
Program Optimization and Parallelization
Using Idioms

SHLOMIT S. PINTER

Technion — Israel Institute of Technology

and

RON Y. PINTER

IBM Israel Science and Technology

Programs in languages such as Fortran, Pascal, and C were designed and written for a
sequential machine model. During the last decade, several methods to vectorize such programs
and recover other forms of parallelism that apply to more advanced machine architectures have
been developed (particularly for Fortran, due to its pointer-free semantics). We propose and
demonstrate a more powerful translation technique for making such programs run efficiently on
parallel machines which support facilities such as parallel prefix operations as well as parallel
and vector capabilities. This technique, which is global in nature and involves a modification of
the traditional definition of the program dependence graph (PDG), is based on the extraction of
parallelizable program structures (“idioms”) from the given (sequential) program. The benefits of
our technique extend beyond the above-mentioned architectures and can be viewed as a general
program optimization method, applicable in many other situations. We show a few examples in
which our method indeed outperforms existing analysis techniques.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processor—compilers;
optimization

General Terms: Algorithms, Languages, Performance

Additional Key Words and Phrases: Array data flow analysis, computational idioms, dependence
analysis, graph rewriting, intermediate program representation, parallelism, parallel prefix,
reduction, scan operations

This research was performed in part while on sabbatical leave at the Department of Computer
Science, Yale University, and was supported in part by NSF grant number DCR-8405478 and by
ONR grant number NOO014-89-J-1906. A preliminary version of this article appeared in the
Proceedings of the 18th Annual ACM Symposium on Principles of Programming Languages (Jan.
1991).
Author’s addresses: S. Pinter, Department of Electrical Engineering, Technion—Israel Institute
of Technology, Haifa 32000, Israel; email: shlomit@ee.technion. ac.il; R. Pinter, IBM Science and
Technology, MATAM Advanced Technology Center, Haifa 31905, Israel; em ail:
pinter@haifasc3 .vnet.ibm.com.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
01994 ACM 0164-0925/94/0500-0305 $03.50

ACM Transactions on Progirammmg Languages and Systems. Vol 16, NO 3, May 1994, Pages 305–327

306 . S, S. Pinter and R, Y Pinter

1. INTRODUCTION

Many of the classical compiler optimization techniques [Aho et al. 1986]

comprise the application of local transformations to (intermediate) code,

replacing suboptimal fragments with better ones. One hopes, as is often the

case, that repeating this process (until a fixed point is found or some other

criterion is met) will result in an overall better program. To a large extent,

attempts to vectorize—and otherwise parallelize—sequential code [Wolfe

1989] are also based on the detection of local relationships among data items

and the control structures that enclose them. These approaches, however, are

local in nature and do not recognize the structure of the computation that is

being carried out.

A computation structure sometimes spans a fragment of the program which

may include some irrelevant details (that might obscure the picture both to

the human eye and to automatic parallelism detection algorithms). Such

“idioms” [Perlis and Rugaber 1979], which are not expressible directly as

constructs in conventional high-level languages, include innerproduct cal cu-

lations and recurrence equations in numeric code, data structure traversal in

a symbolic context, selective processing of vector elements, and patterns of

updating shared values in a distributed application. Recognizing them, which

amounts to “lifting” the level of the program, is far beyond the potential of

the classical, local methods.

Once recognized, such structures can be replaced lock, stock, and barrel by

a new piece of code that has been highly optimized for the task at hand. This

pertains to sequential target machines, but is most appealing in view of the

potential gains in parallel computing. For example, a loop computing the

convolution of two vectors, which uses array references, can be replaced by an

equivalent fragment using pointers which was tailored by an expert assem-

bler programmer. The same code can be replaced by a call to a BLAS

[Dongarra et al. 1988; Lawson et al. 1979] routine that does the same job on

the appropriate target machine. Better yet, if the machine at hand—for

example, TMC’S CM-2 [Thinking Machines Corp. 1987] —supports summary

operators, such as reduction and scan which work in time O(log n) using a

parallel prefix implementation [Blelloch 1989; Ladner and Fischer 1980]

rather than 0(n) on a sequential machine (where n is the length of the

vectors involved), then the gains could be even more dramatic.

In this article we propose a method for extracting parallelizable idioms

from scientific programs. We cast our techniques in terms of the construction

and analysis of the computation graph, which is a modified extension of the
program dependence graph (PDG) [Ferrante et al. 1987], since PDG-based

analysis methods seem to be most flexible and amenable for extensions.

Forming this new type of graph from a source program-as is necessary for

the required analyses—and using it for optimization transformations in-

volves three major steps:

— When necessary, loops are unrolled so as to reach a normal forml, whose

‘ In the sense of Munshi and Slmons [1987], not that of Allen and Kennedy [1987]

ACM Transactions on Programming Languages and Systems, Vol 16, No 3, May 1994

Optimization and Parallelization Using Idioms . 307

precise definition and the algorithms for its formation are an additional

contribution of this article.

—For each innermost loop in the program, we construct the computation

graph for the basic block constituting its body. Certain conditionals (which

are classified as “data filters”) are handled gracefully, whereas others we

disallow.

—The graph of each loop is replicated three times, for the initial, “middle,”

and final iterations, and together with an additional control node we obtain

the computation graph of the whole loop. This process is repeated as we go

up the nesting structure as far as possible (until we hit a problematic

branching structure).

Once the graph is built, we apply optimization transformations to it using

appropriate algorithms that we provide for this purpose.

Using this method, we were able to extract structures that other methods

fail to recognize, as reported in the literature and as verified by experiments

with a variety of existing tools, thereby providing a larger potential for

speedup. Its power can be demonstrated by a small example, taken from

Allen et al. [1987], who gave up on trying to parallelize the following loop

(which indeed cannot be vectorized):

Example 1: DOIOOI =2, N–1
C(I) =A(I)+ B(I)
B(I+l)=C(I– I) *A(I)

100 CONTINUE

Known methods (we examined KAP [Huson et al. 1986] Version 6 which

can recognize second- and third-order linear recurrences, VAST-2 [Brode

1981], and other noncommercial systems), and even a human observer, may

not realize that this loop hides two independent recurrences that can be

implemented [Kogge and Stone 1973] in time O(log n) (n being the value of

N) rather than O(n). This kind of transformation can, however, be effected

using our computation graph. We believe that our techniques can also be

fitted to other program analysis frameworks, such as symbolic evaluation and

plan analysis.

Another advantage of our approach is that it handles data and control

uniformly: our method encapsulates the effect of inner loops so that idioms

spanning deep nesting can be identified. Moreover, by incorporating data

filters that abstract certain forms of conditionals, idioms for the selective

manipulation of vector elements (which are useful on vector and SIMD

machines) can be extracted. Finally, due to the careful definition of the

framework and by the appropriate selection of transformation rules, our

method can uniformly serve a wide variety of target architectures, ranging

from vector to distributed machines.

In what follows we first review other work on compiler transformations and
evaluate its limitations for purposes of idiom extraction. Then, in Section 3,

we provide a formal presentation of our technique, including the definition of

loop normalization, the construction of computation graphs, and the neces-

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

308 . S S. Pinter and R. Y. Pinter

sary transformation algorithms. In Section 4 we exemplify our techniques,

stressing the advantages over existing methods. Section 5 tries to put our

work in perspective, discusses applications other than parallelism, and pro-

poses further research.

2. EXISTING PARALLELIZATION METHODS

Much of the traditional program analysis work culminated in the definition

and use of the above-mentioned PDG or its constituents, the control and data

dependence graphs. Such a graph defines the flow of control in the program

as well as the dependence between the variables being used in the program’s

statements; similar graphs were presented in Kuck et al. [1981] and Wolfe

[1989] together with many compiler transformations mainly for recovering

and improving vectorization. Analyzing the graph enables the detection of

loop-invariant assignments for purposes of vectorization, classifies the type of

other dependence as being loop carried and internal ones, and when applied

to programs in single static assignment (SSA) form [Cytron et al. 1989] it can

be quite effective.

However, the analysis methods allowed by this framework, e.g., as embod-

ied in the PTRAN system [Allen et al. 1988], are very much tied to the

original structure of the program. Moreover, the focus is on following depen-

dence as they are reflected at the syntactic level (variable names and

statements) rather than tracking the flow of data (among values) using

deeper semantic analysis. Thus, this approach is not quite strong enough to

allow us to extract patterns of data modification that are not readily apparent

from the source program.

For example, the PDG of the loop shown in Section 1 (Example 1) contains

two nodes on a directed cycle, implying a circular dependency. This represen-

tation is not accurate since the two reductions hidden in this computation do

not depend on each other. Thus, the PDG is more conservative than our

graph which will expose the potential for parallelization in this loop.
Partial success in recovering reduction-type operators is reported in the

work on KAP [Huson et al. 1986], Parafrase [Lee et al. 1985; Polychronopou-

10S et al. 1986], and VAST [Brode 1981; Pacific-Sierra 1990] (all these tools

also do a very good job in vectorization and loop parallelization). The restruc-

turing methods that were used are in the spirit of the PDG-based work, but

the techniques for detecting reduction operators are different from ours and

somewhat ad hoc. The KAP system (the strongest in recovering these types of
operations) can recognize second- and third-order line ar recurrences, yet

when such computations are somewhat intermixed as in our previous exam-

ple it fails to do so.

Another transformation-based approach is that of capturing the data de-

pendence among array references by means of dependence vectors [Chen

1986; Karp et al. 1967; Lamport 1974]. Then methods from linear algebra and

number theory can be brought to bear to extract wavefronts of the computa-

tion. The problem with this framework is that only certain types of depen-

dence are modeled; there is no way to talk about specific operations (and

ACM TransactIons on Programmmg Languages and Systems. Vol 16, No 3, May 1994

Optimization and Parallelization Using Idioms . 309

their algebraic properties), and in general it is hard to extend. We note that

the work of Banerjee [1988] on data dependence analysis and that of Wolfe

[1989] can be viewed as extending the above-mentioned dependence graph

framework by using direction and distance vectors.

More recently, Callahan [1991] provided a combination of algebraic and

graph-based methods for recognizing and optimizing a generalized class of

recurrences. This method is indeed effective in exploiting this type of compu-

tation, but it is strongly tied to a specific framework and does not lend itself

to generalizations to nonrecurrence-type transformations.

Finally, various symbolic-evaluation methods have been proposed [Jouvelot

and Dehbonei 1989; Letovsky 1988; Rich and Waters 1988], mostly for plan

analysis of programs. These methods all follow the structure of the program

rigorously, and even though the program is transformed into some normal

form up front and all transformations preserve this property, still these

methods are highly sensitive to “noise” in the source program. More severely,

the reasoning about array references (which are the mainstay of scientific

code) is quite limited for purposes of finding reduction operations on arrays.

3. COMPUTATION GRAPHS AND ALGORITHMS FOR IDIOM EXTRACTION

In this section we propose a new graph-theoretic model to represent the flow

of data and the dependence among values in a program, namely, the

computation graph. To allow effective usage of this model, programs must be

preprocessed, and most importantly, loops must be normalized; this tech-

nique will be presented in the beginning of this section. Next we define the

computation graph formally and list some of its important properties. Finally

we provide an algorithmic framework that uses this new abstraction in order

to analyze the structure of programs and identify computations that can be

parallelized or otherwise optimized; specific patterns and their replacements

are provided.

To guide the reader through this section we use the sample program of

Figure 1, which is written in Fortran. This example is merely meant to

illustrate the definitions and algorithms, not to demonstrate the advantages

of our approach over other work; this will be done in Section 4.

3.1 Preprocessing and Loop Normalization

Before our analysis can be applied to a given program we must transform it

so as to allow the computation graph to effectively capture the program’s

structure for purposes of idiom extraction. Some of these “preprocessing”

transformations are straightforward and well-known optimizations, as we

shall point out in passing, but others require some new techniques that we

shall explain.

At this stage we assume that programs contain only IF statements that

serve as data filters, as in IF (A(I) . EQ. O) B (I) = I. Some of the other

conditionals can be pulled out of loops or converted to filters using standard

techniques, but those that cannot are outside the scope of our techniques.
Finally, we assume that all array references depend linearly (with integral

coefficients) on loop variables.

ACM Transactions on Programmmg Languages and Systems, Vol. 16, No. 3, May 1994.

310 . S. S. Pinter and R. Y, Pinter

DO 10 1=1 ,1

T = 1+4

c assume H is even

Fig. 1. A sample Fortran program.

DO 10 J=3,14

A(I, J) = A(I, J) + T* A(I, J-2)

10 COETIHUE

The preprocessing transformations are as follows:

—Standard basic block optimizations (such as dead-code and dead-store

elimination, common subexpression detection, etc.) are performed per Aho

et al. [Section 9.4, 1986], so that the resulting set of assignments to values

does not contain redundancies. This implies that the expression DAG that

is obtained represents only the clef-use relationship between variables that

are live upon entry to each block and those that are live at the exit. We

further assume that the relation among values is “simple,” meaning that

each defining expression is of some predefine form. Typical restrictions

could be that it contains at most two values and one operator or that it be a

linear form; which restriction is imposed depends on the type of recognition

algorithm we want to apply later (in Section 3.3).

—To extend the scope of the technique we assume that loops are recognized

wherever possible.

—Loops are normalized with respect to their index, as defined below. Mun-

shi and Simons [1987] have observed that by sufficient unrolling all

loop-carried dependence can be made to occur only between consecutive

iterations. The exact conditions stating how much unrolling is required and

the technique for transforming a loop to normal form have never been

spelled out; thus—in what follows—we provide the necessary details.

Normalization comprises two steps: determination of loop-carried depen-

dence (specifically among different references of arrays) and unrolling. If

data dependence analysis does not provide the exact dependence we may

unroll the loop more than is necessary without affecting the correctness of the

process.
Customarily, e.g., Allen et al. [1987], Ferrante et al. [1987], and Wolfe

[1989], data dependence is defined between statements, rather than scalar

values and array references. We provide the following definition for data

dependence among values in a program (and from now on we use only this

notion of data dependence):

Definition 1. Value A is data dependent on value B if they both refer to

the same memory location and either (i) a use of A depends on the definition

of B (flow dependence), (ii) the definition of A redefines B which was used in

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 3, May 1994.

Optimization and Parallelization Using Idioms . 311

an expression (antidependence), or (iii) the definition of A redefines the

previous definition of B (output dependence).

A dependence is loop carried if it occurs between values that appear in

different iterations of a loop.

In the following example the array A has two references (and so does B).

Since i + m # j for all 2< i, j < m, where m is the value of M, there is no

loop-carried dependence between the references of A.

Example 2: D020 1=2, M
B(I) =2*A(I)

20 A(I+M)=B(I–1)

Conceptually one can view the array A as if it were partitioned into two

(pairwise disjoint) subarrays, one for each reference. Between the two refer-

ences of B there is a loop-carried flow dependence which involves only

consecutive iterations. Now we are ready to say when a loop is in normal

form:

Definition 2. A loop is in normal form if each of its loop-carried depen-

dence is between two consecutive iterations.

Any given loop can be normalized as follows. Find all loop-carried depen-

dence, and let the span of the original loop be the largest integer k such

that some value set in iteration i depends directly on a value set in iteration

i – k. Then, to normalize a loop with span k > 1, the loop’s body is copied

(unrolled) k – 1 times. The loop’s index is adjusted so it starts at 1 and is

incremented appropriately at each iteration. Loops are normalized from the

most deeply nested outward.

In the code of Figure 1, if m >4 (where m denotes the value of M) then the

inner loop needs to be normalized by unrolling it once, whereas the outer loop

is already in normal form (it is vacuously so, since there are no reference

loop-carried dependence). We also assume that the temporary scalar T has

been expanded, thus obtaining the program in Figure 2.

In order to compute the span it is not enough to find the distance (in the

loop iteration space) of a dependence. In the following example the span is 1

although the distance in the first assignment is 2:

Example 3: DOIOI =1, N
A(I+2)=A(I)+X
A(I+1)=A(I+2)+Y

10 CONTINUE

Here there is only one loop-carried flow dependence from the value set in

the second statement to its use by the first statement in the following

iteration.

At the current stage the scope of our work includes only loops for which the

span is a constant. Note that the loop can still include array references which

use its bound in some cases. For example the span of the following loop is 2:

Example 4: DOIOI =2, N–1
A(N– I)= A(N– I)+ A(N+2– I)

10 CONTINUE

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

312 . S. S. Plnter and R. Y. Pinter

Do 10 1=1 ,1

T(I) = 1+4

c assume H is even

Fig. 2. The program of Figure 1
in normal form. DO 10 J=l ,M-2,2

A(I, J+2) = A(I, J+2) + T(I)* A(I, J)

A(I, J+3) = A(I, J+3) + T(I)* A(I, J+l)

10 COITIIUE

An immediate result of normalization is that loop-carried dependence

become uniform. This observation is, later on, being used in the computation

graph to explicitly reveal all the possible interaction patterns among itera-

tions of the loop and its surrounding context. Thus, we can match graph

patterns in order to enable the transformations. Finally, note that a similar

notion to normalization appears in Aiken and Nicolau [1988] where the

computation of a loop is carried out until a steady state is reached.

Comments on Normalization. We cannot handle indirect array references,

such as A (x (I)) , without employing partial evaluation techniques. Indirect

referencing is mostly used to generate access patterns which are irregular

and data dependent; since current target machines can take advantage of

such patterns only at run-time, this limitation is inherent to all compiler-

based approaches.

There is a relation between the span of a loop and Banerjee’s [1988]

loop-carried dependence distance, which defines for a given dependence the

distance between the two points of the iteration space that cause the depen-

dence. In particular, if a loop is being normalized then there is at least one

dependence distance equal to the span. In current transformations, distance

values are mainly used for introducing the proper synchronization delay (of

some sort). This delay must cause a wait which lasts through the duration of

the execution of as many operations as may be generated by unrolling using

the span. Both methods can handle (at the moment) only constant span or

distances which may not be the same for all the statements in the loop.
At first it may seem that unrolling a loop for normalization results in

extraneous space utilization. However, we point out that unrolling loop bodies

is done by many optimizing compilers in order to better utilize pipeline-based

machines; thus space usage and other resource issues are similar for both

cases.

3.2 The Computation Graph

Given a program satisfying the above assumptions, we define its computation

graph (CG) in two stages: first we handle basic blocks; then we show how to

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994

Optimization and Parallelization Using Idioms . 313

represent normalized loops; and finally we show how to incorporate data

filters.

The CG for a basic block is a directed acyclic graph G = (V, E), defined as

follows:

—There is a node u = V representing each value that is defined in the block;

there is also a node in V for each value that is live [Aho et al. 1986] at the

entry of the block and that is used in it (initial value). Each node is

uniquely identified by a tag; nodes that correspond to values set in assign-

ments are tagged by the corresponding statement number, and for nodes

that represent initial values additional (new) tags are generated.

—If the loop control variable is used in the computations within its body we

assume it has a proper initial value.

—The meaning of an edge (u, U) in the graph is that the computation of u

must end before the computation of u starts. There are three types of edges

drawn between nodes: one represents the classical clef-use relationship

[Aho et al. 1986] (which includes flow dependence), and the other two

represent two kinds of data dependence between values (per Definition 1).

We draw a clef-use edge from u to u if the value u is used in the definition

of v. We draw an output data dependence edge from u to u if u is output

dependent on u as per Definition 1. Lastly, we draw an antidependence

edge from u to v if the definition of u uses a value on which u is

antidependent (unless this edge is a self-loop which is redundant since the

fetch is done before the assignment).

—Each node u is labeled by the expression according to which the value is

being computed. The labeling uses a numbering that is imposed on the

clef-use edges entering the node (i.e., the arguments). The label L is used

for initial values.

Using the array references verbatim as atomic variables, the basic block

constituting the body of the inner loop of Figure 2 gives rise to the computa-

tion graph shown in Figure 3. Since we shall be looking for potential

reduction and scan operations, which apply to linear forms, we allow the

functions at nodes to be ternary multiply-add combinations. Note also that

the nodes denoting the initial values of the variables could be replaced when

the graph is embedded in a larger context, as we shall see.

Next we define computation graphs for normalized loops. Such graphs are

obtained by replicating the DAGs representing the enclosed body 2 as follows:

—Three copies of the graph representing the body are generated: one copy

represents the initial iteration; one is a typical middle iteration; and one

stands for the final iteration. Each node is uniquely identified by extending

the tag of the replicated node with the unrolled copy it belongs to (initial,

middle, or final).

2At the innermost level these are basic blocks, but as we go up the structure these are general
computation graphs.

ACM Transactions on Programming Languages and Systems, Vol 16, No 3, May 1994

314 . S. S Plnter and R. Y. Plnter

t.

(1

Fig. 3. The computation graph of the basic block constituting the inner loop of the program in

Figure 2, In case there are both a flow and an output dependence we draw only the flow edge,

—Loop-carried data dependence edges (cross iteration edges) are drawn

between the different copies.

—Each instance of the loop variable (like in expressions of array references)

is replaced with ini t, mid, and fin depending on its appearance in the

initial, middle, or final copy, respectively.

—Two nodes in different copies that represent a value in the same memory

location (like A (ini t + 2) and A (mid) when the stride of the loop is 2) are

coalesced, unless there exists a flow or an output dependence edge between

them (in which case there are possibly two different values; see also note

below on antidependences).

—The graph is linked to its surroundings by data dependence edges where

necessary (i.e., from ini~ializations outside the loop and to subsequent

uses).

The graph is constructed on a loop-nest by loop-nest basis, i.e., there is no

need to build it for the whole program. In fact, one might decide to limit the

extent of the graph and its application in order to reduce compile time or curb

the potential space complexity.

Note. If a node v is a target of an antidependence edge then v is also a

target of an output dependence edge. Consider the existence of an antidepen-

dence edge from u to v, i.e., the value that was stored in the same memory

location as u and that was used in the definition of u is now being destroyed.
This means that there is a node w which constitutes the old value that was

used in the definition of u; thus there is an output dependence edge between

w and v in addition to the clef-use edge from w to u. In general, if the

meaning of an output dependence edge, say (u, v), is that all the uses of

t~—on clef-use edges leaving u—must be executed before v, then the antide-

pendence edges are redundant.

Figure 4 shows the computation graph of the inner loop (J) of the example

in Figure 2. The graph comprises three copies of the graph from Figure 3.

Node S4 of the middle copy is coalesced with node S 1 of the initial copy since

ACM Transactmns on Programmmg Languages and Systems, Vol. 16, No. 3, May 1994

Optimization and Parallelization Using Idioms . 315

Fig. 4. The computation graph of the inner loop of the program in Figure 2.

they both represent the same value (the stride of J is 2, thus, ini t + 2 = mid),

and there are no loop-carried output dependence between these nodes.

Similarly, node S5 of the middle copy is coalesced with node S2 of the initial

copy. The same pattern is repeated between the final and the middle copies.

Node SO represents the value of T (I) which is the same value for all three

copies. The graph for the whole program (including the outer I loop) would

consist of three copies of what is shown in Figure 4, with appropriate

annotation of the nodes.

A more general example that includes anti, output, and flow loop-carried

dependence is presented in Figure 5.

The main contribution of the triple unfolding of loops is that when com-

bined with normalization the computation graph represents explicitly all

possible dependence. The computation graph spans a “signature” of the

whole structure, and we call it the summary form of the loop. Once inner

loops are transformed into their summary form, they are treated as part of

the body of the enclosing loops and may—in turn—be replicated similarly to

yield another summary form.

The following lemma summarizes this observation, and it will serve as the

foundation for the applicability of the transformations described in the next

Section.

~EMMA 1. Three iterations of a normalized loop capture its entire data

dependence structure.

PROOF. Recall that all loop-carried dependence are only between consecu-

tive iterations. Thus, having three nodes to represent a value in a normalized

loop assures the property that dependence involving the second copy are the

same for all the middle iterations, i.e., those that are not the first or the last

one. ❑

Note, that when embedding a loop in a program fragment we need to cover

the cases in which the loop’s body is executed fewer than three times. Since

we are interested in parallelizing loops that must be iterated more than twice

we omit the description of such an embedding.

ACM TransactIons on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

316 . S. S. Pinter and R, Y Pinter

DO I = 1,1

S1 : B(I) = A(I) * 5

S2: D(I) = D(I-1) + C(I+I)

S3 : C(I) = B(I-1)

EEDDO

Fig. 5. A program and Its CG. Dashed and dotted arrows are
respectively; the vertical dashed lines separate the three copies.

The computation graph can also represent some

structs like data filters.

anti and output dependence,

types of conditional con-

Definition 3. A data filter is a conditional expression—none of whose

constituent values is involved in any loop-carried dependence—controlling an

assignment.

A data filter is represented in the graph by a special filter node, denoted by

a double circle. The immediate predecessors of this node are the arguments of

the Boolean expression constituting the predicate of the conditional, the
previous definition of the variable to which the assignment is being made,

and the values involved in the expression on the right-hand side of the

assignment. The outgoing edge from the filter node goes to the node corre-

sponding to the value whose assignment is being controlled. The filter node is

labeled by a conditional expression whose then value is the right-hand side of

the original assignment statement, and the else value is the previous (old)

value of the variable to which the assignment is being made. This expression

is written in terms of the incoming edges, as Figure 6 demonstrates: in

statement 20, the assignment to s is controlled by a predicate on the value of

ACM TransactIons on Programmmg Languages and Systems, Vol. 16, No. 3, May 1994,

Optimization and Parallelization Using Idioms . 317

s = 0.0

DD 20 1=1,1

20 IF (A(I) .lE.0) S = S + B(I)

c)s

Fig. 6. A program with a data filter and the computation graph of its loop’s body.

A (I) ; hence the computation graph of the loop’s body contains a filter node.

Figure 7 shows the computation graph of the program of Figure 6.

Finally, note that when the CG represents a program without parallel

constructs there cannot be edges from the middle copy to the initial copy of

the body, nor can there be edges from the final copy to the middle copy.

Additionally, due to normalization, there are no cross iteration edges between

the initial and final copies. The following lemma summarizes the main

structural properties of the CG; these properties are used in designing

transformation patterns and assuring the correctness of their application.

~EMMA 2. A CG representing a normalized loop of a sequential program is

acyclic, and the only existing cross iteration edges are from the initial to the

middle copy and from the middle to the final copy.

Computation graphs are acyclic by construction. This is obvious for basic

blocks and is not hard to show both for loops as well as for data filters.

3.3 Algorithms

Having constructed the computation graph, the task of finding computational

idioms in the program amounts to recognizing certain patterns in the graph.

These patterns comprise graph structures such as paths or other particular

subgraphs, depending on the idiom, and some additional information pertain-

ing to the labeling of the nodes. The idiom recognition algorithm constitutes

both a technique for identifying the subgraph patterns in the given graph as

well as the conditions for when they apply, i.e., checking whether the context

in which they are found is one where the idiom can indeed be used.

Overall, the optimization procedure consists of the following algorithmic

ingredients:

—Matching and replacement of individual patterns is achieved by using

graph grammars to describe the rewrite rules. While rewriting, we also

ACM TransactIons on Programmmg Languages and Systems, Vol. 16, No. 3, May 1994.

318 . S. S. Pinter and R, Y, Plnter

Fig. 7 The computation graph of the program of Figure 6

transform the labels (including the operators, of course), thus generating

the target idioms. We make sure no side effects are lost by denoting

forbidden entries and exits per Rosendahl and Mankwald [1979].

—We need to provide a list of idioms and the” graph-rewriting rules that

replace them. These include structures such as reduction, scan, recurrence

equations, transposition, reflection, and FFT butterflies. Compositions

thereof, such as inner product, convolution, and other permutations, can be

generated as a preprocessing stage. Notice that data filters can be part of a

basic rule.

—At the top level, we (repeatedly) match patterns from the given list

according to a predetermined application schedule until no more changes

are applicable (or some other termination condition is met). This means

that we need to establish a precedence relation among rules that will

govern the order in which they are applied. This greedy tactic, which is

similar to the conventional application of optimization transformations

[Aho et al. 1986], is just one alternative. One could assign costs that reflect
the merits of transformations and find a minimum cost cover of the whole

graph at each stage, and then iterate.

We next elaborate on each of the above items, filling in the necessary

details. First we discuss graph-rewriting rules. Since we are trying to summa-

rize information, these will be mostly reduction rules, i.e., shrinking sub-

graphs into smaller ones. More importantly, there are three characteristics
that must be matched besides the skeletal graph structure: the operators

(functions), the array references, and context, i.e., relationship to the enclos-

ing structure.

The first two items can be handled by looking at the labels of the vertices.

The third involves finding a particular subgraph that can be replaced by a

new structure and making sure it does not interfere with the rest of the

computation. For example, to identify a reduction operation on an array, we

need to find a path of nodes all having the same associative-operator label

(e.g., multiplication, addition, or an appropriate linear combination thereof)

ACM Transactions on Programmmg Languages and Systems, Vol 16, No, 3, May 1994

Optimization and Parallelization Using Idioms . 319

Q

J-

var

== >

@--c)
Fig. 8. Matching and replacement rule for reduction.

and using consecutive (i.e., initial, middle, and final) entries in the array to

update the same summary variable; we also need to ascertain that no

intervening computation is going on (writing to or reading from the summary

variable).

Both the annotations of the nodes as well as the guards against intervening

computations are part of the graph grammar productions defining the re-

placement rules. Figures 8 and 9 provide two such rules to make this notion

clear. Here we assume that vectorization transformations, including scalar

expansion, have occurred, so we rely on their results when looking for

patterns; the vectorization transformations themselves can be applied first by

using a different tool or can be part of our rules base (they can be formulated

similarly with appropriate expanding rewrite rules [Pinter and Mizrachi

1992]).

To accommodate data filters, additional rules are necessary. For example,

the rule of Figure 10 takes care of a filtered reduction. Notice the similarity to

the rule of Figure 8, if we splice out the filter nodes and redirect the edges;

the scan rule of Figure 9 can be similarly used to derive a rule for a filtered

scan.

Once such rules are applied, the computation graph contains new types of

nodes, namely, summary nodes representing idioms. These nodes can, of

course, appear themselves as candidates for replacement (on the left-hand

side of a rule), thereby enabling further optimization. Obviously, we would

apply the rules for lower-level optimizations first and only then use the

others, but one should not get the impression that this procedure necessarily
follows the loop structure of the given program. On the contrary, the compu-

tation graph as constructed allows the detection of structures that might

otherwise be obscured, as can be seen in Section 4.

ACM Transactions on Programming Languages and Systems, Vol. 16, No 3, May 1994

320 . S. S. Plnter and R. Y. Plnter

oL

Y(init)

————>

%

-1
Va’r

x(lnl~+A)

1 scan(f)

X(mid+A) Y

a1

X(fin+A)

Fig. 9. Matching and replacement rule for scan,

————>

Fig, 10. A matching and replacement rule for a filtered reduction

The result of applying the rule of Figure 9 to the graph of Figure 4 is shown

in Figure 11.

If we had started with a graph for the entire program of Figure 2, not just

the inner loop (as represented in Figure 4), then applying a vectorization rule

to the result would have generated the following program:

DOALL 10 1=1, N
T(I) =I+4
SCA]J(A(I, *), 1, Pi–i, 2, T(I), ‘*,1, ‘, +,,)
SCAIV(A(I, *), 2, M, 2, T(I), “*”, “+”)

10 CO~JTIPJUE

ACM Transactions on Programming Languages and Systems, Vol. 16, No 3. May 1994.

Optimization and Parallelization Using Idioms . 321

Fig. 11. The computation graph resulting from applying the transformations of Figure 9 to the

graph in Figure 4.

We use an arbitrary template for SCAN which includes all the necessary

information, including array bounds, strides inside vectors or minors, and the

operations to be performed in reverse Polish notation.

In the case of Figures 6 and 7, the resulting problem would be

T(l:N)=O. O
WHERE(A(l:N). NE. O) T(l:N)=B(l:N)
S= REDUCE(T, 1, N, 1, “+”)

where T is a newly defined array. (This somewhat awkward phrasing of the

resultant program is due to the way most parallel dialects, such as Fortran

90 and others [Guzzi et al. 1990], are defined.)

In general, the order in which rules are applied and the termination

condition depend on the rule set. If the rules are Church-Rosser [Church and

Rosser 1936] then this is immaterial, but often they are competing (in the

sense that the application of one would outrule the consequent application of

the other) or are contradictory (creating potential oscillation). This issue is

beyond the scope of this article, and we defer its discussion to general studies

on properties of rewriting systems.

4. EXAMPLES

To exemplify the advantages of our idiom recovery method, we present here

three cases in which other methods cannot speed the computation up but

ours can (if combined properly with standard methods). We do not include the

complete derivation in each case, but we outline the major steps and point

out the key items.

The first example is one of the loops used in a Romberg integration routine.

The original code (as released by the Computer Sciences Corporation of

Hampton, VA) looks as follows:

Example 5: DO 40 N=2, M+l
KN2. K+N–2
KNM2 . KN2 + M
KNM1 = KNM2 + 1
F=l. o/(4 .o**(N–1)–l. o)

ACM TransactIons on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

322 . S, S Plnter and R. Y. Plnter

TEMP1=WK(KNM2) –WK(K~C2)
WK(K~~Ml) =WF(&-NM2) +F*TEMPI

40 CONTIllUE

After substitution of temporaries, scalar expansion of F, and renaming of

loop bounds, which are all straightforward transformations, we obtain

DO 40 I= K+M, K+2*M–1
F(I) =l. O/(4 .0** (l– K–M +1)–1.0)
WK(I+l) =WK(I)+ F(I) *(WK(I)-WK(l -M))

40 CO~TTIITUE

Notice that no normalization is necessary in this case since from data

dependence analysis the only loop-carried data dependence between the

references to WK is of distance 1 which implies a span of 1. Furthermore, we

observe that the computation of F (I) can be performed in a separate loop, as

can be deduced using the well-known technique of “loop distribution.”

The loop computing F can be easily vectorized, so all we are left with is a

loop containing a single statement which computes WK (I + 1) . If we draw the

computation graph for this loop and allow operators to be linear combinations

with a coefficient (F (I) in this case), we can immediately recognize the scan

operation that is taking place and thus produce the following:

WK1(K+M: K+2*P-l)=WK (K: K+ M–l)
SCAN (WK, l;+M, K+2*~4–1, 1, WK1, “-”, F, “*”, “+”)

The second example is the program appearing in the introduction (taken

from Allen et al. [1987], who gave up on trying to parallelize it). Notice that

the loop is already in normal form. Once the loop is unfolded three times, as

required, we detect two independent chains in the computation graph, one

including the computation of the even3 entries in ~ and c, and the other

computing the odd entries. If the data are arranged properly, the whole

computation can be performed using the method for computing recurrence

equations presented in Kogge and Stone [1973], taking time O(log n) (n being

the value of N) rather than 0(n). The computation graph can be seen in

Figure 12. Notice that it is completely different from the PDG which consists

of two nodes on a directed cycle.

Finally, we parallelize a program computing the inner product of two

vectors, which is a commonly occurring computation:

p.o
DOIOOI =1, N
P= P+:<(I) *Y(I)

100 COBTTINTJE

Traditional analysis of the program (in preparation for vectorization) re-

places the loop’s body by

‘T(I) =X(I) *Y(I)
P= P+ T(I)

3 We use “even” and “od~ here just to distinguish between the chains; the recognition procedure
does not need to know or prove this fact at all

ACM TransactIons on Pro~ammmg Languages and Systems, Vol 16, No 3, May 1994

Optimization and Parallelization Using Idioms . 323

(C(init)) (A(mid)) (B(ini

Fig. 12. The computation graph of example 1

QJ-

P

Fig. 13. Transforming an inner product to a reduction,

Figure 13 shows the computation graphs of this transformed basic block

and that of the relevant part of the loop. The vectorizable portion of the loop

can be transformed into a statement of the form T = x *Y, and what is left can

be matched by the left-hand side of the rule of Figure 8. Applying the rule

produces the graph corresponding to the statement P = REDUCE (T, 1, N,

1, “ + “).
The recognition of an inner product using our techniques will not be

disturbed by enclosing contexts such as a matrix multiplication program. The
framed part of the program in Figure 14 produces the same reduced graph

that appears replicated after treating the two outermost loops.

ACM Transactions on Programming Languages and Systems, Vol. 16, No, 3, May 1994,

324 . S. S. Pinter and R. Y. Pinter

DO 100 1=1, !J

DD 100 J=l ,1

Fig. 14, The portion of a matrix multiplica- C(I, J)=O

tion program that is recognized by the trans-

formation of Figure 12. DO 100 K=l ,1

C(I, J)=C(I, J)+A(I, K)* B(K, J)

100 COHTIHUE

5, DISCUSSION

We have proposed a new program analysis method for purposes of optimiza-

tion and parallelization. It extracts more information from the source pro-

grams, thereby adding to existing methods the ability to recognize idioms

more globally. When comparing our method to the other most common

methods we can say the following:

—Constructing and then using the program dependence graph (PDG) or a

similar structure focuses on following dependence as they are reflected at

the syntactic level alone. Thus, the PDG is more conservative than our

computation graph (CG) which contains more information and exposes

further potential for parallelization.

—There was partial success in recovering reduction operators (using PDG-like

analysis) in the work on Parafrase [Lee et al. 1985; Polychronopoulos et al.

1986]. The techniques employed, however, are somewhat ad hoc compared

to ours.

—The places where normalization is carried out are, in general, not applica-

ble for known parallelizing transformations (thereby providing a proper

extension to automatic restructuring theory).

—Capturing the data dependence between array references by means of

dependence vectors [Chen 1986; Karp et al. 1967; Wolfe 1989] and then

solving a system of linear equations to extract the wavefronts of the

computation are limited to functional (side effect free) sets of expressions.

—Symbolic and partial evaluation methods [Jouvelot and Dehbonei 1989;
Letovsky 1988; Rich and Waters 1988] all follow the structure of the

program rigorously, and even when the program is transformed into some

normal form these methods are still highly sensitive to “noise” in the

source program. Their major drawback is the lack of specific semantics for

array references, limiting their suitability for purposes of finding reduction

operations on arrays.

Our primary objective is to cater for machines with effective support of

data parallelism. Our techniques, however, are not predicated on any particu-

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994

Optimization and Parallelization Using Idioms . 325

lar hardware, but can rather be targeted to an abstract architecture or to

language constructs that reflect such features. Examples of such higher-level

formalisms are APL functional and idioms, the BLAS package (which has

many efficient implementations on a variety of machines), vector-matrix

primitives as suggested in Agrawal et al. [1989], and languages such as

Crystal, C*, and *lisp which all support reductions and scans.

All in all, we feel that this article makes both methodological and algorith-

mic contributions that should be further investigated. In addition to the

constructs mentioned above, many others can be expressed as computation

graph patterns and be identified as idioms [Pinter and Mizrachi 1992]; such

constructs can be used to eliminate communication and synchronization steps

that might appear in conjunction with parallel computations. Also, further

work on algorithmic methods other than repeated application of the rules

(such as fixed-point computations) is also necessary. Finally, we are currently
implementing the techniques mentioned here as part of an existing paral-

lelization system [Lempel et al. 1992] and plan to obtain experimental results

that would indicate how prevalent each of the transformations is.

ACKNOWLEDGMENTS

The authors would like to thank Ron Cytron, Ilan Efrat, and Liron Mizrachi

for helpful discussions, as well as Jeanne Ferrante and David Bernstein for

comments on an earlier draft of this article. We would also like to thank the

anonymous referees for their insightful reviews.

REFERENCES

AGRAWAL, A., BLELLOCH, G. E., KRAWITZ, R. L., AND PHILLIPS, C. A. 1989. Four Vector-matrix

primitives. In the Symposium on Parallel Algorithms and Architectures. ACM, New York,
292-302.

AHo, A. V., SETHI, R., AND ULLMAN, J. D. 1986. Compilers—Principles, Techniques, and Tools.

Addison-Wesley, Reading, Mass.

AIKEN, A. AND NICOLAU, A. 1988. Optimal loop parallelization. In the SIGPLAN’88 Conference

on Programmmg Language Design and Implementation. ACM, New York, 308–3 17.
ALLEN, R. AND KENNEDY K. 1987. Automatic translation of FORTRAN programs to vector

form.

ALLEN, F. E., BURKE, M., CHARLES, P., CYTRON, R., AND FERRANTE, J. 1988. AD overview of the

PTRAN analysis system for multiprocessing. J. Parall. Dzstrib. Comput. 5, 5 (Oct.), 617-640.

ALLEN, R., CALLAHAN, D., AND KENNEDY, K. 1987. Automatic decomposition of scientific pro-
grams for parallel execution. In the 14th Annual Symposmm on the Principles of Programming

Languages. ACM, New York, 63-76.
BANERJEE, U. 1988. Dependence Analysis for SupercomputZng. Kluwer Academic Publishers,

New York.

BLELLOCH, G. E. 1989. Scans as primitive parallel operations. IEEE Trans. Comput. C-38, 11
(Nov.), 1526-1539.

BRODE, M. 1981. Precompilation of FORTRAN programs to facilitate array processing. Com-

puter 14, 9 (Sept.), 46-51.
CALLAHAN, D. 1991. Recognizing and parallelizing bounded recurrences. In the 4th Workshop

on Languages and Compilers for Parallel Computmg. Lecture Notes in Computer Science, vol.
589. Springer-Verlag, New York, 169-185.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994

326 . S. S. Pinter and R, Y, Plnter

CHEN, M. C. 1986, A parallel language and its compilation to multiprocessor machines or
VLSI. In the 13th Annual Symposium on the Principles of Programmmg Languages. ACM,
New York, 131-139.

CHURCH,A. ANDROSSER,J.B. 1936 Some properties ofconversion. Trans. Am. Math Soc. 39,

472-482.

CITRON,R., FERRANTE,J., RosEN, B. K., WEGMAN, M N., .ANDZADECK, F K 1989. Inefficient

method of computmg static single assignment form. In the 16thAnnual Sympost urn on the

Prmclples of Programming Languages. ACM, New York, 25-35.
DONGARRA, J. J., CROZ, J. D., HAMMARLING, S., AND HANSON, R. J. 1988 An extended set of

FORTRAN basic linear algebra subprograms. ACM Trans. Math, Soft. 14, 1 (Mar.), 1-17.

FERRANTE, J., OTTENSTEIN, K. J., AND WARREN, J. D. 1987. The program dependence graph and

its use in optimization. ACM Trans. Program. Lang. Syst. 9, 3 (July), 319–349.

GUZZI, M. D., PADUA, D. A., HO~FLINGER, J. P., AND LAWRIEL D. H. 1990. Cedar FORTRAN and

other vector and parallel FORTRAN dialects. J Supercomput. 4, 1 (Mar.), 37–62.

HUSON, C., MACKE, T., DAVIS, J. R., WOLFE, M. J., AND LEASURE, B. 1986. The KAP/205: An
advanced source-to-source vectorizer for the Cyber 205 supercomputer. In the International

Conference on Parallel Processing. CRC Press, Inc., 827-832.

JOLWELOT, P., AND DEHBONEI, B. 1989. A unified semantic approach for the vectorization and
parallelization of generalized reductions. In the International Conference on Supercomputing.

ACM, New York, 186-194.
KARP. R. M., MILLER, R. E., AND WINOGRAD, S. 1967. The organization of computations for

uniform recurrence equations. J. ACM 14, 3 (July), 563–590.

KOGGE, P. M. AND STONE, H. S. 1973. A parallel algorlthm for the efficient solution of a

general class of recurrence equations. IEEE Trans. Comput. C-22, 8 (Aug.), 786-793.

Kumi, D., KUHN, R. H., PADUA, D. A,, LEASURE, B., AND WOLFE, M. 1981. Dependence graphs
and compiler optimizations In the 18th Annual ACM Symposium on the Principles of Pro-

gramming Languages. ACM, New York, 207-218.
LADNER, R. E. AND FISCHER, M. J. 1980. Parallel prefix computation. J. ACM 27, 4 (oct.),

831-838

LAMPORT, L. 1974. The parallel execution of do loops. Commun. ACM 17, 2 (Feb.), 89-93.

LAWSON, C. L., HANSON, R. J., KINCAID, D R., AND KROGH, F. T. 1979, Basic linear algebra

subprograms for FORTRAN usage. ACM Trans. Math. Soft. 5, 3 (Sept.), 308–323.

LEE, G., KRUSKAL, C. P., AND KUCK, D. J. 1985. An empirical study of automatic restructuring

of nonnumerical programs for parallel processors. IEEE Trans. Comput. C-34, 10 (Ott),
927-933.

L~MPEL, O., PINTER, S. S., AND TURIEL, E. 1992. Parallelizing a C dialect for distributed

memory MIMD machines. In the 5th Workshop on Languages and Compilers for Parallel

Computmg. Lecture Notes in Computer Science, vol. 757. Springer-Verlag, New York, 369-390

LETOVSKY, S. I. 1988 Plan analysis of programs. Ph.D. thesis, YALEU/CSD/TR-662, Dept. of
Computer Science, Yale Univ., New Haven, Corm.

MUNSHI, A. AND SIMONS, B. 1987. Scheduling sequential loops on parallel processors. Tech.
Rep RJ 5546, IBM Almaden Research Center, San Jose, Calif.

PACIFIC-SIERRA RESEARCH. 1990. VAST for RS / 6000. Pacific-Sierra Research, Los Angeles,

Calif.
PF.RI.IS, A. .J. ANTI RITGARRR, S. 1979. Programming with idioms in APL. In APL ‘7.9 ACM. New

York, 232–235. Also, APL Quote Quad, vol. 9, no. 4.

PINTER, S. S. AND MIZBACHI, L. 1992. Using the computation dependence graph for compile-time
optimization and parallelization. In Proceedings of the Workshop on Advanced Compilation

Techruques for Nouel Architectures. Springer-Verlag, New York.

POLYCHRONOPOULOS,C. D., KUCK, D. J., AND PADUA, D. A. 1986. Execution of parallel loops on
parallel processor systems. In the International Conference on Parallel Processing. IEEE, New
York, 519–527,

RICH, C. AND WATERS) R. C. 1988. The programmer’s apprentice: A research overview Com-

puter 21, 11 (Nov.), 10–25.

ROSENDAHL, M. AND MANKWALD, K. P. 1979. Analysis of programs by reduction of their

ACM TransactIons on Programmmg Languages and Systems, Vol. 16, No, 3, May 1994

Optimization and Parallelization Using Idioms . 327

structure. In Graph-Grammars and Their Applications to Computer Science and Biology.

Lecture Notes in Computer Science, vol. 73, Springer-Verlag, New York, 409-417.
THINKING MACHINES CORPORATION. 1987. Connection Machine Model CM-2 technical sum-

mary. Tech. Rep. HA87-4. Thinking Machines Corp., Cambridge, Mass.

WOLFE, M. J. 1989. Optimizing Supercompilers for Supercomputers. MIT Press, Cambridge,
Mass.

Received May 1990; revised October 1993; accepted October 1993

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

