
Satisfiability of XPath Expressions

Jan Hidders

University of Antwerp
Dept. of Mathematics and Computer Science

Middelheimlaan 1, BE-2020 Antwerp, Belgium
jan.hidders@ua.ac.be

Abstract. In this paper, we investigate the complexity of deciding the
satisfiability of XPath 2.0 expressions, i.e., whether there is an XML
document for which their result is nonempty. Several fragments that
allow certain types of expressions are classified as either in PTIME or
NP-hard to see which type of expression make this a hard problem.
Finally, we establish a link between XPath expressions and partial tree
descriptions which are studied in computational linguistics.

1 Introduction

XPath is a simple language for selecting a set of nodes in an XML tree and as such
it is used in many other XML-related standards such as XSLT, XQuery, XML
Schema, XLink and XPointer. The satisfiability problem for XPath expressions
is relevant for all these applications because it allows the detection of expressions
that are probably erroneous and query optimizations that remove expressions
that always return an empty result.

The satisfiability problem is a special case of the containment problem which
has already been studied quite extensively [1, 12, 13, 16, 17]. However, in these
studies usually only fragments with forward axes are considered, in which case
most expressions are trivially satisfiable. Therefore, we will consider fragments
in which all axes are allowed, including those that depend upon document order.
We give four small examples of conflicts that may then occur:

1. self::a/self::b
This path looks for a node that has at the same time name a and b.

2. child::a/child::*/parent::b
This path requires that the node in the result has name a and b.

3. /child::*/parent::*/parent::*
This path looks for a parent of the root node, which cannot exist.

4. /preceding::*
This path looks for a node that precedes the root, but such a node cannot
exist since the root is always the first node in the document order.

The organization of this paper is as follows. The next section contains the
definition of XPath expressions and their semantics. Section 3 introduces the no-
tion of tree description graph which are a special case of partial tree descriptions

G. Lausen and D. Suciu (Eds.): DBPL 2003, LNCS 2921, pp. 21–36, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

22 Jan Hidders

as studied in computational linguistics. Section 4 discusses the relationship be-
tween these tree description graphs and XPath expressions. Section 5 introduces
a specific string matching problem that will be used in the following sections to
show NP-hardness. Section 6 presents some complexity lowerbounds for certain
fragments of XPath and Section 7 presents some upperbounds. Finally, Section 8
summarizes and discusses the presented results.

2 Initial Definitions

We start with the definition of the data model which is a simplification and ab-
straction of the full XML data model [8] and restricts itself to the element nodes.
For this and following definitions we postulate an infinite set of tag names Σ.

Definition 1 (XML Tree). An XML tree is a tuple T = (N, �, r, λ,≺) such
that (N, �) is a finite directed graph where N represents the set of element nodes
and � represents the parent-child relationship that defines a tree with root r,
λ : N → Σ is a labeling of the nodes that gives the tag name of each node and
≺ is a strict total order1 over N that represents the document order and defines
a pre-order tree-walk, i.e.,

PTW1 every child is smaller than its parent, i.e., if n1 � n2 then n1 ≺ n2 for
all n1, n2 ∈ N , and

PTW2 if two nodes are siblings then all descendants of the smaller sibling are
smaller than the larger sibling, i.e., for all two nodes n1, n2 ∈ N for which
there is a node n3 ∈ N such that n3 �n1 and n3 �n2 it holds that if n1 ≺ n2
and n1 �+ n4 then n4 ≺ n2, where �+ denotes the transitive closure of �.

In the following we let �+ denote the transitive closure of �, and �∗ the tran-
sitive and reflexive closure of �. Next, we define the set of XPath expressions
that we will consider. We will use a syntax in the style of [2] that abstracts from
the official syntax [3] and is more suitable for formal presentations.

Definition 2 (XPath Expression). The set of XPath expressions is defined
by the following abstract grammar:

P ::= ε | ↑ | ↓ | ↑∗ | ↓∗ | �̇ | �̇ |
⇑ | Σ | P/P | P [P] |
P ∩ P | P ∪ P | P − P

where ε represents the empty path or self axis, ↑ and ↓ represent the parent and
child axis, ↑∗ and ↓∗ represent the ancestor-or-self and descendant-or-self axis,
�̇ and �̇ represent the preceding-sibling and following-sibling axis, ⇑ represents
the document root, p1/p2 represents the concatenation of p1 and p2, p1[p2] rep-
resents a path p1 with a predicate p2 and finally ∩, ∪ and − represent the set
intersection, set union and set difference.
1 A strict total order is a binary relation that is irreflexive, transitive and total.

Satisfiability of XPath Expressions 23

All remaining axes in XPath can be straightforwardly defined in terms of
the given axes: (ancestor) ↑+ ≡ ↑/↑∗, (descendant) ↓+ ≡ ↓/↓∗, (preceding)
� ≡ ↑∗/�̇/↓∗, (following) � ≡ ↑∗/�̇/↓∗. Also boolean expressions in predicates
can be readily simulated: p1 ∧ p2 ≡ (p1/⇑) ∩ (p2/⇑), p1 ∨ p2 ≡ (p1/⇑) ∪ (p2/⇑)
and ¬p1 ≡ ⇑ − (p1/⇑).

Based on [15] and [7] and similar to [2] we define the semantics of these
expressions as follows:

Definition 3 (XPath Semantics). Given an XML tree T = (N, �, r, λ,≺) we
define the semantics of a path expression p, [[p]]T ⊆ N × N , such that (n, n′) ∈
[[p]]T iff one of the following applies: (1) if p = ε then n = n′, (2) if p = ↑
then n′ � n, (3) if p = ↓ then n � n′, (4) if p = ↑∗ then n′�∗n, (5) if p = ↓∗

then n�∗n′, (6) if p = �̇ then n′ ≺ n and there is an n′′ such that n′′ � n
and n′′ � n′, (7) if p = �̇ then n ≺ n′ and there is an n′′ such that n′′ � n
and n′′ � n′, (8) if p = ⇑ then n′ = r, (9) if p = t ∈ Σ then n = n′ and
λ(n) = t, (10) if p = p1/p2 then there is an n′′ such that (n, n′′) ∈ [[p1]]T and
(n′′, n′) ∈ [[p2]]T , (11) if p = p1[p2] then (n, n′) ∈ [[p1]]T and there is an n′′ such
that (n′, n′′) ∈ [[p2]]T , (12) if p = p1 ∩p2 then (n, n′) ∈ [[p1]]T and (n, n′) ∈ [[p2]]T ,
(13) if p = p1 ∪p2 then (n, n′) ∈ [[p1]]T or (n, n′) ∈ [[p2]]T , and (14) if p = p1 −p2
then (n, n′) ∈ [[p1]]T and (n, n′) ∈ [[p2]]T .

Remark 1. The tag names steps of the form t ∈ Σ behave as if they follow the
self axis. This means that a/b corresponds to the conventional XPath expression
self::a/self::b and not to the expression child::a/child::b as is the case
for the so-called abbreviated XPath syntax. Consequently the XPath expression
child::a/ancestor::b can be represented in our syntax as ↓/a/↑+/b .

Fragments of P are denoted as PV where V is a subset of {⇑, [],∩,∪,−}. In
P only expressions that consist of the axes, Σ and P/P are allowed. With the
subscripts ⇑, [], ∩, ∪ and − also expressions of the form ⇑, P [P], P ∩ P , P ∪ P
and P − P are allowed, respectively.

Finally, we define what it means for an XPath expression to be satisfiable.

Definition 4 (XPath Satisfiability). An XPath expression p is called satis-
fiable if there is an XML tree T such that [[p]]T is not empty.

Example 1. Given two distinct tag names a and b in Σ the following expressions
are not satisfiable: a/b, a[b], a/↓/↑/b, ⇑/�̇ and a/↓/�̇/↑/b.

3 Tree Description Graphs

Before we discuss the problem of deciding satisfiability of XPath expressions we
consider the same problem for a related notion called partial tree descriptions
which has been studied in computational linguistics [14, 5, 10, 4]. A partial tree
description can be informally described as a formula in EFO (Existential First
Order Logic) that quantifies over the nodes in the tree and uses the binary
predicates =, �, �+, �∗ and ≺ and a special constant r (the root). Such formulas

24 Jan Hidders

can be used to describe various properties of ordered trees and also to query such
trees. For our purposes we will consider only formulas that have the conjunction
as their only logical operation and extend them with unary predicates for each
tag name t ∈ Σ. This leads to the notion of tree description graph.

Definition 5 (Tree Description Graph). A tree description graph (TDG)
is a tuple D = (V, vr, Φ) with V a finite set of variables, vr a special element in
V that represents the root and Φ a set of atoms of the following forms: t(v1) with
t ∈ Σ denoting that v1 is labelled with t, v1 = v2, v1 � v2, v1 �∗ v2, v1 �+ v2,
v1 ≺ v2 with v1, v2 ∈ V .

Example 2. An example of a TDG is D = (V, vr, Φ) with a set of variables V =
{vr, v1, . . . , v5} and atoms Φ = {vr �∗ v1, v1 �+ v2, v1 �∗ v3, v1 = v4, v3 � v4,
v4 ≺ v5, v2 = v5, b(v2), a(v4)}. This tree description graph is shown in Fig. 1
where the = predicate is indicated with double lines and the ≺ predicate is
indicated with a dotted line.

r 1 2

3 4 5
a

b* +

*

Fig. 1. A tree description graph.

Tree description graphs can be seen as a generalization of tree patterns [12]
that allows more axes. Like for XPath expressions we can also define a notion of
satisfiability for TDGs.

Definition 6 (TDG Satisfiability). Given a TDG D = (V, vr, Φ) a model
for D is a tuple M = (T, I) with an XML tree T = (N, �, r, λ,≺) and an
interpretation I : V → N such that I(vr) = r and I makes all atoms in Φ
satisfied for T . A TDG is called satisfiable if there is a model for it.

The TDG in Fig. 1 is not satisfiable because in a model (T, I) it would both
have to hold that I(v1) = I(v4) and I(v1) �+ I(v4), which is not possible.

Similar to [12] we show that when reasoning about a certain property of pat-
terns we only need to consider a limited set of models; for deciding satisfiability
we only need to consider models that have the same size as the TDG.

Lemma 1. If a tree description graph D = (V, vr, Φ) is satisfiable then there is
a model (T, I) for D with at most |V | nodes in T .

Proof. We show that if for the TDG D = (V, vr, Φ) there is a model M1 = (T1, I1)
with XML tree T1 = (N1,�1, r1, λ1,≺1) and |N1| > |V | then there is a model

Satisfiability of XPath Expressions 25

for D with one node less than M1. By induction upon |N1| it then follows that
the lemma holds.

The smaller model is M2 = (T2, I1) where T2 is constructed as follows. We
choose an arbitrary node n in N1 that is not in the image of I1, i.e., there is
no v ∈ V such that I1(v) = n. Such a node exists since |N1| > |V |. We then
construct T2 by (1) removing n from the tree and (2) making the children of
n now the children of the parent of n. Note that n will always have a parent
since the only node that has no parent is the root and the root is always in
the image of I1. More formally, we define T2 = (N2,�2, r2, λ2,≺2) such that (1)
N2 = N1 − {n}, (2) �2 = (�1 ∩ (N2 × N2)) ∪ {(n′, n′′)|n′ �1 n ∧ n �1 n′′}, (3)
r2 = r1, (4) λ2 = λ1|N2 where λ1|N2 is the restriction of the function λ1 to the
domain N2, and (5) ≺2=≺1 ∩(N2 ×N2). Then it can be shown that T2 is indeed
an XML tree and (T2, I1) is a model for D:

T2 is an XML Tree : By its construction T2 defines a finite labelled tree. What
remains to be shown is that ≺ defines a pre-order tree-walk. The condition PTW1
holds for T2 because if n1 �2 n2 then by the construction of �2 it follows that
n1 �+

1 n2 and so n1 ≺1 n2 which implies n1 ≺2 n2. The condition PTW2 also
holds for T2, which can be shown as follows. Assume that n3 �2 n1, n3 �2 n2,
n1 ≺2 n2 and n1 �+

2 n4. By the construction of T2 it will hold that n1 ≺1 n2 and
n1 �+

1 n4. It will also hold for the removed node n that either (a) n3 �1 n �1 n1,
or (b) n3 �1 n �1 n2, or (c) n3 �1 n1 and n3 �1 n2. In all cases we can derive
that n4 ≺1 n2 as follows. In case (a) it holds that in T1 the node n was a smaller
sibling of n2 and therefore n4 ≺1 n2. In case (b) it holds that in T1 the node
n was a larger sibling of n1 and therefore n4 ≺1 n. By TW1 it also holds that
n ≺1 n2, so it follows that n4 ≺1 n2. In case (c) it directly follows by TW2 for
T1 that n4 ≺1 n2. Summarizing we now know that in all cases n4 ≺1 n2 and
since both nodes are in N2 it follows that n4 ≺2 n2.

(T2, I1) is a model for D: Because r1 = r2 and λ2 and ≺2 are restrictions of λ1
and ≺1, respectively, to N2 it follows that I1(vr) = r2 and I1 makes the t atoms
and the ≺ atoms satisfied for T2. Because �+

2 and �∗
2 are equal to restrictions of

�+
1 and �∗

1 to N2 it also holds for these atoms that I1 makes them satisfied for
T2. Finally, because �2 is a superset of the restriction of �1 to N2 it also holds
that I1 satisfies the � atoms for T2.

The previous observation then leads to the following theorem.

Theorem 1. Deciding satisfiability of a tree description graph is in NP.

Proof. It is easy to see that there is a model for a TDG D = (V, vr, Φ) iff there
is a model for D′ = (V ′, vr, Φ) where V ′ is the subset of V that is mentioned
in Φ plus vr. By Lemma 1 it holds that D′ is satisfiable iff there is a model
for D′ with at most |V ′| nodes. If the size of the representation of D′ is n then
there can be no more than 2n variables in V ′. It follows that D is satisfiable
iff there is a model for D with a representation size of O(n2). It follows that a
non-deterministic algorithm can guess an XML tree T and an interpretation I
in a polynomial number of steps. Since it can also be checked in polynomial time

26 Jan Hidders

that (T, I) is a model of D′ it follows that there is an NP algorithm that decides
whether there is a model for D.

4 TDGs and XPath

Both TDGs and XPath expressions can be used to define binary relations over
the nodes of a given XML tree. For example, the binary relation defined by the
path expression (↓∗/a/↑/b/↑∗) ∩ (↓+/c/�̇) is also defined by the TDG in Fig. 2
where the begin and end variable are indicated by a bold incoming and leaving
arrow, respectively.

1

2

3

4

5

6

a

b

c

*

*

+

Fig. 2. A TDG representing an XPath expression.

In general the translation of an XPath expression in the fragment P⇑,[],∩ to
a TDG is defined as follows.

Definition 7 (Atom Set). Given an XPath expression p ∈ P⇑,[],∩, a begin
variable v and an end variable v′ the atom set for p from v to v′, denoted as
Φv,v′(p), is defined as follows:

Φv,v′(ε) = {v = v′}
Φv,v′(↑) = {v′ � v}
Φv,v′(↓) = {v � v′}

Φv,v′(↑∗) = {v′ �∗ v}
Φv,v′(↓∗) = {v �∗ v′}
Φv,v′(�̇) = {v′ ≺ v, v′′ � v, v′′ � v′}with v′′ a fresh variable
Φv,v′(�̇) = {v ≺ v′, v′′ � v, v′′ � v′}with v′′ a fresh variable
Φv,v′(⇑) = {v′ = vr}
Φv,v′(t) = {v = v′, t(v′)}

Φv,v′(p1/p2) = Φv,v′′(p1) ∪ Φv′′,v′(p2)with v′′ a fresh variable
Φv,v′(p1[p2]) = Φv,v′(p1) ∪ Φv′,v′′(p2)with v′′ a fresh variable

Φv,v′(p1 ∩ p2) = Φv,v′(p1) ∪ Φv,v′(p2)

Satisfiability of XPath Expressions 27

The correctness of this translation is established by the following theorem.

Theorem 2. Given a path expression p ∈ P⇑,[],∩ and if V is the set of all
variables in Φv,v′(p) plus vr then for every XML tree T and nodes n, n′ in T it
holds that there is a model (T, I) for (V, vr, Φv,v′(p)) with I(v) = n and I(v′) = n′

iff (n, n′) ∈ [[p]]T .

Proof. (Sketch) This can be shown with induction upon the structure of p and
follows straightforwardly from the given semantics of XPath expressions.

Whether each TDG can be translated to an equivalent expression in the
fragment P⇑,[],∩ is still an open problem.

It follows from this translation that deciding satisfiability of path expressions
in P⇑,[],∩ is in NP.

Theorem 3. Deciding satisfiability of path expressions in P⇑,[],∩ is in NP.

Proof. Satisfiability of the path expression p can be decided by translating it to
the corresponding TDG and deciding if this is satisfiable. The translation can
be done in PTIME and by Lemma 1 we can decide satisfiability of TDGs in NP.

5 String Matching Problems

In order to show the hardness of deciding satisfiability for certain XPath frag-
ments we will show that the following string matching problem can be reduced
to these problems.

Definition 8 (Bounded Multiple String Matching Problem). Given a
finite set of patterns A, which are strings over {0, 1, ∗}, is there a string over
{0, 1} whose size is equal to the size of the largest pattern in A and in which all
patterns in A can be matched with ∗ as a wildcard for one symbol?

In the following we will also refer to this problem as the BMS problem.

Theorem 4. Deciding the BMS problem is NP-complete.

Proof. It is easy to see that such a string can be guessed and verified in non-
deterministic polynomial time

To prove NP-hardness we show that there is a polynomial reduction from
3SAT [9] to this problem. The reduction consists of a mapping of a CNF formula
to a set of formulas such that there is a string into which all these patterns can
be matched and that is as large as the largest pattern iff this string encodes a
truth assignment for the formula.

To demonstrate the principle we will first show how the formula ϕ = C1 ∧C2
with C1 = X1 ∨¬X2 ∨X3 and C2 = ¬X1 ∨X2 ∨¬X4 is translated. The encoding
of the truth assignment is illustrated by the first pattern in Fig. 3, which is called
apre.

28 Jan Hidders

X
(1)
1 X

(1)
2 X

(1)
3 X

(1)
4

apre = 101010 ** ** ** ** ** ** ** ** ** ** ** ** ** **
1 7 11 17 23 29 34

X
(2)
1 X

(2)
2 X

(2)
3 X

(2)
4

** ** ** ** ** ** ** ** ** ** ** ** ** **
35 39 45 51 57 62

a1
C1,X1 = ****** ** ** 1* ** ** ** ** ** ** ** ** ** ** **

** ** 1* ** ** ** ** ** ** ** ** ** ** *
a0

C1,X1 = ****** ** ** 0* ** ** ** ** ** ** ** ** ** ** **
** ** 0* ** ** ** ** ** ** ** ** ** ** *

. . . = . . .
a1

C1,X4 = ****** ** ** ** ** ** ** ** ** ** ** ** 1* ** **
** ** ** ** ** ** ** ** ** ** ** 1* ** *

a0
C1,X4 = ****** ** ** ** ** ** ** ** ** ** ** ** 0* ** **

** ** ** ** ** ** ** ** ** ** ** 0* ** *

X
(1)
1 X

(1)
2 X

(1)
3 X

(1)
4

aC1 = 1***** 10 ** ** ** 01 ** ** ** 10 ** ** ** ** **
1 7 13 19 25 31 34

X
(2)
1 X

(2)
2 X

(2)
3 X

(2)
4

** ** ** ** ** ** ** ** ** ** ** **
35 41 47 53 58

aC2 = 1***** ** ** ** ** ** ** ** ** ** ** ** ** ** **
01 ** ** ** 10 ** ** ** ** ** ** 01

Fig. 3. A set of patterns for the formula C1 ∧ C2 with C1 = X1 ∨ ¬X2 ∨ X3 and
C2 = ¬X1 ∨ X2 ∨ ¬X4.

The pattern apre will be the longest pattern and therefore defines the length
of the string, in this case 62 characters. It also enforces that the string begins
with 101010. The underlined positions marked by X

(i)
j are intended to encode

a truth assignment for variable Xj in clause Ci; the pair 10 denotes true and 01
denotes false.

Because in the chosen encoding every clause has a separate truth assignment
we introduce the patterns a1

C1,X1
, a0

C1,X1
, . . . , a1

C1,X4
, a0

C1,X4
. These patterns are

one character shorter than apre and each pattern a1
C1,Xj

(a0
C1,Xj

) contains two

1s (0s); one at the first position of the pair marked with X
(1)
j and the other at

X
(2)
j . Because of their length these patterns can only be embedded in the string

in two ways; starting from the first or from the second position in the string. It is
then easy to see that the patterns a1

C1,X1
and a0

C1,X1
enforce that the positions

marked by X
(1)
1 and X

(2)
1 contain either both 10 or both 01. If we introduce

such a pattern for each variable then we can ensure that all truth assignment
for all clauses are the same.

Finally, we introduce the patterns aC1 and aC2 to ensure that the clauses
C1 and C2, respectively, are satisfied. First note that these patterns start with
1 and their length is 4 less than the string. Since apre enforces that the string

Satisfiability of XPath Expressions 29

starts with 101010 it follows that these patterns can only be matched in three
ways; starting from the first, third or fifth position. The construction of aC1 is
now as follows. For each variable Xj there is a region of six characters underlined
and marked with X

(1)
j . In this region we set the kth pair to 10 if the variable

appears in the kth position in the clause, and to 01 if the negation of the variable
appears at that position. So for the clause C1 = X1 ∨ ¬X2 ∨ X3 the first pair of
X1’s region is set to 10, the second pair in X2’s region is set to 01 and the third
pair in X3’s regions is set to 10.

Now consider what happens with each way that this pattern can be matched
in the string.

1. If it is matched from the first position in the string then the pair 10 at posi-
tions [23,24] is mapped to the same positions in the string which are marked
as X

(1)
3 in apre, and all other 10 and 01 pairs are mapped to unmarked

positions
2. If the pattern aC1 is matched from the third position then the pair 01 at

positions [15,16] is mapped to the positions [17,18] in the string which are
marked as X

(1)
2 in apre, and all other 10 and 01 pairs are mapped to un-

marked positions.
3. Finally, if the pattern aC1 is matched from the fifth position then the pair

10 at positions [7,8] is mapped to the positions [11,12] in the string which
are marked as X

(1)
1 in apre, and all other 10 and 01 pairs are mapped to

unmarked positions.

Summarizing, if the pattern matches then the encoded truth assignment for
X

(1)
1 , . . . , X

(1)
4 will make at least one literal in the clause C1 true. In a sim-

ilar fashion the pattern aC2 ensures that the encoded truth assignment for
X

(2)
1 , . . . , X

(2)
4 will make at least one literal in C2 true.

We can now summarize the meaning of the patterns in Fig. 3 as follows.
The pattern apre defines a preamble and the lengt of the string such that
there is room for a separate truth assignment for each clause. The patterns
a1

C1,X1
, a0

C1,X1
, . . . , a1

C1,X4
, a0

C1,X4
ensure that all the truth assignments for the

different clauses are in fact the same truth assignment. Finally, the patterns aC1

and aC2 ensure that the truth assignment for C1 makes C1 satisfied and the truth
assignment for C2 makes C2 satisfied. It then follows that a string of the same
length as apre into which all these patterns match, defines a truth assignment
that makes ϕ satisfied.

On the other hand, if there is a truth assignment that makes ϕ satisfied then
we can construct a string of the same length as apre such that all patterns match
into this string as follows. As required by apre we let the string start with 101010
and we encode the truth assignment in the string in the positions that are marked
for apre. Since we assign the same truth assignment for all clauses the patterns
a1

C1,X1
, a0

C1,X1
, . . . , a1

C1,X4
, a0

C1,X4
will all match. Finally we can make sure that

aC1 and aC2 match into the string by choosing for each clause one literal that
is made true by the assignment and mapping it to the position in apre that is
marked for that literal. Since all other 10 and 01 in the pattern will then be

30 Jan Hidders

mapped to unmarked positions it follows that we can dan fill these positions
in the string such that the pattern indeed matches. For example, if the truth
assignment maps X2 to false then we might map aC1 into the string such that
the positions [15,16] are mapped to [17,18] in the string, and therefore positions
[7,8] and [23,24] are mapped to [9,10] and [25,26], respectively, and therefore
these positions in the string should contain the pairs at [7,8] and [23,24] in aC1 ,
i.e., in both cases 10.

Summarizing, we have shown that the BSM problem defined by the patterns
in Fig. 3 is satisfiable iff the formula ϕ is satisfiable. This concludes the example
and we will now proceed with a description of the reduction in general.

Let us consider a formula ϕ = C1 ∧ . . . ∧ Cm with Ci = li,1 ∨ li,2 ∨ li,3 with
li,k = Xj or li,k = ¬Xj where X1, . . . , Xn are the variables in ϕ.

The first pattern defines the preamble and the length of the string:

apre = 101010 ∗(4+6n)m

Note that the total length of this pattern is 6+(4+6n)m and that the assignment
of variable Xj for clause Ci can be found in the pair that starts at position
7 + (4 + 6n)(i − 1) + 4 + 6(j − 1) in the string.

We then proceed with constructing the patterns that ensure that the truth
assignment for variable Xj in Ci is equal to that in Ci+1:

a1
Ci,Xj

= ∗ ∗ ∗ ∗ ∗∗ ∗(4+6n)(i−1)∗4+6(j−1) 1∗(3+6n)1∗(6n−2)−6(j−1) ∗(4+6n)(m−i−1)

a0
Ci,Xj

= ∗ ∗ ∗ ∗ ∗∗ ∗(4+6n)(i−1) ∗4+6(j−1)0∗(3+6n)0∗(6n−2)−6(j−1) ∗(4+6n)(m−i−1)

Because the length of these two patterns is 6 + (4 + 6n)m− 1 there are only two
ways in which it can be matched with a string of length 6 + (4 + 6n)m.

Finally we define the patterns that ensure that the encoded truth assignment
make a certain clause satisfied. For this purpose we define a[Ci, Xj] as equal to
****** except that the kth pair is equal 10 if li,k = Xj and equal to 01 if
li,k = ¬Xj . We then construct the patterns that ensure that the clause Ci is
made satisfied by the truth assignment for Ci as follows.

aCi = 1 ∗ ∗ ∗ ∗∗ ∗(4+6n)(i−1) a[Ci, X1] . . . a[Ci, Xn] ∗(4+6n)(m−i)

Note that aCi is padded with *s to a length of 2 + (4 + 6n)m to ensure that it
can only be matched to the 1st, 3rd and 5th position in the string that has the
length of apre and into which apre matches.

The total set of patterns for ϕ is now defined as

Aϕ = {apre} ∪ {a0
Ci,Xj

, a1
Ci,Xj

| 1 ≤ i < m, 1 ≤ j ≤ n} ∪ {aCi | 1 ≤ i ≤ m}
It can be shown that all the patterns in Aϕ are bounded polynomially in n
and m:

|apre| = 6 + (4 + 6n)m
|ab

Ci,Xj
| = 6 + (4 + 6n)m − 1

|aCi | = 2 + (4 + 6n)m

Satisfiability of XPath Expressions 31

It follows that they are polynomially bounded by the size of ϕ and because there
are 1 + 2(m − 1)n + m patterns in Aϕ it also holds that the representation of
this set is bounded polynomially in the size of ϕ. Consequently it is easy to see
that Aϕ can be generated from ϕ in polynomial time.

What remains to be shown is that Aϕ is satisfiable iff ϕ is satisfiable.
It is easy to see that if a string x satisfies Aϕ then we can read a truth

assignment that satisfies from the position for the truth assignment for Xj in
any Ci. Because of the ab

Ci,Xj
patterns these assignment will be the same for

any clause Ci and because of the aCi patterns all clauses in ϕ will be satisfied.
If there is a truth assignment that satisfies ϕ then we can construct x as

follows. We start the string with 101010 and fill in x the positions for Xj for
each clause Ci as prescribed by x. This ensures that the apre pattern and the
ab

Ci,Xj
patterns are satisfied. Next, we pick in each clause one of the three literals

that is satisfied by the truth assignment and map the aCi
patterns accordingly

to x and set the 1s and 0s that are required by them. Finally, the remaining
positions in x can be filled with arbitrary 1s and 0s.

6 Lower-Bound Results

We now proceed with discussing the hardness of deciding satisfiability of frag-
ments of XPath. The first hardness result concerns P∩, i.e., the fragment that
allows only expressions that consist of the axes and expressions of the form Σ,
P/P and P ∩ P .

Theorem 5. Deciding satisfiability of path expressions in P∩ is NP-hard.

Proof. We show that the BMS problem can be reduced to this problem. We
assume that the set of patterns is {a0, . . . , an} and that a0 is the longest pattern.
The pattern a0 is translated to a path p0 by translating a 0 to ↓/a, 1 to ↓/b
and ∗ to just ↓. For example, “*0*0*1” is translated to ↓/↓/a/↓/↓/a/↓/↓/b. The
other patterns ai are translated to pi in the same way but with an extra ↓∗ step
before and after it. So, for example, “10” is translated to ↓∗/↓/b/↓/a/↓∗. Finally
we take the intersection of all these paths: p0 ∩ p1 ∩ . . . ∩ pn.

It is easy to see that if there is an XML tree T and a pair (n, n′) in the
semantics of this path under T then labels of the nodes in the path from n to
n′ represent a string into which all patterns match if we replace a and b with 1
and 0, respectively.

Conversely, if there is a string into which all pattern can be matched then
we can construct an XML tree that consists of a simple path that is labelled
with the labels that correspond with the characters in the string, for which the
semantics of the path expression will contain at least (n, n′) with n and n′ the
begin and end node of this path, respectively.

Remark 2. In the proof we only need the forward axes ↓ and ↓∗ and the ordering
of the trees is not used.

Theorem 6. Deciding satisfiability of tree description graphs is NP-hard.

32 Jan Hidders

Proof. This follows from the straightforward translation of path expressions in
P⇑,[],∩ as given in Def. 7 and Th. 5.

Theorem 7. Deciding satisfiability of path expressions in P− is NP-hard.

Proof. This proof proceeds similar to the one of Th. 5 except that the path
p0 ∩ p1 ∩ . . . ∩ pn is simulated with p0 − (p0 − p1) − (p0 − p2) − . . . − (p0 − pn).

Theorem 8. Deciding satisfiability of path expressions in P[],∪ is NP-hard.

Proof. We show this by reducing the problem SAT [9]. We construct for every
CNF formula ϕ = C1 ∧ . . . ∧ Cm a path pϕ as follows. Let the variables in ϕ
be X1, . . . , Xn. For every literal l we define a path pl such that pXi is a path of
n + 1 steps of the form ↑ except step i + 1 which is of the form a, and p¬Xi is
the same except that step i + 1 is of the form b. For example, for n = 3:

pX2 = ↑/↑/a/↑
p¬X3 = ↑/↑/↑/b

A clause l1 ∨ . . . ∨ lp is straightforwardly mapped to pl1 ∪ . . . ∪ plp . For example
pX2∨¬X3 is

(↑/↑/a/↑) ∪ (↑/↑/↑/b)

Finally, the formula C1 ∧ . . . ∧ Cm is mapped to ε[pC1] . . . [pCm].
It is easy to see that pϕ is satisfiable iff ϕ is satisfiable. Moreover, if k is

the length of ϕ then m ≤ k, n ≤ k and k will also be the upper-bound for the
number of literals per clause, and therefore the size of pϕ will be in O(k3).

Theorem 9. Deciding satisfiability for P⇑,[] is NP-hard.

Proof. Similar to the proof of Th. 5 we show that the BMS problem can be
reduced to this problem. We assume that the set of patterns is {a0, . . . , an} and
that a0 is the longest pattern. The pattern a0 is translated to a path p0 by
starting with a ⇑ followed by translating a 0 to ↓/a, 1 to ↓/b and ∗ to just ↓. For
example, “*0*0*1” is translated to ⇑/↓/↓/a/↓/↓/a/↓/↓/b. The other patterns
ai are translated to pi in a similar fashion but here we start with ↑∗ and then
translate the pattern in reverse and with the ↑ axis in stead of the ↓ axis. For
example, “11*0” is translated to ↑∗/↑/b/↑/↑/a/↑/a. Finally we construct from
these paths the following path: p0[p1][p2] . . . [pn].

As in the proof in Th. 5 it holds for this path expression that if there is a
pair in its semantics for a certain XML tree then the labels of the nodes in the
path between those nodes corresponds to a string that satisfies the original BSM
problem. Conversely, if there is a string that satisfies the BSM problem then a
path that is labelled correspondingly and starts from the root will constitute an
XML tree that satisfies the path expression.

Remark 3. Unlike the proof of Th. 5 this one requires forward axes (↓) and
backward axes (↑∗ and ↑), but still does not use axes based on document order.

Satisfiability of XPath Expressions 33

7 Upper-Bound Results

In this section we discuss some upper-bounds for XPath fragments. For the very
large fragment P⇑,[],∩,∪ that allows everything except the set difference, it can
be shown that deciding satisfiability is in NP.

Theorem 10. Deciding satisfiability of path expressions in P⇑,[],∩,∪ is in NP.

Proof. The algorithm starts with guessing non-deterministically for every subex-
pression of the form p1∪p2 if it replaces it with just p1 or p2 and for the resulting
P⇑,[],∩ expression it decides with the algorithm of Th. 3 if the resulting P∩ ex-
pression is satisfiable.

Remark 4. At the moment we don’t have an upper bound for P− and it is not
even known if it decidable.

Theorem 11. Deciding satisfiability for P[] is in PTIME.

Proof. (Sketch) We start with using Def. 7 to transform the path expression to a
TDG. The result will be essentially a tree except for small cycles of three nodes
to simulate the �̇ and �̇ axes.

We then apply the following rules to this graph until they can be applied no
more:

1. If there is an atom vi = vj then it is removed and all occurrences of vi are
replaced by vj , i.e., the nodes vi and vj are merged.

2. If there are two distinct atoms vi � vj and vk � vj then all occurrences of vi

are replaced by vk, i.e., the nodes vi and vk are merged.

This can create more cycles but it will always hold for each undirected cycle,
i.e., a cycle that ignores the direction of the edges, that (p1) it contains only �

and ≺ edges and (p2) is not a directed cycle, because these properties hold for
the initial TDG and are preserved by the rules. Another property for which this
holds is that (p3) if there is an ≺ edge between two nodes then there are two �

edges that define a common parent. Because the rules are applied exhaustively
it will also hold in the result that (p4) there are no two distinct atoms vi and
vk for which there is a node vj such that vi � vj and vk � vj .

Finally, we check if there is a conflict, i.e., there are two atoms a(vi) and b(vi)
with a = b. If so then this TDG is not satisfiable and because all the applied rules
maintain satisfiability also the original TDG and consequently also the original
path expression is not satisfiable.

If there is no such conflict then we can construct a satisfying XML tree from
the obtained TDG as follows. We divide the variables into clusters which are
maximal sets of variables that are directly or indirectly connected by � atoms.
Note that because of properties p2 and p4 the � atoms define a tree over the
variables in each cluster and because of p2 and p3 it is possible to complete
the ≺ relationship for this tree to a strict total order that satisfies PTW1 and
PTW2. Moreover, because of the properties p1 and p3 there can only be �∗

34 Jan Hidders

and �+ edges between variables in different clusters and these edges will never
define directed or undirected cycles over these clusters. Therefore we can sort the
clusters topologically and connect the trees for each cluster by considering each
cluster and its immediate successor in the topological sort (if there is one) and if
there is an �∗ or �+ edge from vi in the first cluster to vj in the second cluster
then we add an � edge from vi to the root of vjs cluster, if there is not an �∗

or �+ edge between the clusters then we add an � edge between an arbitrary
node in the first clusters with the root of the second cluster.

Finally, we have to complete the ≺ relationship, which was already completed
for each cluster, for the complete tree. Since there are only �+ and �∗ edges
between the clusters and these define a tree over these clusters, it follows that
we can complete the ≺ relationship to a strict total order over all the nodes that
satisfies PTW1 and PTW2.

Theorem 12. Deciding satisfiability for P⇑ is in PTIME.

Proof. (Sketch) This proof proceeds similar to the proof of Th. 11, but now we
also merge vi and vr if there is an atom vi �∗ vr. Furthermore we also check
for conflicts in the form of atoms vi ≺ vr, vi � vr and vi �+ vr. Finally, we
attempt to construct a satisfying XML tree in the same way except when there
is an �∗ or �+ edge that arrives in the cluster that contains the root variable
vr. Note that if we follow the procedure of the previous proof then this root
node would become the child of another node, which is not allowed in an XML
tree. Therefore we do here the following. Let the atom in question be vi �+ vj

or vi �∗ vj . Then we attempt to merge vi and its ancestors (as defined by the
� atoms) with an ancestor of vj and its ancestors. If this is possible without a
conflict between their tag names and without introducing a parent of the root
then we merge them such that vi is merged with the lowest possible ancestor of
vj in its cluster. This is repeated until the cluster with vr has no more incoming
�∗ and �+ edges.

If by then we still have not found a conflict then we can proceed to construct
the satisfying XML tree as in the previous proof by making sure that the cluster
with vr becomes the smallest cluster. If we do find a conflict then it is not
possible to avoid it by merging vi with a higher ancestor because that would
only limit the possibilities more for subsequent merges. This is because it holds
that the cluster with vr has always just one incoming �∗ or �+ edge unless the
original path expression used ⇑ in other places then the beginning of the path.
However, in the latter case we can decide satisfiability by splitting the path at
the intermediate ⇑ step and deciding it separately for the two resulting path
expressions.

8 Summary and Discussion

For tree description graphs the problem of deciding satisfiability was shown to
be NP complete. This result is similar to that in [10] except that they require
atoms of the form v0 : f(v1, . . . , vn) that specify that v0 is labelled with f and

Satisfiability of XPath Expressions 35

whose set of children is exactly {v1, . . . , vn}. Our result shows that even with
only unary atoms (n = 1) the problem is already NP hard.

For fragments of XPath the complexity results are given by the following
table.

⇑ [] ∪ ∩ − Complexity
• PTIME

• PTIME
• NP-complete

• • NP-complete
• • NP-complete

• • • • NP-complete
• NP-hard

Remaining open problems are finding a better lower bound and an upper
bound for P− and classifying the fragments P∪ and P⇑,∪.

Another open problem is the relationship between P⇑,[],∩ and tree description
graphs. As was shown by Th. 2 every path expression in this fragment can
be translated to an equivalent TDG, but whether the converse holds is still
unknown.

Finally, given the research that has been done on the containment problem
for XPath expressions given a DTD [6, 13, 17] which limits itself mainly to XPath
fragment with forward axes, and the results in this paper that seem to indicate
that the satisfiability problem is sometimes simpeler, even if also reverse axes
are allowed, it will be interesting to see what the complexity of the satisfiabil-
ity problem is in the context of DTDs. Although some algorithms have been
suggested such as in [11] this is still largely unknown.

Acknowledgement

I would like to thank the anonymous referees for their corrections, comments
and suggestions for improvement.

References

1. Sihem Amer-Yahia, SungRan Cho, Laks V. S. Lakshmanan, and Divesh Srivastava.
Minimization of tree pattern queries. In SIGMOD Conference, 2001.

2. Michael Benedikt, Wenfei Fan, and Gabriel M. Kuper. Structural properties of
XPath fragments. In Diego Calvanese, Maurizio Lenzerini, and Rajeev Mot-
wani, editors, Proceedings of the 9th International Conference on Database Theory
(ICDT 2003), volume 2572 of LNCS, pages 79–95. Springer, 2003.

3. Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernández, Michael Kay,
Jonathan Robie, and Jérôme Siméon. XML path language (XPath) 2.0. W3C
Working Draft, 2002. http://www.w3.org/TR/xpath20/.

4. Manuel Bodirsky and Martin Kutz. Pure dominance constraints. In Proceedings of
the 19th Annual Symposium on Theoretical Aspects of Computer Science (STACS
2002), 2002.

36 Jan Hidders

5. Tom Cornell. On determining the consistency of partial descriptions of trees.
In Proceedings of the 32nd Annual Meeting of the Association for Computational
Linguistics, pages 163–170. Morgan Kaufmann, 1994.

6. Alin Deutsch and Val Tannen. Containment and integrity constraints for XPath
fragments. In Proceedings of the 8th International Workshop on Knowledge Rep-
resentation Meets Databases (KRDB 2001), 2001.

7. Denise Draper, Peter Fankhauser, Mary F. Fernández, Ashok Malhotra, Kristoffer
Rose, Michael Rys, Jérôme Siméon, and Philip Wadler. XQuery 1.0 and XPath
2.0 formal semantics, 2002. http://www.w3.org/TR/xquery-semantics/.

8. Mary F. Fernández, Ashok Malhotra, Jonathan Marsh, Marton Nagy, and Norman
Walsh. XQuery 1.0 and XPath 2.0 data model. W3C Working Draft, 2002. http:
//www.w3.org/TR/xpath-datamodel/.

9. Michael R. Garey and David S. Johnson. Computers and Intractability – A guide
to NP-completeness. W. H. Freeman and Company, San Francisco, 1979.

10. Alexander Koller, Joachim Niehren, and Ralf Treinen. Dominance constraints:
Algorithms and complexity. In Proceedings of the Third Conference on Logical
Aspects of Computational Linguistics, volume 2014 of Lecture Notes in Computer
Science, pages 106–125, Grenoble, 2001. Springer - Verlag.

11. April Kwong and Michael Gertz. Schema-based optimization of xpath expressions.
Technical report, University of California at Davis, 2002.

12. Gerome Miklau and Dan Suciu. Containment and equivalence for an XPath frag-
ment. In Symposium on Principles of Database Systems, pages 65–76, 2002.

13. Frank Neven and Thomas Schwentick. XPath containment in the presence of
disjunction, DTDs and variables. In Diego Calvanese, Maurizio Lenzerini, and Ra-
jeev Motwani, editors, Proceedings of the 9th International Conference on Database
Theory (ICDT 2003), volume 2572 of LNCS, pages 315–329. Springer, 2003.

14. James Rogers and K. Vijay-Shanker. Reasoning with descriptions of trees. In
Proceedings of the 30th Annual Meeting of the Association for Computational Lin-
guistics, pages 72–80, 1992.

15. Philip Wadler. Two semantics for XPath, 1999. http://www.cs.bell-labs.com/
who/wadler/topics/xml.html.

16. Peter T. Wood. Minimising simple XPath expressions. In Proceedings of the Fourth
International Workshpo on the Web and Databases (WebDB 2001), pages 13–18,
Santa Barbara, California, May 2001.

17. Peter T. Wood. Containment for XPath fragments under DTD constraints. In
Diego Calvanese, Maurizio Lenzerini, and Rajeev Motwani, editors, Proceedings of
the 9th International Conference on Database Theory (ICDT 2003), volume 2572
of LNCS, pages 300–314. Springer, 2003.

	1 Introduction
	2 Initial Definitions
	3 Tree Description Graphs
	4 TDGs and XPath
	5 String Matching Problems
	6 Lower-Bound Results
	7 Upper-Bound Results
	8 Summary and Discussion
	References

