
Resilient-Optimal Interactive Consistency in Constant

Time

Michael Ben-Or ∗

Institute of mathematics and Computer Science,

The Hebrew University, Jerusalem, Israel

benor@cs.huji.ac.il

Ran El-Yaniv

Department of Computer Science,

Technion - Israel Institute of Technology

Haifa, Israel

rani@cs.technion.ac.il

March 2001

Abstract

For a complete network of n processors within which communication lines are pri-
vate, we show how to achieve concurrently many Byzantine Agreements within constant
expected time both on synchronous and asynchronous networks. As an immediate
consequence, this provides a solution to the Interactive Consistency problem. Our
algorithms tolerate up to (n − 1)/3 faulty processors in both the synchronous and
asynchronous cases and are therefore resilient-optimal.

In terms of time complexity, our results improve a time bound of O(log n) (for n

concurrent agreements) which is immediately implied by the constant expected time
Byzantine Agreement of Feldman and Micali (synchronous systems) and of Canetti and
Rabin (asynchronous systems). In terms of resiliency, our results improve the resiliency
bound of the constant time, O(4

√
n)-resilient algorithm of Ben-Or.

∗Research supported by Israel Academy of Sciences and by United States – Israel Binational Science
Foundation grant BSF-87-00082

1

An immediate application of our protocols is a constant expected time simulation
of simultaneous broadcast channels over a network with private lines.
Key words: Distributed systems - Fault tolerance - Byzantine agreement -
Interactive consistency - Broadcast channels

1 Introduction

We consider the following Interactive Consistency (IC) problem due to Pease, Shostak and

Lamport [17].

The Interactive Consistency (IC) Problem: consider a complete network of

n processors in which communication lines are private. Among the n processors

up to t may fault. Let p1, p2, . . . , pn denote the processors. Suppose that each

processor pi has some private value of information Vi ∈ V, |V | ≥ 2. The question

is whether it is possible to devise a protocol that, given n, t ≥ 0, will allow each

nonfaulty processor to compute a vector of values with an element for each of

the n processors, such that:

(i) The nonfaulty processors compute exactly the same vector;

(ii) The element of this vector corresponding to a given nonfaulty processor is

the private value of that processor.

We say that an algorithm which solves this problem achieves interactive consistency, since

it allows the nonfaulty processors, by means of interaction, to come to a consistent view of

the values held by all the processors including the faulty ones. The Interactive Consistency

Problem has an immediate reduction to the following problem.

The Byzantine Agreement (BA) Problem: each processor pi in a dis-

tributed system has some initial value Vi. For every i, processor pi has to decide

on a single value Di such that:

(i) (Consistency) All nonfaulty processors decide on the same value;

(ii) (Meaningfulness) If all nonfaulty processors started with the same value,

then they all decide on that value.

2

In order to solve the original IC problem, every processor pi will send its value Vi to every

other processor and then, using the solution to the BA problem, they will all agree upon a

single value related to pi.

Three common complexity measures are used to evaluate distributed protocols: local time

(and space), communication complexity, and distributed time. In this work, our primary

interest is in distributed time, defined to be the number of communication rounds required

for the protocol to terminate. For a synchronous network there is a natural definition for

the round term. All communications are sent during time intervals determined by pulses of

a global clock accessible to all the processors. The time period between the rth and (r+1)st

pulses is called the rth round. It is guaranteed that every message from a (nonfaulty)

processor to another processor which is sent during the rth round will reach its destination

in the (r+1)st pulse. For an asynchronous network it is less intuitive to define communication

rounds but there is still a natural measure based on “rounds of message exchange”. We defer

the introduction of this measure to Section 3.

We say that a processor is faulty in the execution of a protocol if this processor deviates

in any way from the protocol. A processor is considered nonfaulty if it is not faulty. Many

failure models were considered in the literature. In this paper we consider the most general

one: the Byzantine fault model. In this model a faulty processor might go completely haywire

and even send contradictory messages according to an adversarial strategy.

In a totally unreliable system (every processor is faulty), no meaningful task can be

achieved. Therefore, we assume that the number of faulty processors is bounded and we

denote this bound by t. If a protocol P can tolerate up to t faulty processors we say that P

has a resiliency t (or that it is t-resilient).

Feldman and Micali [14] were the first to show how to achieve one Byzantine Agreement

over a synchronous network in constant expected time while maintaining optimal resiliency.

Their algorithm can tolerate up to (n − 1)/3 faulty processors. After the introduction of

their solution an immediate question arose: Can their algorithm be exploited to concurrently

achieve many Byzantine Agreements within (expected) constant time while maintaning opti-

mal resiliency? In this paper we answer this question and present optimally-resilient expected

constant time protocols for both synchronous and asynchronous systems.

Fast computation of many concurrent Byzantine Agreements is of importance for many

applications. Let us mention a few. Any global synchronization requires all the processors in

a distributed system to broadcast their information. Doing this reliably without additional

time penalty is exactly what we offer here. Many distributed protocols have to use a network

with reliable broadcast channels (i.e. any message that is sent by a certain processor over

3

a broadcast line, is guaranteed to be “heard” by every other processor). Using our results,

broadcast channels can be simulated in expected constant time (see Section 4). The protocols

of Ben-Or, Goldwasser, and Wigderson [6] and those of Chaum, Crépeau, and Damg̊ard [11]

can use our result for handling their Byzantine Agreements in expected constant time. The

constant round protocols for secure function evaluation of Bar-Ilan and Beaver [2] and those

of Beaver, Micali, and Rogaway [4] can use our method to simulate their broadcast channels.

Yet another important application is for generating independent unbiased collective coins in

expected constant time. Micali and Rabin [15] can establish this result by combining our

protocol with the protocols of [6] and [14].

1.1 On the Problem of Achieving Interactive Consistency Quickly

and Related Work

Given an O(f(n))-rounds deterministic solution for the BA problem, we can solve the IC

problem within O(f(n)) rounds by simply running n agreements in parallel. As for random-

ized solutions, the situation is quite different; we cannot always solve the IC Problem by a

straightforward use of fast solutions to the BA problem while keeping the same time bound.

The reason for this is that the mathematical expectation of the maximum of n random

variables does not necessarily equal the maximum of their expectations. For example, the

probabilistic BA algorithm in [14] terminates in k rounds with probability 2−k (the expected

termination time is a constant of course). However, running n independent agreements in

parallel will give us an expectation of O(log n) for all of them to terminate. Consider the

following observation.

Observation 1 Let X1, X2, . . . , Xn be independent random variables such that for every

1 ≤ i ≤ n, Pr[Xi > j] = qj (0 < q < 1). If Y = max{Xi}, then Exp[Y] = O(log n).

We are familiar with two approaches for handling an (expected) constant time paral-

lel computation of many Byzantine agreements. Given a BA protocol P such that the

probability for not terminating after k rounds is less than O(n−k), we could compute a

polynomial number of Byzantine agreements within a constant expected number of rounds

by a straightforward parallel application of P . A good example for using this approach is

Ben-Or’s solution in [5]; for t = O(4
√

n) he presents a BA protocol which terminates within

k rounds with a probability greater than 1 − n−k.

Another possible approach is to use “slower” algorithms such as the one in [14], and to

try to overcome the prolonged termination (expected) time by running several independent

executions for each initial input vector, thus reducing the problem to that of coordinating

4

the processors to select a unique output vector. Here we use this approach while employing

as subroutines known protocols. We need both a fast BA protocol and a fast leader election

protocol. For synchronous systems we use the (n − 1)/3-resilient protocols of Feldman and

Micali [14] and for asynchronous systems we use the (n − 1)/3-resilient protocols Canetti

and Rabin [10]. In both the synchronous and asynchronous systems the maximal resiliency

one can achieve (n − 1)/3.1 Thus, the solutions we provide for the IC problem are optimal

both in terms of time (up to a constant factor) and resiliency.

Remark: The BA protocols we use as subroutines ([14] and [10]) are binary (they can only

handle a binary set V of initial values). Our (synchronous and asynchronous) solutions rely

on multi-valued BA protocols. We therefore use the protocol of Turpin and Coan [18], which

provides a reduction of multi-valued BA to a binary BA plus constant number of rounds.2

The reduction protocol in [18] is designed for a synchronous network and can be extended

to asynchronous network using protocols such “gradecast” of [14] or “A-cast” of [7] as its

basic message distribution scheme.

The rest of this paper is organized as follows. In Section 2 we present our synchronous IC

protocol. In Section 3 we extend it to asynchronous networks, and in Section 4 we summerize

our conclusions.

2 A Synchronous IC Protocol

2.1 Preliminaries

We consider a synchronous system of n processors with unique identities in which every

pair of processors is connected via a private line. To ensure correctness of our protocols we

assume worst-case scenario. Thus, we assume an adversary A which, during the execution of

our protocols, chooses online a subset of up to t processors to corrupt. When A corrupts a

processor p, A completely controls p’s behaviour. In addition, during an execution, A always

has access to all the previous configurations of the system (that is, all the configurations of

previous rounds) but A is oblivious to the current random choices made by every nonfaulty

processor. For a complete and formal model of (synchronous and asynchronous) distributed

system and a formal definition of the adversary and the byzantine model, the reader is

1Karlin and Yao extended (in an unpublished manuscript) the deterministic lower bound in [17] showing
that even probabilistic BA protocols cannot tolerate more than (n − 1)/3 faulty processors.

2Essentially, the idea of this reduction protocol is to agree (using the given binary BA protocol) if all
nonfaulty processors have the same initial value or not.

5

referred to [12, 16, 3, 1, 8, 9].

The protocols we present in this section make extensive use of two protocols of Feldman

and Micali [14] which we use as black-boxes. The first protocol is a constant time and a

reasonably fair random Leader Election protocol. The second, is a Byzantine Agreement

(BA) protocol. We now state Feldman and Micali’s theorems regarding these Election and

BA protocols.

Notation: We adopt the following functional notation to describe a protocol for a dis-

tributed system. We specify the common inputs (n and t are always among them), the local

inputs for each processor, and the local outputs for each processor as a function of the inputs.

Consider protocol Byzantine() in [14]. The common inputs of this protocol are n and

t ≤ (n − 1)/3, the local input for every processor pi, is vi, and the local output for every

nonfaulty processor pi is di, such that the consistency and meaningfulness conditions of the

BA problem definition (Section 1) are satisfied. This protocol and the proof of the following

theorem can be found in [14].

Theorem 2 (Feldman and Micali) There exists an (n − 1)/3-resilient Byzantine Agree-

ment protocol such that the probability that the protocol will not terminate after k rounds is

less than 2−k.

Note that due to the distributed nature of the problem, the notion of termination time is

subjective to every processor. In other words, two processor might terminate their participa-

tion in the protocol in two different computational rounds. However, they cannot terminate

too far apart.

Observation 3 Protocol Byzantine() satisfies the following property:

Property 1-Shift: If some nonfaulty processor is the first (or among the first)

to achieve a Byzantine Agreement in some round r, then every other nonfaulty

processor achieves agreement within the next round, r + 1.

It is interesting to note that all known randomized Byzantine Agreement protocols satisfy

property 1-Shift.

Consider protocol Election() in [14]. This is a constant time, (n − 1)/3-resilient Leader

Election protocol with the following specifications. There are no local inputs and the local

output for each (nonfaulty) processor is an ID of one processor. The proof of the following

theorem can be found in [14].

6

Theorem 4 (Feldman and Micali) There exists an (n−1)/3-resilient protocol, with com-

mon inputs n and t ≤ (n−1)/3 and with no local inputs, that terminates in a constant number

of rounds such that with probability at least 2/3, the local output for every nonfaulty processor

is a unique index i of a random processor.

Upon termination of protocol Election(), the local output for every nonfaulty processor is

the identity of a (random) unique nonfaulty processor with probability at least 2/3. However,

there is still a possibility that nonfaulty processors will not agree on the index of the same

leader. In our solution we do not use Election() for achieving a Byzantine Agreement and

therefore we modify protocol Election() as follows. Each time we use Election() we run

Byzantine() on the local outputs of Election(). This ensures that the identity of the leader is

always unique. Altogether, this slight modification of Election(), together with Theorem 4,

yield the following corollary.

Remark: Although at least 2/3 of the processors are nonfaulty, since we assume an adaptive

corruption model (where the adversary can corrupt a processor online) we cannot claim that

the chosen index i is that of a nonfaulty processor with probability at least 2/3. Nevertheless,

in applications of our leader election protocol we need the property that the chosen leader

has been nonfaulty just before the invocation of the leader election protocol. This obviously

true as stated in the following corollary.

Corollary 1 There exists an (n − 1)/3-resilient protocol, with common inputs n and t ≤
(n− 1)/3 and with no local inputs, that terminates in a constant expected number of rounds

such that the local output for every nonfaulty processor is a unique identity i. With probability

at least 2/3, i is the identity of a random processor, which had been nonfaulty just before the

application of the protocol.

2.2 A Synchronous IC Protocol

In this section we present our IC protocol. The protocol produces N Byzantine Agreements

in a constant expected number of rounds for all N and therefore, for N = n we have a fast

computation of the IC-vector.

Let us first overview the main idea. In the following discussion we informally refer to

an entity, say B, as a Byzantine Agreement, meaning that there exists a corresponding

vector vB of length n, with a component for each processor local input. After the system

has computed a value (using a BA algorithm with inputs according to vB) we say that the

system has achieved a Byzantine Agreement on the vector vB.

7

Suppose that B1, B2, . . . , BN are the agreements to be achieved. For every 1 ≤ i ≤ N

we will concurrently run m independent BA applications, each with the same input vector

vBi
. Altogether we will concurrently run mN protocols (N “classes” each of multiplicity m).

If m is sufficiently large, it is likely that after a small constant number of computational

rounds, each nonfaulty processor will “have” at least one terminated protocol (and thus,

a corresponding agreement value) for each of the N classes. Note, however, that two dif-

ferent (nonfaulty) processors might have different agreement values for the very same class

(obviously, from two different BA applications). The reason is, firstly, that the result of a

randomized BA protocol cannot be predicted deterministically (if the nonfaulty processors

do not all start with the same input value), and secondly, because two different processors

may terminate their participation for the same run in two different rounds.

The idea now is to let the processors choose a leader which will handle a coordination (so

that all the nonfaulty processors will choose the same output for each class). Using protocol

Election() (Corollary 1) with sufficiently high probability, a nonfaulty processor will be

chosen as the leader and this leader will coordinate the rest of the nonfaulty processors to a

successful termination. In case where the leader pl is faulty, either the nonfaulty processors

will force pl to coordinate them appropriately (using the power of a Byzantine Agreement),

or they will reject pl and try their luck with a new election.

It turns out that it is sufficient to take m = log N as the multiplicity for each of the N

classes (see Lemma 3). To facilitate the description of our protocols we use the following

notations:

• Whenever processor pi is instructed to distribute a value v, this means pi should send

v to every processor including itself. To simplify analyses, any count of how many

processors sent a certain message to pi will include pi’s message.

• When pi is instructed to perform Byzantine(vi), it means that pi should start run-

ning protocol Byzantine() with private input vi (and common inputs as in the calling

protocol).

• When pi is instructed to perform Byzantine() in exactly r rounds, the private output

v for pi denotes the unique non-null value returned to pi by Byzantine() if agreement

was reached within the first r rounds. Otherwise, pi assigns its private output to null

(∅).

• Every variable which appears in the protocol of pi and which is not declared in the

header of the protocol is a local variable of pi.

8

• When we say that a nonfaulty processor was elected to be a leader we mean that

this processor was nonfaulty up until the start of the leader election protocol (see the

remark just before Corollary 1).

Consider protocol IC in Figure 1. In the correctness proof and in the analysis of Protocol

IC we use the following definitions. Let E denote the event that a nonfaulty processor was

chosen to be a leader (at the end of Epoch 3). Let D denote the event that for every

nonfaulty processor pi, Sj �= ∅ for every j (in Epoch 2). If D occurred, every nonfaulty

processor completed successfully (at least) one Byzantine Agreement for each of the N

agreement classes in r rounds.

Lemma 1 If E and D both occur at a certain iteration of Protocol IC, then the protocol

successfully terminates at the end of the iteration.

Proof. Since E occurred, a nonfaulty processor pk was chosen for leadership. Since D
occurred, it must be that pk distributed some nonempty “proposal”, cl1,1, . . . , clN ,N at the

end of Epoch 2. It follows then that since for every 1 ≤ j ≤ N , clj ,j ∈ Sj (Sj local to pk) and

since Byzantine() satisfies the 1-Shift property, for every nonfaulty processor pi and for all

1 ≤ q ≤ N , cq ∈ Ŝq (cq, Ŝq are local to pi). Therefore, in Epoch 4, every nonfaulty processor

pi, sets termi = 1; therefore, since Byzantine() satisfies the meaningfulness condition it must

be that terminatei = 1 for every i and all the nonfaulty processors terminate successfully.

Let Sj ← Sj ∪ Ŝj ∪ ̂̂
Sj, where Sj, Ŝj and

̂̂
Sj are computed in Epoch 1.

Lemma 2 A faulty leader (chosen at the end of Epoch 3) cannot cause a collective agreement

(of all nonfaulty processors) about a final output vector which was not fully computed by some

nonfaulty processor. That is, in any case (even if the leader is faulty), each component di,j,

j = 1, . . . , N , of the output vector of a nonfaulty processor pi is in Sj.

Proof. Assume that a faulty processor pk was chosen. Since in Epoch 4 every nonfaulty

processors run Byzantine() with pk’s proposal as their private input, in Epoch 4 all non-

faulty processors hold the same vector E. Let us assume that there exist indices i and j

such that pi is nonfaulty and ej is not in Sj (ej and Sj are local to pi). In this case, for

every other nonfaulty processor, pl, e′j �∈ S ′
j ∪ Ŝ ′

j (e′j and Ŝ ′
j are local to pl); otherwise,

Byzantine() does not satisfy the 1-Shift property. Therefore, all nonfaulty processors will

termi = 0 and they all output terminatei = 0 at the end of the epoch so they will all reject

the faulty Byzantine proposal.

9

Common Inputs: n, t ≤ (n − 1)/3, N, r, m

Local Inputs for Processor pi: vi,1, . . . , vi,N

Local Outputs for Processor pi: di,1, . . . , di,N

Epoch 1:

for 1 ≤ l ≤ m, for 1 ≤ j ≤ N

ul,j ← vi,j

for 1 ≤ l ≤ m, for 1 ≤ j ≤ N

run concurrently Byzantine(ul,j) exactly r + 2 rounds in the following way:

Let cl,j denote the outputs after exactly r rounds.

Continue the computation for another one round and let ĉl,j denote the outputs.

Compute another round and let ̂̂cl,j denote the outputs.

for 1 ≤ j ≤ N

Sj ← {cl,j}m
l=1, Ŝj ← {ĉl,j}m

l=1,
̂̂
Sj ← {̂̂cl,j}m

l=1

Epoch 2:

if for every 1 ≤ j ≤ N , Sj �= ∅, then

for every 1 ≤ j ≤ N , choose clj ,j ∈ Sj and distribute [cl1,1, cl2,2, . . . , clN ,N]

else distribute ∅

Epoch 3:

run Election(). Let k be the private output, denoting the identity of the leader pk.

Epoch 4:

Let D denote the value received from pk in Epoch 2.

Set it to ∅ if a propper message was not received.

(Note that if D �= ∅, then D = c1, c2, . . . , cN for some cj .)

run Byzantine(D). Let E = e1, . . . , en denote the private output.

if for every 1 ≤ j ≤ N , ej ∈ Sj ∪ Ŝj then

set term ← 1else set termi ← 0

Epoch 5:

run Byzantine(termi) and let terminatei denote the private output.

if terminatei = 0 then

goto Epoch 1

else

for every 1 ≤ j ≤ N di,j ← cj

return di,1, . . . , di,N

Figure 1: Protocol IC

10

Lemma 3 Let {Xi,j}, i = 1, . . . , N, j = 1, . . . , log N , be independent random variables such

that for every i, j, Xi,j ∈ {0, 1} and Pr[Xi,j = 1] ≥ 1
2
. Let {Yi}N

i=1, be a set of N independent

random variables such that for all i, Yi =
∑log2N

j=1 Xj.

Pr[∀1 ≤ i ≤ N, Yi ≥ 1] ≥ 1/e.

Proof. The Xi,j are independent and therefore, for every 1 ≤ i ≤ N

Pr[Yi = 0] ≤ (1 − 1

2
)log N =

1

N
.

The Yi are independent; therefore:

Pr[∀i, Yi ≥ 1] =
N∏

i=1

Pr[Yi ≥ 1] =

N∏
i=1

(1 − Pr[Yi = 0]) ≥ (1 − 1

N
)N ∼= 1

e
.

Theorem 5 For every N,n, r ≥ 1 and t < n/3 Protocol IC produces N Byzantine Agree-

ments in a constant expected number of rounds.

Proof. Partial correctness follows from Lemma 2. We now prove that protocol IC

terminates within constant number of rounds on the average. Lemma 1 says that if both D
and E occur in a certain iteration, then the protocol will terminate successfully. It remains

to show that the probability p that both D and E occur (in the same iteration) is sufficiently

high. Since we run all parallel executions independently, by using Lemma 3 we easily get

that

Pr[D occurred within r rounds] ≥ 1 − (1 − 1

e
)r.

Protocol Election() guarantees that for every iteration, Pr[E Occurred] ≥ 2/3. Therefore,

p ≥ 2

3
[1 − (1 − 1

e
)r].

We can now calculate r for which p ≥ 1/2. We require that

2

3
[1 − (1 − 1

e
)r] ≥ 1

2
.

Solving for r we get that for any r ≥ 4, D and E occur on the average within two iterations.

In every iteration of protocol IC, the protocol calls twice to Byzantine(), once to Election()

and computes in additional r+4 rounds. Therefore, the total expected time T ≤ 2(8+2B+E)

11

where B is the expected termination time of Byzantine() and E is the expected termination

time of Election().

Note: The fast randomized synchronous Byzantine Agreement protocol we use introduces

a slack of one round at the end of the protocol. Without any modifications this slack may

grow when running a sequence of applications of the protocol. We are aware of the following

two methods to resolve this problem.

• The first is to accommodate this increasing slack using an appropriate modification of

the above Feldman-Micali protocols.3 The slightly modified protocol remains correct

and the expected slack in our protocol remains known and bounded.

• The second way is to replace the synchronous Feldman-Micali BA protocol with the

synchronous application of the asynchronous BA protocols of Canetti-Rabin [10] (see

Section 3) along with the following simple patch applied to these protocols: Upon

agreement, each processor distributes an “End” message that includes the decision

value and waits for n − t such messages before starting the next application of the

protocol. Any other processor that receives at least t + 1 such “End” messages at

any stage of the protocol will also decide on the same value and send a similar “End”

message. With this patch it is clear that there is at most one slack round between the

correct processors, and the slack does not grow.

Corollary 2 For a synchronous system of n processors, Protocol IC applied with N = n

and m = log n solves asynchronous Interactive Consistency within constant expected number

of rounds and achieves optimal resiliency of (n − 1)/3.

3 An Asynchronous IC Protocol

In the synchronous model there is a natural identification of absolute time, as measured

by a global clock; that is, the rth round occurs between the (r − 1)st and the rth global

clock pulses. In asynchronous systems, no such identification is possible. However, there are

various meaningful ways to define asynchronous time. We use the one based upon rounds of

message exchanges. An asynchronous round for a nonfaulty processor pi is the time interval

between pi’s request of information from other processors and the receipt of that information.

(The computation time required by pi once the information is received is also included in the

3It is easy to check that the Feldman-Micali BA protocol can operate if it starts with a known upper
bound on the slack.

12

round.) We assume that an adversary schedules the arrival time of every message sent from

every processor to every nonfaulty processor. It is only guaranteed that a message sent by

a nonfaulty processor will eventually arrive upon its destination. Due to this limitation no

processor can wait for a message sent by a specific processor. The reason is that one cannot

tell the difference between a dead (faulty) processor and a very slow (nonfaulty) processor.

As a consequence, given that every processor is supposed to distribute a certain message in

a certain round, any processor cannot expect more than n− t of those messages to arrive in

the following round.

In this section we introduce an asynchronous IC protocol with optimal resiliency of

(n − 1)/3. We make use of the optimally-resilient asynchronous variants of Election() and

Byzantine() of Canetti and Rabin [10]. 4 Denote by A-Election() and A-Byzantine() these

protocols, respectively. Each of these protocols is (n − 1)/3-resilient and satisfies all the

properties mentioned in Theorem 2 and Corollary 1, respectively.

The presentation of our asynchronous IC solution is organized as follows. In Section 3.1

we introduce basic asynchronous broadcast and message dispersion protocols that will be

used in our asynchronous protocols. The asynchronous IC protocol we design is based

on a reduction to a new type of consensus protocol called Selection, which essentially, is

stronger than a standard Byzantine agreement in the sense that the nonfaulty processors

can guarantee an agreement on a non-default (non-null) value. In Section 3.2 we define this

new type of “selection” consensus and construct a selection protocol that runs in constant

expected number of rounds. This protocol has optimal resiliency of (n − 1)/3. Then, in

Section 3.3, we show how to reduce the IC problem to selection and obtain an optimally-

resilient asynchronous IC protocol that runs in constant expected number of rounds.

3.1 Message Broadcast and Amplification Primitives

In this section we introduce two broadcast protocols that will be used in our asynchronous IC

solutions. The basic protocol we employ is the known asynchronous broadcast protocol which

was (to the best of our knowledge) first defined and constructed by Bracha [7]. Following

Feldman [13] we call this protocol “A-cast”. Using a slightly modified version of A-cast,

which we call A-cast+, we then construct a simultaneous broadcast “amplification” protocol

called “Spread ” that allows the set of nonfaulty processors to disperse their initial values

so that there is a subset of at least t + 1 nonfaulty processors that received a common

set of initial values from at least 2t + 1 processors. Protocols A-cast and Spread are later

4In [10] these protocols are called common-coin and BA, respectively.

13

Common Inputs: n, t ≤ (n − 1)/3; k (the identity of the transmitter)

Local Inputs for Processor pi: none

Additional Local Input for pk: V

Local Output for Processor pi: V aluei

Epoch 1: (pk Only)

distribute [“init”,pk,V]

Epoch 2: (Every Processor pi)

upon receiving [“init”,pk,v]-message for some v,

distribute [“echo”,v]

Epoch 3: (Every Processor pi)

upon receiving 2t + 1 [“echo”,v]-messages for some v

distribute [“ready”,v]

Epoch 4: (Every Processor pi)

upon receiving t + 1 [“ready”,v]-messages for some v

distribute [“ready”,v]

Epoch 5: (Every Processor pi)

upon receiving 2t + 1 [“ready”,v]-messages for some v

V aluei ← v

return V aluei

Figure 2: Protocol A-cast

used as primitives in the following sections. We use A-cast as the basic message distribution

primitive and Spread to disperse the initial values. Protocol A-cast+ is used as a subprotocol

in Spread .

3.1.1 Protocol A-cast

Definition 1 Let P be a protocol which includes as a common input k - the identity of a

distinguished processor pk (the transmitter). The transmitter has a private input value, V .

The private output of every nonfaulty processor is V aluei. We say that P is an asynchronous

broadcast protocol if the following hold:

1. If pi and pj terminate, then V aluei = V aluej.

2. If any nonfaulty processor terminates, then every other nonfaulty processor terminates.

3. If the transmitter is nonfaulty, then every nonfaulty processor pi terminates with V aluei =

V .

14

Theorem 6 (Bracha) Protocol A-Cast (Figure 2) is a constant time (n − 1)/3-resilient

asynchronous broadcast protocol.

Proof. Let n = 3t + 1. We show that the three properties in Definition 1 are satisfied.

Suppose pi terminated after receiving 2t + 1 [“ready”,v]-messages in Epoch 5. At least t + 1

of these messages arrived from nonfaulty processors. Each of these processors has not sent

a “ready” message with other values v′, and therefore no processor will pass the threshold

of n − t = 2t + 1 “ready” messages (in Epoch 3) for a value v′ �= v. Therefore, property

1 is satisfied. Since t + 1 of those “ready”-messages are from nonfaulty processors, every

nonfaulty processor pj will eventually receive these messages and the condition in Epoch 4

will be eventually satisfied. Therefore, every nonfaulty processor pj will eventually distribute

a “ready” message for v (if it has not done so before) in Epoch 4 and the condition in Epoch

5 will eventually be satisfied. Therefore, property 2 holds. It is easy to see, by inspection of

the protocol, that property 3 holds.

We say that a nonfaulty processor pi accepts an A-Cast for some value V if it terminates

executing protocol A-Cast with V aluei = V .

Perhaps the most important property of protocol A-cast is that if some nonfaulty pro-

cessor accepts an A-Cast broadcast with some value V , it is guaranteed that all nonfaulty

processors will eventually terminate the execution of A-cast accepting V . However, if a

faulty processor is the transmitter, then A-cast may never terminate. Nevertheless, the use

of A-cast is for message distribution so when we instruct every processor to A-cast some

value we never expect a particular processor to accept more than 2t + 1 of these A-casts.

3.1.2 Protocol A-cast+

In this section we extend protocol A-cast so as to force a faulty processor p (who wishes to

broadcast a message) to “commit” on its message in the sense that no future broadcasts can

be completed succefully (i.e. accepted by a nonfaulty processor) by p if it later attempts

to broadcast a contradictory message. The extended protocol, called A-cast+, is used as

a subprotocol of protocol Spread of Section 3.1.3. This commitment property achieved by

A-cast+ (and Spread) will later be needed in protocol Select of Section 3.2, which uses Spread

as a subprotocol. Specifically, the special property achieved by this protocol (Lemma 5 below)

is applied in the proof of Theorem 8.

Here is the idea. Consider an A-cast from a transmitter pk for a value v. We add one

additional epoch to protocol A-cast where we instruct each processor, before termination,

to accept 2t + 1 A-cast “commitment” message as a condition for termination. Each termi-

15

nated A-cast requires 2t + 1 “[ready,v]”-messages, at least t + 1 of which are from nonfaulty

processors. Therefore, if nonfaulty processors are instructed to avoid participating in con-

tradictory A-casts of the transmitter pk, no such contradictory A-casts can ever be accepted

by nonfaulty processors.

Consider protocol A-cast+ in Figure 3. This protocol is different from protocol A-cast

in two points. First, in Epoch 5 processors are instructed to A-cast a “commit” message

for the transmitter’s value. The protocol terminates in Epoch 6 only after accepting 2t + 1

A-casts. Second, the protocol returns, in addition to the transmitter’s value, a set of 2t + 1

processor indices called Relay. This set includes indices of processors which were committed

to the value of the transnitter.

Common Inputs: n, t ≤ (n − 1)/3; k (the identity of the transmitter)

Local Inputs for Processor pi: none

Additional Local Input for pk: V

Local Output for Processor pi: V aluei, Relayi

Epoch 1: (pk Only)

distribute [“init”,pk,V]

Epoch 2: (Every Processor pi)

upon receiving [“init”,pk,v]-message for some v,

distribute [“echo”,pk,v]

Epoch 3: (Every Processor pi)

upon receiving 2t + 1 [“echo”,pk,v]-messages for some v

distribute [“ready”,pk,v]

Epoch 4: (Every Processor pi)

upon receiving t + 1 [“ready”,pk,v]-messages for some v

distribute [“ready”,pk,v]

Epoch 5: (Every Processor pi)

upon receiving 2t + 1 [“ready”,pk,v]-messages for some v

A-cast [“commit”,pk,v]

Epoch 6: (Every Processor pi)

upon accepting 2t + 1 [“commit”,pk,v] A-casts

from a set S of processors,

V aluei ← v

Relayi ← S

return V aluei, Relayi

Figure 3: Protocol A-cast+

It is easy to see, by inspection of the protocol, that protocol A-cast+ is an asynchronous

broadcast protocol. We omit the proof of the following lemma.

Lemma 4 Protocol A-cast+ (Figure 3) is a constant time (n − 1)/3-resilient asynchronous

16

broadcast protocol.

Lemma 5 Let pk be the transmitter of a message V in protocol A-cast+. Upon termination

of the protocol by one nonfaulty processor pi, for each processor p in Relayi, there exists a

subset Ck,v of (at least) t + 1 nonfaulty processors all of which received a [“commit”,pk,v]-

message from p.

Proof. Assume that processor pi terminated protocol A-cast+. According to the pro-

tocol, pi accepted the “commit” A-casts the 2t + 1 processors in Relayi. By inspection of

protocol A-cast, in order to accept an A-cast from a processor p ∈ Relayi, pi must receive

“commit” messages from 2t + 1 processors. Ck,v is the subset of (at least) t + 1 nonfaulty

processors among them.

3.1.3 Protocol Spread - A Dispersion Primitive

In our asynchronous IC solution the basic “distribute” operation is replaced by the stronger

A-cast asynchronous primitive. However, in order to distribute messages and achieve a large

dispersion level (of common messages) a straightforward application of A-cast by itself is

not sufficient. Consider a scenario where every nonfaulty processor has some initial value

which is to be sent to every other nonfaulty processor. The maximal (and ideal) dispersion

is the one in which every nonfaulty processor receives every nonfaulty initial value. In a

synchronous network this goal is trivially achieved if every processor distributes its initial

value. In the asynchronous network such an ideal dispersion is not always possible. Let

n = 3t + 1. Every nonfaulty processor can wait for no more than n − t = 2t + 1 messages

(A-casts) and t of these messages can be faulty. If pi and pj are nonfaulty, the adversary can

cause pi and pj to receive the messages from different subsets of processors each of size 2t+1,

so the number of common messages they receive is at most t + 1. Similarly, for 3 nonfaulty

processors the number of common messages can be no more than 1. In general, if n = kt+1,

for some positive integer k, the number of common messages received by d processors may

be not more than max{0, n− dt}. This means that unless n = O(t2), we cannot hope, using

this straightforward approach, for a set of O(t) nonfaulty processors which received O(t)

common messages.

In this section we construct a simple message dispersion protocol, based on A-cast (and

A-cast+). The new protocol, called Spread , can guarantee upon termination (within constant

number of rounds) that a subset of t + 1 nonfaulty processors received the messages of a

subset of 2t + 1 processors (up to t of which my be faulty). The basic idea is as follows.

Let n = 3t + 1. Every processor pi will A-cast its own initial value Vi. After accepting

17

2t + 1 A-casts Vi1 , . . . , Vi2t+1 from 2t + 1 processors, pi1 , . . . , pi2t+1 , processor pi will A-cast

the vector:

〈(pi1 , Vi1), . . . , (pi2t+1 , Vi2t+1)〉.
After accepting t + 1 such vectors in which for every component (pl, Vl), Vl was accepted

(by pi) from pl, the protocol terminates. As we later show (Lemma 7) this is sufficient for

generating the desired level of dispersion.

This is the basic idea. However, instead of using A-cast in the first round we use A-cast+.

This will ensure a commitment of processors to the value they want to distribute (and will

be used later in protocol Select of Section 3.2).

Protocol Spread is given Figure 4.

Common Inputs: n, t ≤ (n − 1)/3

Local Inputs for Processor pi: Vi

Local Output for Processor pi: 〈X1, X2, . . . , Xn〉

Epoch 1:

A-cast+
Vi

Epoch 2:

wait until 2t + 1 values Vi1 , . . . , Vi2t+1 accepted (from pi1 , . . . , pi2t+1)

A-Cast 〈(pi1 , Vi1), . . . , (pi2t+1 , Vi2t+1)〉
Participate in the A-Cast of a vector u = 〈(pj1 , Uj1), . . . , (pj2t+1 , Uj2t+1)〉
only if for every 1 ≤ k ≤ 2t + 1, Ujk

accepted from pjk
.

Epoch 3:

wait until t + 1 vectors ul1 , . . . , ul2t+1 accepted (from pl1 , . . . , plt+1) such that

for every 1 ≤ k ≤ t + 1 if ulk = 〈(pk1 , Uk1), . . . , (pk2t+1 , Uk2t+1)〉,
and for every 1 ≤ r ≤ 2t + 1, Ukr accepted from pkr ’s A-cast+

.

for every 1 ≤ l ≤ n

if a value V was accepted from pl via A-cast+
then

Xl ← (V, Relayi,l)

(where (V, Relayi,l) is the output of A-cast+
)

else

Xl := ∅
return 〈X1, . . . , Xn〉

Figure 4: Protocol Spread

Lemma 6 Protocol Spread terminates in a constant number of rounds.

Proof. Clearly, Xl in Epoch 3 is well defined. The reason is that V was accepted from

pl’s A-cast+ but no two different values could be accepted from pl (even if pl was faulty).

We claim that no deadlock can occur in Epoch 3. This is true because there exists a set S of

18

at least 2t + 1 nonfaulty processors such that every processor pi in S will eventually A-cast

a vector in which for every component (p, V), pi accepted the A-cast+ of V from p. If a

nonfaulty processor accepted some A-cast+, then it is guaranteed that every other nonfaulty

processor will eventually accept the same A-cast+. This means that every nonfaulty processor

will eventually accept t+1 vectors (in Epoch 3) and there is no possibility of a deadlock. By

inspection of the protocol it can be seen that it terminates in constant number of rounds.

Lemma 7 Let pi be the first nonfaulty processor which has just terminated the protocol. At

this stage, there exists a subset of t + 1 nonfaulty processors all of which accepted the same

2t + 1 A-cast+s of initial values.

Proof. pi is instructed to accept t + 1 vectors. One of these vectors is surely from a

nonfaulty processor pj. Since pi accepted uj (via A-cast) from pj, it follows that there are

2t + 1 processors which participated in this broadcast. Since every nonfaulty processor is

instructed (in Epoch 2) to participate only in A-casts of vectors in which every component is

accepted, it follows that there are t + 1 nonfaulty processors which accepted the same 2t + 1

A-Casts.

3.2 A Selection Protocol

In this section we define and construct a new type of consensus protocol called “selection”.

Later, in the next section, we will provide an IC protocol by reducing the IC problem to

selection and Byzantine agreements.

Definition 2 Let P be a protocol. The common inputs of P are n and t; the local inputs

for each processor pi are Vi, an arbitrary value, and Predi(x), a predicate; the local output

is Di. We say that P is a Selection protocol if the following holds:

If for every nonfaulty pi and pj, |=5 Predj(Vi) and Vi �= ∅, then:

1. (Consistency) Upon termination, for every nonfaulty pi and pj, Di = Dj �= ∅.

2. (Selection) Upon termination there exists a nonfaulty processor pk such that |= Predk(Dk).

3. (Termination) The protocol terminates with probability 1.

Essentially, a selection protocol is a Byzantine agreement protocol in which the “meaning-

fulness” condition (where, if all processors start with the same initial value, they terminate

5The notation “|= P” is the standard Mathematical Logic notation for “P is valid”.

19

with that value) is replaced with the stronger “selection” condition in which if all nonfaulty

processors start with initial values that satisfy their predicates, then the terminating value

satisfies at least one nonfaulty predicate. To see that a selection protocol can achieve more

than a standard Byzantine agreement, consider a scenario where each nonfaulty processor

pi starts the protocol with the predicate Predi(x) ≡ [m ≤ x ≤ M]. Suppose that all the

nonfaulty processors start the protocol with different initial values that are all in the interval

[m,M]. In this setting, when using a standard Byzantine agreement protocol, the nonfaulty

processors will terminate with a null (default) value. However, when using a selection proto-

col it is guaranteed that the nonfaulty processors will terminate with agreement on a number

in the prescribed interval as specified by the predicate. Note that when using a selection

protocol the predicates (and initial values) can be computed online just before the invocation

of the selection protocol.

In our analysis we will use the following simple observation.

Observation 7 Protocol A-Byzantine() satisfies the following property: The only possible

outcomes for nonfaulty processors are either null or private inputs of nonfaulty processors.

It is worth noting that all known solutions to the Byzantine Agreement problem satisfy

the above property. 6

In the following presentation of protocol “Select” we made no effort to optimize the

number of rounds in the presented selection. On the contrary, for the sake of clarity, we

expanded it by a few more rounds than needed (e.g. the A-casts of Epochs 4 and 5 could

be done concurrently). To facilitate the explanation we use the following notations and

definitions.

• We say that a value (that a processor pi attributes to some processor pk) is inconsistent

with another value (which pi also attributes to pk) if the values are both non-null and

different.

• When instructing a processor to participate only in admissible broadcasts we mean that

the processor should not participate in broadcasts of messages that contain information

that is inconsistent with its database of all previously received values.

• In order to relate to the kth component of a vector v, we use standard array notation

(i.e. v[k]).

6The authors have a simple method to extend every BA protocol to satisfy the above property. If the BA
protocol terminates (on the average) within T rounds , then this extension terminates within 3T +1 rounds.

20

Common Inputs: n, t ≤ (n − 1)/3

Local Inputs for Processor pi: Vi - an arbitrary value; Predi(x) - a predicate

Local Outputs for Processor pi: Di

Epoch 1:

Ui ← Vi

run Spread(Ui, P redi(x)) and let V iewi denote the local output.

Epoch 2:

run A-Election(). Let k be the local output denoting the identity of the leader, pk.

Epoch 3:

U ← V iewi[k] (i.e. the value’ “related” to pk upon termination of Spread).

if U was accepted during the run of Spread and |= Predi(U) then

Ri ← U

Ui ← [“deflected”, U, Relayi]

where Relayi is obtained by Spread (via A-cast+
) for the accepted broadcast of the leader pk

else Ri ← ∅

run A-Byzantine(Ri). Let Di denote the local output.

if Di �= ∅ then

return Di

Epoch 4:

A-Cast V iewi (V iewi defined in Epoch 1).

Participate in admissible A-Casts only.

Epoch 5:

wait until 2t + 1 views, V iewi1 , . . . , V iewi2t+1 accepted.

A-Cast Ui

Epoch 6:

wait until 2t + 1 values accepted.

if a [“deflected”,U ′,Relay]-message was accepted

and pk ∈ Relay (pk is the leader from Epoch 2)

and there are t + 1 processors in Relay which have a non-null

value related to pk in their accepted Views with

the same value U ′

Comment: If several such messages were accepted with different

U ′ values take an arbitrary one

then Ri ← U ′

else Ri := ∅

Epoch 7:

run A-Byzantine(Ri) and let Di denote the local output.

if Di �= ∅ then return Di

else

Ui ← Vi

goto Epoch 1

Figure 5: Protocol Select

21

Consider protocol “Select” in Figure 5. The protocol consists of 7 epochs. In Epoch

1 the processors broadcast their initial values using protocol Spread of Section 3.1.3. The

properties of Spread guarantee that upon termination there is a core subset P1 of nonfaulty

processors all of which accepted a common set of broadcasts which were initiated by 2t + 1

processors (up to t of which can be faulty). This subset of 2t + 1 processors is denoted by

P2. In Epoch 2 the system runs the election protocol to choose a random leader, denoted pk.

As we later show, with sufficiently high probability the leader is nonfaulty and moreover, is

in P2, which means that its message has been succesully accepted by at least t+1 nonfaulty

processors. In Epoch 3 the processors run a Byzantine agreement on the values they relate to

the leader. If they agree on a non-null value (which means they agree on one of the nonfaulty

initial values), they terminate. Otherwise, they continue the computation and in Epoch 4

they broadcast (A-cast) the individual views they each have on the vector of initial values

(including the value they attribute to the leader). In Epoch 5, after waiting for acceptance

of 2t + 1 views, they broadcast a list of processors which participated in the first leader

broadcast (via Spread) in Epoch 1. This list contains 2t + 1 processors which were in fact

commited to the leader’s initial value in the sense that no such processor can participate in

A-casts claiming a different value for the leader. In Epoch 6, after the processors receive

2t + 1 such lists they assign their revised estimate for the leader’s initial value and (as we

later show) this time it must be that if the leader is indeed nonfaulty and in P2, then each

nonfaulty processor gets to know the true initial value of the leader. Finally, in Epoch 7, the

processors run a Byzantine agreement on their revised estimate and if they terminate with

a non-null value, the protocols ends. Otherwise, the protocol is restarted.

Remark 1 In Protocol Select of Figure 5 we use in Epoch 1 protocol Spread of Section 3.1.3.

Since in a selection consensus our goal is generate terminal values that satisfy nonfaulty

predicates, when we apply protocol Spread here, we assume that each processor pi is instructed

to participate only in A-casts which satisfy its own predicate Predi.

Theorem 8 Let A-Byzantine() be an asynchronous constant expected time (n−1)/3-resilient

Byzantine Agreement protocol. Let A-Election() be an asynchronous constant expected time

(n − 1)/3-resilient Leader Election protocol. Protocol Select is an asynchronous constant

expected time (n − 1)/3)-resilient Selection protocol.

Proof. Let n = 3t + 1. We first prove partial correctness. Given that the preconditions

hold (i.e. for every nonfaulty pi and pj, |= Predj(Vi) and Vi �= ∅), we first show that if protocol

Select terminates, then the “Consistency” and “Selection” conditions (as in Definition 2) are

satisfied.

22

Let us assume that protocol Select has just terminated. The Consistency condition holds

since the only two possibilities to terminate (Epochs 3 and 7) are on outputs of A-Byzantine()

and, as instructed by protocol, there is no termination on null values. Assuming termination

and denoting the (unique) local outputs (from the call to A-Byzantine()) of the nonfaulty

processors by D, we prove that the Selection condition holds.

There are two cases; either the protocol terminated at the end of Epoch 3, or at the

end of Epoch 7. Consider the first case. Clearly, as the protocol satisfies Consistency,

D �= ∅. By Observation 7, A-Byzantine() generates terminal values which were inputs of

nonfaulty processors. Therefore, D was the initial value of one of the nonfaulty processors,

say pi (so, according to the protocol, D = Ri, and Ri is local to pi). But Ri �= ∅ only if

|= Predi(Ri) (Epoch 3). Now consider the case where the protocol terminated at the end

of Epoch 7. Clearly, D = Ri for some nonfaulty pi. Therefore, the value of Ri is a result

of some assignment Ri := U ′ (Epoch 6) and the condition in Epoch 6 guarantees that there

exist at least t + 1 processors which have accepted U ′ as their View to the leader’s value.

This means that at least one nonfaulty processor pj accepted U ′ and since the Views were

obtained using protocol Spread, it must be that |= Predj(U
′) (see Remark 1).

We now prove that if the preconditions hold (for every nonfaulty pi and pj, |= Predi(Vj)

and Vi �= ∅), then the protocol is well defined and that it terminates (i.e. there are no

deadlocks). First note that there cannot be deadlocks in Epochs 1-5 and in Epoch 7. In

all these Epochs the processors run the protocols Spread , A-cast, A-Election() and A-

Byzantine() which are deadlock free. We will show that there cannot be a deadlock in

Epoch 6.

Let NF denote the subset of all nonfaulty processors. Let pi be the the first nonfaulty

processor terminated Spread (in Epoch 1), by Lemma 7 there exists a subset P1 of NF , of

size ≥ t + 1, such that all members of P1 accepted the same 2t + 1 A-casts of initial values

from (the same) 2t + 1 processors. Let P2 denote this subset of 2t + 1 processors.

Let E denote the event where the leader chosen (in Epoch 2), pk, is in P2 ∩ NF . Note

that |P2 ∩ NF | ≥ t + 1. Thus, if the event E occurred, the leader pk is nonfaulty and at

least t + 1 nonfaulty processors accepted the A-cast of the initial value of the leader. Let

U denote the initial value of the leader. We will show that if E occurred then the protocol

terminates.

Assume that E occurred. Without loss of generality set P1 = {p1, . . . , pt+1}. According to

the protocol, in Epoch 3 every nonfaulty processor pg which accepted a non-null value from

pk, assigns Rg := U . Every other nonfaulty processor po assigns Ro to null. This means that

the nonfaulty processors start the A-Byzantine() of Epoch 3 with these two values alone, but

23

since protocol A-Byzantine() satisfies the property of Observation7, the only possibilities for

a nonfaulty processor’s local output (from A-Byzantine()) are ∅ and U . By our assumption

(that E occurred) U �= ∅ and satisfies all nonfaulty predicates and therefore, if U is the local

output of the nonfaulty processors (which obtained using A-Byzantine()) then the protocol

will terminate.

However, even if the event E occurred there is a possibility that no more than t + 1

nonfaulty processors start the A-Byzantine() of Epoch 3 with U , and therefore, an outcome

of ∅ is also possible. We now show that if this is the case, the computation performed during

Epochs 4-6 guarantees that all nonfaulty processors start the Byzantine Agreement of Epoch

7 with the value U . That is, assuming that E occurred we now prove that for any nonfaulty pi,

Ri is set to U in Epoch 6. Recall that since E occurred, the leader pk ∈ P2∩NF . Consider a

processor pl ∈ P1. pl accepted U from pk (via Spread in Epoch 1), and since protocol Spread

uses A-cast+ to distribute initial values, according to Lemma 5, for every member plj of

Relayl, 1 ≤ j ≤ 2t+1, there exists a subset Wlj of NF containing t+1 nonfaulty “witnesses”

each of which accepted a [“commit”,pk, U]-message (via A-cast) from plj . Every nonfaulty

processor is instructed to participate only in admissible A-Casts (of views). Therefore, all t+1

members of Wlj will not cooperate with A-casts of [“deflected”,U ′,·]-messages with U ′ �= U ,

whenever such A-casts are initiated by processors in Relayl. Therefore such messages cannot

be accepted (via A-cast) by any nonfaulty processors because the termination condition of

A-cast requires 2t + 1 participants (so even if t faulty processors support such A-casts the

avoidance of the t + 1 members of Wlj will prevent termination of such A-casts). Therefore

any nonfaulty pi can only assign Ri to U . On the other hand, among the members of Relayl

there are at least t + 1 nonfaulty processors which initiated an A-cast of a [“deflected”,U ,·]-
message, which will be accepted by all nonfaulty processors. Therefore, since in Epoch 6 pi

waits to accepts A-casts of 2t + 1 “deflect”-messages, at least one such A-cast must be from

a member of Wlj . This ensures that the “if” condition in Epoch 6 can be satisfied.

By inspection of the protocol it is clear that even if the event E did not occur, there will

be no deadlock.

Finally, we prove that protocol Select terminates in constant expected number of rounds.

Since A-Election() generates the each leader independently of previous iiterations, in every

iteration |P2∩NF | ≥ t+1. Therefore, E occurs with probability at least 1/3. Protocol Select

makes one call to Spread and two calls tp A-Cast which are both constant time protocols.

In addition, Select makes one call to A-Election and one call to A-Byzantine and both are

constant expected time protocols. Therefore, Protocol Select() terminates within constant

expected number of rounds.

24

3.3 Asynchronous IC Protocol

In this section we present our Asynchronous IC protocol. In this Protocol we still use the

basic idea of running multiple instances for each of the n agreements (as in the synchronous

case). However, in the asynchronous protocol we employ the selection protocol of Section 3.2.

We use protocol Select twice. The first use of Select is for synchronization and the second is

for selecting a unique and proper output vector.

Consider protocol Asynchronous IC in Figure 6. This protocol consists of 3 epochs. In

Epoch 1 the processors initiate concurrent runs of mN A-Byzantine() instances (m for each

class, as in the synchronous case). Immediately after they have one terminated run of A-

Byzantine() for each class they stop this Epoch. In Epoch 2 we employ protocol Select to

synchronize the processors on a round number in which each all nonfaulty processor have

computed appropriate representatives for each of the classes (see details below). In Epoch 3

we again employ protocol Select to choose one appropriate vector of final values.

Theorem 9 Let Select() be an asynchronous (n−1)/3-resilient constant expected time Selec-

tion protocol. For every N ≥ 1, Protocol Asynchronous IC produces N Byzantine Agreements

within a constant expected number of rounds and is (n − 1)/3-resilient.

Proof. We first prove that for every terminated run of Asynchronous IC, the following

hold: (i) R� is a round number in which every nonfaulty processor already computed a

proposal for the output vector. (ii) VP is a proper output vector (i.e. was properly computed

by every nonfaulty processor).

To prove (i) we argue as follows. R� is the output of protocol Select applied in Epoch

2. By definition, if the nonfaulty procesors start protocol Select while the precondition of

this protocol holds (i.e. all nonfaulty predicates are satisfied by all nonfaulty initial values),

then protocol Select generates a value which satisfies at least one nonfaulty predicate. Let us

prove first that the precondition hold. Consider Ri in Epoch 1. For a nonfaulty pi, Ri is the

minimum round number where at least one Byzantine agreement is achieved for each of the

n classes. Once this is achieved by one nonfaulty processor, say pi, the rest of the nonfaulty

processors achieve it after at most one round (recall property 1-Shift). Therefore, for all

nonfaulty pi and pj, |Ri − Rj| ≤ 1. This means that a nonfaulty predicate Predj(X) ≡ [X

is a round number and |X −R′
j| ≤ 1], of any nonfaulty pj is satisfied by any R′

k value of any

non-faulty pk. (Note that R′
i = Ri +2.) Therefore, the precondition of protocol Select holds.

Since R� is the outcome of Select, there exists a nonfaulty processor pi such that |=
Predi(R

�) (Predi() is the predicate of pi as defined in Epoch 2). This means that R� is a

round number and |R� − R′| ≤ 1 where R′ is local to pi and defined in Epoch 2. Therefore,

25

Common Inputs: n, t ≤ (n − 1)/3, N , m

Local Inputs for Processor pi: vi,1, . . . , vi,N

Local Outputs for Processor pi: di,1, . . . , di,N ∈ V

Epoch 1:

for 1 ≤ l ≤ m, for 1 ≤ j ≤ N

ul,j ← vi,j

for 1 ≤ l ≤ m, for 1 ≤ j ≤ N

run concurrently A-Byzantine(ul,j)

cr
l,j ← the local outputs of A-Byzantine(ul,j) in round r

c∗l,j ← ⋃
r{cr

l,j}
when for every 1 ≤ j ≤ N there exists 1 ≤ l ≤ logN such that c∗l,j �= ∅:

Ri ← the current round number

goto Epoch 2 (but continue every run of A-Byzantine concurrently).

Epoch 2:

R′
i ← Ri + 2

Predi(X) ← [X is a round number and |X − R′
i| ≤ 1]

run Select(R′, P redi(X)) and let R∗ denote the local output.

if the current round number is greater than or equal to R∗ + 2 then

terminate every run of A-Byzantine.

goto Epoch 3

else

continue every run of A-Byzantine

until round No. R∗ + 2 and goto Epoch 3

Epoch 3:

cl,j ← ⋃R∗
i=1{ci

l,j}, ĉl,j ← ⋃R∗+1
i=1 {ci

l,j}, ̂̂cl,j ← ⋃R∗+2
i=1 {ci

l,j} }
(Note that cl,j ⊆ ĉl,j ⊆ ̂̂cl,j .)

for every 1 ≤ j ≤ N

Sj ← {cl,j}m
l=1, Ŝj ← {ĉl,j}m

l=1,
̂̂
Sj ← {̂̂cl,j}m

l=1

for all 1 ≤ j ≤ N

pick a value clj ,j ∈ Sj

Vi ← 〈cl1,1, cl2,2, . . . , clN ,N 〉
Predi(X) ← [X =< c1, c2, . . . , cN > (i.e. X is an N -ary vector) and for every 1 ≤ j ≤ N , cj ∈ Sj ∪ Ŝj]

run Select(Vi, P redi(X)) and let VP denote the local output.

(i.e. VP = 〈b1, b2, . . . , bN 〉 for some bi.)

for all 1 ≤ j ≤ N di,j ← bj

return di,1, . . . , di,N

Figure 6: Protocol Asynchronous IC

26

since A-Byzantine() satisfies the 1-Shift property, it is guaranteed that every other nonfaulty

processor has computed a proper output vector until a round number not exceeding R′ − 1.

But R� ≥ R′ − 1 so (1) has been proved.

We now consider the application of protocol Select in Epoch 3. We first prove that the

precondition hold. The N components clj ,j of the vector Vi (computed by pi) are picked from

sets Sj, j = 1, . . . , N , which include results of Byzantine agreements up until round R�. We

already know that |R� −R′
i| ≤ 1, which implies that Ri +2−R� ≤ 1 or, in other words, that

R� ≥ Ri +1. Therefore all the clj ,j values picked by pi were computed by all other processors

(property 1-Shift) and the precondition holds.

Since VP is the outcome of protocol Select(), there exists some nonfaulty processor pi such

that |= Predi(VP). Hence, VP is an N-ary vector such that for every 1 ≤ j ≤ N , bj ∈ Sj ∪ Ŝj.

This means that VP was fully computed by pi until round R� + 1, but since A-Byzantine()

satisfies the 1-Shift property and since every other nonfaulty processor computed until round

number R� + 2, it is guaranteed that VP was fully computed by every nonfaulty processor.

This proves (ii).

Next we argue that Protocol Asynchronous IC terminates in constant expected time. By

claims (i) and (ii) above, and by the properties of protocol Select, both invocations of Select

terminate within expected constant number of rounds. The now proof easily follows from

Lemma 3.

Corollary 3 For an asynchronous system of n processors, Protocol Asynchrounous IC ap-

plied with N = n and m = log n solves asynchronous Interactive Consistency within constant

expected number of rounds and achieves optimal resiliency of (n − 1)/3.

4 Conclusions

We presented optimally-resilient IC protocols for both synchronous and asynchronous dis-

tributed systems. Both protocols terminate in constant expected number of rounds. We also

defined and constructed a new type of consensus protocol called “Selection”. A selection

protocol is stronger than a Byzantine agreement in the sense that it allows for agreements

on non-default values. This protocol can be of independent interest for coordination and

synchronization purposes.

A simple (but important) application of our protocols is a constant expected time simula-

tion of broadcast channels. If a processor p transmits a message m over a broadcast channel,

27

then every other nonfaulty processor receives m (and the identity of p). Using our protocols

it is trivial to simulate n concurrent transmissions over broadcast channels. One broadcast

is exactly equivalent to one Byzantine Agreement. The only necessary assumptions are that

the communication lines are private and that an appropriate bound on the number of faulty

processors holds.

Corollary 4 For any n and t ≤ (n−1)/3, a synchronous or asynchronous complete network

of n processors with private lines can simulate broadcast channels in constant expected time.

To the best of our knowledge this is the only known method to simulate broadcast chan-

nels in constant expected time, with high resiliency and with no cryptographic assumptions.

Acknowledgements

We thank the anonymous referees for their valuable comments that greatly improved the

content and presentation. We also wish to thank Ran Canetti and Juan Garay for helpful

discussions and comments.

References

[1] H. Attiya and J. Welch. Distributed Computing Fundamentals, Simulations, and Ad-

vanced Topics. McGraw-Hill, 1998.

[2] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in a constant

number of rounds of interaction. In PODC, pages 201–209, 1989.

[3] D. Beaver. Secure multi-party protocols and zero-knowledge proof systems tolerating a

faulty minority. J. of Cryptology, 4:75–122, 1991.

[4] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols. In

STOC, pages 503–513, 1990.

[5] M. Ben-Or. Fast asynchronous Byzantine agreement. In PODC, pages 149–151, 1985.

[6] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-

cryptographic fault-tolerant distributed computation. In STOC, pages 1–10, 1988.

[7] G. Bracha. An asynchronous (n − 1)/3-resilient consensus protocol. In PODC, pages

154–162, 1984.

28

[8] R. Canetti. Security and composition of multiparty cryptographic pro-

tocols. J. of Cryptology, 13(1):143–202, 1991. online version at

http://philby.ucsd.edu/cryptolib/1998/98-18.html.

[9] R. Canetti. Universally composable security: A new paradigm for cryptographic proto-

cols. In FOCS, 2001.

[10] R. Canetti and T. Rabin. Fast asynchronous Byzantine agreement with

optimal resilience. In STOC, pages 42–51, 1993. Updated version:

http://www.research.ibm.com/security/cr-ba.ps.

[11] D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure protocols.

In STOC, pages 11–19, 1988.

[12] B. Chor and C. Dwork. Randomization in Byzantine agreement. In S. Micali, editor,

Advances in Computing Research Vol. 5: Randomness and Computation, pages 443–497.

1989.

[13] P. Feldman. Optimal Algorithms for Byzantine Agreements. PhD thesis, MIT, 1988.

[14] P. Feldman and S. Micali. An optimal probabilistic protocol for synchronous Byzantine

agreement. SIAM Journal on Computing, 26(4):873–933, 1997. A preliminary version

of this paper appeared at STOC 1988.

[15] S. Micali and T. Rabin. Collective coin tossing without assumptions nor broadcasting.

In CRYPTO, pages 253–266, 1990.

[16] S. Micali and P. Rogaway. Secure computation. In CRYPTO, pages 392–404, 1991.

[17] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults.

Journal of the ACM, 27(2):191–205, 1980.

[18] R. Turpin and B.A. Coan. extending binary byzantine agreement to multivalued byzan-

tine agreement. Information Processing Letters, 18:73–76, 1984.

29

