
Equilibria in Online Games

Roee Engelberg∗ Joseph (Seffi) Naor†

Abstract
We initiate the study of scenarios that combine online
decision making with interaction between non-cooperative
agents. To this end we introduce online games that model
such scenarios as non-cooperative games, and lay the founda-
tions for studying this model. Roughly speaking, an online
game captures systems in which independent agents serve
requests in a common environment. The requests arrive in
an online fashion and each is designated to be served by a
different agent. The cost incurred by serving a request is
paid for by the serving agent, and naturally, the agents seek
to minimize the total cost they pay. Since the agents are
independent, it is unlikely that some central authority can
enforce a policy or an algorithm (centralized or distributed)
on them, and thus, the agents can be viewed as selfish players
in a non-cooperative game. In this game, the players have to
choose as a strategy an online algorithm according to which
requests are served. To further facilitate the game theoretic
approach, we suggest the measure of competitive analysis as
the players’ decision criterion. As the expected result of non-
cooperative games is an equilibrium, the question of finding
the equilibria of a game is of central importance, and thus,
it is the central issue we concentrate on in this paper.

We study some natural examples for online games;

in order to obtain general insights and develop generic

techniques, we present an abstract model for the study

of online games generalizing metrical task systems. We

suggest a method for constructing equilibria in this model

and further devise techniques for implementing it.

1 Introduction

Consider a scenario in which several processes share a
common cache according to the following rules. Over
time, the processes receive requests to access pages,
where each page request is designated to be accessed
by a specific process (note that as the accessed data
is also shared, different processes can request the same
page). Each time a process is requested to access a
page, the page must be cached first. If the cache
is full, the process that needs to access the page
decides which page will be evicted from the cache.
Naturally, the processes seek to minimize the number

∗Computer Science Department, Technion, Haifa 32000, Israel.
E-mail: roee@cs.technion.ac.il

†Microsoft Research, Redmond, WA. On leave from the CS
Dept., Technion, Haifa, Israel. E-mail: naor@cs.technion.ac.il

of page faults incurred by their requests. Assuming
that the processes are independent, they are expected
to exhibit selfish behavior. Hence, each process strives
to use as his paging policy an online algorithm which
is the best response to the policies used by the other
processes. In what respect should this response be
the best? Equivalently, according to which decision
criterion should the response be chosen? As the requests
arrive in an online manner, and since the processes have
no prior information about the requests (e.g. requests
distribution), we concentrate on competitiveness, which
by now is the standard measure used for evaluating
online algorithms, as the measure for the performance
of possible paging policies. That is, a process chooses
the paging policy with the best competitive ratio, given
the policies of the other processes.

Suppose, for example, that all the processes are ad-
vised to use a least recently used (LRU) policy when
evicting pages from the cache. Can any process guar-
antee itself a better competitive ratio by choosing a
different (deterministic) policy? In other words, does
the LRU policy constitute an equilibrium? Such ques-
tions come up in the context of many other scenarios
that share similar attributes. However, it appears that
previous work has either concentrated on the inherent
uncertainty that comes from the online nature of the
problem, or on game-theoretic aspects of selfish agents
operating in a distributed system. In this paper we
develop a formal model for such scenarios in order to
initiate the study of the issues just raised.

At first, consider a general setting in which there
are several independent agents operating jointly in a
common environment. The environment is likely to in-
clude some common infrastructure or resources that the
agents may use, but as the agents are not necessarily
identical, they may have different requirements or dif-
ferent access to the given resources. The agents need to
satisfy a sequence of tasks, where each task is allocated
to a specific agent. The tasks are given in an online fash-
ion; the agents need to serve the tasks upon arrival, by
making decisions based on the current state of the sys-
tem, without knowing future events (specifically, there
is no known distribution on the possible requests). Each
agent runs, independently, an algorithm minimizing the
cost it pays for serving the tasks.



Traditionally, such scenarios are modelled as an
online problem, where the goal is to design an algorithm
that minimizes the total cost incurred by the actions of
all the agents. Essential to modelling the above as an
online problem is the assumption that all the agents
are controlled and managed by the same authority.
However, in general, this assumption is problematic as
the agents are independent, and hence, it is not likely
that there exists a central authority that can enforce a
policy or an algorithm (centralized or distributed) on
the agents. Furthermore, the independence between
the agents means that each agent is concerned about
improving its own performance, while being indifferent
to the performance of other agents. This immediately
implies a possible lack of coordination between the
agents, leading to selfish behavior, implying that an
agent might deviate from a given algorithm if such a
deviation improves its performance.

Such a deviation is crucial in many cases. For exam-
ple, when designing protocols to be used as standards,
no matter how efficient a protocol may be, it cannot be
used as a standard if users have an incentive to deviate
from it. Hence, a protocol used as a standard should be
designed to induce an equilibrium among its users.

We conclude that modelling systems as a centralized
online problem fails to capture a fundamental attribute,
thus motivating the use of a game theoretic approach
that takes into consideration the lack of coordination
between agents. Such an approach can be used to pre-
dict the behavior of agents in a system, as well as to
design stable standards that define equilibria. Recently,
there has been a growing literature at the interface of
game theory and algorithms, and in particular concern-
ing the stability of standards (e.g. [1, 9, 17]). Neverthe-
less, so far, scenarios having an online nature were not
addressed using that approach.1

1.1 Online Games. We now explain how to model
a system as an online game. Basically, an online
game is a pre-Bayesian game (equivalently, a game
in informational form or an incomplete information
game with strict type of uncertainty ; for example, see
[12]). In what follows we informally define the relevant
components of the game: the players, their strategy
spaces and cost (utility) functions, and possible states.

In an online game there are N players denoted by
{1, . . . , N}. As each player controls a single agent in
the system, the strategy space of player i is the set of
legal (defined below) online algorithms that determine

1Some works ([6, 10, 11, 14, 15, 16]) combine online decision
making with mechanism design, but the online decision-making

role is limited to the mechanism itself, while the role of the agents
is merely to supply the input to the online algorithm.

the actions of the ith agent. Each possible state
consists of a request sequence. The requests arrive in an
online fashion into the system, and the agents run the
online algorithms chosen by the players. Each request
is allocated to a specific agent, and thus an online
algorithm for a player is considered legal if, for every
request sequence, each request allocated to a player’s
agent is served before the next request to the system
arrives. Each player is charged for the cost of all the
operations of its agent.

The stable outcomes of the interactions of non-
cooperative selfish agents correspond to the equilibria
of the underlying game, that is, the points where
unilateral deviation does not help any user improve
its performance. An equilibrium of an online game
is a vector of strategies, one for each player, from
which no player has an incentive to deviate. While
in strategic games the incentive for deviation is simply
a lower cost, this is not the case in pre-Bayesian
games due to the inherent uncertainty regarding the
realized state. Moreover, as the players have no prior
information about the realized state, the definition of
a best response strategy traditionally relies on decision
criteria that stem from worst case considerations (see
[12, 2]). Some examples for such decision criteria are
minimizing the maximum cost (taken over all possible
states), minimizing the maximum regret (the difference
between the cost paid and the minimum possible cost for
the same state), and minimizing the competitive ratio.

Accordingly, the best response in online games must
also be defined primarily according to worst case de-
cision criteria. We emphasize that this is a straight-
forward implication of the inherent uncertainty in online
games, and there does not seem to be any other reason-
able alternative definition avoiding worst case consider-
ations. Nevertheless, one might consider further refine-
ment of the best response definition in which some ad-
ditional criteria characterize the better strategy among
the strategies having the same performance with respect
to a primary worst case measure.

We focus on the competitive ratio as the decision
criterion. Roughly speaking, it means that players mea-
sure the performance of their strategy with respect to
an optimal offline strategy determined by an adversary
that “knows” in advance both the request sequence and
the players’ strategies. Specifically, given the strategies
of the other players, a player minimizes the worst case
ratio (taken over all possible request sequences) between
the cost it pays and the cost paid by the adversary. This
ratio is called the competitive ratio, although notice that
a strategy might have different competitive ratios with
respect to different strategies of the other players.

Accordingly, we study the competitive ratio equilib-



rium, which is a vector of strategies, one for each player,
in which no player can achieve a better competitive ra-
tio by changing its strategy. As the best strategy might
be hard to design, implement, or compute, the equilib-
rium notion is relaxed, and we also consider approximate
equilibria in which every player achieves a competitive
ratio that is within a known factor away from the best
competitive ratio attainable by any strategy. Identify-
ing the set of solutions of an online game which are in
(approximate) equilibrium is at the heart of the analy-
sis of the game we define, and comprises the basis for
performance evaluation in our system.

We note that the players in an online game may
not necessarily “know” what are the strategies of the
other players, however, as in a Nash equilibrium of any
strategic game, the strategy of each player is a best
response to the other players’ strategies. Moreover,
as each strategy is actually an online algorithm, such
a strategy can capture different responses to different
events that might occur while the players are serving
the request sequence.

1.2 Examples. We now turn to special cases that
demonstrate the general settings discussed above.
There are many scenarios that involve interaction be-
tween different agents: processors in a distributed sys-
tem; processes in a computer; users accessing a server
on the network; routers in a network; users in a peer-
to-peer systems; and many more. For clarity, we con-
centrate on scenarios that were already modelled and
studied as (centralized) online problems, yet the inher-
ent selfishness of the users in these scenarios was not
taken into account. Thus, the concept of an online game
better models these examples.

We have already seen the paging game that gen-
eralizes the classic online paging problem. As a second
example we consider file caching in distributed systems,
e.g., peer-to-peer caches and web caches. In this caching
game, there are N servers and each controls its own
cache. The servers get requests for files and should serve
them either by caching the file to their own cache or by
accessing a remote replica of the file that is cached by
another server. Caching a file incurs some (possibly con-
stant) cost and might be constrained by the capacity of
the cache, while accessing a remote replica incurs a cost
which is typically proportional to the distance between
the accessing server and the location of the replica.

Such scenarios have been previously examined and
analyzed using different approaches. Early studies
modelled the above scenario as an online problem
(e.g., the distributed paging problem studied by [4]).
As can be expected, such models tend to ignore the
selfish behavior of the servers in distributed systems.

Recent works (e.g. [8]) indeed use a game-theoretic
approach to overcome this problem, but they model
caching scenarios as offline problems, while most of
these scenarios are inherently online. We argue that the
online caching game better describes these scenarios as
it combines the advantages of the above approaches and
captures the essential properties of such systems - both
selfishness and online nature.

We consider the online generalized Steiner game
where there are ISP’s operating in a common environ-
ment (which includes potential users) modelled as an
edge-weighted undirected graph. Requests for connect-
ing pairs of nodes in the graph arrive online. A request
is served when all the edges of a path between the given
nodes belong to the solution. Each request is designated
to a specific ISP, that serves the request and pays for
the edges that it adds to the solution. An edge which
is added to the solution can be re-used without being
paid for again.

As these examples indicate, many scenarios have
both an online nature and interaction between different
agents, and thus are better described as online games.
We thus turn to formally discuss the model of online
games in its full generality, so as to establish the foun-
dations for studying these scenarios. This discussion is
followed by the study of specific online games that arise
in many contexts.

1.3 Our Results. We present the new model of on-
line games, which is used to study scenarios that are in-
trinsically online and in which different agents interact.
We suggest the measure of competitive analysis as the
players’ decision criterion, and introduce the appropri-
ate basic concepts of the model, including the equilibria
and the approximate equilibria of the game. We point
out the question of finding equilibria as being of central
importance. We also pay special attention to the incor-
poration of randomness in the model, as it differs from
the theory of classic strategic games. We further intro-
duce two desired properties of equilibria - efficiency and
sub-game perfect equilibrium. Informally, the efficiency
property excludes equilibria in which the players use
“unfriendly” strategies that prevent the achievements
of a good competitive ratio. Sub-game perfect equilib-
ria are more stable than other equilibria.

In order to obtain general insights and develop
generic techniques, we present an abstract model for
the study of online games - the metrical task game.
This model generalizes metrical task systems, a well-
known abstract model for studying online problems. We
identify a general useful principle for deriving equilibria
in metrical task games, the non-malleability principle,
which, roughly speaking, suggests that if the interaction



between the agents is nullified, an equilibrium is easier
to derive. We further develop the optimistic method
that is aimed to implement the non-malleability princi-
ple by having each player assume a certain behavior on
the part of the other players. Relying on that method,
we devise techniques to construct equilibria (or even
sub-game perfect equilibria) in some classes of metrical
task games. According to these techniques, given an
online game, some induced online problems are exam-
ined and competitive algorithms for these problems are
designed and further exploited for constructing the equi-
librium. The use of these techniques is demonstrated as
they are applied in our study of some online games, e.g.
the online generalized Steiner game.

Our discussion is followed by the study of a few
natural examples for online games, some of which were
introduced earlier. For the paging game we show that
LRU defines an efficient sub-game perfect equilibrium
with respect to deterministic strategies, while “plain”
FIFO is not even competitive with respect to the
individual player. Interestingly, this result gives another
justification for preferring LRU over FIFO. For the
caching game we design a strategy which yields an
approximate equilibrium with respect to deterministic
strategies, while for the online generalized Steiner game
we show how to exploit the algorithm of [5] for the
corresponding online problem to construct an efficient
approximate equilibrium of the online game.

As this paper introduces the new concept of online
games, we establish the foundations needed for the
study of this new area of research. While doing so,
the study of online games is far from being complete.
Thus, many questions are left open, and we note some
possible further research directions.

Our paper concentrates on equilibria-related issues.
A natural question to be considered is: what are the
limitations of the techniques we developed? Obviously,
the development of other techniques for constructing
equilibria is motivated accordingly. Of special interest
is a general technique for the randomized case, as many
online problems have randomized online algorithms that
outperform the deterministic ones.

2 Preliminaries, Definitions and Notations

We now turn to formalize the basic notions of online
games. We note that the following definitions are stated
with respect to cost minimization online games only,
while the analogous definitions for profit maximization
online games can be easily obtained. Consider an online
game with N players. We use the standard notation
for the strategy vector of the players, i.e. we denote
by s = (s1, s2, . . . , sN ) a strategy vector where si is the
strategy (the online algorithm) played by the ith player.

We denote by s−i the vector of strategies played by all
the players except for the ith player. Given a request
sequence σ = r1, r2, . . . , rm, let prefj(σ) be the prefix of
σ of length j, i.e. prefj(σ) = r1, r2, . . . , rj . We denote
by p(ri) the player that serves request ri.

Given an online deterministic algorithm A for the
ith player, we use As−i(σ) to denote the cost incurred
by A when serving the ith player requests in the request
sequence σ, while other players play the strategies given
by s−i. We denote byOPT an optimal (offline) strategy
for the ith player, i.e. a strategy that while serving the
ith player’s requests incurs the minimum possible cost.
We note that by this definitionOPT is assumed to know
in advance both the entire request sequence σ and the
strategy vector s−i.

Definition 2.1. A deterministic algorithm A is said
to be c-competitive for the ith player w.r.t. a strategy
vector s−i if there exists an α such that for every request
sequence σ, As−i(σ) ≤ c ·OPT s−i(σ)+α. The infimum
over the set of all values c such that A is c-competitive
for the ith player w.r.t. the strategy vector s−i is called
the competitive ratio of A for the ith player w.r.t. s−i,
and is denoted by Rs−i

(A).

In many of the scenarios modelled as online games
the players are almost identical. Naturally, in such
cases, the players will tend to use the same strategy in
equilibrium, especially when such a strategy is agreed
upon as a standard. Moreover, in cases of inherent
symmetry between the players, e.g., symmetric games,
it is easier to design equilibria that consist of one
identical strategy, motivating the following definition.

Definition 2.2. (Self-Competitiveness) A strat-
egy A is said to be c-self-competitive if for every j it is
c-competitive for the jth player w.r.t. the strategy vector
s−j = (A, . . . ,A).

When considering deterministic strategies in an on-
line game, a competitive ratio equilibrium (or simply
an equilibrium) is a strategy vector s = (s1, . . . , sN )
such that for every i, and for every possible determin-
istic strategy s′i, Rs−i

(si) ≤ Rs−i
(s′i). As equilibria

are sometimes hard to construct or compute, the no-
tion of approximate equilibria is also considered. A
strategy vector s (of deterministic strategies) is an α-
equilibrium w.r.t. deterministic strategies, if for every i
and every possible deterministic strategy s′i, Rs−i

(si) ≤
α · Rs−i

(s′i). We note that, by definition, every c-self-
competitive strategy A gives rise to the c-equilibrium
(A, . . . ,A). Moreover, for a c-self-competitive strategy
A, the vector (A, . . . ,A) might even be c′-equilibrium
for c′ < c. To prove such a result, one should prove a
lower bound on minBRs−i

(B) where s−i = (A, . . . ,A).



We now elaborate on several desired properties that
equilibria solutions should satisfy.

Efficiency. In some games, an equilibrium can be
constructed using strategies in which players mutually
prevent the achievement of a good competitive ratio.
Such equilibria are unlikely to get realized, as players
tend to have very poor performance in these situations.
This motivates defining measures for evaluating the
efficiency of an equilibrium in an online game. We use
the competitive ratio of each of the players in a given
equilibrium as a measure that reflects the individual
efficiency of each of the players. We also evaluate the
overall efficiency of the system, including all agents,
as follows. Consider a strategy vector as an online
algorithm for the “social” online problem defined by
the online game when all agents are controlled by a
single entity. Let the competitive ratio of the strategy
vector be its competitive ratio as an online algorithm
for the appropriate “social” online problem. We use this
competitive ratio as a measure for the overall efficiency
of equilibria. Note that an optimal (competitiveness-
wise) online algorithm that has centralized control of all
the agents can be referred to as a social optimum of the
online game, and accordingly, the closer the competitive
ratio of an equilibrium to that of the social optimum,
the better that equilibrium is. This motivates the study
of the price of stability in online games, a topic that is
deferred for further research.

Sub-game Perfect Equilibrium. The continual
nature of online games implies that players might re-
think their strategy as they serve the request sequence.
Given a strategy vector defining an equilibrium, the
players have no incentive to change their strategy while
serving the requests, as long as no deviations from the
given strategy vector happen. However, in case a devia-
tion occurs, there may be an incentive to one (or more)
of the players to further deviate, and this process may
justify itself, even though it probably should not have
happened in the first place. Hence, an equilibrium is
considered to be more stable if it is resistent to some
“local” deviations. Equilibria possessing this property
are called sub-game perfect equilibria. Formally, a his-
tory of an online game G is a legal sequence of requests
and reactions of the players. Accordingly, every history
h induces a sub-game of G which is the online game de-
fined according to G with the history h being initially
realized. Finally, a sub-game perfect equilibrium of an
online game G is a vector of strategies s such that for
every sub-game G′ of G it holds that the strategy vector
induced by s in G′ is an equilibrium of G′.

2.1 Randomized Strategies. One of the differences
between strategic games in the normal form and pre-

Bayesian games (including online games) is the implica-
tions of randomization. A mixed strategy of player i in
a strategic game (or a randomized strategy) is a prob-
ability distribution over the deterministic strategies of
player i. The same definition holds for pre-Bayesian
games, and a mixed strategy in an online game is what
we can intuitively interpret as a randomized online algo-
rithm (strategy). Allowing mixed strategies in an online
game gives rise to a new online game, which is referred
to as the mixed extension of the given online game. To
complete the definition of the mixed extension of an on-
line game, note that given a vector of mixed strategies
and a request sequence, the cost that a player pays is
the expected cost, where the expectation is computed
according to the given distributions over the strategies.

As the analysis of the mixed extension of an online
game should comply with the decision criterion of com-
petitive analysis, we extend the definition of competitive
ratio accordingly. Notice that due to the worst case at-
tribute of this decision criterion, the competitive ratio
of a mixed strategy is not the expectation of the com-
petitive ratios of the underlying deterministic strategies.
To better understand this subtle issue, one can think of
competitive analysis of randomized online algorithms as
the concept we apply. As the competitive ratio of ran-
domized online algorithms is determined with respect
to a specific kind of adversary, we have a different set
of definitions for each type of adversary. Currently, we
focus on oblivious adversaries.

Definition 2.3. A randomized algorithm A is said to
be c-competitive for the ith player w.r.t. a strategy
vector s−i (which can include randomized strategies),
if there exists α such that for every request sequence σ,
Er[As−i(σ)] ≤ c · Er[OPT s−i(σ)] + α, where r denotes
the coin tosses of all the players.

Here, assuming an oblivious adversary, OPT does
not know in advance the coin tosses of the players, but
rather only knows their actions (responses) till the time
it has to serve its requests. Now, the competitive ratio of
A for the ith player w.r.t. s−i (oblivious adversary), can
be defined similarly to Definition 2.1, and hence denoted
by Rs−i

(A). The definition of self-competitiveness
follows similarly to Definition 2.2.

While the mixed extension of a strategic game
preserves some of the properties of the original game
(played without randomization), extending an online
game (and in general, a pre-Bayesian game) to allow
randomized strategies does not have this property. Par-
ticularly, one of the important properties is that in a
strategic game, every Nash equilibrium of the game is
also a Nash equilibrium of its mixed extension. This
is not the case for online games, due to the worst case



attribute of the decision criterion used by the players.
Hence, when considering both deterministic strategies
and randomized strategies, the appropriate formal de-
finitions of equilibrium and approximate equilibrium of
an online game follow from the definitions with respect
to the mixed extension.

3 The Paging Game

In the paging game a cache of size k and a set of pages
are shared between N processes. The processes get
requests for pages, and each page has to be retrieved to
the cache before being accessed by the processes. When
a process needs to cache a page and the cache is full,
it should choose which page to evict from the cache. If
request ri incurs a page fault, player p(ri) is charged for
the page fault. In what follows we prove the interesting
difference between the known paging policies LRU
and FIFO: while the former constructs an efficient
sub-game perfect equilibrium, the latter results in a
strategy vector in which the players have an unbounded
competitive ratio. Notice that in general, the known
lower bounds for the online paging problem are still
valid here, in particular the lower bound of k on the
competitiveness of any deterministic online algorithm,
and the lower bound of Hk on the competitiveness of
any randomized online algorithm (see [7]).

3.1 Algorithm LRU. Algorithm LRU for online
paging is known to have competitive ratio of k (see [7]).
A player in the paging game can use LRU as a strategy
in one of two possible ways. The first, referred to as
LRUself , is to ignore the requests served by the other
players, and in case of a page fault to evict its least
recently used page. The second way is by taking into
consideration all requests, including those served by
other players. We denote this strategy by LRU , and
note that it requires that the players know the time of
the recent accesses to the pages in the cache. Although
one might expect that LRUself is a better strategy
than LRU for the selfish player, this is not the case:
LRUself is not c-self-competitive for every c, while LRU
is k-self-competitive. This can be easily understood by
recalling that the accessed pages are shared among all
the processes. Hence, no process has a set of pages that
might be considered as its “own” pages and which it
prefers to keep in the cache.

Theorem 3.1. LRU is k-self-competitive.

Proof. We use the notion of k-phase partition (see [7][p.
37]). Fix a user i and a request sequence σ, and let
s−i = (LRU , . . . ,LRU). Given a strategy ALG for the
ith player, we denote by Sj(ALG) the set of pages in

the cache immediately after the first j−1 requests were
served and before the jth request is revealed.

We divide the request sequence into charging
phases. Each charging phase is a non-empty subse-
quence of σ. The first phase starts at the first request,
while the other phases start right after the previous
phase ends; all the phases, except maybe the last phase,
end one request before the later of the following two
events happens: There are requests for k + 1 different
pages since the beginning of the phase; OPT evicts a
page from the cache as a response to a request that is
not the first request in the phase.

We now show that in each charging phase, LRU
will pay at most k. Fix a phase ρ. If the phase does not
terminate according to the second condition, then the
claim follows from the definition of LRU (after a page
is requested for the first time in ρ, it will not be evicted
during ρ). Otherwise, let rj be the first request for the
(k + 1)st different page in ρ. As before, LRU will pay
at most k until rj . Then, Sj+1(LRU) = Sj+1(OPT ),
as both caches will include all the k most recently used
pages (as OPT does not evict pages and all the other
players use LRU as their strategy). Now, as long as
the second condition does not hold, both caches will
contain the same set of pages. Obviously, if Sl(LRU) =
Sl(OPT ), and rl results in a page fault for LRU , then
rl results in a page fault for OPT too. Thus, the above
implies that starting at rj , LRU will not evict any page
till ρ ends.

The second termination condition for a phase im-
plies that for every phase, except, perhaps, for the last
one, we can match a different page eviction performed
by OPT , and the theorem follows.

We conclude that (LRU , . . . ,LRU) is an equilib-
rium w.r.t. deterministic strategies. Notice it is opti-
mal (w.r.t. deterministic strategies) according to both
our efficiency criteria: the competitive ratio of the play-
ers is the lowest possible, and so is the competitive ra-
tio of the equilibrium itself, as the interaction between
the strategies results in the same behavior of the online
(centralized) LRU paging policy. Moreover, the proof
of Theorem 3.1 can be generalized to prove that this
equilibrium is in fact a sub-game perfect equilibrium.

3.2 Algorithm FIFO. Algorithm FIFO for online
paging is k-competitive [7]. To derive an appropriate
strategy for the paging game from FIFO, assume that
each page in the cache has a tag specifying the last time
it was brought to the cache. A player that uses the
FIFO strategy evicts the oldest page in cache.

Theorem 3.2. R(FIFO,...,FIFO)(FIFO) = ∞ .



4 Metrical Task Games

We consider the metrical task game in this section as
an abstract model for analyzing online games. The
metrical task game, generalizing metrical task systems,
captures a wide range of cost minimization games.

4.1 The Model. In what follows we use terminology
similar to that of [7]. A metrical task game consists of a
set of N players, a set of points (configurations/states)
S, and for each player i, a distance function di : S×S →
R+ ∪ {∞} that satisfies triangle inequality, and a set
of allowable tasks Ri. We note that for the sake of
generalization we do not require symmetry, reflexivity,
or positivity of the distance function (although this
means that the name is a bit misleading). A legal
request in a metrical task game is a task r such that
r ∈ Rp(r). Roughly speaking, a strategy of player i is
a function that assigns a target configuration for every
history, which is a sequence {(qj−1, rj)}j>0 of pairs of a
configuration and a legal request.

Given an initial configuration and a sequence of
legal requests, each request is served by the player
it is designated to. While a request is being served,
the configuration of the system can be changed by the
players. If at the time that a request r is invoked, the
current configuration of the system is q, then player p(r)
can first change the configuration of the system to any
desired configuration q′ such that di(q, q′) < ∞ (and
sometimes we also require that r(q′) < ∞), incurring a
transition cost of di(q, q′). Then, the player serves the
task in state q′, incurring a processing cost of r(q′).

4.2 The Non-malleability Principle. While look-
ing for (approximate) equilibria in a metrical task game,
we face two related difficulties. The first difficulty comes
from the search for a competitive algorithm for each
player. The second difficulty is how to make sure that
when these algorithms interact, they will result in an
equilibrium. While solving the first difficulty is some-
what similar to designing competitive algorithms, the
second one seems to be inherently different from any
other familiar problem. Thus, coping with both diffi-
culties at once might be a hard task. A possible way
to get around this hardness is by developing techniques
that will enable us to face each part separately. Moti-
vated by this idea, we examine the interaction between
online strategies, and in particular, the impact of this
interaction on the performance of each strategy.

The decisions made by online algorithms sometimes
depend on the current configuration of the system.
When online strategies interact, they might be sensi-
tive to configuration changes caused by other players.
Moreover, a player using an online algorithm might be

manipulated by other players who change the config-
uration of the system wisely, and in particular by an
adversary who can construct the request sequence in ad-
vance. Consequently, an algorithm which is competitive
with respect to the online problem induced by S, di and
Ri, might yield a strategy which is not (self-) competi-
tive due to the interaction between the players, and the
fact that the other players can be manipulated by the
adversary. The FIFO strategy for the paging game
is an example in which the adversary can construct a
request sequence in which, by evicting pages not ac-
cording to the FIFO policy, it causes other players to
evict pages different from those it needs to serve, and
hence avoids page faults. From the perspective of the
players, the outcome is the poor performance of FIFO
that is reflected in Theorem 3.2. In order to overcome
the above phenomenon and with the goal of deriving on-
line strategies that form equilibria from competitive on-
line algorithms in mind, we suggest the non-malleability
principle. The idea behind the principle is to prevent
players from manipulating the game.

The non-malleability principle: A strategy vec-
tor s complies with the non-malleability principle if for
every i, strategy si can be described as a function of the
request sequence and the initial configuration only, and
it is independent of the strategies of the other players.

The non-malleability principle can be said to nullify
interaction between players, and thus, the problem of
finding equilibria can be reduced to the problem of
finding for each player a “good” strategy. Specifically,
each player actually faces an induced online problem -
the metrical task system MTSi induced by S, di and
Ri - but with the exception that there might be some
external configuration changes in between requests.
These changes do not incur any cost to the player and
they are independent of the algorithm the player uses.
Designing competitive algorithms for this kind of online
problem can be done either from scratch or based on
known competitive algorithms for metrical task system
without the external configuration changes.

4.3 The Optimistic Method. We present here
the optimistic method which implements the non-
malleability principle, together with two techniques that
are used in different cases and are based on this method.

The optimistic method constructs a strategy vector
s in which all players make their decisions while as-
suming that the current configuration is some expected
configuration, and ignoring the actual current configu-
ration. Obviously, such a strategy vector complies with
the non-malleability principle. Due to performance con-
siderations, we would like the expected configuration to



be the current configuration, and thus we set the ex-
pected configuration to be the configuration resulting
from the players playing according to s. In order to
apply the optimistic method it is usually required that
every request is publicly known once it is invoked, as
every player must know all past requests of all the play-
ers in order to calculate the expected configuration and
implement its strategy.

The difficulty in implementing the optimistic
method originates from the need to make sure that
the resulting strategies are feasible, since ignoring the
current configuration might lead to illegal configuration
changes by the players. We devise two techniques that
are based on the optimistic method, where each tech-
nique can be applied to a different kind of online games.
Both techniques reduce the problem of constructing an
equilibrium to the problem of designing competitive
algorithms for the induced online problems {MTSi}i.
These algorithms are then converted to strategies by
operating according to the expected configuration in-
stead of according to the current one. In the adjust-
ment technique the expected configuration is calculated
in a straightforward manner, and hence, due to feasi-
bility considerations, the applicability of the technique
is rather limited. On the other hand, the structure of
the games on which the indifference technique is applied
facilitates the use of a more relaxed approach that still
guarantees feasibility.

4.3.1 The Adjustment Technique. In the adjust-
ment technique, the players determine the configuration
changes independently of the current configuration. As
a result, after each player serves a request, the configu-
ration depends only on the request sequence (and maybe
the initial configuration), and thus it can be said to be
adjusted to s. This adjustment is crucial when one of
the players deviates from s, as this deviation would not
have further effect on the system once an adjustment
move is made.

Formally, given a strategy vector s, a request
sequence σ = {rj}j and an initial configuration
q0, we recursively define the history generated by s
on the request sequence σ when initiated at q0 as
h(σ, s, q0) = {(qj−1, rj)}j , where for every j > 0,
qj = sp(rj)(h(prefj(σ), s, q0)) is the configuration of the
system after player p(rj) serves the jth request given
that all the players played according to s. Now, let sadj

i

be a strategy for the ith player defined with respect to
s as follows: sadj

i (h(σ, s′, q0)) , si(h(σ, s, q0)) for every
σ, s′ and q0.

The adjustment technique: Given a strategy
vector s, construct a strategy vector sadj by replacing
each strategy si with the strategy sadj

i .

To ensure feasibility of sadj , the state transitions
made by sadj

i , for every i, must be feasible regardless
of the strategies played by the other players. Hence,
the applicability of the adjustment technique depends
on the metrical task game and the strategy vector s. A
metrical task game on which the adjustment technique
can be applied to every strategy vector s is a game in
which all transition costs are finite, i.e., di(q, q′) < ∞
for every player i, and configurations q and q′. We call
such a metrical task game a total sharing game.

The adjustment technique yields equilibrium if it
is applied to competitive algorithms for the induced
online problems, {MTSi}i, with the possible external
configuration changes. Such algorithms can be based on
competitive algorithms for {MTSi}i (without external
configuration changes), if they are adapted to external
configuration changes. A simple way to adapt an
online algorithm A to external configuration changes
is by resetting the online algorithm after every external
configuration change, i.e., following a request allocated
to a different player in the game, the player forgets
about any past requests and serves the next request
as if it was the first request allocated to it. Formally,
abusing notation, we denote by Aadj the strategy for
the metrical task game obtained when applying both
this modification and the adjustment technique.

Theorem 4.1. Let G be a total sharing metrical task
game, and let {Ai}1≤i≤N be online algorithms such that
for every i, Ai is strictly αi-competitive online algorithm
for MTSi for any initial configuration q0 ∈ S. Then,
for every i, Aadj

i is strictly αi-competitive with respect
to the strategy vector {Aadj

j }−i in G.

By applying Theorem 4.1 on FIFO we get a self-
competitive strategy as the paging game is a total shar-
ing metrical task game and FIFO is a strictly compet-
itive for the paging problem. Notice that Theorem 4.1
can be generalized for every metrical task game and
strategy vector to which the adjustment technique can
be applied. Also note that the adjustment technique
results in strategies that maintain their competitiveness
given any history, and hence it can be used to construct
sub-game perfect (approximate)-equilibria.

4.3.2 The Indifference Technique. We define a
product metrical task game to be a game satisfying the
following two properties. First, its configuration set
can be written as S = ×1≤i≤NSi, and hence every
configuration q can be described by a vector of length N ,
q = (q1, . . . , qN ), where qi ∈ Si. Second, every distance
function di satisfies for every q and q′, such that there
exists j 6= i with qj 6= q′j , di(q, q′) = ∞.

The second property implies that a player can only



change “its” coordinate in the configuration vector, and
thus any strategy of the ith player can be described as a
function that assigns qi ∈ Si for every history. Thus, us-
ing similar notations, h(σ, s, q0) = {(qj−1, rj)}j , where
for every j > 0, (qj)p(rj) = sp(rj)(h(prefj(σ), s, q0)) and
(qj)k = (qj−1)k for every k 6= p(rj). Now, let sind

i be a
strategy for the ith player defined with respect to s as
follows: ∀σ, s′, q0, sind

i (h(σ, s′, q0)) , si(h(σ, s, q0)).

The indifference technique: Given a strategy
vector s, construct a strategy vector sind by replacing
each strategy si with the strategy sind

i .

As the indifference technique complies with the non-
malleability principle, once it is applied, each player
faces an induced online problem. The special structure
of product metrical task games yields an interesting
structure of the induced problems - each can be viewed
as a metrical task system with configuration set Si in
which the distance function and allowable tasks can
vary over time (but there are no external configuration
changes). Formally, for player i, each combination of
the values of the N − 1 coordinates in a configuration
corresponding to the players different from i induces
a distance function and a set of allowable tasks for
player i. As the other players change some coordinates
of the configuration, the distance function and the
allowable tasks for the ith player are changed. This
description of induced metrical task systems might
appear a bit strange, but it turns out that certain
competitive algorithms for known metrical task systems
can be adapted to these distance function and allowable
tasks changes. In such cases, the indifference technique
yields (approximate) equilibria.

5 The Caching Game

In the caching game there are N players, each repre-
senting a server in a network given by an undirected
edge-weighted graph G = (V,E) (|V | = N). Given is a
set F of m different files that are assumed to have unit
size. Server i has a cache of capacity ki which is initially
empty. When a server gets a request for a file it should
serve the request by accessing the file. The server may
cache the file in its own cache before serving the request.
We assume that caching a file incurs some constant cost
D, while accessing a remote replica costs the accessing
server exactly the distance between the server and the
accessed replica. If a requested file is not cached by any
server in the network, it must be cached by the server
that serves the request.

Lemma 5.1. For every i such that ki = ∞, strategy
vector s−i, and deterministic strategy A, Rs−i

(A) ≥ 2.

Lemma 5.2. For every i such that ki < ∞, strategy
vector s−i, and deterministic strategy A, Rs−i(A) ≥ ki.

We now introduce a deterministic strategy which is
O(ki)-competitive for ki < ∞ w.r.t. the constructed
strategy vector and 2-competitive for ki = ∞ w.r.t.
any strategy vector. It is not hard to show that the
caching game is a product game, allowing us to use
the indifference technique. It suffices to provide a
competitive algorithm for the induced online problem
of every player, as follows. A server gets a sequence
of requests for files. Each file can be cached by the
server incurring a cost of D before the request is served.
Then, the request is served by either accessing a cached
copy, incurring no cost, or accessing a remote replica,
incurring a cost that is given as part of the request. Note
that if the file is not cached by any server, the remote
accessing cost can be set to ∞. Note that the same file
may be requested with different remote accessing costs.

Observe that the above induced problem generalizes
both the online paging problem and the ski-rental
problem. Thus, we combine the marking principle
borrowed from the online paging algorithms with the
rent-or-buy principle to obtain the following algorithm,
which we refer to as algorithm COUNT .

In algorithm COUNT , the server maintains a
counter for each file in F . The counter is initialized to
0. We denote the value of the counter of file f by v(f).
When a request for file f arrives, the server increases
v(f) by the remote accessing cost indicated along with
the request. If the requested file is in the cache, the
server accesses it directly, incurring no cost. Other-
wise, if v(f) < D, the file is accessed remotely, while
if v(f) ≥ D, f is to be cached by the server. If the
cache is full, then the page with the lower counter value
among the cached files is to be evicted. If the value of
the counter of the evicted page is ≥ D, then the coun-
ters of all the files in the cache (including both f and
the evicted file) are reset to 0.

Theorem 5.1. In the induced online problem, algo-
rithm COUNT has a competitive ratio of at most 4ki+6
for ki < ∞, and at most 2 for ki = ∞.

If no server has a cache capacity constraint, then by
a careful analysis we get that (COUNT , . . . , COUNT )
is an equilibrium w.r.t. to deterministic strategies. To
achieve competitive strategies in the caching game for
the case that there exists some i for which ki < ∞,
we further apply the indifference technique. Then,
letting s = (COUNT ind, . . . , COUNT ind), we have
that Rs−i

(COUNT ind) ≤ 4ki + 6 for ki < ∞ and
Rs−i

(COUNT ind) ≤ 2 for ki = ∞. Hence, s is a 10-
equilibrium w.r.t. deterministic strategies.



6 The Online Generalized Steiner Game

In the Online Generalized Steiner Game N players
are given an undirected graph G = (V,E) with an
associated edge cost function c : E → R+. A request
sequence σ arrives online. Each request in σ is of the
form (a, b), where a, b ∈ V , and it is allocated to one of
the N players. During the game, the players construct
F , a subgraph of G, whose edge set is referred to as the
solution of the game. Initially, the solution is empty.
Upon arrival of request ri = (a, b), player p(ri) serves
the request by adding edges to the solution so that
vertices a and b are connected in F . When a player adds
edges to the solution, it pays their cost. Accordingly,
the goal of each of the players is to minimize the cost it
pays during the game.

A greedy algorithm for the on-line generalized
Steiner tree problem is O(log2 n)-competitive [3]. In
[5], Berman and Coulston presented an O(log n) com-
petitive on-line algorithm (denote it by BC), matching
the Ω(log n) lower bound of [13]. While looking for a
self-competitive algorithm for the online game, we note
that both the greedy algorithm and BC are not self-
competitive, as examples in which the adversary can
“manipulate” the other players can be constructed quite
easily. Nevertheless, as we show in the full version of this
paper, BC′, a slight modified version of BC, is a com-
petitive algorithm for the players’ induced problems in
the game. It is not hard to show that this game is a
product game, and hence the indifference technique can
be applied to BC′ to obtain an O(log n)-self-competitive
strategy. We note that we do not know whether a sim-
ilar result can be obtained using the greedy approach.

6.1 Algorithm BC′. Notice that the induced prob-
lem is identical to the online generalized Steiner prob-
lem with the exception that before each request arrives,
some edge costs can get nullified. In what follows, we
assume that each edge having zero cost is added to the
solution immediately. We denote by Gi the graph G
with the edge costs upon arrival of the ith request.

In what follows we describe the differences between
BC′ and BC as it appears in [5][Sect. 2]. The distance
between two vertices in the graph is calculated as if
the edges that were chosen to the solution have zero
cost. We will denote the distance between vertices a
and b just before serving the ith request by di(a, b).
If algorithm BC′ decides in step 3.4 (respectively, step
4.4) to add a path between u and v to the solution, then
it adds to the solution all the edges that have not yet
been added to the solution among those of some shortest
path between u and v. Algorithm BC′ maintains a set of
connected components denoted by C, which is initially
empty. During steps 3 and 4 of the algorithm, BC′

examines only the connected components in C. Given a
request ri = (a, b) it adds two new singletons, {a}, {b},
to C. If, in step 3.4 (respectively, step 4.4), BC′ adds
to the solution a path P , then it updates C by merging
the connected components of all the vertices in P into
one new connected component that also includes all the
vertices of the path P that did not belong to some
connected component in C.

References

[1] A. Akella, S. Seshan, R. Karp, S. Shenker and C. Pa-
padimitriou. Selfish behavior and stability of the inter-
net: a game-theoretic analysis of tcp. In SIGCOMM,
pp. 117–130, 2002.

[2] I. Ashlagi, D. Monderer and M. Tennenholtz. Resource
selection games with unknown number of players. In
5th AAMAS, 2006.

[3] B. Awerbuch, Y. Azar and Y. Bartal. On-line general-
ized steiner problem. In 7th SODA, pp. 68–74, 1996.

[4] Y. Bartal, A. Fiat and Y. Rabani. Competitive al-
gorithms for distributed data management (extended
abstract). In 24th STOC, pp. 39–50, 1992.

[5] P. Berman and C. Coulston. On-line algorithms for
steiner tree problems (extended abstract). In 29th
STOC, pp. 344–353, 1997.

[6] A. Blum and J. Hartline. Near-optimal online auctions.
In 16th SODA, pp. 1156–1163, 2005.

[7] A. Borodin and R. El-Yaniv. Online Computation and
Competitive Analysis. Cambridge Univ. Press, 1998.

[8] B. Chun, K. Chaudhuri, H. Wee, M. Barreno, C.
Papadimitriou and J. Kubiatowicz. Selfish caching in
distributed systems: a game-theoretic analysis. In 23rd
PODC, pp. 21–30, 2004.

[9] D. Dutta, A. Goel and J. Heidemann. Oblivious AQM
and nash equilibria. SIGCOMM Comp. Commun.
Rev., 32(3):20–20, 2002.

[10] M. Hajiaghayi. Online auctions with re-usable goods.
In 6th EC, pp. 165–174, 2005.

[11] M. Hajiaghayi, R. Kleinberg and D. Parkes. Adaptive
limited-supply online auctions. In EC, pp. 71–80, 2004.

[12] N. Hyafil and C. Boutilier. Regret minimizing equilib-
ria and mechanisms for games with strict type uncer-
tainty. In 20th AUAI, pp. 268–277, 2004.

[13] M. Imase and B. Waxman. Dynamic steiner tree
problem. SIAM J. on Disc. Math. , 4(3):369–384, 1991.

[14] R. Kleinberg and F. Leighton. The value of knowing a
demand curve: Bounds on regret for online posted-price
auctions. In 44th FOCS, pp. 594–605, 2003.

[15] R. Lavi and N. Nisan. Competitive analysis of incentive
compatible on-line auctions. Theor. Comput. Sci.,
310(1-3):159–180, 2004.

[16] R. Lavi and N. Nisan. Online ascending auctions for
gradually expiring items. SODA, pp. 1146–1155, 2005.

[17] L. Libman and A. Orda. Optimal sliding-window
strategies in networks with long round-trip delays.
Comput. Networks, 46(2):219–235, 2004.


