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Abstract. The containment and equivalence problems for various frag-
ments of XPath have been studied by a number of authors. For some frag-
ments, deciding containment (and even minimisation) has been shown
to be in ptime, while for minor extensions containment has been shown
to be conp-complete. When containment is with respect to trees satis-
fying a set of constraints (such as a schema or DTD), the problem seems
to be more difficult. For example, containment under DTDs is conp-
complete for an XPath fragment denoted XP{[ ]} for which containment
is in ptime. It is also undecidable for a larger class of XPath queries when
the constraints are so-called simple XPath integrity constraints (SXICs).
In this paper, we show that containment is decidable for an important
fragment of XPath, denoted XP{[ ],∗,//}, when the constraints are DTDs.
We also identify XPath fragments for which containment under DTDs
can be decided in ptime.

1 Introduction

XPath [17] is a language for selecting nodes from XML document trees, and
as such plays a crucial role in other XML technologies such as XSLT [18] and
XQuery [19]. The expressions of XPath can be interpreted as simple queries
on tree structures. The containment problem for XPath is to decide, given two
XPath queries Q1 and Q2, whether Q1 contains Q2; that is, for every XML
tree t, whether the output of Q1 on t contains the output of Q2 on t. Since
XPath query containment has many applications in XML querying, integration,
transformation and active rule [2] environments, it has been the subject of much
study recently [1,7,9,10,15,16].

Most of the papers cited above have studied different fragments of XPath,
denoted XP{[ ]}, XP{[ ],∗}, XP{[ ],//} and XP{[ ],∗,//} in [9], depending on which
XPath constructs are included in the fragment. All these fragments include node
tests, composition of location steps (/), and predicates ([ ]). XP{[ ],∗} adds wild-
cards (∗), XP{[ ],//} adds the descendant axis (//), and XP{[ ],∗,//} includes both
of these. Although not utilising the full capabilities of XPath, these fragments
are commonly used to select nodes in XSLT, for example, and are interesting
because of the relative complexity of the containment problem for them.

Example 1. The XPath query a//b[∗/i]/g selects nodes labelled with g (which
we call g-nodes for short) that are children of b-nodes, such that the b-nodes are
both descendants of the root a-node and have an i-node as a grandchild.
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It is also useful to be able to view a query in XP{[ ],∗,//} as a tree pattern [1,
9]. Fig. 1 gives the tree pattern for the query a//b[∗/i]/g. In a tree pattern,
double-lines indicate descendant edges (corresponding to //), while the return
node is indicated in bold.

When using the descendant axis at the beginning of a predicate, we need to
include “.” (denoting the context node) in order to state that we want to search
for descendants from that position in the query; without the “.” searching would
start from the root node. In fact, the XPath fragments we consider do not allow
the second form of query. ��

a

g

b

*

i

Fig. 1. The tree pattern for the XPath query a//b[∗/i]/g.

Deciding containment for XP{[ ],∗} is in ptime [16], a result which follows
from the ptime containment for acyclic conjunctive queries [20] (as pointed out
in [9]). Containment for XP{[ ],//} is also in ptime [1]. However, as shown recently
by Miklau and Suciu [9], when we extend the XPath fragment to XP{[ ],∗,//},
containment becomes conp-complete.

We are interested in studying containment in the presence of Document Type
Definitions (DTDs). DTDs provide a means for typing, and therefore constrain-
ing, the structure of XML documents. Hence, while query Q1 may not contain
query Q2 in general, it may be the case that, given a DTD D, Q1 contains Q2
when both are evaluated on documents valid for D.

Example 2. For the queries Q1 = a[b]/c and Q2 = a/c, it is obvious that Q2 ⊇
Q1. The converse, however, does not hold since on a tree with only an a-node
with c-node as a child, Q2 returns the c-node while Q1 returns the empty set.
Now consider the following DTD D

a → (b, ((b, c)|d))
b → ((e|f), (g|h))
e → (i)
f → (i)

which defines XML document trees that have a root node labelled a. The DTD
D states, for example, that every node labelled a in a document tree valid for D
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(or which satisfies D) must have a node labelled b as a child. This is an example
of what has been called a child constraint [15]. Such a constraint allows us to
infer that Q1 contains Q2 under D, written Q1 ⊇SAT (D) Q2.

D also requires that every b-node must have an i-node as a descendant. This
means that a[.//i]/c ⊇SAT (D) a/c. As a final example, D ensures that every
path from an a-node to an i node must pass through a b-node, which means
that a//b//i ⊇SAT (D) a//i. ��

As one might expect, when we consider containment of queries under con-
straints, the complexity increases. Given a DTD D, deciding containment under
D (D-containment for short), even for queries in XP{[ ]}, is conp-complete [10,
16]. Containment is undecidable when the XPath fragment includes XP{[ ],∗,//}

along with disjunction, variable binding and equality testing, and the constraints
include so-called bounded simple XPath integrity constraints (SXICs) and those
(unbounded) constraints implied by DTDs [7]. The decidability of containment
of this XPath fragment in the presence of DTDs was stated as an open prob-
lem in [7]. In this paper, we prove that D-containment is decidable (exptime-
complete, in fact) for XP{[ ],∗,//}. The same result is proved independently in [10].

The intractability of D-containment for XP{[ ]} comes from the fact that in-
ferring even some simple contraints from a DTD seems to be intractable [16]. As
a result, we have been investigating classes of constraints which are implied by a
DTD D and which are both necessary and sufficient to determine D-containment
for various classes of XPath queries in ptime. For example, it was shown in [16]
that so-called sibling constraints capture D-containment for queries in XP{[ ]}

that are duplicate-free. A query Q in XP{[ ]} is duplicate-free if each node in the
tree pattern corresponding to Q has children with distinct labels.

In this paper, we show that if DTD D is duplicate-free, then D-containment
for XP{[ ]} is captured by sibling constraints and functional constraints, and can
be decided in ptime. A DTD D is duplicate-free if each element name n appears
at most once in each content model (this does not preclude a node n having
multiple children with the same label in a tree satisfying D since n may still
have a closure operator applied to it).

Example 3. Consider the following DTD D which is duplicate-free:

a → ((b∗, c) | d)
b → (e | f)
c → (g?, h?)

D does not imply any child constraints. However, it is the case that if an a-node
has a b-node as a child, then it has a c-node as a child. This is an example of a
sibling constraint (SC) [16], a generalisation of a child constraint, which allows
us to show that a[b][c] ⊇SAT (D) a[b].

It is also the case that D requires that every a-node has at most one c-node as
a child. This functional constraint (FC) allows us to show that a/c[g] ⊇SAT (D)
a[c/g]/c. ��
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It is claimed in [16] that, if a DTD D is duplicate-free, we can rewrite an
XP{[ ]} query that is not duplicate-free as one that is duplicate-free while main-
taining D-equivalence. However, the duplicate-free DTD D of Example 3 and
query Q = a[b/e][b/f ] show this is not true. Q is D-satisfiable but there is no
duplicate-free XPath query equivalent to Q. Hence, we need the results in the
present paper to show ptime containment under duplicate-free DTDs for XP{[ ]}.

Finally, given the examples of constraints implied by a DTD in Example 2,
one might wonder whether a richer class of constraints than SCs and FCs, but
less powerful than DTDs themselves, might capture D-containment for XP{[ ]}

when neither D nor the queries are duplicate-free. We prove that this is not the
case, in the sense that to capture D-containment for XP{[ ]} requires the ability
to express exactly the unordered language generated by D.

In the next section, we introduce the necessary definitions and notation for
XML trees, XPath queries and DTDs. In Section 3, we prove that containment
under DTDs is decidable for queries in XP{[ ],∗,//}. We show this by transforming
queries in XP{[ ],∗,//} to regular tree grammars and using decidability and clo-
sure results for regular tree grammars, since DTDs are a special case of regular
tree grammars. In Section 4, we show that, for queries in XP{[ ]}, sibling and
functional constraints are necessary and sufficient to decide containment under
duplicate-free DTDs in ptime. We prove in Section 5 that this result cannot be
extended beyond duplicate-free DTDs. Section 6 contains a discussion of related
work, while Section 7 concludes.

2 XML Trees, XPath Queries, and DTDs

Let Σ be a finite alphabet of XML element names. Since the XPath fragments
we consider cannot query attributes or the textual contents of nodes, we define a
document tree (or simply tree) over Σ to be an ordered, unranked finite structure
with nodes labelled by element names from Σ. So all leaf nodes (elements) are
assumed to be empty. The set of all trees over Σ is denoted by TΣ . Given a tree
t ∈ TΣ , the root of t is denoted by root(t), the nodes of t by nodes(t), and the
label of node x ∈ nodes(t) by λ(x) ∈ Σ.

Expressions in XP{[ ],∗,//} (which we also loosely refer to as queries) are
defined by the following grammar, in which n denotes an element name and “.”
refers to the current node:

p → p ‘/’ p | p ‘//’ p | p ‘[’ p ‘]’ | n | ‘∗’ | ‘.’

Expressions enclosed in ‘[’ and ‘]’ are called predicates. The use of the current
node in expressions such as a/./b or a//.//b, it can be eliminated. Expressions
in XP{[ ]} do not use “.”, “∗” or “//”.

Given a query Q in XP{[ ],∗,//} and a tree t ∈ TΣ , Q(t) denotes the set of
nodes that is the result of evaluating Q on t according to the semantics given
in [14]. We assume that the context node for evaluating Q on t is always root(t).
If Q(t) �= ∅, we say that t satisfies Q. The set of trees over Σ satisfying Q
is denoted SATΣ(Q). Let P and Q be queries in XP{[ ],∗,//}. We say that P
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contains Q, written P ⊇ Q, if for all trees t ∈ TΣ , P (t) ⊇ Q(t). In addition, P
is equivalent to Q, written P ≡ Q, if P ⊇ Q and Q ⊇ P .

Similar to [1,9], we consider queries also as tree patterns. A pattern Q is an
unordered tree over alphabet Σ ∪{∗} with a distinguished subset of edges called
descendant edges, and a distinguished node called the result node. Edges that are
not descendant edges are called child edges. An example of a tree pattern is given
in Fig. 1, where child edges are represented by single lines, descendant edges by
double lines, and the result node by a boldface circle and label. The result node
of pattern Q is denoted result(Q). From now on, we use XPath queries and tree
patterns interchangeably.

As in [9], an embedding or homomorphism from pattern Q to tree t is a
mapping h from the nodes of Q to the nodes of t such that (1) h maps root(Q)
to the root(t), (2) for each node x in Q, λ(x) = ∗ or λ(x) = λ(h(x)), and (3) for
each node x and y in Q, if (x, y) is a child edge in Q then (h(x), h(y)) is an edge
in t, and if (x, y) is a descendant edge in Q then h(y) is a proper descendant of
h(x) in t. If the result node of Q is x, then

Q(t) = {(h(x)) | h is a homomorphism from Q to t}
Q(t) is represented as a set of tuples rather than simply a set of elements, because
we also want to allow Boolean patterns and to be able to distinguish between
Boolean patterns that are satisfied by some tree and those that are not [9]. A
Boolean pattern Q is a pattern in which there is no result node: Q(t) evaluates
to the empty tuple if there a homomorphism from Q to t; otherwise, Q(t) = ∅.
When Q is not a Boolean pattern, we will often consider Q(t) to be simply a set
of elements.

A containment mapping between queries is similar to a homomorphism from
a query to a tree, the differences arising because queries have result nodes and
descendant edges which trees do not. A containment mapping from query Q1 to
query Q2 is a mapping h from the nodes of Q1 to the nodes of Q2 such that
(1) h maps root(Q1) to root(Q2), (2) h maps result(Q1) to result(Q2), (3) for
each node x in Q1, λ(x) = ∗ or λ(x) = λ(h(x)), and (4) for each node x and y in
Q1, if (x, y) is a child edge in Q1 then (h(x), h(y)) is a child edge in Q2, and if
(x, y) is a descendant edge in Q1 then (h(x), . . . , h(y)) is a path of child and/or
descendant edges in Q2.

The existence of a containment mapping is always a sufficient condition for
containment between queries. It is also a necessary condition for containment
for XP{[ ],∗} and XP{[ ],//} (and, of course, for XP{[ ]}), but it is not a necessary
condition for containment for XP{[ ],∗,//} [9].

A document type definition (DTD) D over finite alphabet Σ consists of a
root type in Σ, denoted root(D), and a mapping that associates with each a ∈
Σ a regular expression over Σ. If the mapping associates with a the regular
expression Ra, then we say that R is the content model for a and write a → Ra

(which we also call a production). By convention, we often simply write down the
productions for D, with the first production being for the root type and with Σ
comprising all symbols which appear in the productions. For example, the root
type of the DTD D of Example 2 is taken as a and Σ = {a, b, c, d, e, f, g, h, i}.
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For regular expressions, we use the conventions from XML DTDs, namely
that ‘,’ denotes concatenation, ‘|’ denotes alternation, and ‘∗’ denotes Kleene
closure. We represent the regular expression denoting the empty string by ε, so
that, for regular expression R, R+ is shorthand for R, R∗, and (R)? is shorthand
for (R | ε). If R is a regular expression, then L(R) is the language denoted by R.

A tree t ∈ TΣ satisfies a DTD D over Σ if λ(root(t)) = root(D) and for each
node x in t with sequence of children y1, . . . , yn, the string λ(y1) · · ·λ(yn) is in
L(Rλ(x)) (the language for the content model of the label of x). The set of trees
satisfying DTD D is denoted SAT (D).

Given XPath queries Q1 and Q2, Q1 D-contains Q2, written Q1 ⊇SAT (D) Q2,
if, for every tree t ∈ SAT (D), Q1(T ) ⊇ Q2(T ). Q1 and Q2 are D-equivalent,
written Q1 ≡SAT (D) Q2, if Q1 ⊇SAT (D) Q2 and Q2 ⊇SAT (D) Q1.

Let t ∈ TΣ be a (document) tree, a, c ∈ Σ be element names, and B ⊆ Σ
be a set of element names. Tree t satisfies the sibling constraint (SC) a : B ⇓ c
if whenever a node labelled a in t has children labelled with each b ∈ B, it
has a child node labelled with c [16]. When B = ∅, the SC is called a child
constraint [15]. An SC (over Σ) is trivial if it is satisfied by every tree t ∈ TΣ .
So a : B ⇓ c is trivial if c ∈ B. If S is a set of SCs over Σ, then SAT (S) denotes
the set of trees in TΣ which satisfy each SC in S.

Let s be the SC a : B ⇓ c. Regular expression Ra implies the SC s, written
Ra |= s if whenever a string w ∈ L(Ra) contains each element of B, it also
contains c. SC implication was shown to be conp-hard in [16]. DTD D implies
the SC s, written D |= s, if Ra implies s or, equivalently, each t ∈ SAT (D)
satisfies s. D implies the set of SCs S, written D |= S, if SAT (D) ⊆ SAT (S).

Let t ∈ TΣ and a, b ∈ Σ be element names. Tree t satisfies the functional
constraint (FC) a ↓ b if no node labelled a in t has two distinct children labelled
with b. If C is a set of SCs and FCs over Σ, then SAT (C) denotes the set of
trees in TΣ which satisfy each SC and FC in C. The definitions for a regular
expression and a DTD implying an FC, or a set of FCs, are analogous to those
for SCs.

3 Decidability of Containment under DTDs

When the XPath fragment includes XP{[ ],∗,//} along with disjunction, variable
binding and equality testing, Deutsch and Tannen state that the decidability of
containment in the presence of DTDs is an open problem [7]. In this section,
we contribute to this investigation by showing that containment of XP{[ ],∗,//}

queries under DTDs is decidable. (In fact, including disjunction in the XPath
fragment as well does not change the decidability result.) We do this by showing
that, given a query Q in XP{[ ],∗,//} and an alphabet Σ for a DTD D, we can
construct a regular tree grammar (RTG) G such that the set of trees generated
by the grammar is precisely the set of trees that satisfy Q. The result then follows
from the facts that DTDs are a special case of RTGs, that RTGs are closed under
intersection [6], and that containment is decidable (and exptime-complete) for
RTGs [4,12,13]. This same result is proved independently in [10].
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The definition of regular tree grammars we use is similar to that in [6]. A
regular tree grammar (RTG) G is a 4-tuple 〈Σ, N, P, n0〉, where

1. Σ is a finite set of element names,
2. N is a finite set of nonterminals,
3. P is a finite set of productions of the form n → a(R), where n ∈ N , a ∈ Σ,

and R is a regular expression over N ,
4. n0 ∈ N is the start symbol.

RTG G allows a document tree t if t can be derived from n0 by applying produc-
tions from P and t does not contain any nonterminals. A production n → a(R)
is applied to a tree t by replacing the nonterminal n in t by a tree a(t1, . . . , tk),
where t1 · · · tk ∈ L(R). The regular tree language L(G) is the set of document
trees allowed by the grammar G. Given two RTGs G1 and G2, we write G1 ⊇ G2
if L(G1) ⊇ L(G2).

Given a query Q in XP{[ ],∗,//}, we want to derive an RTG G such that
L(G) = SATΣ(Q), the set of trees over Σ satisfying Q. We can use this to
decide D-containment for queries Q1 and Q2 as described below.

Firstly, Miklau and Suciu show that there is a translation from XP{[ ],∗,//}

queries over Σ to Boolean XP{[ ],∗,//} queries over an extended alphabet Σ′ such
that for any XP{[ ],∗,//} queries Q1 and Q2 and their translations Q′

1 and Q′
2,

Q1 ⊇ Q2 if and only if Q′
1 ⊇ Q′

2 [9]. Now let G1 and G2 be RTGs such that
L(G1) = SATΣ′(Q′

1) and L(G2) = SATΣ′(Q′
2). Then Q′

1 ⊇SAT (D) Q′
2 if and

only if D ∩ G1 ⊇ D ∩ G2. So for the rest of this section, we assume that all
queries are Boolean.

Let alphabet Σ = {a1, . . . ak}. As a shorthand notation, we write

n → Σ (r)

for the set of productions

n → a1 (r)
...

n → ak (r)

In order to generate an arbitrary tree over Σ, we define a nonterminal nΣ by
the (shorthand) production:

nΣ → Σ (n∗
Σ)

Example 4. Given query Q = a/b over alphabet Σ, the productions for the RTG
corresponding to Q are

na → a (n∗
Σ nb n∗

Σ)
nb → b (n∗

Σ)

since Q matches trees in which nodes labelled a can have arbitrary children
labelled with elements from Σ that precede and/or follow the child labelled b,
which in turn can be the root of an arbitrary subtree. ��
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We also have to take into account that order in RTGs is significant. So for
a query which has a node with more than one child, we need to represent all
possible orderings of the children in the RTG. To make this more manageable, we
use the & operator from SGML as a shorthand notation: for all pairs of symbols
a and b in Σ, a & b ≡ ((a, b) | (b, a)). Descendant edges in queries are modelled
by recursive productions in the RTG.

Example 5. The productions for query a[b][c] are

na → a (n∗
Σ & nb & n∗

Σ & nc & n∗
Σ)

nb → b (n∗
Σ)

nc → c (n∗
Σ)

while those for query a//b are

na → a (n∗
Σ nb n∗

Σ)
nb → b (n∗

Σ)
nb → Σ (n∗

Σ nb n∗
Σ)

��
Given an alphabet Σ = {a1, . . . ak, ∗} and a query Q in XP{[ ],∗,//} with m

nodes, we construct an RTG G from Q as follows. First number each node in
Q uniquely, with the root node numbered 1. The RTG G corresponding to Q
is given by 〈Σ, N, P, n1〉, where N = {n1, . . . , nm, nΣ}, and P is constructed
inductively as follows.

1. If node i in Q is a leaf node, then P includes

ni → aj (n∗
Σ)

if i has label aj ∈ Σ, or

ni → Σ (n∗
Σ)

if i has label ∗.
2. If node i in Q has child nodes j1, . . . , jm, then P includes

ni → al (n∗
Σ & nj1 & n∗

Σ & · · · & n∗
Σ & njm & n∗

Σ)

if i has label al ∈ Σ, or

ni → Σ (n∗
Σ & nj1 & n∗

Σ & · · · & n∗
Σ & njm & n∗

Σ)

if i has label ∗.
3. If node i in Q is connected to its parent by a descendant edge, then P

includes

ni → Σ (n∗
Σ ni n∗

Σ)
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We now define the notion of a node-disjoint embedding, which is useful when
defining the relationship between query Q and the trees generated by the RTG
corresponding to Q. A node-disjoint embedding from query Q to tree t is a pair
h = (h1, h2), where h1 is a one-to-one mapping from the nodes of Q to the nodes
of t such that (1) h1 maps root(Q) to root(t), and (2) for each node x in Q,
λ(x) = ∗ or λ(x) = λ(h1(x)), and h2 is a one-to-one mapping from the edges of
Q to paths of t such that (3) for each node x and y in Q, if e = (x, y) is a child
edge in Q, then h2(e) = (h1(x), h1(y)) is an edge in t, (4) for each node x and y
in Q, if e = (x, y) is a descendant edge in Q, then h2(e) = (h1(x), . . . , h1(y)) is
a path in t. We also require that all paths in the image of h2 are node-disjoint,
except that two paths may have the same initial node. It follows immediately
from the definition that, if h = (h1, h2) is a node-disjoint embedding from query
Q to tree t, then h1 is an embedding from Q to t.

Lemma 1. Let Q be a query over Σ in XP{[ ],∗,//}, G be the RTG corresponding
to Q, and t be a tree over Σ. There is a node-disjoint embedding from Q to t if
and only if t ∈ L(G).

A contraction of a query Q1 is a query Q2 comprising a subset of the nodes
of Q1 such that there is a containment mapping from Q1 to Q2. Fig. 2 gives an
example of some contractions for a query in XP{[ ],∗,//}.

a

c

b c

c

a

d

c

b

c

a

c

c d

c

d

d

a

b

a

b

d b

c

Fig. 2. Some contractions for the XPath query a[.//b/c][.//c//d].

Lemma 2. Let Q1 be a query over Σ in XP{[ ],∗,//} and t be a tree over Σ. If
there is an embedding from Q1 to t, then there is a contraction Q2 of Q1 such
that there is a node-disjoint embedding from Q2 to t.

It is straightforward to construct an RTG G from a set of contractions for a
query Q. Given a set C of contractions for Q, we number the nodes of queries
uniquely throughout C, except that the root node for each contraction is num-
bered 1. The set of productions of G is then simply the union of the sets of
productions for each of the individual contractions in C.
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Lemma 3. Let Q be a query over Σ in XP{[ ],∗,//} and G be the RTG corre-
sponding to the set of contractions of Q. Then L(G) = SATΣ(Q).

Example 6. Consider the following pair of queries Q1 = a/∗//b and Q2 = a//∗/b
from [9]. Although Q1 and Q2 are equivalent, there is no containment mapping
between them. Given alphabet Σ, the RTG productions for Q1 and Q2 are

na → a (n∗
Σ n∗ n∗

Σ)
n∗ → Σ (n∗

Σ nb n∗
Σ)

nb → Σ (n∗
Σ nb n∗

Σ)
nb → b (n∗

Σ)

and

na → a (n∗
Σ n∗ n∗

Σ)
n∗ → Σ (n∗

Σ n∗ n∗
Σ)

n∗ → Σ (n∗
Σ nb n∗

Σ)
nb → b (n∗

Σ)

respectively, Clearly, the above two sets of productions are equivalent. ��

Theorem 1. Let D be a DTD over Σ, Q1 and Q2 be queries over Σ in
XP{[ ],∗,//}, and G1 and G2 be the RTGs corresponding to the sets of contractions
of Q1 and Q2, respectively. Then Q1 ⊇SAT (D) Q2 if and only if D∩G1 ⊇ D∩G2.

Corollary 1. Containment for queries in XP{[ ],∗,//} under DTDs is decidable
and, in fact, exptime-complete [13].

Example 7. Consider the DTD D from Example 2, along with queries Q1 =
a[b[e][g]][d] and Q2 = a[b/e][b/g]][d]. Note that Q1 is a contraction of Q2 and
hence Q2 ⊇ Q1. Because D dictates that if an a-node has a d-child, then it has
at most one b-child, we have that Q1 ⊇SAT (D) Q2.

The productions for G2 corresponding to the set of contractions of Q2 are

na → a (n∗
Σ & nb1 & n∗

Σ & nb2 & n∗
Σ & nd & n∗

Σ)
nb1 → b (n∗

Σ & ne & n∗
Σ)

nb2 → b (n∗
Σ & ng & n∗

Σ)
na → a (n∗

Σ & nb & n∗
Σ & nd & n∗

Σ)
nb → b (n∗

Σ & ne & n∗
Σ & ng & n∗

Σ)
nd → d (n∗

Σ)
ne → e (n∗

Σ)
ng → g (n∗

Σ)

while those for the RTG G1, corresponding to the set of contractions of query
Q1, comprise the last 5 productions above.

DTD D can simply be represented as the following RTG, which we also
denote by D

na → a ((nb nb nc) | (nd nb))
nb → b ((ne | nf ) (ng | nh))

along with productions of the form
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nx → x (ε)

for x instantiated to each of c, d, e, f, g and h. Now D ∩ G1 is

na → a (nd nb)
nb → b (ne ng)

nd → d (ε)
ne → e (ε)
ng → g (ε)

It turns out that D∩G1 ≡ D∩G2, since the first production for na in G2 cannot
be satisfied by any tree that satisfies D—it requires the existence of 2 children
labelled with b and one with d. We conclude that Q1 ⊇SAT (D) Q2. ��

4 ptime Classes

We now turn our attention to fragments of XPath for which containment under
DTDs can be tested in ptime. We restrict ourselves to studying XP{[ ]} and its
subclasses, since it has been shown that, even for XP{[ ]}, deciding containment
under DTDs in conp-complete [10,16]. The approach adopted in [16], related to
that in [7], is to look for classes of simple constraints implied by a DTD D which
are necessary and sufficient to show D-containment. For example, it turns out
that SCs are necessary and sufficient to show D-containment for duplicate-free
queries in XP{[ ]}. Unfortunately, the conp-hardness result relates to deciding
whether a DTD implies an SC.

It is shown in [16] that when DTD D is duplicate-free, SC implication is in
ptime. In this section, we show that SCs and FCs are necessary and sufficient
to decide D-containment for XP{[ ]} queries when D is duplicate-free. We also
show that finding the set of FCs implied by a DTD can be done in ptime, as
can deciding containment under duplicate-free DTDs for XP{[ ]} queries.
Lemma 4. Let D be a DTD, C be the set of SCs and FCs implied by D, and
P and Q be XP{[ ]} queries. If P ≡SAT (C) Q, then P ≡SAT (D) Q.

We can find the set of FCs implied by a DTD D over Σ in ptime. For each
regular expression Ra in D, we construct its NFA Ma and find the strongly-
connected components (SCCs) of Ma. Then D implies the FC a ↓ b if and only
if b labels a transition in Ma which is not part of any SCC. If |Σ| = n, at most
n2 FCs can be implied by D.

We are particularly interested in when SCs and FCs are necessary to show
D-containment of XP{[ ]} queries. For this, we need to consider duplicate-free
DTDs. Recall that a DTD D is duplicate-free if in each regular expression Ra in
D, each element name appears at most once in Ra.

We now consider some properties of duplicate-free DTDs. Firstly, for each
regular expression R in a duplicate-free DTD D, we can construct an NFA M
(with ε-transitions) accepting L(R) such that no symbol labels more than one
transition in M . This applies even if we use the operators + and ? in R. As a
result of no symbol being repeated in M , each symbol in R appears either an
unbounded number of times in strings in L(R) or else it appears at most once
in any string in L(R).
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Lemma 5. Let D be a duplicate-free DTD. If in every tree in SAT (D) whenever
a node with label a has children with labels b1, . . . , bn it has a child with label c,
then D |= a : {b1, . . . , bn} ⇓ c.

Example 8. The result of Lemma 5 does not hold necessarily hold for DTDs
which are not duplicate-free. Consider the DTD D from Example 2. Every tree
in SAT (D) with a node labelled a that has two children labelled b also has a
child labelled c. This means, for example, that

a[b/e][b/f ][c] ⊇SAT (D) a[b/e][b/f ]

because the two copies of b in each of these expressions must always map to
distinct nodes in any document tree (we have to consult D in order to determine
this). However, the only (nontrivial) SC for a implied by D is a : ∅ ⇓ b. ��

In order to test C-containment, for a set C of SCs and FCs, we introduce a
variation of the chase [8], a procedure for applying a set of SCs and FCs to a
query in XP{[ ]}. Let P be a query in XP{[ ]} and C be the set of SCs and FCs
implied by a DTD D.
1. Let s ∈ C be a nontrivial SC of the form a : B ⇓ c, where B = {b1, . . . , bn}.

Let u be a node in P with children v1, . . . , vn such that λ(u) = a, λ(vi) = bi,
1 ≤ i ≤ n, and u does not have a child labelled c. The result of applying the
SC s to u in P is a query which has the same nodes and edges as P and in
addition has a child of u labelled c.

2. Let f ∈ C be an FC of the form a ↓ b. Let u be a node in P with distinct
children v and w such that λ(u) = a and λ(v) = λ(w) = b. The result of
applying the FC f to u in P is a query θ(P ), where θ maps v to w and is
the identity elsewhere.

A chasing sequence of P by C is a sequence P = P0, . . . , Pk such that for each
0 ≤ i ≤ k − 1, Pi+1 is the result of applying some SC or FC in C to Pi, and no
SC or FC can be applied to Pk. Note that the chasing sequence is finite. The
chase of P by C, denoted chaseC(P ), is Pk.

For the set C of SCs and FCs implied by a DTD D and a query Q in XP{[ ]},
chaseC(Q) does not necessarily satisfy D. One reason is that D might require
that one of two child nodes be present which cannot be captured by C. However,
we do have the following.
Lemma 6. Let D be a duplicate-free DTD, Q be an XPath query, and C be
the set of SCs and FCs implied by D. If Q is D-satisfiable, then chaseC(Q) is
isomorphic to a subtree of a tree in SAT (D).

Example 9. Once again, the above result does not hold for DTDs which are
not duplicate-free. Consider the DTD D from Example 2. Although in D each
a can have either one or two b children, if an a has d child, then it has at
most one b child. For queries P = a[d][b[e][g]] and Q = a[d][b/e][b/g], such a
constraint implies that P ⊇SAT (D) Q. There is no containment mapping from
P to Q = chaseC(Q), the problem being that chaseC(Q) is not isomorphic to a
subtree of a tree in SAT (D). ��
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Let C be the set of SCs and FCs implied by DTD D. Let Q be D-satisfiable,
and R ⊆ SAT (D) be the set of trees with a subtree isomorphic to chaseC(Q).
We call R the C-satisfying set for Q. Each tree in R has a core subtree which
is isomorphic to chaseC(Q), and each node in the core subtree is called a core
node. Each node which is not a core node is called a non-core node.

Lemma 7. Let D be a duplicate-free DTD and P and Q be queries in XP{[ ]}.
Let Q be D-satisfiable, C be the set of SCs and FCs implied by D, and R be
the C-satisfying set for Q. If P ⊇SAT (D) Q, then, for each node w in P , either
w can be mapped to a core node in every tree in R or w can be mapped to a
non-core node in every tree in R.

Lemma 8. For XP{[ ]} queries P and Q, P ⊇SAT (C) Q if and only if P ⊇
chaseC(Q).

Theorem 2. Let D be a duplicate-free DTD and C be the set of SCs and
FCs implied by D. For XP{[ ]} queries P and Q, P ⊇SAT (D) Q if and only
if P ⊇SAT (C) Q.

Let D be a duplicate-free DTD and C be the set of SCs and FCs implied
by D. The number of constraints in C can be exponential in the size of D, and
chaseC(Q) can have a number of nodes which is exponential in the number of
constraints in C. However, in order to test P ⊇SAT (D) Q for XP{[ ]} queries P
and Q, we do not have to generate all of C from D, nor do we have to chase Q
with every constraint in C.

Instead we can first chase Q with each of the FCs in C, a step which can
clearly be done in ptime. Since applying an SC to Q never introduces a child
with the same label as one of its siblings, there is no need to apply FCs after
applying SCs. Now simultaneous top-down traversals of P and Q can determine
nodes x in P and u in Q such that λ(x) = λ(u), x has child y and u has no
child with label λ(y). Let B denote the set of labels of children of u in Q. We
can then determine if D implies the SC λ(u) : B ⇓ λ(y) in ptime, since D is
duplicate-free [16]. If so, then we add a node v as a child of u with λ(v) = λ(y).
In this way, if P has n nodes, we can never add more than n2 nodes to Q.

5 Limitations of Constraints

In this section, we address the question of whether there are simple constraints
other than sibling and functional constraints that are necessary and sufficient
for deciding D-containment in ptime when neither the DTD nor the queries in
XP{[ ]} are duplicate-free.

Given a regular expression R, let w ∈ L(R). Since queries in XP{[ ]} cannot
query the order of symbols in w, we adopt a bag representation to indicate the
insignificance of ordering in the symbols of w: the notation [w] denotes the bag
of symbols appearing in w. If symbol ai appears mi times in w, 1 ≤ i ≤ k, then
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[w] = {am1
1 , . . . , amk

k }. The unordered regular language denoted by R, written
UL(R), is defined as UL(R) = {[w] | w ∈ L(R)}.

Let Σ be the set of symbols used in R, and w be an arbitrary string over
Σ. We now show how to construct a DTD D that uses R, along with queries
Q1 and Q2 in XP{[ ]}, such that Q1 ⊇SAT (D) Q2 if and only if [w] �∈ UL(R).
Of course none of D, Q1 or Q2 is duplicate-free. This effectively demonstrates
that using constraints less powerful than those which characterize unordered
regular languages cannot provide a necessary and sufficient condition for query
containment for XP{[ ]}.

Theorem 3. Let R be a regular expression, Σ be the set of symbols used in R,
and w be a string over Σ. There is a DTD D with content model R for some
element, along with queries Q1 and Q2 in XP{[ ]}, such that Q1 ⊇SAT (D) Q2 if
and only if [w] �∈ UL(R).

6 Related Work

The most recent related work is in the papers [1,7,9,10,16]. For containment of
queries in the absence of constraints, containment was shown to be in ptime for
XP{[ ],//} in [1], while it was shown to be conp-complete for XP{[ ],∗,//} in [9].

Containment under constraints was shown to be undecidable in [7], when
the XPath fragment includes XP{[ ],∗,//} along with disjunction, variable bind-
ing and equality testing, and the constraints include so-called bounded simple
XPath integrity constraints (SXICs) and those (unbounded) constraints implied
by DTDs. On the other hand, containment under DTDs was shown to be conp-
complete for XP{[ ]} in [10,16]. In [1], child constraints along with descendant
and type co-occurrence constraints, are used to minimise queries in XP{[ ],//}

in ptime. A comprehensive classification of the complexity of containment of
XPath fragments under DTDs is given in [10].

Earlier relevant work includes that by Calvanese et al. who proved that con-
tainment of conjunctions of regular path queries, a language more powerful than
XP{[ ],∗,//}, is decidable [5]. Papakonstantinou and Vassalos studied rewriting a
query expressed in a language called TSL in terms of a set of views [11]. They
include some rewritings based on DTD constraints. Finally, Böhm et al. derived
constraints from DTDs in order to optimise expressions in the PAT algebra [3].

7 Conclusion

In this paper, we have studied the problem of query containment under DTDs
for various fragments of XPath. By showing that containment under DTDs is
decidable for XP{[ ],∗,//}, we have contributed to solving the open problem stated
in [7]. We have also identified that containment under duplicate-free DTDs
for queries in XP{[ ]} is tractable, while for queries and DTDs which are not
duplicate-free, it remains intractable.

Further work is obviously needed to solve the issue of decidability of contain-
ment under DTDs for larger XPath fragments.
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