
Sorting by Length-Weighted Reversals:
Dealing with Signs and Circularity

Firas Swidan1, Michael A. Bender2?, Dongdong Ge2, Simai He2, Haodong Hu2,
and Ron Y. Pinter1??

1 Department of Computer Science,
Technion – Israel Institute of Technology, Haifa 32000, Israel.

{firas,pinter}@cs.technion.ac.il
2 Department of Computer Science,

SUNY Stony Brook, Stony Brook, NY 11794-4400, USA.
{bender,dge,simaihe,huhd}@cs.sunysb.edu

Abstract. We consider the problem of sorting linear and circular per-
mutations and 0/1 sequences by reversals in a length-sensitive cost model.
We extend the results on sorting by length-weighted reversals in two di-
rections: we consider the signed case for linear sequences and also the
signed and unsigned cases for circular sequences. We give lower and upper
bounds as well as guaranteed approximation ratios for these three cases.
The main result in this paper is an optimal polynomial-time algorithm
for sorting circular 0/1 sequences when the cost function is additive.

1 Introduction

Sorting by reversal (SBR) is of key importance in the study of genome rearrange-
ment. To date, most of the algorithmic work on this problem applies to linear
sequences (permutations or strings), and assumes the näıve unit-cost model.
This model corresponds to a simple evolutionary model in which inversion mu-
tations of any length are considered equally likely [1]; however, the mechanics of
genome-rearrangement events (both inversions and other less ubiquitous trans-
formations) suggest that the probabilities of reversals are dependent on fragment
length.

Recently, a length-sensitive model was introduced [2, 3], in which the cost of
a reversal is a function of the length of the reversed sequence and the total cost
is the sum of the costs of the individual reversals. Several nontrivial lower and
upper bounds have been derived for the problem of SBR under this cost model.
However, these results pertain only to the unsigned version of the problem,
where the direction of the individual elements does not matter (as opposed to
the signed version); in the study of genome rearrangement, the direction of the

? Supported in part by NSF Grants EIA-0112849, CCR-0208670, HRL Laboratories,
and Sandia National Laboratories.

?? Supported in part by the Bar-Nir Bergreen Software Technology Center of Excel-
lence.

elements is often important, since each element represents a whole gene (or a
portion thereof) whose direction has significance. Furthermore, many interesting
genomes are circular ; these include bacterial, mitochondrial, and chloroplast
genomes, which all play an important role in studies of comparative genomics.

In this paper we extend the recent work for the length-sensitive model on
linear sequences in which the cost of reversing a subsequence of length ` is
f(`) = `α (where α ≥ 0). We consider both permutations as well as 0/1 sequences
representing the extreme cases of no repetitions at all among the elements on one
hand, and as many repetitions as makes sense on the other hand. The elements
are arranged in both linear and circular fashion, and we consider both the signed
and unsigned cases.

Note that in general circularity offers more opportunities for lowering the
optimal cost to sort a given sequence by reversals, and at the same time circu-
larity presents challenges to providing efficient solutions. A non-unit cost model
exacerbates the problems even farther. A sequence that exemplifies this distinc-
tion is 10n/2−11n/2−10. One can sort the sequence into 0n/21n/2 with 2 reversals.
Under a length-sensitive model with α = 1 (i.e., the reversal cost is identical to
the length of the sequence) the overall cost is 2n− 2. In the circular case, where
we adjoin the two ends of the sequence to form a circular arrangement, 1 reversal
operation is enough to sort the sequence; its cost in the length sensitive model
is 2. Thus, whereas the ratio between the costs of the two optimal solutions in
the unit-cost model is 2, in the length-sensitive model it is Θ(n). Consequently,
the treatment of circular sequences requires more care than the linear case.

Notice that the following relationships between the costs of the four sorting
cases hold:

unsigned circular ≤ unsigned linear ≤ signed linear . (1)

unsigned circular ≤ signed circular ≤ signed linear . (2)

A summary of our results appears in Tables 1 and 2; note that the lower
and upper bounds for the linear, unsigned case were extended verbatim from [3],
whereas the approximation ratios vary somewhat among the different cases.

Table 1. Lower and upper bounds for SBR of signed or unsigned and linear or circular
0/1 sequences and permutations.

α Value Lower Bounds Upper Bounds
Permutations 0/1’s

0 ≤ α < 1 Ω(n) O(n lg n) Θ(n)

α = 1 Ω(n lg n) O(n lg2 n) Θ(n lg n)

1 < α < 2 Ω(nα) Θ(nα) Θ(nα)

α ≥ 2 Ω(n2) Θ(n2) Θ(n2)

Table 2. Approximation ratios for SBR of signed linear as well as signed and unsigned
circular 0/1 sequences and permutations.

α Value Signed Linear Unsigned Circular Signed Circular
Permutations 0/1’s Permutations 0/1’s Permutations 0/1’s

0 ≤ α < 1 O(1) O(1) O(1)

α = 1 O(lg n) 3 O(lg n) 1 O(lg n) 3

1 < α < 2 O(lg n) O(1)

α ≥ 2 O(1) O(1) O(1) O(1) O(1) O(1)

Considerable research has been reported on the algorithmics of SBR (mostly
signed) for linear sequences in the unit-cost model, see e.g. [4, 5]. Recently, sev-
eral papers have addressed the issues of circularity and duplication, most notably
Chen and Skiena [6] who deal with fixed-length reversals to sort both linear and
circular permutations, Hartman [7] who deals with sorting by transpositions
(which are much less common than reversals) on a circle, and Christie and Irv-
ing [8] who look at sorting (essentially) 0/1 linear sequences by both reversals
and transpositions. None of these results, however, pertain to the length-sensitive
model.

The rest of this paper is organized as follows. In Sect. 2 we provide algorithms
for sorting 0/1 sequences, in Sect. 3 we deal with sorting circular permutations,
and in Sect. 4 we show how to handle signed permutations in our length-sensitive
model. Finally, in Sect. 5 we give sorting bounds for permutations and 0/1
sequences when inputs are signed or unsigned and circular or linear.

2 Exact and Approximation Algorithms for Sorting 0/1
Sequences

In this section we give exact and approximation algorithms for sorting linear
signed as well as circular singed and unsigned 0/1 sequences. We first introduce
approximation algorithms when 0 ≤ α < 1. We then give an exact algorithm
to sort unsigned circular 0/1 sequences when α = 1. Finally, we introduce a
reduction showing that the signed case can be approximated using the unsigned
case when α ≥ 1.

2.1 Approximation Algorithms for 0 ≤ α < 1

We now give O (1) approximation algorithms for sorting linear signed as well as
circular signed and unsigned sequences. The results are proved using potential
function arguments.

Sorting Unsigned Circular Sequences. Given a circular sequence S, denote
the length of the 0 and 1 blocks contained in S by z1, . . . , zk and w1, . . . , wk

respectively. Let Z = max1≤i≤k{zi} and W = max1≤i≤k{wi}. We define the
potential function P (S) as follows:

P (S) =
k∑

i=1

(zα
i + wα

i)− Zα −Wα .

Lemma 1. A reversal ρ of length r acting on a circular sequence S increases the
value of the potential function P (S) by at most 4rα, that is, P (S·ρ)−P (S) ≤ 4rα.

Proof. The proof is by case analysis: since a reversal can cut two blocks at most
(the blocks at either edge of the reversal), a reversal increases the value of the
term

∑k
i=1(z

α
i +wα

i) by at most 2rα. In addition, by similar reasoning, the value
of either Zα or Wα can decrease by at most rα.

ut

Denote S′ = S ·ρ. Notice that S = S′ ·ρ−1. Therefore, the reversal ρ decreases
the potential value by the same amount that ρ−1 increases it. Thus, by applying
Lemma 1 on the inverse reversal, we get a lower bound on the decrease of the
potential value.

Corollary 1. A reversal ρ of length r acting on a circular sequence S decreases
the value of the potential function P (S) by at most 4rα, that is, P (S ·ρ)−P (S) ≥
−4rα.

Because the cost of a reversal of length r is rα, and the value of P (·) equals
0 for a sorted sequence, we obtain the following lower bound.

Lemma 2. The function V (S) = 1
4P (S) is a lower bound for sorting an un-

signed circular sequence S.

Proof. The proof is by induction on the number of reversals in an optimal solu-
tion.

Let m denote the number of reversals in an optimal sorting series. We prove
that if a sorting solution uses exactly m reversals, then its cost is at least V (S).

Base case: when m = 0, the sequence is already sorted. Induction step:
suppose for all m ≤ k the claim holds. Consider a 0/1 sequence S having an
optimal sorting series of length m = k + 1. Denote the first reversal by ρ and
let r be its length. The reversal ρ changes the sequence S to S′, which can be
optimally sorted by k reversals. Applying the induction assumption on S′, we get
that V (S′) is a lower bound for sorting S′. By Corollary 1, P (S′)+4rα ≥ P (S).
By the definition of V (·) we get: V (S′) + rα ≥ V (S). Therefore:

opt(S) = opt(S′) + rα ≥ V (S′) + rα ≥ V (S) .

as needed.
ut

Lemma 2 motivates sorting a circular 0/1 sequence by fixing its two maximal
blocks Z and W , and linearly sorting the two subsequences between them. The
algorithm circularImprovedDC realizes this approach. Given a circular sequence
S and two block indices i and j, consider the subsequence of blocks between i and
j, counter clockwise, excluding the blocks i and j. If the subsequence starts with a
1, rename the 0’s and 1’s and define S(i, j) to be the resulting subsequence.Define
S(j, i) similarly. In the following we use the algorithm improvedDC, introduced
in [3], for sorting linear 0/1 sequences.

Algorithm 1 circularImprovedDC(S)
1: Let zi0 = Z and wj0 = W
2: Define S1 = S(i0, j0) and S2 = S(j0, i0)
3: s1 ← improvedDC(S1)
4: s2 ← improvedDC(S2)
5: Output s1 + s2

Theorem 1. The algorithm circularImprovedDC has an approximation ratio of
O(1).

Sorting Linear and Circular Signed Sequences. Consider a signed 0/1
sequence (linear or circular). Define a block in the sequence to be a contiguous
segment of 0’s (or 1’s) having the same sign. Notice that there are four kinds of
blocks in a signed 0/1 sequence.

Represent the 0/1 sequence as a sequence of blocks b1, . . . , bm. Consider the
potential function V1(S) = 1

2

∑m
i=1 bα

i for linear sequences S and define V2(T) as
in Lemma 2 for circular sequences T .

Lemma 3. The potentials V1(S) and V2(T) are lower bounds on the cost of
sorting linear and circular signed sequences respectively.

Given a signed sequence S, let unsign(S) represent the sequence without the
signs. The algorithm signedImprovedDC sorts signed linear sequences based on
improvedDC.

Algorithm 2 signedImprovedDC(S)
1: U ← unsign(S)
2: u← impovedDC(U)
3: Mimic the reversals used to sort U on S. Denote the resulting sequence by S′

4: Reverse elements of S′ with a negative sign. Let s be the cost of this step
5: Output s + u

To sort circular signed sequences we modify the algorithm circularImprovedDC
in a similar way. We refer to the modified algorithm as signedCircularImprovedDC.

Theorem 2. The algorithms signedImprovedDC and signedCircularImprovedDC
are O(1) approximation algorithms.

2.2 Optimal Algorithm for α = 1

In this section we give a polynomial-time algorithm for sorting circular 0/1
sequences with additive cost functions (α = 1). The sorting algorithm is based
on dynamic programming. We give enough properties to constrain the set of
candidate solutions, so that the optimal solution can be found in polynomial
time. This approach was used in [3] to sort linear 0/1 sequences.

We first describe the three properties, “useless”, “cutting” and “complex.”
The first two properties can be proved using the same techniques as in [3]. The
main contribution of this part is in proving the third property, which is the most
critical in establishing the optimality of the algorithm. Its proof is substantially
different from the linear case, reflecting the essential divergence caused by the
circularity. This is explained in detail below after we review some preliminaries.

Consider the two extreme blocks in a reversal. If the values of these blocks
are identical, that is both equal 0 or 1, we call the reversal useless; if one of
these two blocks is contained in a bigger block, we call the reversal cutting. If
the reversal affects more than two blocks, we call the reversal complex. We call
a reversal that is not complex simple. We can show that there are no useless
and cutting reversals in a circular optimal solution. As mentioned earlier, the
proof follows the same lines as in [3]. Roughly speaking, the same techniques
apply because these proofs are “local,” involving changes of reversals where the
changes affect a single block of 0s or 1s (even though the reversal is longer). This
explanation is elaborated below.

In contrast, the proof of the third property for linear sequences introduced
in [3] depends heavily on the linearity and does not apply to circular sequences. In
the proof by contradiction, one considers the last complex reversal. The changes
that are introduced affect the two extreme blocks that the reversal contained. In
the case of linear sequences, these blocks are far apart and one can subsequently
make changes independently to the reversals involving these blocks. This prop-
erty is not true for circular sequences. Specifically, reversals that involve one
extreme block may also affect the other, because of “wrap-around”.

In the following, all the sequences are circular unless mentioned otherwise.
Given a reversal series ρ1, . . . , ρm acting on a 0/1 sequence S = s1, . . . , sq,

where si ∈ {0, 1}, denote the number of reversals in which element si participates
by N(si). Call N(si) the reversal count of si.

When a subsequence si, . . . , sj of S is never cut by a reversal series ρ1, . . . , ρm,
we denote the number of reversals in which the subsequence takes part by
N(si, . . . , sj).

We show that for additive cost functions no optimal reversal series contains
useless or cutting reversals, and there exists an optimal reversal series containing
no complex reversals. Equation (3), relating the reversal counts to the reversal

series cost is useful for the proofs.

m∑
i=1

|ρi| =
q∑

j=1

N(sj) . (3)

The proofs of useless and cutting, appearing in [3], hold for the circular case.

Lemma 4. A reversal series containing a useless reversal cannot be optimal.

Lemma 5. A reversal series containing a cutting reversal cannot be optimal.

The following definitions are needed to prove that an optimal reversal series
containing no complex reversals exists. Given a reversal ρ affecting a circular
0/1 sequence S, notice that we can cut S, making it linear, without cutting
the reversal. Such a linearization is done in a counter clockwise direction. This
linearization is implicitly used throughout the section.

We represent a 0/1 sequence 1w1 , . . . , 0w2` by the lengths of each block, that
is we let w = w1, . . . , w2` denote a 0/1 sequence. We refer to w as a weighted
sequence. A subsequence of w, sg = wi, . . . , wj or for short (i, j), is called a
segment of w. Let sgk = wik

, . . . , wjk
for k ∈ {1, 2} be two segments of w. We

say that sg1 is a sub-segment of sg2, or contained in sg2, if i2 ≤ i1 < j1 ≤ j2.
We denote a reversal acting on a segment (i, j) of w by ρ (i, j). Let w =

w1, . . . , w2` be a weighted sequence, and let ρ (i, j) be a reversal acting on it. If
i ≡ j + 1(mod2), or for short i ≡ j + 1, we say that ρ unifies wi with wj+1, and
wj with wi−1. The reversal ρ is called a unifying reversal. In addition, we say
that block vi−1 of v = w · ρ = v1, . . . , v2`−2 contains blocks wi−1 and wj of w.
Similarly we say that vj−1 of v contains blocks wj+1 and wi of w.

A reversal series ρ1, . . . , ρm acting on w separates a segment sg of w, if
ρ1, . . . , ρm unifies all the 0 and 1 blocks of sg. If sg = w then ρ1, . . . , ρm sorts w.

In the sorting process the essence of a reversal is not directly connected to
the coordinates (i, j) that define the reversal, but is designated by the blocks
that the reversal affects. This essence plays a crucial rule when we try to define
commutative reversals.

Given a reversal ρ acting on w and a reversal η acting on w · ρ, we say that
η commutes with ρ if two reversals η′ and ρ′ exist such that w · ρ · η = w · η′ · ρ′,
where η′ and ρ′ affect the same blocks of w that η and ρ affected respectively
(in the following we drop the primes).

One can verify that the following proposition holds.

Proposition 1. Let w be a weighted sequence, ρ be a reversal acting on it, and
η be a reversal acting on w · ρ. The three following conditions are equivalent:

1. The reversal η commutes with ρ.
2. The blocks that η affects in w · ρ are contiguous in w.
3. The segments that ρ and η affect are either contained one in another or

disjoint.

Given a weighted sequence w and a minimum sorting series ρ1, . . . , ρm, define
wj = w · ρ1 · · · ρj . Let ρj be the greatest index complex reversal and s the
segment that ρj affects. Denote by s̄ the rest of the sequence. Let ρk for k > j
be the smallest index reversal such that s is separated in wk. Consider msg, the
maximal segment that contains s and is separated by ρj , . . . , ρk. If msg 6= w, the
circularity of w is not used in the separation of msg. Therefore, we can consider
msg as a linear 0/1 sequence, and ρj as a complex reversal used through the
separation of a linear 0/1 sequence. Under these assumptions, [3] proved that
msg can be separated optimally without the use of complex reversals. Therefore,
without loss of generality, we assume that msg = w. That is, s is separated only
when w is sorted. The following lemmas characterize the reversals performed
after ρj .

Lemma 6. Let w, j, ρj , w
j , s, and s̄ be as above. Let ρk for k > j be a reversal

that does not commute with ρj. Then ρk affects at least one block that contains
mixed elements from s and s̄. In addition, all the blocks that ρk affects become
part of a mixed block.

Lemma 7. Let w, j, ρj , w
j , s, and s̄ be as in Lemma 6. Let ρk for k > j be the

smallest index reversal that commutes with ρj. Then ρk commutes with all the
reversals ρq for k > q > j.

Corollary 2. Let w, j, ρj , w
j , s, and s̄ be as in Lemma 7. We can rearrange the

reversal series so that the reversals ρk for k > j do not commute with ρj.

The reversals ρk for k > j are simple reversals and by Corollary 2 do not
commute with ρj .

The following lemmas characterize the sorting process under simple reversals.
They are used for proving that the reversal series cannot be optimal if ρj remains
complex after performing the rearrangement described in Corollary 2, and for
calculating the optimal cost in polynomial time.

Given a weighted sequence w = w1, . . . , w2` and a reversal series ρ1, . . . , ρm

containing no cutting reversals, define ci to be the number of reversals in which
wi takes part, i.e. ci = N (wi). Notice that ci is well defined, since ρ1, . . . , ρm

contains no cutting reversals.

Lemma 8. Let w = w1, . . . , w2` be a weighted sequence and let ρ1, . . . , ρm be a
sorting series having no useless, no cutting, and no complex reversals. Denote
wk = w · ρ1 · · · ρk, and let w0 = w. Then each block of wk contains a block of w
that takes part during ρ1, . . . , ρk in zero reversals.

Proof. By induction on k. Base case: the claim is trivial for k = 0. Induction
step: suppose each block of wk contains a block of w that takes part during
ρ1, . . . , ρk in zero reversals. We need to prove that each block of wk+1 contains
a block of w that takes part during ρ1, . . . , ρk+1 in zero reversals. Since ρk+1 is
simple, we know that it acts on two successive blocks of wk. Since ρk+1 is not
cutting, ρk+1 must be of the form ρ (i− 1, i). Such a reversal unifies the block wk

i

with wk
i−2, and wk

i−1 with wk
i+1. The other blocks of wk are not affected by ρk+1,

therefore, they contain by the induction assumption a block of w that takes part
during ρ1, . . . , ρk in zero reversals. The same block takes part during ρ1, . . . , ρk

in zero reversals as well.
Since ρk+1 affects wk

i unifying it with wk
i−2, and by the induction assumption

wk
i−2 contains a block v of w that takes part during ρ1, . . . , ρk in zero reversals,

the unification of wk
i with wk

i−2 in wk+1 contains v. Since v is not affected
by ρk+1, v takes part during ρ1, . . . , ρk in zero reversals, and thus fulfills the
requirement.

A similar analysis applies to the unification of wk
i−1 with wk

i+1 in wk+1. ut

Lemma 9. Let w = w1, . . . , w2` be a weighted sequence and let ρ1, . . . , ρm be
a sorting series having no useless, no cutting, and no complex reversals. There
exist indices i and j, where i corresponds to a block of 1’s and j corresponds to
a block of 0’s, such that ci = cj = 0.

Lemma 9 is helpful in proving that the outcome of Corollary 2 is a reversal
series containing no complex reversals.

Lemma 10. Let w, j, ρj , w
j , s, and s̄ be the outcome of Corollary 2, that is ρk

for k > j do not commute with ρj. If ρj remains a complex reversal, the reversal
series ρ1, . . . , ρm cannot be optimal.

Proof. We show that a reversal series having a lower cost exists. Consider the
sequence wj . The reversals ρk for k > j are simple. By Lemma 9 there exists
indices i′ and p′, where i′ and p′ correspond to a block of 1’s and 0’s respectively,
such that ci′ = cp′ = 0. Notice that each of the blocks i′ and p′ could be contained
as a unit in wj−1, or could correspond to two blocks, one in s and one in s̄. In
the latter case, pick the part of the block that is in s̄. In the former pick the
blocks themselves. Denote the indices of the picked blocks in wj−1 by i and p.
We divide the analysis into three cases:

1. The indices i and p are contained in s̄. In this case we get cp = ci = 0, and
therefore i and p divide the circular sequence into two linear subsequences.
We consider the subsequence between i and p that contains s, denote it v, and
the restriction of ρ1, . . . , ρm to v. This restriction separates v and contains a
complex reversal followed by simple reversals that do not commute with it.
As mentioned before, [3] proved that such a series cannot be optimal.

2. The indices i and p are contained in s. This imposes that |i− p| = 1, or
else the reversals acting on the blocks between i and p commute with ρj .
Suppose that i appears before p in s when scanning the circular sequence in
the counter clockwise direction. The other case is handled by renaming the
0’s and 1’s. Performing the reversals ρk for k > j restricted to s and to s̄
separates s̄, while s gets the form 0+1+0+1+. The notation 0+ corresponds
to an arbitrary strictly positive weight of 0’s. The whole sequence is of the

form

s̄︷︸︸︷
0+

s︷ ︸︸ ︷
0+1+0+1+

s̄︷︸︸︷
1+ . Notice that the orientation of s and s̄ is opposed

since ρj is not performed on s. To sort the sequence, perform a last reversal

Table 3. Available reversal counts summary.

Segment s2 i s1 s̄2

Block 1+ 0+ 1+ 1+ 1+ 0+ 0+ 1+ 0+

Available reversal count 2 2 1 1 1 1 1 1 0

Explanation: reversals skipped ρj , ρm ρj , ρm ρj ρj ρj ρj ρm ρm -

s̄︷︸︸︷
0+ 0+

last reversal︷ ︸︸ ︷
1+0+ 1+

s̄︷︸︸︷
1+ . The cost of the modified series is not greater than

the cost of the original one, since the last reversal’s length is not greater
than ρj ’s length. However, by Lemma 6, the restriction of ρj+1 to s or to s̄
produces a reversal containing a single block. If we omit this reversal from
the modified series the cost of the modified series becomes smaller than the
original one. A contradiction to the optimality of the original series.

3. The index i is contained in s and p contained in s̄ or vice versa. We anal-
yse the former case. The latter is handled by renaming the 0’s and 1’s.
Notice that after performing ρj , the indices i and p divide the circle into
two independent components. The reversal ρm can affect only one of these
components. Consider the following division of the sequence wj (counter

clockwise):

p︷︸︸︷
0+

s̄1︷︸︸︷
· · ·

s︷ ︸︸ ︷
s1︷︸︸︷
· · ·

i︷︸︸︷
1+

s2︷︸︸︷
· · ·

s̄2︷︸︸︷
· · · , where s̄1 and s1 are the segments

of s̄ and s respectively lying between p and i, while s̄2 and s2 are the seg-
ments of s̄ and s respectively lying between i and p. Suppose that ρm affects
s̄2 and s2. Then the reversals ρk for m > k > j separate s1 and s̄1. Notice
that omitting ρj does not affect the separation state of these segments. On
the other hand, performing ρk for m > k > j on s̄2 and s2 does not separate
them. Modify the reversal series as follows: Perform ρk for m > k > j on
wj−1 restricted to each of s̄1, s1, s̄2, and s2 (do not perform ρj and ρm). The

resulting sequence is of the form:

p︷︸︸︷
0+

s̄1︷ ︸︸ ︷
0+ 1+

s2︷ ︸︸ ︷
1+ 0+ 1+

i︷︸︸︷
1+

s1︷ ︸︸ ︷
1+ 0+

s̄2︷ ︸︸ ︷
0+ 1+ 0+.

Table 3 summarizes the yet available reversal counts for part of the segments.
To sort the remaining blocks perform the following reversals (reversals indi-
cated by brackets [,]):

s2︷ ︸︸ ︷
1+ [0+ 1+

i︷︸︸︷
1+

s1︷ ︸︸ ︷
1+] 0+ and

s2︷ ︸︸ ︷
1+ [0+

s1︷︸︸︷
0+

s̄2︷ ︸︸ ︷
0+ 1+] 0+ .

The two reversals sort the sequence, and do not violate the available reversal
counts. Thus the modified reversal series has a cost not greater than the
original one. A contradiction is established similarly to previous cases.

Putting it all together we prove the claim. ut

Lemmas 4, 5, and 10 establish Theorem 3.

Theorem 3. An optimal reversal series contains no useless and no cutting re-
versals. In addition, an optimal reversal series containing no complex reversals
exists.

Theorem 3 and Lemma 9 implies that finding the optimal sorting cost can
be done by taking the minimum over the following set: for all pair of indices
(i, j), where i < j and i − j ≡ 1, sort the segments sg1 = (i, j) and sg2 = (j, i)
under the restriction ci = cj = 0. The sum of the two sorting costs is a candidate
for the optimal solution. The calculation of the sorting costs for all pairs (i, j)
and (j, i) can be done by running zerOneSort on ww, where w is an arbitrary
linearization of a circular 0/1 sequence. The algorithm zerOneSort, introduced
in [3], is an exact algorithm for sorting unsigned linear sequences when α = 1.
The algorithm circularZerOneSort implements this idea.

Algorithm 3 circularZerOneSort(w)
1: Run zerOneSort on ww. Let A be the dynamic programming matrix built by ze-

rOneSort
2: opt←∞
3: for i = 0 to |w| − 1 in steps of 1 do
4: for j = i + 1 to |w| − 1 in steps of 2 do
5: tmp← A (i, j, ci = cj = 0) + A (j, i + |w| , cj = ci = 0)
6: if tmp < opt then
7: opt← tmp
8: end if
9: end for

10: end for
11: Output opt

Theorem 4. The algorithm circularZerOneSort sorts a circular 0/1 sequence
optimally with a time complexity in O

(
n3

)
and a space complexity in O

(
n2

)
2.3 Approximation Algorithms for α ≥ 1

We now give a reduction showing that a signed circular or linear sorting al-
gorithm can be derived from an unsigned circular or linear sorting algorithm
respectively, while retaining the asymptotic approximation ratio.

Let A be an algorithm for sorting unsigned circular 0/1 sequences and T
be a signed circular sequence. We can sort T by running A on unsign(T) and
correct the signs of the resulting sequence elements. Lemma 11 shows that this
method approximates the optimal sorting cost. A similar result applies to the
singed linear case.

Lemma 11. The sum of A(unsign(T)) and the cost of signs correction is less
than opt(T) + 2A(unsign(T)).

By combining the optimality of circularZerOneSort (Sect. 2.2) and Lemma 11,
we obtain an approximation algorithm for signed circular sequences when α = 1.
A similar result applies to signed linear sequences.

Corollary 3. The algorithm circularZerOneSort followed by signs correction is
a 3-approximation algorithm for sorting signed circular sequences when α = 1.

In [3] its shown that bubble sort is optimal for sorting unsigned 0/1 sequences
when α ≥ 2. By Lemma 11 we get an approximation algorithm for sorting signed
sequences when α ≥ 2.

Corollary 4. Bubble sort followed by signs correction is a 3-approximation al-
gorithm for sorting signed linear or circular sequences when α ≥ 2.

3 Sorting Circular Permutations

In this section we present an approximation algorithm for sorting circular per-
mutations when α = 1. The algorithm is based on an analysis that there exists
a cut that changes the circular permutation into a linear permutation, such that
the sorting cost for the linear permutation is only a constant factor larger than
the sorting cost for the circular permutation. The algorithm is therefore to try
all possible cuts. The proof follows an accounting argument given in this section,
and is heavily dependent on the additivity of the cost function. The main idea
of the argument is that we can mimic the circular reversals that we cut with
linear ones, such that the linear reversals go the other way around the circle, not
crossing the cut. The accounting argument shows that the total cost increases
by at most a constant factor.

Let Π be a circular permutation on n elements. We present Π as a sequence
of integers. Denote the n linear permutations equivalent to the circular identity
permutation by Ij for 1 ≤ j ≤ n. In this section, unless mentioned otherwise,
permutations are circular.

Associate an index with each space between two successive elements of Π. A
reversal affects an index i, if the reversal affects the two elements neighboring i.
Map each index i to the number of reversals ri affecting the index. We refer to
ri as the index reversal count. Let i0 be an index such that ri0 = mini{ri}.

In the following we establish a lower bound on the sorting cost using ri0 .
Denote the circular optimal sorting cost of a circular permutation Π by cosc (Π).
The linear optimal sorting cost of a linear permutation Π̂ is denoted by losc(Π̂).

Lemma 12. Let Π be a circular permutation, ρ1, . . . , ρm be an optimal reversal
sequence, and i0 be as above. The following holds:

cosc (Π) ≥ n · ri0 . (4)

Proof. By definition, a reversal affects an index if and only if it affects its two
neighbors. Let i be an index with two neighbors πj and πj+1. We get that
2 · ri ≤ N (πj) + N (πj+1), where N (πj) is the number of reversals in which

element πj takes part. Notice that the set of neighbors of all odd or all even
indices does not contain repetition. Thus, we get:∑

j

N (πj) ≥ max{
∑
i odd

2 · ri,
∑

i even

2 · ri} .

For optimal sorting series, one can verify that
∑

j N (πj) = cosc (Π). Hence,
cosc (Π) ≥ max{

∑
i odd 2 · ri,

∑
i even 2 · ri}. From the definition of i0 we get:

cosc (Π) ≥ n · ri0 . ut

Lemma 12 enables us to mimic circular reversals by linear reversals, while
keeping the sorting cost within a constant factor. Given an index i, define Πi

to be the linear permutation derived by cutting Π at index i. Define Πlin to be
Πi0 .

Lemma 13. Let Π, ri, and i0 be as in Lemma 12. Consider the linear permu-
tation Πlin derived by cutting Π at index i0. Let ρ be a reversal affecting i0. The
reversal ρ can be mimicked by two reversals on Πlin with a total cost less than
2n.

Proof. Represent Π and Πlin as follows:

index︷︸︸︷
i0

y elements︷︸︸︷
· · ·

n−y−x elements︷︸︸︷
· · ·

x elements︷︸︸︷
· · · ,

where ρ affects the x and y elements. The reversal ρ can be mimicked on Πlin

by the following two reversals (the brackets [,] indicate the reversal):

[
y elements︷︸︸︷

· · ·
n−y−x elements︷︸︸︷

· · ·
x elements︷︸︸︷

· · ·] .

x elements reversed︷︸︸︷
· · · [

n−y−x elements reversed︷︸︸︷
· · ·]

y elements reversed︷︸︸︷
· · · .

The final result is equivalent to the circular permutation Π · ρ and the cost
of the two reversals is bounded by 2n. ut

Since there are ri0 reversals to mimic, the total cost of mimicking the circular
sorting procedure by a linear one is bounded by 2 ·n · ri0 . This yields a constant
factor approximation.

Theorem 5. The optimal circular sorting cost of Π can be approximated up to
a constant factor by the optimal linear distance of Πlin to one of the n linear
permutations equivalent to the circular identity permutation.

Proof. Define i0 as in Lemma 13. By Lemma 13, we can mimic all reversals in an
optimal circular solution by reversals in a linear solution, ending up with a linear
permutation Ij0 equivalent to the circular identity permutation. The following
bound holds for the optimal linear distance between Πlin and Ij0 .

d (Πlin, Ij0) ≤ cosc (Π) + 2 · n · ri0 .

By Lemma 12 we get: d (Πlin, Ij0) ≤ 3cosc (Π). ut

Theorem 5 enables approximating the optimal circular sorting cost using al-
gorithms for sorting linear permutations: cut the circular permutation at each
index, approximate the distance between the cut and all Ij , and return the
minimum result. Sorting linear permutations is done by the algorithm reorder-
ReversalSort, introduced in [3], which is a O (log n) approximation algorithm.
The algorithm circulaReordeReversalSort is based on this idea.

Algorithm 4 circulaReordeReversalSort(Π)
1: opt←∞
2: for all indices i do
3: for all j ∈ {1, 2, . . . , |Π|} do
4: sortingCost← reorderReversalSort

(
I−1

j ·Πi

)
5: if sortingCost < opt then
6: opt← sortingCost
7: end if
8: end for
9: end for

10: Output opt

Theorem 6. The algorithm circulaReordeReversalSort has an approximation
ratio of O (log n).

4 Sorting Signed Permutations

The algorithms for sorting unsigned permutations are modified to sort signed
permutations, while retaining their approximation ratios. This is done using the
Bafna-Pevzner reduction [9].

Theorem 7. The algorithm reorderReversalSort can be modified to sort signed
permutations, while retaining the algorithm’s approximation ratio.

A similar result applies to the circular case.

5 Basic Sorting Bounds

In this section we give sorting bounds for linear signed as well as circular singed
and unsigned permutations and 0/1 sequences The results are extensions of the
linear unsigned results introduced in [3]. Equations (1) and (2) make extending
the upper and lower bounds straightforward.

Upper Bounds

By (1) and (2), the singed linear case is an upper bound to all other cases. The
cost of changing the signs of all elements is in O(n). Thus, the unsigned linear
cost summed to O(n) is an upper bound. This fact combined with the upper
bounds in [3] implies the results shown in Table 1.

Lower Bounds

A lower bound for the unsigned circular case is by (1) and (2) a lower bound
for all other cases. The potential function arguments introduced in [3] can be
readily modified to fit the unsigned circular case. Summary of the lower bound
results, for both permutations and 0/1, appears in Table 1.

References

1. Nadeau, J.H., Taylor, B.A.: Lengths of chromosomal segments conserved since
divergence of man and mouse. Proc. Natl. Acad. Sci. USA 81 (1984) 814–818

2. Pinter, R., Skiena, S.: Sorting with length-weighted reversals. In: Proc. 13th Inter-
national Conference on Genome Informatics (GIW). (2002) 173–182

3. Bender, M., Ge, D., He, S., Hu, H., Pinter, R., Skiena, S., Swidan, F.: Improved
bounds on sorting with length-weighted reversals. In: Proc. 15th ACM-SIAM Sym-
posium on Discrete Algorithms (SODA). (2004) 912–921

4. Pevzner, P.A.: Computational Molecular Biology - an Algorithmic Approach. MIT
Press, Cambridge MA (2000)

5. Bergeron, A.: A very elementary presentation of the hannenhalli-pevzner theory.
In: Proc. 12th Symp. Combinatorial Pattern Matching (CPM). (2001) 106–117

6. Chen, T., Skiena, S.: Sorting with fixed-length reversals. Discrete Applied Mathe-
matics 71 (1996) 269–295

7. Hartman, T.: A simpler 1.5-approximation algorithm for sorting by transpositions.
In: Proc. 14th Symp. Combinatorial Pattern Matching (CPM). (2003) 156–169

8. Christie, D.A., Irving, R.W.: Sorting strings by reversals and by transpositions.
SIAM J. on Discrete Math 14 (2001) 193–206

9. Bafna, V., Pevzner, P.: Genome rearrangements and sorting by reversals. SIAM J.
Computing 25 (1996) 272–289

