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Abstract. Given two undirected trees T" and P, the Subtree Homeo-
morphism Problem is to find whether 7" has a subtree ¢ that can be
transformed into P by removing entire subtrees, as well as repeatedly
removing a degree-2 node and adding the edge joining its two neigh-
bors. In this paper we extend the Subtree Homeomorphism Problem to
a new optimization problem by enriching the subtree-comparison with
node-to-node similarity scores. The new problem, denoted ALSH (Ap-
proximate Labelled Subtree Homeomorphism) is to compute the home-
omorphic subtree of T' which also maximizes the overall node-to-node
resemblance. We describe an O(m?n/logm + mnlogn) algorithm for
solving ALSH on unordered, unrooted trees, where m and n are the
number of vertices in P and T, respectively. We also give an O(mn)
algorithm for rooted ordered trees.

1 Introduction

The matching of labelled tree patterns, as opposed to linear sequences (or
strings), has many important applications in areas such as bioinformatics, semist-
ructured databases, and linguistics. Examples include the comparison among
metabolic pathways, the study of alternative evolutionary trees (phylogenies),
processing queries against databases and documents represented in e.g. XML,
and many fundamental operations in the analysis of natural (and formal) lan-
guages. In all these scenarios, both the labels on the nodes as well as the structure
of the underlying trees play a major role in determining the similarity between
a pattern and the text in which it is to be found.

There are several, increasingly complex ways to model these kinds of prob-
lems. A starting point is the subtree isomorphism problem [15,16,23]: Given a
pattern tree P and a text tree T, find a subtree of T" which is isomorphic to P
(i.e. find if some subtree of T', that is identical in structure to P, can be ob-
tained by removing entire subtrees of T') or decide that there is no such tree.
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Fig. 1. Subtree homeomorphism. The Fig. 2. Approximate Labelled Subtree Home-

white nodes in the text are degree-2 omorphism. The node-label similarity scores

nodes that have been removed. Two are specified in table A, and D = —1. Two

subtrees in the text that are homeo- subtrees in the text that are homeomorphic

morphic to the pattern are circled by to the pattern are circled by the dashed lines.

the dashed lines. The left homeomorphic subtree has an LSH
score of 5, while the right one has an LSH
score of 12.

The subtree homeomorphism problem [3,20] is a variant of the former problem,
where degree 2 nodes can be deleted from the text tree (see Figure 1). The
constrained tree inclusion problem [26] is a variant of labelled subtree homeo-
morphism where label equality between pairs of aligned nodes in the compared
subtrees is required. Note that all the tree matching problems mentioned so far
have polynomial-time algorithms. The more advanced tree inclusion problem [14]
is that of locating the smallest subtrees of T" that include P, where a tree is in-
cluded in another tree if it can be obtained from the latter by deleting nodes.
Here, deleting a node v from a tree entails deleting all edges incident to v and
inserting edges connecting the parent of v with the children of v. Tree inclusion
on unordered trees is N P-complete [14]. Schlieder and Naumann [21] extended
the tree inclusion problem to an approximate tree embedding problem in order to
retrieve and rank search results using a tree-similarity measure whose semantics
are tailored to XML data. The complexity of their algorithm, which is based in
dynamic programming and processes the query tree in a bottom up fashion, is
exponential.

This paper addresses queries on labelled trees. The trees could be either
ordered or unordered, rooted or unrooted — depending on the application at
hand. The main point is, however, that even though the trees are labelled, label
equality is not required in a match. Instead, a node-to-node similarity measure
is used to rank the resemblance or distance between pairs of aligned nodes. This
extension is motivated by the aforementioned applications, where a more mean-
ingful match can be found if — in addition to the topological structure similarity
between subtrees — node-to-node resemblance is also taken into account. For
example, in bioinformatics, the similarity between metabolic pathways [17,22] is
based both on the resemblance of the elements constituting the pathways (e.g.
proteins) as well as on the likeness of their network structure (the former would



reflect closeness between proteins, based on either a BLAST sequence compar-
ison score or on functional homology, and the latter would be the topological
equivalent of multi-source unrooted trees [19]). A query that searches for a small
pathway fragment in a larger tree should take into account the topology similar-
ities (in the form of subtree homeomorphism) as well as the pairwise similarity
between proteins which make up the aligned subtree nodes. Another example
is when designing a semantic query language for semistructured databases that
are represented as XML documents [21]: here the node-to-node similarity score
may reflect content or tag resemblance, and the topological difference allows
flexibility in document structure matching [2]. Finally, in natural language pro-
cessing, trees are often used to represent sentences, where nodes are labelled by
words and sentential forms (or constituents); matching that takes into account
synonyms and elisions is very useful in order to detect semantically close phrases.

Thus, in this paper we address the challenge of extending labelled subtree
homeomorphism into a new optimization problem, by introducing node-to-node
similarity measures that are combined with the topological distance between the
pattern and text to produce a single, comprehensive score expressing how close
they are to each other.

Let A denote a predefined node-to-node similarity score table and D denote
a predefined (usually negative) score for deleting a node from a tree (Figure 2).
A mapping M[T1, T3] from T; to T is a partial one-to-one map from the nodes
of T to the nodes of T that preserves the ancestor relations of the nodes. We
define the following similarity measure for two homeomorphic trees.

Definition 1. Consider two labelled trees Ty and Ty, such that Ty is homeomor-
phic to Ty, and let M[T,Ty] denote a node-to-node, homeomorphism-preserving
mapping from Ty to Ty. The Labelled Subtree Homeomorphism Similarity
Score of M[Ty,Ts], denoted LSH (MIT},Tz]), is

LSH(MIT1, To])) =D x (|| - IT1) + > Afu,v]
(u,v)EM

Correspondingly,

Definition 2. The Approximate Labelled Subtree Homeomorphism
(ALSH) Problem is, given two undirected labelled trees P and T, and a scoring
table that specifies the similarity scores between the label of any node appearing
i T and the label of any node appearing in P, as well as a predefined node
deletion penalty, to find a homeomorphism-preserving mapping M[P,t| from P
to some subtree t of T, such that LSH(M|[P,t]) is mazimal.

In this paper we show how to compute optimal, bottom-up alignments between
P and every homeomorphic subtree ¢ of T', which maximize the LSH score be-
tween P and t. Our algorithms are based on the close relationship between sub-
tree homeomorphism and weighted assignments in bipartite graphs. The ALSH
problem is recursively translated into a collection of smaller ALSH problems,
which are solved using weighted assignment algorithms (Figure 3). (Simpler,



maximum bipartite perfect matching algorithms were applied in the algorithms
for exact subtree morphisms [3,9, 13,23, 26].)

Our approach yields an O(m?n/ log m+mnlogn) algorithm for solving ALSH
on unordered, unrooted trees, where m and n are the number of vertices in P
and T, respectively. Note that the time complexity of the exact subtree isomor-
phism/homeomorphism algorithms [23, 26], which do not take into account the
node-to-node scores, is O(m'®>n/log m). Thus, the enrichment of the model with
the node similarity information only increases the time complexity by half an
order. We also give an O(mn) algorithm for the problem on rooted ordered trees.

Also note that a related set of problems, where dynamic programming is
combined with weighted bipartite matching, is that of finding the maximum
agreement subtree and the maximum refinement subtree of a set of trees [12,
24]. Such algorithms utilize the special constraints imposed by the properties of
evolutionary trees (internal nodes contain less information than leaves, similarity
assumption allows for scaling, etc).

The rest of the paper is organized as follows. Section 2 includes weighted
bipartite matching preliminaries. In Section 3 we describe the basic O(m?n +
mnlogn) time ALSH algorithm for rooted unordered trees and show how to
extend it to unrooted unordered trees without increasing the time complexity.
These solutions are further improved in Section 4 to yield an O(m?n/logm +
mnlogn) solution for both rooted and unrooted unordered trees. In Section 5
we describe the O(mn) time ALSH algorithm for rooted ordered trees.

Note that due to lack of space, most proofs are omitted. The proofs will be
given in the journal paper.

2 Weighted Assignments and Min-Cost Max Flows

Definition 3. Let G = (V = X UY, E) be a bipartite graph with edge weights
w(x,y) for all edges (xz,y) € E, where x € X and y € Y. The Assignment
Problem is to compute a matching M, i.e. a list of monogamic pairs (v € X,y €
Y), such that the size of M is mazimum among all the matchings in G, and

Z w(x,y) is mazimum among all the matchings with mazimum size.
(zy)eM

Although researchers have developed several different algorithms for the assign-
ment problem [1], many of these algorithms share common features. The succes-
sive shortest path algorithm for the minimum cost max flow problem appears
to lie at the heart of many assignment algorithms [11]. The reduction from an
assignment problem to a minimum cost max flow problem is as follows. Let s,t
be two new vertices. Construct a graph G’ with vertex set V' U {s,t}, source s,
sink ¢, and capacity-one edges: an edge (s,x) of cost zero for every x € X, an
edge (y,t) of cost zero for every y € Y, and and edge (z,y) of cost —w(z,y)
for every (z,y) € E. An integral flow f on G’ defines a matching on G of size
|f| and weight —cost(f) given by the set of edges {x,y} such that (x,y) has
flow one. Conversely, a matching M on G defines a flow of value |M| and cost



Z —w(z,y). This means that we can solve a matching problem on G by
(z,y)eM
solving a flow problem on G'.

Edmonds and Karp’s algorithm [5] finds a minimum cost maximum flow
in G’ in O(EV1ogV) time. In each stage of this algorithm, Dijkstra’s algo-
rithm [4] is used to compute an augmentation path for the existing flow f. Each
run of Dijkstra’s algorithm is guaranteed to increase the size of M by 1, and
thus the algorithm requires at total of O(V') phases to find a maximum score
match. Fredman and Tarjan [7] developed a new heap implementation, called Fi-
bonacci heap, that improves the running time of Edmond and Karp’s algorithm
to O(VE + V2log V). The latter bound is the best available strongly polyno-
mial time bound (the running time is polynomially bounded in only V' and E,
independent of the edge costs) for solving the assignment problem.

Under the assumption that the input costs are integers in the range [-C, ..., C],
Gabow and Tarjan [8] used cost-scaling and blocking flow techniques to obtain
an O(VY/2Elog(VC)) time algorithm for the assignment problem. Two-phase
algorithms with the same running time appeared in [10,18]. The scaling algo-
rithms are conditioned by the similarity assumption (i.e. the assumption that
C = O(n¥) for some constant k) and have the integrality of cost function re-
striction.

The following lemma, which was first stated and proven in [11], will serve as
the basis for the proofs of Lemma 2 and Lemma 4.

Lemma 1 ([5,11,25]). A flow f has minimum cost iff its residual graph R
has no negative cost cycle.

3 Dynamic Programming Algorithms for ALSH

3.1 The Basic Algorithm for Rooted Unordered Trees

We use d(v) to denote the number of neighbors of a node v in an unrooted tree,
and ¢(v) to denote the number of children of a node v in a rooted tree.

Let T" = (Vp,Er,r) be the text tree which is rooted in r, and P o=
(Vp, Ep,r") be the pattern tree which is rooted in r’. Let pzl denote a sub-
tree of P™ which is rooted in node u of P", and t/ denote a subtree of T which
is rooted in node v of 1.

We define RScores[v € Vip,u € Vp] as follows.

Definition 4. For each node v € Vi and each node u € Vp, RScores[v,u] is the
mazimal LSH similarity score between a subtree p;, of P and a corresponding
homeomorphic subtree of t7,, if such exists. Otherwise, RScores[v,u] is —oo.

The first algorithm, denoted Algorithm 1, computes the values RScores|v,u]
recursively, in a postorder traversal of T". First, RScores[v,u] are computed for
all leaf nodes of T" and P". Next, RScores[v,u] are computed for each node
v € Vr and u € Vp, based on the values of the previously computed scores
for all children of v and w as follows. Let u be a node of P" with children
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Fig. 3. The work done by the first algorithm during the computation of RScores|[v, u].
The bipartite graph is constructed in order to compute the optimal weighted assignment
between the children of v and those of v. w;; marks the optimal LSH similarity score
for aligning the subtrees rooted at y; € T and x; € P.

T1,...,Te(y) and v be a node of T with children yi, ..., y.(). After computing
RScores|y;,x;] for ¢ = 1,...,¢c(u) and j = 1,...,¢c(v), a bipartite graph G is
constructed with bipartition X and Y, where X is the set of children of u, Y is
the set of children of v, and each node in X is connected to each node in Y. An
edge (z;,y;) in G is annotated with weight RScores[y;, z;| (Figure 3).

RScores[v,u] is then computed as the maximum between the following two
terms:

1. The node-to-node similarity value Afv, u], plus the sum of the weights of the
matched edges in the maximal assignment over G. Note that this term is
only computed if ¢(u) < ¢(v).

2. The weight RScores[y;,u] for the comparison of u and the best scoring child
y; of v, updated with the penalty for deleting v.

Upon completion, the optimal LSH similarity score, denoted best_score,
where best_score = m%;{ RScores[y;j, xm], is found, and every node y; € T with
=
RScoresly;, xm) = best_score is reported as a root of a subtree of 7' which bears
maximal similarity to P under the LSH measure.
Time Complexity Analysis.

Theorem 1.

1. Algorithm 1 computes the optimal ALSH solution for two rooted unordered
trees in O(m?n +mnlogn) time.

2. Under the similarity assumption, Algorithm 1 yields an O(m'®nlog(nC))
time complexity.

Proof. The time complexity analysis of Algorithm 1 is based in the following
observation.

Observation 1. Z c(u) =m—1, and Z c(v)=n—1.
v=1

u=1

Algorithm 1 computes a score once for each node pair (v € T,u € P). The
dominant part of this computation is spent in obtaining the weighted assignment



between a bipartite graph with ¢(v)+c¢(u) nodes and ¢(v) x ¢(u) edges. Therefore,
based on Fredman and Tarjan’s algorithm [7], each assignment computation
takes O(c(u)(c(u) x c¢(v) + c(v) log c(v))) = O(c(u)? x c(v) + e(u) x e(v) log c(v))
time.

Summing up the work spent on assignment computations over all node pairs,
we get

O(Z Z(C(u)Qc(v) + c(u)e(v) log e(v)) observation 1

Under the (similarity) assumption that all scores assigned to the edges of G
are integers in the range [—C,...,C], where C = O(nF) for some constant k,
Algorithm 1 can be modified to run in time O(m!-5nlog(nC)) by employing the
algorithm of Gabow and Tarjan [8] for weighted bipartite matching with scaling.

O

3.2 Extending the Algorithm to Unrooted Unordered Trees

Let T = (Vp, Er) and P = (Vp, Ep) be two unrooted trees. The ALSH be-
tween P and T could be computed in a naive manner as follows. Select an
arbitrary node r of T to get the rooted tree T". Next, for each u € P compute
rooted ALSH between P* and T™. This method will yield an O(m3n+m?2nlogn)
strongly-polynomial algorithm for ALSH on unrooted unordered trees, and an
O(m?®nlog(nC)) time algorithm under the similarity assumption with integral-
ity cost function restriction. In this section we show how to reduce these bounds
back to O(m?n+mnlogn) and O(m*>nlog(nC)) time, correspondingly, by uti-
lizing the decremental properties of the weighted assignment algorithm.

The second algorithm, denoted Algorithm 2, starts by selecting a vertex r
of T to be the designated root. T is then traversed in postorder, and each
internal vertex v € T" is compared with each vertex u € P. Let y1,...,y.) be
the children of v € T", and let x1,...,z4(,) be the neighbors of u € P. When
computing the score for the comparison of v and v we need to take into account
the fact that, since P is unrooted, each of the neighbors of u may eventually
serve as a parent of u in a considered mapping of a subtree of P, which is rooted
in u, with a homeomorphic subtree of t]. Suppose that node z;, which is a
neighbor of u, serves as the parent of u in one of these subtree alignments. Since
x; is the chosen parent, the children set of u includes all its neighbors but ;.
Therefore, the computation of the similarity score for v versus u requires the
consideration of the highest scoring weighted matching between the children of
v, and all neighbors of u except ;. Since each neighbor x; of u, i = 1,...,d(u),
is a potential parent of a subtree rooted in u, our algorithm will actually need
to compute a series of weighted assignments for the graphs G; = (X; UY, E;),
i=1,...,d(u), where Y consists of the children of v in T", while X; consists of



all neighbors of u except z;. Therefore, we define UScores[v € Vr,u € Vp,x; €
neighbors(u)] as follows.

Definition 5. For each vertexr v € T", each vertex uw € P, and every vertex
x; € neighbors(u), UScores[v,u,x;| is the mazimal LSH similarity score between
a subtree pit of P and a corresponding homeomorphic subtree of t},, if one exists.
Otherwise, UScores|v,u, x;] is set to —oo.

For the graphs G; defined above, the weight of an edge (z;,y;/) in G; is
UScores|y;, z;,u).

The computation of UScores|v, u, ;] is carried out as follows: UScores[v, u, ;]
is set to the maximum between the following two terms:

1. The node-to-node similarity value Afv, ], plus the sum of the weights of the
matched edges in the maximal weighted assignment over GG;. Note that this
term is computed only if d(u) — 1 < ¢(v).

2. The weight UScores|y;,u,x;] of the comparison of v and the best scoring
child y; of v, updated with the penalty for deleting v.

Since each node u € P is also a potential root for P in the sought alignment,
an additional entry UScores[v, u, ¢] is computed, which stores the maximal LSH
similarity score between a subtree of P* and a corresponding homeomorphic
subtree of ¢, if one exists. UScores[v,u, ¢] is computed from the weighted as-
signment for the graph G = (X UY, E), where X is the set of neighbors of
U.

Upon completion, the maximal LSH similarity score best_score =

max  UScores[v,u, ¢] is computed, and every node pair (j € T, € P) with
veVr,ueVp

UScores|j, i, ¢] = best_score is reported as a subtree ¢ of 7" which bears maxi-
mal similarity to tree P? under the LSH measure.
Time Complexity Analysis.

The time complexity bottleneck of Algorithm 2 is based in the need to compute,
for each comparison of a pair v € P and v € T, weighted assignments for a
series of bipartite graphs G; = (X; UY, E) for ¢ = 1,...,d(u). This, in contrast
to Algorithm 1, where only one weighted assignment is computed for each com-
parison of a pair w € P and v € T. However, the next lemma shows that the
decremental nature of weighted bipartite matching makes it possible to compute
assignments for the full series of G; graphs in the same time complexity as the
assignment computation for the single graph G. In the following, let k = |X|
and ¢ = |Y|. Note that k — 1 <.

Lemma 2. Let G be the bipartite graph constructed by Algorithm 2 for some pair
of vertices v € Vp and u € Vp. Given an optimal assignment of G, the optimal
assignment of G; can be computed via one Tun of a single-source shortest-path
computation on a subgraph of G.

Proof. The proof is based on the reduction of the assignment problem to min-cost
max-flow, as described in Section 2. We will show that after having computed the
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Fig. 4. The computation of the optimal assignment for X; UY . Note that, for the sake
of graphical clarity, some of the edges of the graph are not shown in the figure. (A)
The residual graph R for flow f. The dashed lines denote the backward edges and the
solid lines denote the forward edges. The white circle denotes vertex x; and the lined
circle denotes its matched neighbor y;. (B) The residual graph R’ received from R by
removing x; and its adjacent edges, as well as reversing the flow on edge (s,y;). (C)
The augmentation path p in R’ is marked by grey edges. (D) The negative cost cycle
¢ is marked by curves. Edges [a,b,c,g] correspond to the “correction path” p, edges
[g,d,e,f] correspond to the negative cost cycle ¢, and edges [a,b,c,d,e,f] mark the path
p’ with a cost which is less then that of p.

min-cost max-flow of G’, which defines the optimal assignment for G, the optimal
assignment for G; can be obtained via one more augmenting path computation.

Let f denote the minimum cost maximum flow on G, defining the the optimal
weighted assignment M, and let R denote the residual graph for f (Figure 4.A).

Since f is optimal, by Lemma 1, there are no negative cost cycles in R.
Also, since ¢ > k, |[M| = k. Let y; be the matched neighbor of x; in M, i.e.,
(xi,9;) € M. Let M’ denote the matching M\ (x;, y;), i.e. the matching obtained
by removing the pair (x;,y;) from M. We say that y; is “newly widowed” in M.
Clearly, |M'| = k — 1. Let f’ be the flow defined by M’. Let G” denote the
subgraph of G’ obtained by removing vertex z; and all edges adjacent to z; in
G'. Let R’ be the “decremented” residual subgraph of R, obtained by removing
vertex x; and all edges adjacent to x; in R, as well as cancelling the flow on edge
(s,y;) in R. (Figure 4.B). Our objective is to compute a min-cost max-flow (of
value k — 1) of G”, which will correspondingly define the optimal assignment of
size k — 1 on G;.



Clearly, the value of f’ is k — 1. But is f’ min-cost? By Lemma 1, if there are
no negative cost cycles in R’, then f’ is a min-cost flow among all k — 1-valued
flows in G”.

Otherwise, there are one or more negative cost cycles in R’. Each one of these
negative cost cycles in R’ must begin with edge (s, y;), since this edge is the only
edge of R’ which did not exist in R, and R had no negative cost cycles.

Among all such negative cost cycles in R', all of which start with edge (s, y;),
we wish to find the one which contributes the most to decrementing the value
of f’. Therefore, let p denote the “correction path” for R’, defined as the
the min-cost path in R’ among all paths which originate in s, pass through
the newly widowed vertex y; and end back in s (Figure 4.C). Clearly, p can
not start from some other edge than (s,y;) since all £ — k vertices in Y which
were unmatched in M are “out of the game” and will remain unmatched in the
optimal assignment of size |[M|— 1 on G;. Otherwise, the assumed optimality of
M would be contradicted.

We claim that:

1. If p has negative total cost, then M’ is not optimal.

2. If M’ is not optimal, then p is the optimal “correction path” for R’. That is,
the flow obtained by pushing one unit of flow in R’ from s through 7; and
back to s via path p, is the minimal cost maximum value flow for network
graph G and defines, respectively, the optimal assignment for G;.

The above claims are proven as follows.

1. This is immediate from Lemma 1, since p is by definition a cycle in R'.

2. Let f” be obtained from f’ by correcting along p, and let R” denote the

residual graph for flow f”. We will prove that f” is min-cost in G”, by
proving that there are no negative cost cycles in R”. Suppose there was
some negative cost cycle ¢ in R”. Since R had no negative cost cycles, and
the only new edge (s,y;) € R’ has been saturated by p in R” (therefore
all previous cycles are broken in R"), we know that ¢ has at least one edge
which is the reversal of an edge in p. Therefore, cycle ¢ consists of edges in
R’ and one or more edges whose reversals are on p. Therefore, p and ¢ share
at least one vertex.
Let p® ¢ be the set of edges on p or on ¢ except for those occurring on p and
reversed on ¢. The cost of p @ ¢ is cost(p) + cost(c), since the © operation
has removed pairs of edges and their reversals (the score is negated in the
reversal) in pUec. Since ¢ is a negative cost cycle, cost(p) + cost(c) < cost(p).
Furthermore, p @ ¢ can be partitioned into a path p’ originating in s, going
through y; and ending in s, plus a collection of cycles. (Note that none of
these cycles includes edge (s, y;), since this edge is already occupied by p’).
Clearly, all the cycles must have nonnegative cost since they consist of edges
only from R’ which has no negative cost cycles by Lemma 1. Thus path p’
is a “correction path” of cost less than p (Figure 4.D). This contradiction
implies the lemma.



Note that the above proof assumes k < ¢, in which case |M| = k. However, the
special case k = £ + 1 can be easily handled by adding a dummy vertex to Y
and connecting it by edges to all the vertices in X. The weight of these edges
should be set to NV for some very large number V. a

Lemma 3.

1. Computing the weighted assignments for the bipartite graphs G1, ..., Gk can
be done in O(k* + kllog?) time.

2. Under the similarity assumption, computing the weighted assignments for
the bipartite graphs G1, ..., Gy, can be done in O(k'-%¢log(¢C)) time [12].

Theorem 2.

1. Algorithm 2 computes the optimal ALSH solution for two unrooted unordered
trees in O(m?n + mnlogn) time.

2. Under the similarity assumption, Algorithm 2 yields an O(m'®nlog(nC))
time complexity.

Proof. We use the following simple observation:
m

Observation 2. The sum of vertex degrees in an unrooted tree P is Z d(u) =
u=1

2m — 2.

Algorithm 2 computes a score for each node pair (v € T,u € P). During this
procedure, the algorithm computes weighted assignments of several bipartite
graphs. Due to the decremental relationship between these graphs, it is shown
in Lemma 3 that computing the maximal assignment for all graphs in the series
can be done in the same time bound taken by computing a single assignment.
This computation, which is the dominant part of the procedure’s time, can be
done in O(d(u)?c(v) + d(u)c(v)log ¢(v)) time. Therefore, the total complexity is

O( (d(u)Qc(U)) + d(u)e(v) log ¢(v)) observation 1

NE
M:

1

Il
_
IS
Il

u

O(Y d(u)?n + d(u)nlogn) obseryation 2 O(m*n + mnlogn).

hE

Il
-

u

Under the (similarity) assumption that all scores assigned to the edges of G are
integers in the range [~C,...,C], where C = O(n*) for some constant k, the
algorithm can be modified to run in time O(m!®nlog(nC)) by employing the
algorithm of Gabow and Tarjan [8] for weighted bipartite matching with scaling
and [12] for cavity matching. O

Note that the first term of the sum O(m?n + mnlogn) dominates the time
complexity of Algorithm 2, since the second term only takes over when m < log n.
Therefore, in the next section we will show how to reduce the time complexity
of the first, dominant term in the time complexity of Algorithm 2.



4 A More Efficient ALSH Algorithm for Unordered Trees

In this section we show how the dominant term in the time complexity of the
algorithms described in the previous section can be reduced by a logm factor,
assuming a constant-sized label alphabet. We will use the previous algorithm
but solve the maximum matching problems more efficiently by employing the
notion of clique partition of a bipartite graph [6,23]. The modified algorithm,
denoted Algorithm 3, is the same as Algorithm 2 with the exception that, in
step 12, we solve the assignment problem differently. Let v denote some vertex
in T" whose children are Y = y1,...,yc(») and let u denote a vertex in P whose
neighbors are X = z1,...,74(,). We now attempt to compute the Assignment
of G = (X UY,E). We will partition the edges of G into complete bipartite
graphs C1,Ca, ..., Cepusters, - Let Key(z;) be a vector containing the weights of
the edges (x;,41), . - ., (zi, Ye(v))- We do the partition in the following way: First,
we sort the vertices of X in lexicographic order where the key of a vertex x is
Key(z). Afterwards, we split X into sets of equal keys X!, X2, ..., Xclustersu
(i.e., for any two vertices z,2’ € X;, any edge (x,y;) has the same weight as
edge (2',y;) for all vertices y; € Y).

Now, for 1 < i < clusters, we set C; to be the subgraph induced by the
vertices of X* and all their neighbors in Y. We now follow the method of [6, 23]
and build a network G* whose vertices are V* = X UY U{cq,. .., Celusters, s S; t}-
The edges are E* = E1UE,UEs where By = {[s, ;] : ; € X }U{[y;, t] : yv; € Y},
Ey = {[z;,¢5] : § < clusters,,xz; € C;}, and E3 = {[¢j,y:] : § < clusters, }. All
edges have capacity 1. Edges from sets E; and FE, are assigned a cost of zero.
An edge of type E3 from c; to y; is assigned a cost which is identical to the cost
of edge (x,y;) where x € X is any vertex belonging to the set C;. The source is
s and the sink is t. We find a min-cost max flow f* in G* using Fredman and
Tarjan’s algorithm, and construct from this flow the assignment in G.

Lemma 4. A min-cost maz flow in f* corresponds directly to a min-cost mazx

flow in f.

We denote by D(u) the number of distinct trees in the forest P

uy

u
P

Lemma 5. The assignment between uw € P and v € T can be computed in
O(d(u) (D(u)c(v) + ¢(v)logc(v)) ) time.

Time Complexity Analysis.

Algorithm 3 activates procedure ComputeScoresForTextNode once for each
node pair (v € T, u € P). The dominant part of this procedure’s work is spent in
computing the weighted assignment between a bipartite graph with ¢(v) + d(u)
nodes and ¢(v) x d(u) edges.

Therefore, based on Lemma 5, the total work spent on assignment computa-
tions is

O(Z Z(d(u)(clustersu % c(v)) + c(v) log (v))) OPereation 1

u=1v=1



O(Z d(u) x clusters, x n+ d(u)nlogn) obseryation 2
=1

S

O(n Z d(u) D(u) + mnlogn).

u=1

m

We will now turn to bound the summation O(Z d(u) D(u)). We start with
u=1

next lemma, which sets an asymptotically tight bound on the number of distinct

labelled rooted trees in a forest of n vertices, denoted f(n).

Lemma 6. Assuming constant label alphabet, f(n) = O(n/logn).

Lemma 7. Z d(u) D(u) = O(m?/logm).

u=1
We have thus proved the following theorem.

Theorem 3. Algorithm 3 computes the optimal ALSH solution for two unrooted
unordered trees in O(m?n/logm + mnlogn) time.

5 Solving ALSH on Ordered Rooted Trees

A simplified version of the first algorithm, denoted Algorithm 4, can be used to
solve the ALSH problem on ordered rooted trees. The simplification is based on
the fact that the assignment problems now turn into maximum weighted match-
ing problems on ordered bipartite graphs, where no two edges are allowed to
cross. (We refer the reader to [26] for a discussion of non-crossing plain bipartite
matching in the context of exact ordered tree homeomorphism.) Also note that,
in the context of our ALSH solutions, we actually apply a rectangular case of the
perfect assignment problem on G = (X UY, E), i.e. | X| < |Y| and all nodes in X
must eventually be paired with some node in Y. Therefore, the assignment com-
putation reduces to the Approzimate Weighted Episode Matching optimization
problem, as defined below.

Definition 6. The Approximate Weighted Episode Matching Problem:
Given pattern string X, a source string Y, and a character-to-character similar-
ity table A Xx, Xy], find among all | X |-sized subsequences of Y the subsequence
|X]
Q which is most similar to X, that is, the sum Z AlQ;, X;] is maximized.
i=1

Lemma 8. The highest-scoring approzimate episode occurrence of a pattern X
of size k characters in a source string Y of size £ characters can be computed in

O(k x £) time.
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Fig. 5. Approximate Weighted Episode Matching Calculation.

Proof. This can be achieved by applying the classical dynamic programming
string alignment algorithm to a (k+ 1 rows by £+ 1 columns) dynamic program-
ming graph (see Figure 5). All horizontal edges in the graph, corresponding to
character deletions from Y, are assigned a score of zero. All vertical edges in
the graph, corresponding to character deletions from X, are assigned a score of
—o0. A diagonal edge leading into vertex (z;,y;) corresponds to the string-edit
operation of substituting the ith character of X with the jth character of Y,
and is therefore assigned the score A, j]. O

Time Complexity Analysis.

Theorem 4. ALSH of two rooted ordered trees can be computed in O(mn) time.

Proof. Algorithm 4 computes the assignment once for each node pair (v € T,u €
P). In this section we showed that, for rooted unordered trees, the dominant work
of the assignment computation can be narrowed down to O(c(v) x c(u)) time.
Therefore, the total time complexity is:

Z Z O(C(U) « C(U)) obser\gtion 1 Z O(m % C(’U)) obser\gtion 1 O(m % n) 0
v=1

v=1u=1
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