Improved Bounds on Sorting with Length-Weighted Reversals
(Extended Abstract)

Michael A. Bender*f Dongdong Ge*

Steven Skiena*

Abstract

We study the problem of sorting integer sequences and
permutations by length-weighted reversals. We consider
a wide class of cost functions, namely f(£) = ¢ for all
a > 0, where £ is the length of the reversed subsequence.
We present tight or nearly tight upper and lower bounds on
the worst-case cost of sorting by reversals. Then we develop
algorithms to approximate the optimal cost to sort a given
input. Furthermore, we give polynomial-time algorithms to
determine the optimal reversal sequence for a restricted but
interesting class of sequences and cost functions. Our results
have direct application in computational biology to the field
of comparative genomics.

1 Introduction

We consider the problem of sorting a given permutation
m of the integers 1, ..., n by performing repeated rever-
sals of contiguous subsequences of 7. In our model, the
cost of each reversal operation depends on the length of
the reversed subsequence, i.e., the number of elements
in the subsequence, and the total cost to sort the per-
mutation is the sum of the individual reversal costs.
The problem of sorting by reversals arises in com-
parative genomics, where the elements of the permu-
tation are genes and reversal (or inversion) mutations
occur frequently in the evolution of chromosomes. The
minimum-cost reversal distance! is a useful measure
for reconstructing the evolutionary history of an or-

~ *Department of Computer Science, SUNY Stony Brook, Stony
Brook, NY 11794-4400, USA. Email: {bender, dge, simaihe, huhd,
skiena}@cs.sunysb.edu.

tSupported in part by Sandia National Laboratories and NSF
Grants ETA-0112849 and CCR-0208670.

{Department of Computer Science, Technion — Israel In-
stitute of Technology, Haifa 32000, Israel.
pinter}@cs.technion.ac.il.

1The problems of sorting a given permutation by reversals and

Email: {firas,

finding the reversal distance between two given permutations are
equivalent: simply relabel the elements of the target permutation
to be the identity and use the same relabeling for the source
permutation.

Simai He*

Haodong Hu* Ron Y. Pinter?

. . +
Firas Swidan*

ganism because the most parsimonious series of rever-
sals transforming one sequence to another corresponds
to a likely evolutionary path between the two organ-
isms. This analysis has been applied, for example, to
drosophila [10, 21], plants [2, 16], viruses [11], and mam-
mals [9, 18].

Traditionally [3, 14], such analysis assumes that
each reversal has unit cost independent of the length
of the fragment reversed. This assumption, however,
is not completely defensible biologically. To the con-
trary, the mechanics of genome reversal suggest that
the probabilities of reversals are dependent on fragment
length. Preliminary results on genome rearrangements
that assign a length-dependent cost to reversal opera-
tions appear in [7], and indicate that length indeed plays
an important role in biasing certain rearrangement pat-
terns.

Two problems on reversal distance are of particular
interest:

e FEuxistential Distance Determination — Here we
seek to identify the minimum cost sufficient to sort
any permutation of n elements. Equivalently, we
seek to compute the shortest path from 7 to the
identity permutation in the reversal graph, namely
the weighted graph where the vertices represent the
length-n permutations and there is an edge (71, m32)
of weight f(£) if there exists a single reversal of
length ¢ transforming sequence 71 to sequence ms.

e Pairwise-Reversal-Distance Determination — Here
we consider the problem of approximating the
minimum-cost reversal sequence for a given permu-
tation of n elements. We seek an algorithm guaran-
teeing that the resulting reversal sequence costs no
more than some slowly growing function of n times
the cost of the optimal reversal sequence.

Pinter and Skiena [19] were the first to study
the length-weighted model and to provide performance
guarantees for the above problems for non-constant
functions f(z). Specifically, they considered additive

functions, where a function f(z) is additive if f(z) +
f(y) = f(z + y); they proved an O(nlg’n) distance
bound for such functions and gave a heuristic for
approximating reversal distance to within an O(lg2 n)
factor.

Results. In this paper, we generalize the reversal
problems to a wide class of cost functions, namely
f(£) = £* for any @ > 0. This family models a wide
variety of costs that are applicable to the study of
genomes; the family is general enough to include unit-
weighted reversals (e = 0), additive costs (e = 1),
subadditive costs, where f(z)+ f(y) > f(z+y) (a < 1),
and superadditive costs, where f(z) + f(y) < f(z + v)
(a > 1). We give the first nontrivial lower bounds on
the cost of sorting by reversal for a > 0.

We present the following results:

e We prove an Q(nlgn) lower bound on diameter
for additive distance functions. This is the first
non-trivial lower bound on the diameter of length-
weighted reversals, and i1t holds even in the re-
stricted case of sorting 0/1 sequences rather than
permutations.

e We prove tight or near-tight bounds on diameter for
all & > 0, as summarized in Table 1. These bounds
are derived using a new and interesting class of
potential functions.

e We give heuristics yielding improved and non-
trivial approximation ratios for all & > 0, also sum-
marized in Table 1. We note that different heuris-
tics are needed to achieve performance guarantees
for each of the additive, subadditive, and superad-
ditive cases. Having a complete suite of provably
good heuristics is particularly important for biolog-
ical sequence analysis, as it permits experimenta-
tion to determine which cost function best matches
the observed evolutionary data. We have imple-
mented our heuristics and are engaged in a project
to perform such an experimental analysis [4].

e We give a polynomial-time algorithm for determin-
ing the exact cost of sorting a 0/1 sequence under
an additive cost measure. This result is surprising
given the hardness of related problems. We use this
result to give an O(lgn) approximation algorithm
for linear cost functions, improving the O(lg? n) re-
sult from [19].

Previous Work. The problem of computing the
reversal distance between two permutations and its
applications to comparative genomics have received
extensive attention over the last decade. There are two
variants of the problem: the unsigned case, in which

we disregard the orientation of the elements throughout
the reversal process, and the signed case, where the
directions of the elements do matter. Both measures
have merit in terms of the underlying biology; in this
paper we focus on the unsigned case. Note, however,
that the low-cost of single-element reversals means that
our solutions apply to the signed case when a > 1.

For the case of unit-cost (o = 0), unsigned rever-
sals, the problem of computing the reversal distance
has been shown to be NP-complete by Caprara [8]; our
problem, in which the cost depends on the length of
the subsequence being reversed, inherits hardness for
a = 0 from this result. Kececloglu and Sankoff [14]
give approximation algorithms on reversal distance that
guarantee a ratio at most 2 times optimal, which Bafna
and Pevzner [3] improved to a factor of 7/4 approxima-
tion; recently, Berman, Hannenhalli, and Karpinski [6]
reduced this factor even further, to 1.375. Kececloglu
and Sankoff [15] report on the success of heuristics and
search in determining the reversal distance for chromo-
somes.

In a celebrated result Hannenhalli and Pevzner [12]
gave a polynomial-time algorithm for the case of unit-
cost, signed reversals. An elementary exposition of
the Hannenhalli-Pevzner theory appears in [5]. Re-
cently, Siepel [20] gave an efficient algorithm for con-
structing /enumerating al/l minimum-length reversal se-
quences. The huge number of such sequences implies
that other criteria must be employed to have hope of
reconstructing the true evolutionary history. Ajana et
al. [1] developed algorithms for users of a (signed) rever-
sal algorithm to choose one or several possible solutions
based on different criteria, including additive reversal
costs; this flexibility was shown to be useful for testing
certain reversal hypotheses.

Minimum-cost unsigned reversal sorting has also
been studied from the other end of the cost spectrum,
under models where the cost increases so dramatically
with length that only length-2 reversals can be afforded.
Thus each reversal simply transposes adjacent elements.
Bubble sort and insertion sort [17] both sort any per-
mutation 7 using exactly one transposition for each in-
version in 7, thus minimizing the number of reversals.

Outline. The rest of the paper is organized as
follows. Section 2 presents upper and lower bounds
for the problem of sorting any permutation and any
sequence of 0’s and 1’s. Section 3 provides algorithms
for sorting a specific permutation achieving the above
mentioned approximation ratios. In Section 4 we show
how to optimally sort a given 0/1 sequence when o = 1.
We conclude in Section 5 with a summary and open
problems. Omitted proofs will appear in the full version
of the paper.

a Value | Lower Bounds Upper Bounds Approximation Ratio
Permutations | 0/1’s Permutations | 0/1’s
0<ax<l Q(n) O(nlgn) O(n) O(1)
a=1 Q(nlgn) O(nlg®n) O(nlgn) O(lgn) 1
l<a<?2 Q(n®) O(n%) O(n%) O(lgn) o(1)
a>2 Q(n?) 0(n?) 0(n?) 2 1

Table 1: Sorting Bounds (Lower and Upper) and Approximation Ratios for 0/1 sequences and integer permutations.

2 Existential Diameter Bounds

2.1 Upper
Skiena [19] proved an O(nlg?n) upper bound on diam-
eter for linear-cost reversals, based on a O(nlgn) upper
bound for sorting 0’s and 1’s. To sort a sequence of 0’s
and 1’s, recursively sort the left and right halves, and
then perform one more reversal across the median for a
sorting cost of

B(n) < 2B(n/2)+ O(n) = O(nlgn).

Bounds on Diameter. Pinter and

To sort a permutation 7, divide the sequence around the
median and recursively sort both halves, as before. In
order to divide around the median, treat the elements
less than the median as 0’s and the elements greater
than the median as 1’s and then sort. Thus, the cost
to divide the elements around the median is O(nlgn),
yielding a sorting cost of

P(n) <2P(n/2) 4+ O(nlgn) = O(nlg®n).

We show that this algorithm is optimal or almost
optimal for all 0 < a < 2, although different proofs are
needed for large and small values of «.

First, we consider the case of 0 < a < 1. Consider
the divide-and-conquer sorting algorithm given above.
The recursion relation for sorting 0’s and 1’s becomes
B(n) < 2B(n/2) + n® < O(n) when a < 1. For
permutations the recursion for the sorting costs becomes
P(n) <2P(n/2)+ B(n) < O(nlgn) when a < 1. Thus,

THEOREM 2.1. When the cost function of reversals is
f(8) = £2, for 0 < o < 1, 0’s and 1’s can be sorted
with cost O(n), and permutations can be sorted with cost

O(nlgn).

Now consider the case of 1 < a < 2. The recur-
sion relation for sorting 0’s and 1’s becomes B(n) <
2B(n/2) + n® < O(n®) when a > 1. For sorting per-
mutations, the recursion for the sorting costs becomes
P(n) <2P(n/2)+ B(n) < O(n®) when & > 1. Thus,

THEOREM 2.2. When the cost function of reversals is
F(8) =£%, for 1 < a <2, 0/1-sequences and permuta-
tions can both be sorted with cost O(n®).

2.2 Lower Bounds on Diameter.

Lower Bound for Linear Costs. We first give
a lower bound on the cost of sorting by reversals with
a linear cost function (e = 1). Finding such a lower
bound was an open problem in [19].

THEOREM 2.3. The cost to sort n elements by reversals
with a linear cost function (o = 1) is Q(nlgn), even
when all elements are 0’s and 1’s.

Thus, our bounds are tight for sorting 0/1 sequences,
but an O(lgn) multiplicative gap exists for sorting
permutations.

In the rest of the section, we prove Theorem 2.3.
Our approach is to exhibit a difficult sorting instance.
Specifically, we prove a lower bound of Q(nlgn) on
the cost to sort the length-n sequence 0101---01 by
reversals.

The proof follows a potential-function argument.
Before the sorting begins, we match the ¢-th 0 with the -
th 1. Throughout the algorithm we keep this matching,
and we let d;(t) be the current distance between the
i-th 0 and i-th 1 after the ¢-th reversal; when there is
no ambiguity, we abbreviate d;(¢) by d;. The potential

function 1s
P(t) =" lgd;(t).

LEMMA 2.1. The nitial value of the potential function
is 0, and the final value is Q(nlgn).

We show how a reversal affects the value of d; in the
potential function by considering the i-th (0, 1) pair.

OBSERVATION 2.1. The distance d; only changes when
one element of the i-th 0-1 pair is inside the reversal
and the other is outside.

LEMMA 2.2. A reversal of length k increases the poten-
tial P(t) by at most 4k.

Proof. Suppose that for a reversal of length &, one of
the elements is inside the reversal and the other one
is outside, so that d; is affected by the reversal. The

| reversal

B o T o I B S A R
. di N

...... [‘1 T

lessthan d; + k

Figure 1: The sequence before and after one reversal.

new distance between those two elements can increase
to at most d; + k because each element in the reversal
is moved at most the distance k.

Assume by symmetry that the 0 is outside the
reversed sequence and the 1 is inside. Suppose that
the distance from the 0 to the beginning of the reversed
sequence is {; see Figure 1. Then the distance d; for
this pair is increased by at most lg(k + d;) — lgd; =
lg(1 + k/d;) < lg(1 + k/¢). The distance £ must be a
natural number, and the same value of £ occurs at most
twice in one reversal, once on the left and once on the
right side of the reversed sequence.

By Observation 2.1, there are at most k such pairs
whose distances change the value of potential function.

Therefore the value of the potential function in-
creases by at most

k/2 k/2
22 le(L+k/j) < 23 (1+1g(k/j)
k
< k42 lg(k/h)

k4 21g(k* /k!).

By Stirling’s approximation, k* /k! < e* for k > 1.
Therefore lg(k* /k!) < klge < 2k. Thus, the value of
the potential function increases by at most k& + 3k = 4k.

O

By combining Lemmas 2.1 and 2.2, we establish
Theorem 2.3.

Lower Bound for 1 < a < 2.

THEOREM 2.4. There is a lower bound of Q(n®) on the
cost of sorting by reversals for cost function f(£) = £%,

for 1 < a < 2, even when all the elements are 0’s and
1’s.

We now prove Theorem 2.4. The same difficult
sorting instance applies. Specifically, we show that
sorting the sequence 0101 - - -01 of length n requires cost
Q(n®).

The proof follows a potential-function argument in
the same spirit as that of Theorem 2.3. Before the

sorting begins, we match the i-th 0 with the i-th 1.
Throughout the algorithm we keep this matching and
we let d;(¢) be the current distance between the i-th
0 and i-th 1 after the ¢-th reversal; when there is no
ambiguity, we abbreviate d;(t) by d;. We define the
potential function at time ¢ to be

P(t) = di~'(1).
LEMMA 2.3. The nitial value of the potential function
is ©(n). The final value of the potential function is
Q(n®).

We now show how a reversal affects the value of the
d;’s 1n the potential function.

LEMMA 2.4. A reversal of length k increases the poten-
tial function by at most 2k*.

Proof. Suppose that d; is affected by a given reversal of
length k. Then one element of the i-th pair is inside the
reversal and the other one is outside. The new distance
between those two elements can be increased to at most
d; + k because the element in the reversed sequence can
be moved at most a distance k.

Assume by symmetry that the 0 is outside the
reversed sequence and the 1 is inside the reversed
sequence. Suppose that the distance from the 0 to
the beginning of the reversal sequence is £. Then the
contribution of the i-th pairs d?_l to the potential
function is increased by at most (k + £)*~! — ¢2=1.

Note that the function 22 is a decreasing function
if @ < 2. By the Intermediate-Value Theorem, we
obtain

(k40> =27 = (a— 1)k(£+Ek)* 2 < (a— 1)k 2,

where ¢ is a real number ranging from 0 to 1.

This distance £ must be a positive integer, and the
same value of £ can occur at most twice, once for the left
side and once for the right side of the reversed sequence.
Note that there are at most k such pairs whose distances
change. Furthermore, for a < 2, 22 is a decreasing
function about z.

Therefore the value of the potential function in-
k/2

creases by at most 2)" (o — 1)k€*~2. We bound the
=1

sum by an integral and evaluate the integral:

k/2

2> (o= k72 <

k)2
Qk/ de (o — 1):L‘°‘_2
=1 z

:0
= 2k(k/2)*7' = 227> < 2k°.

O

We obtain the following corollary directly by noting
that the cost to reverse a sequence of length k is £*.

COROLLARY 2.1. If a giwven reversal increases the po-
tential function by A, then the cost of the reversal is at

least AJ2.

Theorem 2.4 follows directly from Corollary 2.1.

Lower Bound for 0 < a < 1. Our results are
tight for 0’s and 1’s, but there is a logarithmic gap for
permutations:

THEOREM 2.5. There is a lower bound of Q(n) on the
cost of sorting by reversals for cost function f(£) = £%,
for 0 < a < 1, even when all the elements are 0’s and
1’s.

Lower Bound for a > 2. Sorting by reversals is
straightforward when a > 2, because the problem can
be solved asymptotically optimally using bubble sort; it
is never worth reversing sequences of any length other
than 2.

We have the following theorem in the case of @ > 2:

THEOREM 2.6. Sorting by reversals with the cost func-
tion f(£) = £*, a > 2, has a tight cost bound of O(n?).

Bubble-Sort or Insert-Sort immediately gives an O(n?)
upper bound on the sorting cost and the Q(n?) lower
bound follows from a potential-function argument. The
proof appears in the full version of the paper.

In fact, bubble sort is a 2-approximation to the
optimal cost to sort a permutations for @ > 2 and is
optimal when o > 3.

3 Approximating the Sorting Cost

We now consider the biologically important problem of
approximating the optimal cost to sort a given sequence.
That is, we study the pairwise reversal distance between
two particular sequences, rather than the existential di-
ameter. To achieve good approximation bounds in this
section, we need different algorithms for the different
ranges of a. In contrast, in Section 2 one divide-and-
conquer algorithm achieves optimal or nearly optimal
sorting bounds for all 0 < a < 2. However, the sorting
bounds give little indication of the optimal cost to sort
a given sequence.

3.1 Approximation Algorithms for 1 < a < 2.
We cannot use the sorting algorithm from Section 2.1
for 1 < a < 2 because it does not deliver a good ap-
proximation ratio. To see why, consider the permuta-
tion n,1,2,3,...,n — 1. The optimal solution (n — 1

Kk n-k
f I |
00[111111111000000000011 -+
reverse this

Figure 2: The sequence before and after one reversal.

reversals of length 2) has cost ©(n), whereas the sort-
ing algorithm has cost ©(n®). The moral is that an
approximation for a > 1 is different than for a = 1,
where sorting all out-of-order regions yields an O(lg2 n)
approximation [19].

We begin by enumerating properties of the cost
function f(¢) = £* when 1 < a < 2.

THEOREM 3.1. Let Sy and S be disjoint subsequences
of sequence S (i.e., the subsequences could interleave but
have no common elements). Define cost C(R) to be the
cost of the reversal R and cost C(R|S;) to be the cost
of the reversal R restricted to subsequence S;. Then
for any reversal R in S and cost function f(£) = £*
(I<a<?),

C(R) > C(R|S1) + C(R|S3).

COROLLARY 3.1. Let S1 and Sy be disjoint subsets of
sequence S. Then the optimal cost to sort S is at least

the sum of the optimal cost to sort S1 and Ss for cost
function f(£) =£* (1 < a < 2).

3.1.1 Approximation Algorithms for 0/1 Se-
quences for 1 < a < 2. We give a divide-and-
conquer approximation algorithm for sorting 0/1 se-
quences, which we later use as a subroutine for more
general sequences.

ALGORITHM kBasedDC.

1. Suppose the sequence has &k 0’s, and therefore n—k
1’s. Split the sequence at position k. This split
means that the sequence has k elements to its left
and n — k elements to its right. Sort both left and
right subsequences recursively.

2. Now the sequence is 0---01110001---1, where
there are two blocks of 0’s and two blocks of 1’s.
See Figure 2. Perform a reversal to switch the first
block of 1’s and second block of 0’s, and the se-

quence is sorted.
The algorithm kBasedDC performs as follows:

THEOREM 3.2. The algorithm kBasedDC' is an O(1)-
approzimation algorithm for sorting 0/1 sequences when
l<a<2.

To prove Theorem 3.2, we first give a lower bound
using a potential-function argument. Then, we prove
that the sorting cost of kBasedDC is within a constant
factor of the initial potential value.

We now define a potential function W (S) for any
0/1 sequence S.

DEFINITION 3.1. For a 0/1 sequence S of length n, and
any integer 1 < ¢ < n, define the number of wrong-side
elements w(i, S) according to position i to be the number
of extra 1’s in the first © elements in S plus the number
of extra 0’s in the last n—1 elements in S when compared
with the sorted sequence.

We define the potential function W(S) as follows:

W(S) = ;Z:lw(i,S)“‘l.

Let R(S) represent the sequence S after performing
the reversal R.

LEMMA 3.1. A reversal R of length r on sequence S
increases the value of the potential function W(S) by at
most r*, that is, W(R(S)) — W(S) < r®.

Because the cost for a reversal of length r is r* and
the value of W (S) is 0 for the sorted sequence, we obtain
the following corollary:

COROLLARY 3.2. The potential W(S) is a lower bound
on the cost to sort the sequence S by reversals when
l1<a<?2.

Now we prove that kBasedDc sorts using cost W (.5),
which establishes an O(1)-approximation ratio. We first
prove a lemma about the number w(i, S) of wrong-side
elements.

LEMMA 3.2. If S s a sequence of length n and 1 1s
an integer 1 < i < n, and we add a 0 or 1 to right
(respectively, left) end of sequence S to create a new
sequence S', the value of w(i,S) can only increase, i.e.,

w(i, S) > w(i, S).

COROLLARY 3.3. If S s a sequence, Si is the subse-
quence of the left k elements, and Sg is the subsequence
of the right n — k elements, then for any 1 <i<mn,

w(t, St),
w(i —k, Sr),

1<i<k,
k<i<n.

w(i,)> {

THEOREM 3.3. The cost of kBasedDC' to sort any se-
quence S is in O(W(S)).

Proof. Recall that there are & 0’s, so the lengths of S,
and Sg are k and n — k, respectively. Define cost C(S)
to be the cost of this algorithm to sort sequence S.

In Step 2 we reverse w(k, S) wrong-sided elements
with respect to position k for a cost of w(k, S)®. Thus,
we have the following recurrence for C(S5):

C(S) =C(SL) +C(Sr) + w(k,5)~.
Now we want to prove that
W(S)—W(SL) — W(Sgr) > cw(k, S)?,
for some constant ¢. To do so, we define

i) = [w(i7 S)]a_l - [w(i7 SL)]Q_l) i < k;
All) = { [w(i,)" = [w(i—k,Sp)]*™", i>k.

From Corollary 3.3, we know that A(7) > 0. Therefore,

W(S) — W(S) — W(Sr) éAm

> %

Because shifting the position 7 in the sequence to
the left or right by 1 can change the number of wrong-
sided elements by at most 2, for any 1 < j < w(k, S)/4,
w(k—7j,5) > w(k,S)—25 and w(k+j,5) > w(k, S)—2j.

Notice w(k,Sr) = 0 and w(0,Sg) = 0. For the
same reason as above we know that for any 1 < j <
w(k,S)/4, wk — 7,5.) < w(k,St) +2j = 2§ and
w(j, Sr) < w(0,Sr) +2j =2j.

Thus, since [w(k,S) — 2j]a_
0<j<uw(k,S)/4, we have

! > (25)*71 when

w(k,S)/4
> {lw(k, 8) - 2]"7" = (2)°'}
w(k,5)/8
> {lwk, 8) - 2]"7" = (2)°'}
S R U P

= LB/ = (/0 w(k,5)"

By performing induction on the length of sequence

S, we can establish that W (S) > ¢C(S), where

c= min{é [(3/4)1 — (1/4)>71], %} :

which proves the theorem. a

3.1.2 O(lgn) Approximation Algorithm for
Permutations When 1 < a < 2. We give the fol-
lowing approximation algorithm for sorting a permuta-
tion .S, which is a surprising enhancement of the sorting
algorithm from Section 2.1. We add one intermediate
step: after we divide the sequence S into two halves
about the median, we recursively sort each half to re-
turn the elements to the same order as in S. Only then
do we recursively sort each half. At first glance, this
modification seems to increase the complexity, but, in
fact the complexity is reduced enough to approximate
the optimal sorting cost to within a logarithmic factor.

ALGORITHM reorderReversalSort:

1. Treat the elements less than the median as 0
and those greater than the median as 1, and sort
them as 0/1 sequence using the algorithm from
Section 3.1.1.

2. Return the elements in each half to their original
order. To do this, reverse the restricted permuta-
tion of Step 1 on both subsequences.

3. Now there is a new left side sequence S; and
new right side sequence S%, which are disjoint
subsequences of the original sequence S. Sort ST,
and S% recursively.

This algorithm has the following performance:

THEOREM 3.4. The algorithm reorderReversalSort is
an O(lgn) approzimation algorithm when 1 < a < 2.

Proof. Let oPT(S) be the optimal cost to sort sequence
S. The cost for Step 1 is at most O(oPT(S)) by
Theorem 3.3. The cost for Step 2 is at most the cost of
Step 1, and hence is at most O(oPT(S)). This follows
from Theorem 3.1, and because the inverse of a reversal
is itself, and we are just doing the inverse restricted
permutation on left and right subsequences. We also
know from Theorem 3.1 that opT(S7) + oPT(S%) <
oPT(S) because S7 and S}, are disjoint subsequences of
the original sequence S. Thus, the cost of Step 3 is

C(S) = C(SL) + C(Sr) + cost for Steps 1 and 2,

and with a simple induction we establish the O(lgn)
approximation. a

3.1.3 O(lgn) Approximation Algorithm for
Permutations When a = 1. The algorithm reorder-
ReversalSort from Section 3.1.2 is modified for the case
of a = 1 by using a 0/1 sorting algorithm designed for
a = 1. Section 4.1 introduces zerOneSort, an exact

algorithm for sorting 0/1 sequences for @« = 1. Using
zerOneSort in Step 1 of reorderReversalSort guaran-
tees a logarithmic approximation ratio for &« = 1. The
proof uses similar ideas to those in Theorem 3.4.

THEOREM 3.5. The algorithm reorderReversalSort us-
ing zerOneSort as a subroutine is an O(lgn) approzi-
mation algorithm when a =1 .

3.2 Approximation Algorithm for 0 < a <
1. We first give an O(lgn)-approximation algorithm
for sorting sequences of 0’s and 1’s. A sequence
composed of 0’s and 1’s can be viewed as composed
of zero blocks (0’s) and one blocks (1’s). Without
loss of generality, suppose the sequence is in this form:
W1 21 WaZg . .. WmZm, Where w; and z; represent the i-th
one and zero block, respectively. By symmetry, all other
cases can be reduced to this case. We have the following
lower bound:

LEMMA 3.3. A lower bound on oPT(S) to sort a se-
quence S = wW1z1Wazy ... Wmzm by reversals when 0 <
a<lis

3

V(S) =3 2 (Jwil* +]a]) .

i=1

3.2.1 O(lgn) Approximation Algorithm for 0/1
Sequences for 0 < a < 1. The approximation
algorithm is based on divide-and-conquer:

ALGORITHM blockDC:

1. Map each block of 0’s or 1’s to a single element 0
or 1 in a new sequence S’, ignoring the block of 0’s
at the leftmost position and the block of 1’s at the
rightmost position if they exist.

2. Use the divide-and-conquer algorithm from Sec-
tion 2 to determine the reversals to sort sequence

S’

3. Map back each element in S’ onto a block in S,
and map each reversal back according to the same

mapping.

Thus, we just perform the standard divide-and-
conquer algorithm from Section 2, but on the the blocks
of 0’s and 1’s. The performance guarantees are based
on the following structural lemma:

LEMMA 3.4. In blockDC' each element takes part in at
most 1gn reversals.

THEOREM 3.6. The algorithm blockDC is an O(lgn)-
approrimation algorithm when 0 < a < 1.

3.2.2 O(1) Approximation Algorithm for 0/1
Sequences for 0 < a < 1. We obtain a constant
approximation by improving the splitting as follows:

ALGORITHM 1improvedDC:

1. If there is any 0/1 block of size at least n/3, perform
a reversal of length at most n to move this block
to the edge of the sequence (a 0 block moves to
the front, and a 1 block moves to the back). Then
remove this block from the sequence S and sort the
rest of sequence S’ recursively.

2. If there are no blocks of 0’s or 1’s of size at least n/3,
then there exists a block edge at a distance at least
n/3 from both ends. Split the whole sequence S
at this edge to form left and right subsequences Sy,
and Sg. Sort S7, and Sg recursively, then perform
a reversal of length at most n = |Si| + |Sg|, and
the sequence S is sorted.

THEOREM 3.7. The algorithm improvedDC is an O(1)
approzimation algorithm for sorting 0/1 sequences for
a=1.

3.3 Approximation Algorithm for a > 2. Bub-
ble sort is optimal for sorting 0/1 sequences when @ > 2,
a 2-approximation for sorting permutations when 2 <
a < 3, and optimal when a > 3. The proofs will appear
in the full version.

4 Polynomial-Time Algorithms for 0/1 Sorting

We provide polynomial-time algorithms both for sorting
0/1 sequences when a = 1 and a > 2 as well as for
sorting permutations when o > 3. The main idea
throughout is to give sufficiently constrained properties
of an optimal solution, enabling it to be found in
polynomial-time.

Consider the first and last blocks in a reversal. If the
values of these blocks are identical, that is both equal
0 or 1, we call the reversal useless. If one of these two
blocks is contained in a bigger block, we call the reversal
a cutting reversal. If the reversal affects more than two
blocks, we call the reversal complez. We call a reversal
that is not complex simple.

A reversal series p1, ..., pe separates a 0/1 sequence
S, if performing the reversals on the sequence yields a
single block of 0’s and a single block of 1’s in either
order. If the separation places the 0’s before the 1’s, it
has a positive separation orientation. Otherwise it has
a negative separation ortentation. A positive separation
means sorted.

Given a reversal series p1,...,ps acting on a 0/1
sequence S = s1,S9,...,5m, where s; € {0,1}, denote

the number of reversals in which element s; participates
by N(s;). Call N(s;) the reversal count of s;.

When a subsequence s;,...,s; of S is never cut
by a reversal series pi,...,pe, we generalize the re-
versal count of the subsequence, denoting the number
of reversals in which the subsequence takes part by
N(Si,...,Sj).

4.1 Sorting 0/1 Sequences for a = 1. We show
that for an additive cost function f(z) = z , no optimal
reversal series contains useless or cutting reversals and
there exists an optimal reversal sequence containing no
complex reversals. The following equation relating the
reversal counts to the reversal-series cost is useful for
the proofs:

2 m

Y fUpil) = F(N(s5).

i=1 j=1

(4.1)

LEMMA 4.1. A reversal series containing a useless re-
versal cannot be optimal.

Proof. The proof is by contradiction. Consider a useless
reversal affecting elements 071 1%2 . .. 1210 of a 0/1 se-
quence. First, assume that ¢; > ig. Consider the mod-
ified reversal affecting the elements 0i1—#x 1%z ... 10k-1
This modified reversal has a lower cost, where the
0/1 sequence that it produces is identical to the 0/1
sequence that the original useless reversal produced.
Therefore the original reversal series cannot be optimal.
The remaining case #; < #; and the analogous cases for
sequences starting and ending with 1’s are similar. O

LEMMA 4.2. A reversal series containing a cutting re-
versal cannot be optimal.

Proof. The proof is by contradiction. Without loss
of generality, let p1,..., ps be a sorting reversal series
containing no useless reversals.

Consider the last cutting reversal p;. Let 0° be a
block that the reversal cuts, and assume that p; affects
z 0’s of the block, where 0 < # < i. Notice that N(0%)
and N (0°=7) are well defined since p; is the last cutting
reversal in the reversal series.

First, assume that N(0=%) < N(0%). Exclude 0®
from the cutting reversal, and include it in all reversals
in which 0°=" takes part. Thus, the block 0’ moves as
a unit through the reversals affecting 07~=.

Since the cutting reversal is not useless, it affects
a 0/1 subsequence of the form 1...10% or of the form
0¥1...1. Excluding 0 from the cutting reversal makes
it affect a 0/1 subsequence of the form 1...1; that is, it
becomes a useless reversal. Therefore, by Lemma 4.1,
the modified series cannot be optimal.

The reversal counts of all of the 0/1 sequence ele-
ments do not increase by this modification. Therefore,
the modified reversal series has a cost less than or equal
to the original reversal series by Equation 4.1. This im-
plies that the original reversal series cannot be optimal.

The case N (0°=") > N (0%) and analogous cases
for reversals starting and ending with 1’s are similar.

O

Proving that there exists an optimal reversal series
that contains no complex reversals requires substantial
case analysis. We only sketch the proof below.

LEMMA 4.3. There exists an optimal reversal series
containing no complex reversals.

Proof. The proof is by induction on k, the number of
0/1 blocks in a 0/1 sequence.

The claim is immediate for ¥ = 2. Suppose the
claim holds for k. We need to prove it for k+2. Consider
an optimal reversal series. By Lemmas 4.1 and 4.2,
the series contains neither useless nor cutting reversals.
Because the first reversal p; is neither useless nor
cutting, the 0/1 sequence after performing p; contains k
blocks. According to the induction hypothesis, all other
reversals are simple.

If p1 is simple, we are done. Otherwise, p; is
complex. One can prove the following:

OBSERVATION 4.1. Without loss of generality, reversals
pi, 1> 1, do not commute ? with p;.

Assuming that p; is complex and does not commute
with any other reversal, denote the subsequence that p;
affects with s5, and denote the subsequence to s5’s left
by s; and the one to s3’s right by s3. (The subsequences
s1 and sz might be empty.) Denote the last reversal in
the series by pg; one can prove that £ = (k + 2)/2.
Consider the following modifications in the reversal
series: perform the reversals ps, ..., p; restricted to ss.
Notice that s; must be negatively separated. Perform
the reversals pso, ..., pe—1 restricted to s; and s3. This
separates s; and sz as well, because p; and p; do not
affect whether s; and s3 are separated.

Considering the separation orientation of s; and ss,
one can prove the following.

OBSERVATION 4.2. Subsequences sy, s3, and s3 cannot
all have the same separation orientation.

We present the proof for the first case where the
separation orientation of s; and sz is opposite to that
of s3. The proof of the other cases is similar.

Two reversals commute iff one contains the other or they are
disjoint.

OBSERVATION 4.3. If the separation orientation of s1
and s3 is opposite to that of sy, then the 0/1 sequence
has a pattern of the form 01 ---10---01 after performing
the restricted reversals.

OBSERVATION 4.4. [If the separation orientation of s1
and sz 1s opposite to that of ss, then the reversal counts
of the elements of sy, the 0’s of s3, and the 1’s of s;
after performing the restricted reversals are smaller than
the reversal counts of the same elements in the original
reversal series.

Performing a last reversal on the blocks 1---10---0
separates the sequence by Observation 4.3. The cost
of the modified reversal series, which is complex free, is
not greater than the original one by Observation 4.4. O

A reversal series having no useless, cutting, or
complex reversals is called a good series. Given a
good series, we characterize the counting pattern of the
affected 0/1 sequence. This characterization enables
us to find an optimal reversal series using dynamic
programming.

We represent a 0/1 sequence 1% 0%2 ... 0%2¢ by
the lengths of each block, that is we let wy, ws, ..., war
denote a 0/1 sequence. Given a good reversal series
sorting wi,ws, ..., wy, let ¢; denote the number of
reversals in which w; participates.

LEMMA 4.4. Given a 0/1 sequence w=wy, ws, ..., Wway,
and a good reversal sorting series, there exist i,j such
that w; 1s a 1-block, w; is a 0-block, ¢; = ¢; = 1 and
Jj> i

Lemma 4.4 enables us to search for an optimal solution
efficiently.

ALGORITHM zerOneSort: Given a 0/1 sequence
Wi, Wa, ..., Wy, for each i,j such that j > i, w; cor-
responds to a 0-block and w; is a 1-block, calculate the
following, and take the minimum over all results.

1. Find the optimal positive separation of segments

Wi, ..., wi—1 and wjt1, ..., way.

2. Find the optimal negative separation of segment

Wi, ..., W;.

3. Perform a last reversal.

The sum of all the above costs will give the minimum
cost of sorting w under the condition ¢; = ¢; = 1.

LEMMA 4.5. The time complexity of zerOneSort is
O(n®). The space complerity of zerOneSort is O (n2)

THEOREM 4.1. Algorithm zerOneSort sorts a 0/1 se-
quence optimally, for additive costs functions (f(z) =

5 Conclusions

We presented a comprehensive analysis of the problem
of how to sort sequences with reversals for a wide class of
cost functions relevant to comparative genomics. Many
open problems remain beyond the relatively minor gaps
left between our upper and lower bounds. It would be
interesting to develop algorithms for even more general
cost functions, particularly cost functions defined by
a small number of size classes, e.g., one price for
‘short’ reversals and another price for ‘long’ reversals.
These functions are of interest both combinatorially and
biologically. Another open question is to determine
for what values of @ can 0/1 sequences be sorted in
polynomial time.

References

[1] Y. Ajana, J. Lefebvre, E. Tillier, and N. El-Mabrouk.
Exploring the set of all minimal sequences of reversals
— an application to test the replication-directed rever-
sal hypothesis. In Second Int. Workshop on Algorithms
in Bioinformatics (WABI’02), volume 2452, pages 300
315. Springer-Verlag Lecture Notes in Computer Sci-
ence, 2002.

[2] V. Bafna and P. Pevzner. Sorting by reversals: Genome
rearrangements in plant organelles and evolutionary
history of X chromosome. Molecular Biology and
FEuvolution, 1994.

[3] V. Bafna and P. Pevzner. Genome rearrangements and
sorting by reversals. SIAM J. Computing, 25:272-289,
1996.

[4] M. A. Bender, Y. Berliner, D. Ge, S. He, H. Hu,
R. Pinter, M. Shoham, M. Shmoish, S. Skiena, and
F. Swidan. Length-sensitive algorithms for sorting by
reversal: A phylogeny-based evaluation. 2003.

[5] A. Bergeron. A very elementary presentation of
the hannenhalli-pevzner theory. In Proc. 12th Symp.
Combinatorial Pattern Matching (CPM), volume 2089,
pages 106-117. Springer-Verlag Lecture Notes in Com-
puter Science, 2001.

[6] P. Berman, S. Hannenhalli, and M. Karpinski. 1.375—
approximation algorithm for sorting by reversals. In
10th European Symposium on Algorithms (ESA), pages
200-210. Springer-Verlag Lecture Notes in Computer
Science, 2002.

[7] M. Blanchette, T. Kunisawa, and D. Sankoff. Paramet-
ric genome rearrangement. Gene, 172:GC:11-17, 1996.

[8] A. Caprara. Sorting by reversals is difficult. In Proc.
First Annual International Conference on Compula-
tional Molecular Biology (RECOMB’97), pages 75-83,
1997.

[9] M. Davisson. X-linked genetic homologies between

mouse and man. Genomics, 1:213-227, 1987.

T. Dobzhansky and A.H.Sturtevant. Inversions in the

chromosomes of drosophila pseudoobscura. Genetics,

23:28-64, 1938.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

S. Hannenhalli, C. Chappey, E. Koonin, and
P. Pevzner. Scenarios for genome rearrangements: Her-
pesvirus evolution as a test case. In Proc. of 3rd Intl.
Conference on Bioinformatics and Complex Genome
Analysis, 1994.

S. Hannenhalli and P. A. Pevzner. Transforming
cabbage into turnip: Polynomial algorithm for sorting
signed permutations by reversals. J. ACM, 46:1-27,
1999.

H. Kaplan, R. Shamir, and R. E. Tarjan. Faster and
simpler algorithm for sorting signed permutations by
reversals. In Proceedings of the 8th Annual Symposium
on Discrete Algorithms (SODA), pages 344-351, 1997.
Also in Proc. RECOMB 97, page 163.

J. Kececioglu and D. Sankoff. Exact and approxima-
tion algorithms for the inversion distance between two
permutations. In Proc. of 4th Ann. Symp. on Combi-
natorial Pattern Matching, Lecture Notes in Computer
Science 684, pages 87-105. Springer Verlag, 1993.

J. Kececioglu and D. Sankoff. FEfficient bounds for
In Proc. of
5th Ann. Symp. on Combinatorial Pattern Matching,
pages 307-325. Springer-Verlag LNCS 807, 1994.

E. B. Knox, S. R. Downie, and J. D. Palmer. Chloro-
plast genome rearrangements and evolution of giant

Mol. Biol. Fuvol.,

oriented chromosome inversion distance.

lobelias from herbaceous ancestors.
10:414-430, 1993.

D. Knuth. The Art of Computer Programming, Vol.
11I: Sorting and Searching. Addison-Wesley, Reading,
MA, 1973.

J. H. Nadeau and B. A. Taylor. Lengths of chromo-
somal segments conserved since divergence of man and
mouse. Proc. Natl. Acad. Sci. USA, 81:814-818, 1984.
R. Pinter and S. Skiena. Sorting with length-weighted
reversals. In Proc. 13th International Conference on
Genome Informatics (GIW 2002), pages 173-182. Uni-
versal Academic Press, 2002.

A. Siepel. An algorithm to find all sorting rever-
sals. In Proc. Sixth Annual International Conference
on Computational Molecular Biology (RECOMB’02),
pages 281-290. ACM Press, 2002.

A. H. Sturtevant and T.Dobzhansky. Inversions in the
third chromosome of wild races of drosophila pseudoob-
scura, and their use in the study of the history of the
species. Proc. Nat. Acad. Sci., 22:448-450, 1936.

