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Abstract. We study budgeted variants of classical cut problems: the
Multiway Cut problem, the Multicut problem, and the k-Cut problem,
and provide approximation algorithms for these problems. Specifically,
for the budgeted multiway cut and the k-cut problems we provide con-
stant factor approximation algorithms. We show that the budgeted mul-
ticut problem is at least as hard to approximate as the sparsest cut
problem, and we provide a bi-criteria approximation algorithm for it.

1 Introduction

Given an undirected graph G = (V,E) with a positive cost function on the
edges c : E → ZZ+, and a subset of vertices S ⊆ V , called terminals, the well-
known multiway cut problem is to find a minimum cost subset of edges whose
removal disconnects the terminals from each other. The study of the multiway
cut problem was initiated by Dahlhaus et al. [6], who proved that it is MAX-
SNP-hard even when restricted to instances with 3 terminals and unit edge cost.
They also gave a (2− 2

k )-approximation algorithm for the problem, where |S| = k.
In [4], Călinescu et al. introduced a (1.5− 1

k )-approximation algorithm. They
considered a linear programming relaxation for the multiway cut problem which
embeds the given graph into the (k − 1)-dimensional simplex. The algorithm of
[4] rounds an optimal solution to the linear programming relaxation; its bound
was later improved to ∼ 1.3438 by [11].

In this paper we study two budgeted variants of the multiway cut problem
that differ in their objective function. In the budgeted variants, given an instance
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of the multiway cut problem together with an additional positive integer B, the
budget, the problem is to find a subset of edges whose cost is within the given
budget and whose removal maximizes the value of the given objective function.

We say that a pair of terminals (si, sj) is separated if there is no path be-
tween si and sj , and that a terminal si is isolated if there is no path between
si and any other terminal. The number of isolated terminals is the objective
function of the first budgeted variant of the multiway cut problem, referred to
as the budgeted isolating multiway cut (BIMC ) problem. In the second budgeted
variant, referred to as the budgeted separating multiway cut (BSMC ) problem,
the objective function is the number of separated pairs of terminals. We also
consider the weighted versions of both BSMC and BIMC.

An application of the weighted BSMC problem is network design against
denial-of-service attacks in networks. In [3], Aura et al. suggest a formal frame-
work for the study of the single-server inhibition attack, which is a common
scenario for modelling a denial of service attack. One of the problems they con-
sider is finding the best attack whose cost is within a given budget constraint.
In this problem, every client has a non-zero weight denoting its importance.
The cost of an attack is the total cost of the disconnected links in the network,
and the value of the attack is the total weight of the clients separated from the
given server. This problem can be considered as a weighted BSMC by setting
the weight of every (server, client) pair to be the client’s weight.

A well known generalization of the multiway cut problem is the multicut
problem, which is the problem of finding a minimum cost cut separating a given
set of source-sink pairs of vertices. Indeed, the multiway cut problem is a special
case of the multicut problem in which the set of source-sink pairs consists of all
the pairs of a given set of terminals. Consider the following budgeted variant of
the multicut problem. Given is a set of source-sink pairs of vertices together with
a budget. Let the source-sink pairs be associated with a non-negative weight. The
goal is to find a cut whose cost is within the budget that separates a maximum
weight set of source-sink pairs. Thus, this budgeted multicut problem is precisely
the weighted version of the BSMC problem.

Finally, given an undirected graph, we consider the problem of finding a set
of edges whose cost is within a given budget and whose removal partitions the
graph into a maximum number of connected components. This problem, referred
to as the budgeted graph disconnection (BGD) problem, can be thought of as
the budgeted version of the k-cut problem. In the k-cut problem, an integer k is
given and the goal is to find a minimum cost edge set whose removal partitions
the graph into at least k connected components.

1.1 Our Results

The hardness of the multiway cut problem implies that both BIMC and BSMC
cannot be efficiently solved unless P = NP . Although the problem definitions
of BIMC and BSMC are closely related, they capture different aspects of the
theory of cuts, and therefore differ in their level of hardness. Thus, we study
each of the problems independently.



For the BIMC and weighted BIMC problems we give constant factor ap-
proximation algorithms that match some of the lower bounds we prove. Our
algorithms basically use a greedy approach. In the weighted case we improve on
the greedy approach by using an FPTAS for the knapsack problem.

We show that weighted BSMC/budgeted multicut is at least as hard to
approximate as the Sparsest Cut problem is.5 We show that a natural linear
programming relaxation has an unbounded integrality gap. Nevertheless, based
on this relaxation, we introduce a constant factor approximation algorithm for
the weighted BSMC on trees, which implies a constant integrality gap of the
relaxation for tree instances. We further note that a better constant factor ap-
proximation can be obtained for the weighted BSMC on trees through the work
of Sviridenko [15]. We then consider the weighted BSMC problem on general
graphs. We achieve a bi-criteria approximation of ( e

e−1 , O(log2 n log log n)) us-
ing a recent hierarchical decomposition of graphs by Räcke (see [13] and [9]).

Interestingly, we show that BSMC is related to the budgeted variant of the
Sparsest Cut problem. Specifically, we prove that for certain weight functions,
an approximation algorithm for BSMC can be used to derive an approximation
algorithm for the budgeted sparsest cut problem, and vice versa.

Finally, we give a constant factor approximation algorithm for BGD by using
the Gomory-Hu tree (see [8]). Our algorithm uses ideas similar to those of the
algorithm of Saran and Vazirani [14] for the k-cut problem.

1.2 Related Work

To the best of our knowledge, all of the above mentioned budgeted cut problems
are studied for the first time here. Nevertheless, there is a vast literature on
budgeted optimization problems and we mention the following relevant works.

Vohra and Hall [16] considered a budgeted variant for the classical set cover
problem, while Khuller et al. [12] studied its weighted variant. They gave a
constant factor approximation algorithm for the problem that is based on the
greedy approach, and showed that their result is tight under a (weak) assumption
on the hardness of NP . Their result points out the possible gap between the
hardness of a problem and the hardness of its budgeted variant, as the set cover
problem cannot be approximated within a factor of (1 − ε) ln n for any ε > 0
under the same assumption on the hardness of NP . By improving a former work
by Wolsey [17], Sviridenko [15] generalized the result of Khuller et al. for the
problem of maximizing any submodular function subject to a budget constraint.
We note that this framework does not capture most of the problems we deal
with in this paper, but it does capture the weighted BSMC on trees.

5 For the sake of comparison, we note the recent series of results regarding the sparsest
cut problem. In [1] an O(

√
log n) approximation is presented for the uniform case.

For the general sparsest cut problem, [5] gave an O(log
3
4 k)-approximation, which

was improved to an O(
√

log k log log k)-approximation by [2].



2 Preliminaries

In this section we formally define the problems considered in this paper. In all
of these problems, we are given an undirected graph G = (V, E) with a positive
cost function on the edges c : E → ZZ+, and a positive budget B.

Problem 1 (Budgeted Graph Disconnection (BGD)). Find a subset of edges C ⊆
E of cost at most B whose removal partitions the graph into the maximum
number of connected components.

In the following problems, we are additionally given a subset of vertices S ⊆ V
(let k = |S|), called terminals.

Definition 1 (Separation and Isolation). Let S ⊆ V be a set of terminals.
Given a subset of edges C ⊆ E, we say that vertices s and s′ (s′ 6= s) are
separated by C, or, equivalently, that C is a separating cut of (s, s′), if every
path between s and s′ contains at least one edge from C. We say that a vertex
s ∈ S is isolated by C, or equivalently, that C is an isolating cut of s, if for
every s′ ∈ S, s′ 6= s, s and s′ are separated by C.

Definition 2. Given a weight function on the terminals, w : S → ZZ+, the
isolation weight of a given subset of edges C ⊆ E, is the sum of the weights of
the terminals isolated by C. Given a weight function on the pairs of terminals,
w : S×S → ZZ+, the separation weight of a given subset of edges C ⊆ E, is the
sum of the weights of the pairs of terminals separated by C.

Problem 2 (Weighted Budgeted Isolating Multiway Cut (weighted BIMC)). Given
a weight function on the terminals, w : S → ZZ+, find a subset of edges C ⊆ E
of cost at most B whose isolation weight is maximized.

Without loss of generality we assume that there exists s ∈ S such that the cost
of the minimum cost isolating cut of s is at most B. We denote by BIMC the
special case of weighted BIMC where w(s) = 1 for every s ∈ S.

Problem 3 (Weighted Budgeted Separating Multiway Cut (weighted BSMC)).
Given a weight function on the pairs of terminals, w : S × S → ZZ+, find a
subset of edges C ⊆ E of cost at most B whose separation weight is maximized.

Without loss of generality we assume that for every pair s, s′ ∈ S, the cost of
the minimum cost separating cut of s and s′ is at most B. We denote by BSMC
the special case of weighted BSMC where w(s, s′) = 1 for every s, s′ ∈ S.

With respect to the same input, we define the Sparsest Cut problem. Given
a non-empty subset of vertices U ⊂ V , the cut associated with U , denoted by
(U, U), is {e = (u, v) ∈ E : u ∈ U, v 6∈ U}. The Sparsity of the cut (U,U) is given
by c(U,U)

w(U,U)
, where w(·) is the separation weight.

Problem 4 (Sparsest Cut). Find a non-empty subset of vertices U ⊂ V such that
the sparsity of its associated cut is minimized.



Lastly, we say that an algorithm ALG is a bi-criteria approximation with para-
meters (α, β) for a given maximization budget problem Π, or simply an (α, β)-
approximation for Π, if for every instance of Π with budget B, ALG outputs a
solution whose value is at least |OPT |/α and whose cost is at most βB, where
|OPT | is the value of the optimal solution with respect to the given budget B.

3 The Budgeted Isolating Multiway Cut Problem

In this section, we study BIMC and weighted BIMC problems. First we show
some hardness results, including integrality gaps of two possible linear relax-
ations. These integrality gaps suggest that an approximation algorithm which is
based on them cannot outperform the constant factor approximation algorithm
we give for BIMC. Finally, we give two approximation algorithms for weighted
BIMC, the second of which matches one of the lower bounds we show.

3.1 Hardness Results

The proof of the next two propositions is given in the full version of this paper.

Proposition 1. Unless P = NP , there is no α-approximation for the BIMC
problem for all α > 1/3.

Proposition 2. Unless P = NP there is no α-approximation for the BIMC
problem for every α > 1 − 2/OPT , where OPT > 2 is the number of isolated
terminals in an optimal solution. Moreover, there is no α-approximation for
every α > 1− 2/k, when the number of terminals is a fixed k.

Integrality Gap of Linear Programming Relaxations We consider two
linear programming relaxations for the BIMC problem, and show in the full
version of this paper that their integrality gap is at least 2. Hence, we argue that
using these relaxations, one cannot achieve an approximation factor for BIMC
better than the constant factor approximation presented in the next subsection.

In what follows we assume that for every s ∈ S, the cost of the minimum
cost isolating cut of s is at most B (if not, a slight modification can be made
in the relaxations and the relevant claims still hold). The first relaxation is a
straight forward formulation.

max
∑

s∈S xs (N-ISO-LP)
s.t.

xs −
∑

e∈Ps,s′
ye ≤ 0 for every s, s′ ∈ S (s 6= s′)

and path Ps,s′ from s to s′∑
e∈E c(e) · ye ≤ B

0 ≤ xs ≤ 1 for every s ∈ S
0 ≤ ye for every e ∈ E

The second formulation we consider is derived from the linear programming
relaxation of the multiway cut problem presented in [4]. We assume that S =



{s1, . . . , sk}, and embed the given graph into the k-dimensional simplex. We
”reserve” the 0-coordinate for the connected component that contains all the
terminals not isolated by the solution, and the ith coordinate for the connected
component that contains terminal si, if terminal si is isolated by the solution.
Thus, we only allow terminal si to be mapped to either the ”0” component, or
the ith component.

max
∑

si∈S xi
si

(CKR-ISO-LP)
s.t.

xi
si

+ x0
si

= 1 for 1 ≤ i ≤ k∑k
i=0 xi

v = 1 for every v ∈ V \ S
xi

v ≥ 0 for every v ∈ V and 0 ≤ i ≤ k

ye = 1
2

∑k
i=0 |xi

u − xi
v| for every e = (u, v) ∈ E∑

e∈E c(e) · ye ≤ B

3.2 A Greedy Approximation Algorithm for BIMC

The following greedy algorithm for BIMC is a variant of the algorithm presented
in [6] for the multiway cut problem. As [6] mentioned, note that a minimum cost
isolating cut for si ∈ S can be computed efficiently by merging the terminals in
S \ {si} into a single node r and computing a minimum cut separating r and si.

Algorithm GR-ISO: First, for each s ∈ S, find a minimum cost isolating cut
for s, and denote it by Cs. Then, sort the cuts in a non-decreasing order of their
cost. Output the maximal sequence of cuts, starting from the cheapest, whose
total cost is at most B.

Lemma 1. Let l denote the value of an optimal solution. Algorithm GR-ISO
achieves an approximation factor of 1

2 if l is even, and 1
2 − 1

2l if l is odd.6

Proof. Let OPT be an optimal solution, and let I denote the set of terminals
isolated by OPT . We assume without loss of generality that there is no edge in
OPT that can be removed without changing the set of isolated terminals. Let
G′ = (V, E \ OPT ). For s ∈ I, let OPTs be the edges in OPT that have an
endpoint in the connected component of s in G′.

Consider the following charging scheme for the terminals in I. Charge the
cost of every edge e ∈ OPT as follows: if there exist two distinct terminals s ∈ I
and s′ ∈ I such that e ∈ OPTs and e ∈ OPTs′ , charge each of the terminals
with c(e)/2; else, charge the terminal s ∈ I such that e ∈ OPTs with c(e).
Denote by c(s) the total cost charged to terminal s. Obviously,

∑
s∈I c(s) =

c(OPT ) ≤ B (every edge in OPT is clearly paid for by the charging scheme)
and c(Cs) ≤ c(OPTs) ≤ 2c(s) for every s ∈ I (OPTs is an isolating cut for s).
Let Al be the set of the first l terminals as sorted by the algorithm. Notice that∑

s∈Al
c(Cs) ≤

∑
s∈I c(Cs) ≤ 2

∑
s∈I c(s) ≤ 2B. Thus, the cost of the first bl/2c

terminals is ≤ B, and the lemma follows from the definition of GR-ISO. ut
The above analysis is tight as we show in the full version of this paper.
6 For the trivial case in which l = 1 the algorithm finds an optimal solution.



3.3 Approximation Algorithms for the Weighted BIMC Problem

We present two algorithms for the weighted BIMC problem. The first one is a
generalization of algorithm GR-ISO.

Algorithm GR-ISOw: First, for each s ∈ S, find a minimum cost isolating cut
for s, and denote it by Cs. Then, sort the cuts with c(Cs) ≤ B in a non-decreasing
order of the ratio between their cost and their terminal’s weight (c(Cs)/w(s)).
Let {Ci}k

i=1 be the resulting sequence of cuts. Let {Ci}m
i=1 be the maximal prefix

of {Ci}k
i=1 with a total cost of at most B. Output the heavier cut (with respect

to isolation weight) between
⋃m

i=1 Ci and Cm+1 (if m = k then
⋃m

i=1 Ci is an
optimal solution). In the full version of this paper we prove that Algorithm
GR-ISOw achieves an approximation factor of 1

4 .

A (1
3

− ε)-Approximation The analysis of algorithm GR-ISOw hints that
improving the approximation factor requires an efficient use of the given budget.
To this end, we use the FPTAS for the Knapsack problem [10], denoted by
A(π, ε), where π is the Knapsack instance.

Algorithm PACKw(ε): For each s ∈ S, find a minimum cost isolating cut
for s, and denote it by Cs. Construct an instance of the Knapsack problem, π:
treat each terminal s ∈ S such that c(Cs) ≤ B as an item whose profit is w(s)
and whose size is c(Cs), and let B be the ”knapsack capacity”. Run A(π, ε) and
denote by P the resulting subset of terminals. Finally, Output

⋃
s∈P Cs.

Let OPT be an optimal solution for the weighted BIMC instance. Since every
terminal s with c(Cs) > B cannot be isolated by either OPT or PACKw(ε), we
ignore such terminals in what follows. Let I denote the set of the terminals
isolated by OPT and l be the isolation weight of OPT , i.e., the value of the
optimal solution. Denote by |OPT (π)| the value of the optimal solution for the
Knapsack instance π.

Lemma 2. |OPT (π)| ≥ 1
3 l

Proof. Let U = {X ⊆ I | ∑
s∈X w(s) ≥ 1

3 l}, i.e., U is the set of the subsets
of I of profit ≥ 1

3 l. Let Y be a set in U of minimum size in π (notice that
there must exist such a subset). Assume to the contrary that |OPT (π)| < 1

3 l,
and in particular that

∑
s∈Y c(Cs) > B. It follows from our assumption, that

for every s ∈ S, w(s) < 1
3 l. Thus, there are at least two terminals in Y , and

moreover,
∑

s∈Y w(s) < 2
3 l (otherwise, by taking off a terminal from Y we get

a contradiction for the minimality of Y in U with respect to size). By similar
arguments to those used in the proof of Lemma 1, we get that

∑
s∈I c(Cs) ≤ 2B.

Thus,
∑

s∈I\Y c(Cs) < B and
∑

s∈I\Y w(s) > 1
3 l and thus I \ Y is a feasible

solution to π with the desired value. ut
It follows from Lemma 2 and the FPTAS for Knapsack that Algorithm

PACKw(ε) achieves an approximation factor of 1
3−ε. We can show that Lemma 2

is tight for arbitrarily large values of k by constructing appropriate examples.



4 Weighted Budgeted Separating Multiway Cut

In this section, we study weighted BSMC. We show that approximating it is at
least as hard as the sparsest cut problem. We present a natural linear program-
ming relaxation for the problem and show that it has an unbounded integrality
gap for general graphs. However, we give a constant factor approximation algo-
rithm for weighted BSMC on trees, which is based on this relaxation. We further
note that a better approximation is achieved by Sviridenko’s [15] framework.
Finally, we use a hierarchical decomposition of graphs by Räcke [13, 9] to obtain
a bi-criteria approximation of ( e

e−1 , O(log2 n log log n)) for arbitrary graphs.

4.1 Hardness Results

Hardness with respect to the Sparsest Cut Problem We firstly prove a
lemma and a corollary whose proofs are given in the full version of this paper.

Lemma 3. Given a non-empty cut C ⊆ E that partitions G into r > 2 con-
nected components, there is an algorithm that finds a cut C ′ ⊂ C such that
c(C ′)/w(C ′) ≤ c(C)/w(C) and C ′ partitions G into r−1 connected components.

Corollary 1. Given a non-empty cut C ⊆ E, there is an algorithm that finds a
non-empty subset of vertices U ⊆ V such that the sparsity of the cut associated
with U is at most c(C)/w(C).

The following theorem shows that the weighted BSMC problem is at least as
hard to approximate as the sparsest cut problem is (up to a constant).

Theorem 1. Let ALG be an (α, β)-approximation for weighted BSMC. Then,
there exists a (1 + ε)αβ-approximation for Sparsest Cut, for every ε > 0.

Proof. Assume we are given an instance of the Sparsest Cut problem, denote it
by π, and let OPTπ denote its optimal solution, and |OPTπ| = c(OPTπ,OPTπ)

w(OPTπ,OPTπ)
de-

note the optimal solution’s sparsity. Denote by (π, B) the input for the weighted
BSMC problem that consists of the instance π and the budget B, and let OPTπ,B

be a corresponding optimal solution. Then, since (OPTπ, OPTπ) is a feasible so-
lution for the weighted BSMC problem on (π, B) for every B ≥ c(OPTπ, OPTπ),
then w(OPTπ, OPTπ) ≤ w(OPTπ,B) for every B ≥ c(OPTπ, OPTπ).

For dlog1+ε c(Cmin)e ≤ i ≤ dlog1+ε c(E)e, where Cmin is the minimum cost
cut in G, let CBi be the cut returned by ALG(π, Bi = (1 + ε)i). Then, by
applying Corollary 1 on each CBi we can obtain a non-empty subset of ver-
tices Ui ⊆ V where the sparsity of the cut associated with Ui is at most
c(CBi

)

w(CBi
) ≤ βBi

w(OPTπ,Bi
)/α = αβ Bi

w(OPTπ,Bi
) . Let j = dlog1+ε c(OPTπ, OPTπ)e.

Then, Bj

w(OPTπ,Bj
) ≤ (1 + ε) c(OPTπ,OPTπ)

w(OPTπ,OPTπ)
= (1 + ε)|OPTπ|. We conclude that

the sparsity of (Uj , Uj) is at most (1 + ε)αβ|OPTπ|, and the theorem follows by
choosing the sparsest cut among {(Ui, Ui)}dlog1+ε c(Cmin)e≤i≤dlog1+ε c(E)e. ut



Integrality Gap of a Linear Programming Relaxation We present a nat-
ural linear programming relaxation for the weighted BSMC problem, and in the
full version of the paper we show that its integrality gap of is Ω(n). This implies
that an algorithm based on this linear relaxation would have poor performance.
Nevertheless, in what follows we show an approximation algorithm for the special
case of trees based on the same relaxation. In what follows we assume w.l.o.g.
that c(e) ≤ B for every e ∈ E.

max
∑

si,sj∈S w(si, sj) · xij (SEP-LP)
s.t.

xij −
∑

e∈Pi,j
ye ≤ 0 for every si, sj ∈ S

and path Pi,j from si to sj∑
e∈E c(e) · ye ≤ B

0 ≤ xij ≤ 1 for every si, sj ∈ S
0 ≤ ye for every e ∈ E

4.2 Approximation Algorithms for Weighted BSMC in Trees

Let Pij denote the unique path in the tree between si and sj . The dual LP of
SEP-LP is:

min B · γ +
∑

si,sj∈S βij (SEP-DLP)
s.t.

c(e) · γ −∑
i,j:e∈Pij

αij ≥ 0 for every e ∈ E

αij + βij ≥ w(si, sj) for every si, sj ∈ S
γ, αij , βij ≥ 0 for every si, sj ∈ S

We define the worthiness of an edge e with respect to C, a feasible solution, as

ΓC(e) =

∑
i,j:e∈Pij

w(si,sj)·(1−xij)

c(e) , where x is the corresponding solution of SEP-
LP. The following algorithm greedily updates the solution as long as the budget
is not exceeded, while maintaining the corresponding solution of SEP-LP.

Algorithm GR-SEP : Initialize: h = 0, C0 = ∅, ∀ si, sj ∈ S, xij = 0, and
∀ e ∈ E, ye = 0. While there exists an edge e ∈ E \ Ch, execute the following
loop: Let eh be a lowest cost edge among the edges with the maximum value of
ΓCh

. If c(eh) > B−c(Ch), output the better solution between {eh} and C = Ch.
Otherwise, Ch+1 ← Ch ∪ {eh}, set yeh

= 1 and xij = 1 for all the pairs (si, sj)
separated by eh, and let h ← h + 1. If E \ Ch is empty, output C = Ch.

Observation 1. By the definition of the worthiness of an edge, and the fact
that edges are only added to the solution during the algorithm, for every e ∈ E
and 0 < h ≤ |C|, ΓCh

(e) ≤ ΓCh−1(e), i.e. the worthiness of an edge can only
decrease during the algorithm.

Corollary 2. If C 6= E, then c(e|C|) ·ΓC(e|C|) ≤ c(e|C|) ·ΓC0(e|C|) = w({e|C|}),
i.e., adding the edge e|C| to C increases its separation weight by at most the
separation weight of {e|C|}.



Theorem 2. Algorithm GR-SEP achieves an approximation factor of 1
3 .

Proof. If the algorithm outputs C = E, the solution is optimal. Otherwise, it
is the case that

∑|C|−1
h=0 c(eh) + c(e|C|) > B. Denote by w(GR-SEP) the value

of the solution output by GR-SEP. Consider the following dual solution: βij =
w(si, sj) ·xij , αij = w(si, sj) · (1−xij), γ = ΓC(e|C|). Since ΓC(e|C|) ≥ ΓC(e) for
every e 6∈ C, this is a feasible dual solution. Let z denote its value. Then,

z = B · γ +
∑

si,sj∈S

βij = B · ΓC(e|C|) +
∑

si,sj∈S

w(si, sj) · xij (1)

<



|C|−1∑

h=0

c(eh) + c(e|C|)


 · ΓC(e|C|) + w(C) (2)

≤
|C|−1∑

h=0

c(eh) · ΓC(e|C|) + w({e|C|}) + w(C) (3)

≤
|C|−1∑

h=0

c(eh) · ΓCh
(eh) + w({e|C|}) + w(C) (4)

= w(C) + w({e|C|}) + w(C) ≤ 3w(GR-SEP), (5)

Where: Inequality (2) follows from the definition of the algorithm GR-SEP , (3)
follows from Corollary 2, and (4) follows by noticing that for every 0 < h ≤ |C|,
ΓCh

(eh) ≤ ΓCh−1(eh−1). Thus, the theorem follows by weak duality. ut
Remark 1. In [15], Sviridenko introduces a greedy e−1

e -approximation algorithm
for the problem of maximizing a submodular function subject to a budget con-
straint. We note that on tree instances (unlike general graphs), the separation
weight is a submodular function and thus the weighted BSMC problem on trees
can be solved using Sviridenko’s algorithm. We note that Sviridenko’s algo-
rithm’s running time is Ω(n3), while the running time of GR-SEP is O(n2).

4.3 Weighted BSMC - General Graphs

In this subsection we introduce an ( e
e−1 , O(log2 n log log n))-approximation al-

gorithm for weighted BSMC. Since the weighted budgeted variant of Multicut
is equivalent to weighted BSMC, we conclude that a ( e

e−1 , O(log2 n log log n))-
approximation exists for this problem as well.

In [13], Räcke describes a hierarchical decomposition of any undirected graph
G = (V, E) into a tree TG, where there is a 1− 1 correspondence between V and
the leaves of TG. TG has the property that any feasible multi-commodity flow
function in TG can be routed in G causing a congestion bounded by a function
of G’s parameters, denoted by β. By min-cut-max-flow theorems this implies a
corresponding bounded ratio between the cost of cuts in G and the cost of cuts
in TG. In [9], Harrelson et al. give a polynomial-time construction of TG with
β = O(log2 n log log n), which we use in the following algorithm.



Algorithm SEP : Let B′ = 2βB. Construct a decomposition tree, TG, of G.
For every e = (u, v) ∈ TG with a cost > B′, merge the vertices u and v. Let
T ′G be the resulted tree. Run Sviridenko’s algorithm on T ′G with budget B′, and
output the associated cut in G.

Theorem 3. Algorithm SEP is a ( e
e−1 , O(log2 n log log n))-approximation for

the weighted BSMC problem.

Proof. Let OPT be an optimal solution, and let I denote the set of pairs of
terminals separated by OPT . Let OPTTG

be a minimum cost cut separating
I in TG. By [7], c(OPTTG

) ≤ 2MCFI(TG), where MCFI(TG) is the value of
the maximum multi-commodity flow in TG between the pairs in I. By the con-
struction of TG and its property, MCFI(TG) ≤ βMCFI(G). Since MCFI(G)
lower bounds the cost of any cut separating I in G, MCFI(G) ≤ c(OPT ), and
thus we get c(OPTTG

) ≤ 2βc(OPT ) ≤ 2βB = B′. Particularly, OPTTG
does

not contain any edge with cost more than B′, and thus OPTTG
is a feasible

solution for the weighted BSMC problem on T ′G with budget B′, with value
w(OPTTG

) ≥ w(OPT ). From [15], running Sviridenko’s algorithm will return a
solution C whose cost is at most B′ and whose value is at least e−1

e w(OPTTG).
By the properties of the decomposition tree, the associated cut in G has a cost of
at most B′ and a separation weight of at least w(C) and the theorem follows. ut

4.4 Further Discussion

Although it remains an open question whether it is possible to improve upon the
bi-criteria approximation, or even achieve a uni-criteria approximation, in this
subsection we review some related ideas and point out some possible directions
towards solving the problem. First, consider the following budget problem, whose
input is the same as the input for the weighted BSMC problem.

Problem 5 (Budgeted Sparsest Cut). Find a non-empty subset of vertices U ⊂ V
such that c(U,U) ≤ B and the sparsity of (U,U) is minimized.

In order to understand the relationship between weighted BSMC and Budgeted
Sparsest Cut, we look for results similar to those of Subsection 4.1. Notice that
the algorithm of Corollary 1 actually finds a cut whose cost is at most c(C).
Hence, Theorem 1 can be easily generalized to obtain the following.

Theorem 4. Let ALG be an (α, β)-approximation for weighted BSMC. Then,
there exists a ((1+ε)αβ, β)-approximation for the Budgeted Sparsest Cut problem
for every ε > 0.

Specifically, notice that a uni-criteria approximation for weighted BSMC implies
a uni-criteria approximation for the Budgeted Sparsest Cut problem. This result
suggests that the budgeted sparsest cut is not harder than BSMC. Nevertheless,
it seems that the budgeted sparsest cut is not much easier, as we argue in the
full paper, and we prove for certain weight functions that this is indeed the case.



5 The Budgeted Graph Disconnection Problem

The following algorithm for BGD is a variant of the algorithm presented in [14]
for the k-cut problem.

Algorithm GR-PAR: First, compute a Gomory-Hu tree T for G. Then, sort the
edges of T in a non-decreasing order of their cost. Finally, choose the maximal
sequence of edges starting from the cheapest whose cost is at most B, and
output the union of the cuts in G corresponding to these edges. Let l be the
value of an optimal solution. We can prove that Algorithm GR-PAR achieves an
approximation factor of 1

2 + 1
l if l is even, and of 1

2 + 1
2l if l is odd.
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