the sequence is known; they consider the
process in which these images were formed, and formulate the problem as a
quadratic optimization problem. Mann and Picard propose a different method
for reconstructing the radiance map, one which determines the response func-
tion without any prior data, assuming some parametric form for this function.
Both works are important contributions to the theory of variable-exposure im-
age fusion, however they are not immediately applicable when an LDR result is
required.

5 Theoretical Background

5.1 Variable-Exposure Image Sequences

A variable-exposure image sequence is an aligned sequence of images of a com-
mon scene, representing different bands of its dynamic range. We do not assume
here any specific model for the process forming the sequence, however we do re-
quire that there be no polarity reversals between the images. Figure 1 presents
a sample image sequence. The leftmost image is the most under-exposed image,
and contains details of the brightest objects in the scene (lamps). The rightmost

1For instance, an array of sensors guiding an aircraft.

3



image is the most over-exposed, and contains detail of the darker objects in the
scene (furniture and walls).

Figure 1: A variable-exposure image sequence.

5.2 Laplacian Pyramids

The Laplacian pyramid representation was introduced by Burt and Adelson [1]
in 1983, and is accepted today as a fundamental tool in image processing. It is a
straightforward, intuitive band-pass decomposition which is simple to implement
and computationally efficient. To implement Laplacian pyramid decomposition,
one must first define two elementary scaling operations, usually referred to as
shrink and expand. The shrink operation applies a low-pass filter to the im-
age and downsamples it by a factor of two. The expand operation employs a
predefined interpolation method and upsamples the image by a factor of two.
Given these two operations, the Laplacian pyramid is obtained via the following
two-step process:

1. Generate the Gaussian pyramid of the image. The Gaussian pyramid is
basically a series of copies {G1, G2, . . . , Gk} of the original image I at
different scales. It is obtained by setting G1 = I, and iteratively applying
Gi+1 = shrink(Gi).

2. Generate the Laplacian pyramid of the image. The Laplacian pyramid
{L1, L2, . . . , Lk} is obtained by backward-processing the Gaussian pyra-
mid, setting Lk = Gk and iteratively applying Li = Gi − expand(Gi+1).

The inverse transform, for recovering an image from its Laplacian pyramid,
is computed by setting Gk = Lk, and iteratively computing Gi−1 = Li−1 +
expand(Gi). The image is then given by I = G1.

Assuming the low-pass filter in the shrink operation roughly eliminates the
higher half of the image frequencies, the Gaussian pyramid is simply a series of
scaled-down versions of the original image, each Gi+1 representing the lower half
of the frequencies of its predecessor Gi. For the expand operation, we assume
a simple interpolation method (such as linear or cubic interpolation), such that
the upscaling process roughly preserves the frequency composition of the image,
and introduces minimal artificial high frequencies. Consequently, applying Li =
Gi−expand(Gi+1) essentially removes the lower half of the frequency spectrum
from Gi, retaining only the higher frequency band. The resulting pyramid
{L1, L2, . . . , Lk} is therefore a form of band-pass decomposition of the image,
where L1 represents the lowest part of the spectrum, and each Li+1 represents
a higher frequency band than its predecessor. L1 is often referred to as the
approximation level in the pyramid, and the remaining Lis are the detail levels.

The Laplacian pyramid transform is specifically designed for capturing image
details over multiple scales. It is obviously an over-complete transformation, and

4



as opposed to the wavelet decomposition, for instance, each band-pass level is
sampled at precisely its Nyquist frequency — making it less sensitive to noise.
Also, one may easily verify that the Laplacian pyramid transform is invariant
under affine transformations. All these properties make the Laplacian pyramid
transform a well-suited representation for the task at hand.

6 Fusing Variable-Exposure Image Sequences

We now describe the proposed fusion algorithm for variable-exposure sequences.
The algorithm is based on fusion in the Laplacian pyramid domain. The core
of this algorithm is a simple maximization process in the Laplacian domain, for
this process there are a number of parameters which need be considered, and
these are discussed. The result of the Laplacian-domain fusion is post-processed
to maximize its contrast and detail visibility.

6.1 Algorithm Outline

Given the variable-exposure sequence {I1, I2, . . . , In}, the entire fusion algo-
rithm is outlined by the following steps:

1. Generate a Laplacian pyramid Li for each of the images Ii.

2. Merge the pyramids {Li} by taking the maximum at each pixel of the
pyramid, obtaining the Laplacian pyramid representation L of the fusion
result.

3. Reconstruct the fusion result I from its Laplacian pyramid representation.

4. Normalize the dynamic range of the result so that it resides within the
range of [0,1], and apply additional post-processing techniques as neces-
sary.

6.2 Method Details

The first step of the algorithm is to generate Laplacian pyramids for each of
the input images (when color images are involved, the Laplacian pyramid is
generated independently for each channel). Laplacian pyramid decomposition
introduces two parameters which may affect the fusion result. First, an ap-
propriate low-pass filter must be selected. Second, the number of levels in the
pyramid should be chosen; this determines the size of the low-frequency (ap-
proximation) level. We discuss these parameters in the next section.

The second step is the actual fusion process. Here we must define some
selection rule for determining the value of each pixel in the result pyramid. The
selection rule may generally be different for the approximation level and for the
detail levels. For the detail levels, each pixel in the result pyramid is determined
by selecting the maximum among all the corresponding pixels in the input pyra-
mids. Maximization is the most natural operation for the detail levels as we
want to maximize the detail in the output image. For single-channel images, the
maximum is taken in absolute value (i.e. ignoring sign). For color images, each
pixel in the pyramid has three values, and in this case, the pixel with largest
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norm is selected; we use the L2 norm in our implementation. For the approxi-
mation level, different fusion approaches can be used. The most straightforward
approach is averaging; since we assume this level contains little image details,
averaging will not discard any valuable information. The averaging approach
works well in most cases, and should usually be used. For specific cases, other
selection approaches may be considered as well, in order to improve the visual
quality of the result. For instance, one may apply the same maximization pro-
cess on the approximation level as is done for the detail levels; this will produce
a brighter result, and for some images, this approach produces nicer-looking
images. Alternatively, for color images, one may consider selecting the most
saturated pixel, or use a weighted combination of brightness and saturation.

Once the pyramids are merged, the fusion result is reconstructed from its
pyramid representation. For the reconstruction, we implemented a standard
expand method which multiplies the image intensity by 4 (to preserve average
pixel energy in the process), upsamples it by inserting zeros between the im-
age pixels, and smoothes the result using the same low-pass filter used for the
downsampling. Due to the nature of the fusion process, the resulting image
may have a dynamic range extending beyond the valid [0,1] range. Therefore
the next step is to linearly compress the dynamic range of the result into the
valid range. For gray-scale image, the intensity transformation is simply given
by (x−xmin)/(xmax−xmin). For color images, we take the minimum and maxi-
mum over all channels. After this normalization, the fusion process is essentially
complete. Additional post-processing techniques may be applied at this stage,
in order to improve the visual quality of the image and accentuate its details;
some such techniques are provided later.

6.3 Parameters of the Fusion Process

Two parameters which affect the result of the fusion process are the choice of a
smoothing filter, and the number of levels in the pyramid. It is recommended
that the smoothing filter be of odd length, so that the kernel has a defined central
pixel (this ensures that the filtering result is not biased); using an even-lengthed
filter tends to cause artificial shadowing effects in the result. For best perfor-
mance, the smoothing filter should be chosen such that the filtering process
approximately removes the higher half of the frequency spectrum, maintain-
ing the lower half. Our implementation uses periodic filtering with a Gaussian
smoothing filter, and good results have been obtained using 1.2 < σ < 2.5. We
suggest a default value of σ = 1.7.

The number of pyramid levels also has an effect on the quality of the fusion.
The number of levels should be large enough so that the approximation level
contains little significant detail, or else the averaging process could cause loss
of information. This may be ensured, for instance, by extending the pyramid
height until the size of the approximation level reaches one pixel. However, using
too many pyramid levels may have an inverse effect on the global vividness of
the result and its color accuracy. A common approach is to set a minimal
size for the approximation level. This approach assumes that the maximum
detail size is relative to the size of the entire image (e.g. if the largest detail
information is assumed to occupy no more than 25% of the image, we may set
the approximation level size to approximately 2×2 pixels). Our implementation
uses a default minimal size of 9× 9 pixels.
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6.4 Post Processing

Once the result is normalized, it may be post-processed in order to improve
its detail visibility and enhance its contrast. In our implementation we use a
two-step post processing stage:

1. Intensity stretching. The dynamic range of the fused image is expanded
by linearly stretching the intensity values within the [0,1] range. This process
saturates a predefined percentage of the pixels at the low and high intensity
values. For color images, we treat all the channels as a single channel and
stretch all values simultaneously. All examples in this report use the default
value of 1% saturation.

2. Adaptive Histogram equalization. Following the intensity stretching,
it is beneficial to apply adaptive histogram equalization on the result, in order
to improve its contrast and sharpen details. This step is not essential, how-
ever visibility of the details may be further enhanced by this process. Adap-
tive histogram equalization individually equalizes small regions of the image,
and combines them using bilinear interpolation. The local equalization step
is contrast-limited in order to avoid noise amplification in homogenous regions
(we use a default clip limit of 0.002, as defined by Matlab’s ADAPTHISTEQ
function). For color images, the result is converted to YIQ and the equalization
is applied to the intensity (Y) channel.

7 Extension: Motion Compensation

The images in the input sequence may not always be fully aligned (for instance
when the sequence is shot using a hand-held device). In these cases the fusion
will result in a ”fuzzy” or ”blurry” image, since corresponding edges in the dif-
ferent images do not overlap, and these are accumulated in the merging process.
Obviously, it is essential to align all the images prior to fusion. As part of this
project, we have developed and implemented a preprocessing unit which detects
the global motion between the images, and compensates for this motion.

We assume that the motion between the images may be approximated by a
global translation-and-rotation model. For small movements, the Lucas-Kanade
sub-pixel motion estimation algorithm [4] is considered highly effective. In its
standard form, however, it is unsuitable for handling exposure differences; we
have therefore developed a version of this algorithm which is tolerant to varying
exposure conditions. We now briefly describe this algorithm and its adaptation
to differently exposed images.

The basic Lucas-Kanade algorithm approximates the parameters of the global
motion, by assuming a first-order linear approximation in these motion param-
eters (which are assumed to be small). This gives the problem the form of a
simple over-specified set of linear equations (in the motion parameters), which
may be easily solved by minimizing the mean squared error. The accuracy of
the result is then increased by warping one of the images according to the mo-
tion estimate, and repeating the process on the new pair of images. This is the
iterative form of the algorithm, and it produces a series of motion estimates
which quickly converge to the correct value.
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The iterative Lucas-Kanade algorithm may be improved so that it is capable
of estimating larger movements. This is accomplished by the multi-resolution
version of the algorithm. In its multi-resolution version, two Gaussian pyramids
are constructed for the two input image. The algorithm is first applied to the
coarsest (smallest) pyramid level, producing the large-scale motion estimate,
and this result is used as the initial estimate for the motion estimation process
of the next pyramid level. The algorithm continues along the pyramid levels,
improving its estimate until it reaches the finest pyramid level. The result
obtained by this level is the final output of the algorithm.

In order to adapt this well-established algorithm to the case of differently
exposed images, we replace the Gaussian pyramid used in the multi-resolution
version with a Laplacian pyramid. The motion estimation process is not applied
to the approximation level of the pyramid but to the detail levels only, beginning
with the smallest one. The Laplacian pyramid is much better suited for handling
differently exposed images, since it is indifferent to global energy differences, and
is focused on representing image details. Since all images describe the exact
same scene, we assume the details are (more or less) common to all images.
Naturally, when the exposure differences are large, this assumption may not
hold. For this reason we apply the motion detection algorithm only to pairs
of sequential images in the sequence. Of course, if the exposure differences
are still large, details may change too drastically for the algorithm to converge;
unfortunately, in this case the exact motion will be extremely hard to determine
(by any algorithm), due to the lack of common image features to guide the
process.

Finally, the Lucas-Kanade algorithm was refined to provide better handling
of color images. Given a pair of color images, one can generally convert them
to grayscale and apply L-K on the grayscale pair. This approach works well
most of the time, however it is not optimal since it disregards considerable
information. To increase the accuracy of the motion estimation in color images,
we have implemented the option of applying the Lucas-Kanade method to all
three color channels simultaneously. This is a simple generalization, which is
done by replacing the over-specified set of linear constrains which was previously
obtained from a single channel, with a three-fold larger set obtained from all
three channels. This modification considerably increases the run-time of the
algorithm, but may in some cases improve the accuracy of the motion estimation.

8 Results

We have tested our method on many sequences of images, and some sample
results are presented in figures 2, 3, and 4. All results were produced automat-
ically, using the recommended default settings. As can be seen, the resulting
images contain all the details appearing in the input sequences, with no added
artifacts or visible noise amplification. Color information is not entirely pre-
served, but its quality is acceptable.

The performance of the algorithm was also evaluated using four standard
test pairs, as presented in figure 5. The left and center images in each row
form a pair of input images, and the right image is the fusion result. The first
two rows show the test pair ’circles’. The two circles in the second row are
shifted by one pixel to the right relative to those in the first row, and this test
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demonstrates the translation-invariance of the method. The next two rows show
the test pair ’lines’. These two rows differ in the orientation of the lines in the
input images, and are intended to demonstrate the orientation-invariance of the
fusion method. The fifth row shows the test pair ’ball’ (note the pattern on
the middle circle). It demonstrates the behavior of the algorithm along object
borders, as well as the performance of the algorithm under varying detail scales
(large objects vs. delicate patterns). The last row shows the test pair ’squares’,
and is intended to demonstrate the algorithm behavior for overlapping objects.
It should be noted that post-processing was disabled for all tests.

As can be seen from these tests, the algorithm is stable under transformations
of the input, and produces no visible artifacts or edges in the result. As expected,
brightness accuracy is lost during the fusion process, however all the details in
the input images are maintained.

Figure 2: Image sequence and fusion result (”living room”).

9 Summary and Conclusions

We have developed and implemented a simple, yet powerful method for fusing
variable-exposure image sequences. The method features high stability, accu-
racy, and is computationally efficient. It may be applied to both gray-scale
and color images. We have analyzed the fusion process, discussed its various
parameters, and have presented a set of default values which allow the method
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Figure 3: Image sequence and fusion result (”igloo”).

Figure 4: Image sequence and fusion result (”cabin”).

to consistently produce good results with no additional intervention. In ad-
dition, we have developed and implemented an effective motion compensation
preprocessor which may be used for fusing non-aligned sequences. Out motion
detection algorithm is capable of handling exposure changes, and can take ad-
vantage of color information for increased accuracy. Finally, some results for
real-world sequences are provided, demonstrating the abilities of our method.
We conclude that the method is highly effective and well-suited for fusing dif-
ferently exposed images.
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Figure 5: Standard test image pairs and their fusion results.

10 Future Work

The fusion method we have proposed works well for gray-scale images, however
as previously mentioned, it may still be improved for color images. Our algo-
rithm has not been specifically designed for interpreting color information, and
consequently its color results lack accuracy and vividness. It would be desired to
develop a specialized method for handling color data, in order to obtain richer,
more accurate results.

As we have seen, over the past years different fusion techniques have been
proposed based on various multi-resolution decompositions (wavelets, undec-
imated wavelets, gradient pyramids etc.). Our algorithm, which utilizes the
Laplacian pyramid decomposition, could be easily adapted to utilize any of a
large number of alternative decompositions, exhibiting the same approximation-
level / detail-level structure. Each of these has its advantages and disadvantages,
and their performance should be analyzed and compared.
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