
P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 63–72, 2008.
© Springer-Verlag Berlin Heidelberg 2008

The TDD-Guide Training and Guidance Tool
for Test-Driven Development

Oren Mishali1, Yael Dubinsky2, and Shmuel Katz1

1 Computer Science Department
The Technion, Haifa, Israel

{omishali,katz}@cs.technion.ac.il
2 IBM Haifa Research Lab

31905 Haifa, Israel
dubinsky@il.ibm.com

Abstract. A tool is presented for guiding Test-Driven Development (TDD),
called TDD-Guide. The tool is integrated into an existing development envi-
ronment and guides the developer during the development by providing notifi-
cations that encourage use of TDD. The TDD practice is defined through rules
that can easily be changed and are used to generate code incorporated to a de-
velopment environment using an aspect-based framework, so that the develop-
ment of the tool has agile characteristics. Feedback from user experiments both
validates the rules and suggests refinements to improve TDD-Guide, as is
shown in descriptions of two user experiments.

Keywords: Rule-based framework, test driven development (TDD), software
process support, user evaluation.

1 Introduction

Test-Driven Development (TDD) is widely considered both one of the central contribu-
tions of Extreme Programming to general agile techniques [1], and one of the most
difficult practices to internalize [2, 3]. In this paper the TDD-Guide tool is shown both
to effectively encourage use of test-driven development, and to allow incremental and
flexible integration into an existing general development environment. The tool can
detect conformance or deviation from test-driven practice as coding or testing steps are
being developed, and provide valuable notifications to the developer. Some of the noti-
fications provide the developer with positive feedback when the practice is followed,
while others identify deviations from TDD. When deviations are detected, the tool can
guide the developer to correct the deviation or even strictly enforce TDD by not allow-
ing the developer to perform an operation deviating from the practice.

TDD-Guide is an application of the Aspect-Oriented Process Support (AOPS)
framework. This framework, whose concepts were first introduced in [4], facilitates
the definition and deployment of support for a variety of software processes in the
form of rules and here the framework is used to define rules to support TDD. As its
name suggests, the framework is based on aspect-oriented technology [5]. Using the

64 O. Mishali, Y. Dubinsky, and S. Katz

support definition, code containing aspects and classes is automatically generated,
ready to be integrated into the target development environment. Such integration
guarantees the customization of the environment according to the defined rules. This
aspect-based integration approach is used here on the Eclipse platform and thus the
generated types are in AspectJ1 and Java. The rules for TDD, code generated from this
set of rules, a repository of key TDD events and their connection to the environment,
together with a user-interface common to all framework products, all integrated into
Eclipse, comprise the TDD-Guide tool.

The rules defined using the framework are simple to express, and it is relatively easy
to add, remove or modify rules. The framework is especially appropriate for defining
development practices that are flexible, may need frequent adjustment, and can be seam-
lessly integrated with an existing, familiar, development environment. This differs from
previous Process Centered Engineering Environments (PCE’s), such as [6, 7], that gener-
ally replace existing environments and are oriented to a fully detailed process model.

The current version of TDD-Guide is the result of ongoing research whose goal is to
define practical and effective TDD rules. Given that goal and the flexible nature of the
framework, we chose to define the rules in an agile fashion, starting from a basic and
simple set of rules that is iteratively refined. In each iteration, the existing set of rules is
tested on real developers and the gathered user feedback is used to refine the set toward
the next iteration. In this paper, two such iterations are described, focusing on the ex-
periments within them. In each experiment, student developers with novice TDD skills
were given a Java development task, and were asked to develop the task using TDD.
TDD-Guide was integrated in advance into the users’ development environment
(Eclipse), and significant development steps were logged. Based on the logs and ques-
tionnaires, we searched for and developed possible rule refinements. We were also
interested in examining the reaction of the developers to this kind of on-line guidance.

We present results showing that TDD-Guide is in general perceived by the users to
be helpful and that the tool indeed is effective in guiding TDD. More importantly, we
show how the experiments provide important user feedback that helps both to improve
the rules themselves and to refine the user-interface. In the next Section we present the
user-interface and rules of TDD-Guide while explaining how rules are defined using the
framework. The experiments’ goals, description, and results are presented in Section 3,
and conclusions and future directions are provided in Section 4.

2 TDD-Guide and the AOPS Framework

We metaphorically view a software development process as a trail defined by the
process methods and practices; the developers are considered as hikers who are sup-
posed to follow the trail but, for various reasons, once in a while deviate from it. Ac-
cordingly, an AOPS rule can be of kind deviation or on-track; a rule of kind on-track
when triggered denotes that the developer is following the trail, and encourages the
developer by providing positive feedback. Similarly, a rule of kind deviation is acti-
vated when the developer deviates from the desired trail; here, the rule may force the
developer to return to the trail, or alternatively provide the developer with the choice
to deviate while presenting negative feedback with different severity levels.

1 The AspectJ Project, http://www.eclipse.org/aspectj/

 The TDD-Guide Training and Guidance Tool for Test-Driven Development 65

2.1 TDD-Guide User-Interface

Upon activation of an AOPS rule, its message is presented to the developer in the
AOPS view (Figure 1), where an appropriate icon denotes the type of the message. In
addition, the AOPS bar (Figure 2) updates its color according the kind of the activated
rule and also supplies a tooltip to quickly observe the rule’s message.

Fig. 1. The AOPS view Fig. 2. The AOPS bar

Rule messages may also be presented to the developer within Eclipse dialogs and
wizards. In Figure 3, for instance, we see the same “No failing test exists” message,
but presented within the Java class creation wizard. This tight integration with Eclipse
allows natural enforcement of the rule by simply disabling the ‘Finish’ button. How-
ever, in editing mode the same rule is not mandatory and can be overridden.

Fig. 3. Java class creation wizard augmented with an AOPS message

2.2 Rule Definition

To define AOPS rules, the manager/governor (the one who defines the rules) should
first define an abstraction of the underlying development process, namely a set of
entities that represent important elements in the process. Then, rules are defined that
operate on the entities.

66 O. Mishali, Y. Dubinsky, and S. Katz

In Figure 4 we see some of the entities and the rules that constitute TDD-Guide.
Two entities are defined, CodingSpace and TestingSpace, representing the space where
the functional code is developed and where the unit tests are developed, respectively.
Each entity can have key-events and attributes; key-events represent abstract events that
occur during the development related to the modeled process element, and attributes are
meant to hold related important values. Both entities have two key-events representing
creation and modification of types in the space, and in addition, TestingSpace has two
attributes numOfFailingTests and numOfBrokenTests; both attributes are of type Integer
and hold the current number of failing tests and broken tests (that do not compile), re-
spectively. An AOPS rule is activated when one of the key-events defined in its condition
part is activated and its predicate, also defined there, holds. The rule NeverWrite-
CodeWithoutFailingTest is therefore activated when the developer creates a new
type/class or modifies an existing one and neither a failing test nor a broken test exists.
Activation of this rule is the most severe deviation from TDD and therefore a strategy of
type error is defined (a strategy describes the general course of action taken upon rule
activation). The second rule ChallengeExistingCode is of kind on-track and is activated
when the developer is modifying a test and no failing test exists. The rule encourages the
developer by clarifying the task ahead: writing a test that is not passed by existing code.

Four more rules are defined. Two of them enforce coding standards that distinguish
between coding and testing elements, and another one HaveOneActiveTest recognizes
deviations from the TDD recommended guideline of not trying to fix several things at
a time2. The last rule MakeExistingCodePass encourages the developer to fix the code
when in the coding space and having one failing test.

Fig. 4. Sample TDD entities and rules

The defined entities are just declarations and thus should be connected to the un-
derlying development environment. This process of connecting the entities to the
environment is called entity-mapping and uses a repository of concrete Eclipse
method calls not elaborated here. After the mapping, during development of an appli-
cation the entities are continuously updated to reflect the state and behavior of the
underlying process elements that they represent. The entities, their mapping, and the
rules, are all defined using the framework’s graphical interface. A public release of

2 http://c2.com/cgi/wiki?OneUnitTestAtaTime

Entity CodingSpace

key-event codeCreation
key-event codeModification

Entity TestingSpace

key-event testCreation
key-event testModification
attribute numOfBrokenTests
attribute numOfFailingTests

Rule NeverWriteCodeWithoutFailingTest (deviation, error)
 condition
Key-events: codeCreation, codeModification
Predicate: numOfFailingTests() == 0
&& numOfBrokenTests() == 0

Rule ChallengeExistingCode (on-track)
 condition
Key-events: testModification
Predicate: numOfFailingTests() == 0

 The TDD-Guide Training and Guidance Tool for Test-Driven Development 67

the AOPS framework is expected within several months. An Eclipse plug-in of TDD-
Guide is available upon request from the authors.

3 Evaluating TDD-Guide

A support tool to guide TDD can be best validated through user experiments. The
validation should involve user experience that is rigorously planned and executed
aiming at refining the tool to be more effective [8, 9]. The users in our case are devel-
opers in software development teams who work to produce code according to some
predefined functionality and need to produce unit tests to support the code.

In this section we describe the two user experiments of the first two development
iterations of TDD-Guide. The first experiment was a spike whose major purpose was
to examine the initial set of the rules of the first iteration in a real development setup.
Based on this spike, several changes were introduced to the tool. The second version
of the tool was experimented with in a larger setting, more focused on rule refine-
ment, namely examining the effectiveness of the rules in supporting TDD, and search-
ing for unanticipated development states.

3.1 First Experiment

Six experienced programmers familiar with Java and Eclipse, and less familiar with
TDD, were given a simple development task and asked to develop the task while using
TDD. The initial feedback was encouraging: all of the participants showed positive
reactions to the idea of accompanying the development with messages and alerts, and
four participants reported that the messages helped them to develop test-first. No change
was noticed in Eclipse performance due to the addition of aspects into it.

The experiment led to changes in the user-interface, in the rules, and in the log-
ging. Four participants reported that paying attention to the AOPS view did not dis-
rupt their concentration in developing the task. The other two felt that it sometimes
was a burden. Accordingly, we decided to add the AOPS bar (Figure 2), hoping that
colored feedback would be more intuitive than a purely textual one. The rule Never-
WriteCodeWithoutFailingTest in its first version attempted to treat a special case:
when the developer had a broken test, the rule allowed moving to the code without
requiring to execute the test (assuming that the developer is interested in creating,
e.g., a missing declaration and then returning to the test). However, we observed that
two participants did not act according to our assumption. They indeed created a miss-
ing declaration, but instead of then returning to the test they continued to develop the
code without first running JUnit. We changed the rule so that test execution is re-
quired before each move to the code, to make the TDD cycle simpler and more uni-
form. Since execution of broken tests is also reported by JUnit with red indication, we
also added a warning to the rule to remind the developer that the JUnit bar is red due
to a compilation error and not because of a failing test. We also added time-stamps to
the logs to facilitate better reasoning.

68 O. Mishali, Y. Dubinsky, and S. Katz

3.2 Second Experiment

The participants in the second experiment were 34 CS-major fourth-year students in
an advanced Software Engineering project course. The experiment had three phases:

1. Pre-experiment phase in which participants filled in a questionnaire about the
level of their familiarity and experience with programming concepts and tools in
general and with TDD in particular. Then, they heard a one-hour lecture about
unit testing and specifically about TDD.

2. Experiment experience phase in which participants moved to the computer lab
where they were guided in groups of 2-4 to perform a specific programming task.
After completing the task they filled in a personal reflection.

3. Post-experiment phase in which participants were asked one week after the ex-
periment to indicate two features of TDD-Guide that they perceive as most
significant and two possible improvements or extensions. This feedback was ob-
tained using a web-based feedback mechanism familiar to the students.

Twenty seven of the participants filled in the questionnaire of the pre-experiment
phase. The results show that participants felt knowledgeable with Java programming
and object-oriented design, less knowledgeable with Eclipse IDE and unit testing, and
beginners in JUnit and TDD. Regarding the development process, participants were
less experienced with measuring the development process and product, but felt
knowledgeable and even expert with working in pairs.

Given a project named money.conversions that contains classes and conversion
utilities3, participants were asked to define a class Money that represents a certain
amount of money in a specific currency. In addition, the class should have the method
Money add(Money m, String currency) where the returned Money represents the
addition of the called Money object and the given Money argument, in the given cur-
rency argument. Participants were asked to develop according to the TDD technique
(within 35 minutes) and to take notice of AOPS messages. As in the first experiment,
aspects were also added to Eclipse to log actual behavior and timing information.

3.2.1 Experiment Outcomes
We illustrate the experiment findings for the NeverWriteCodeWithoutFailingTest rule
of TDD-Guide that detects a deviation as aforementioned. We considered recurrences
of series of events in the logs that show a specific behavior of the developers either
before or after the deviation. The logs of twelve groups that completed their task were
considered and the following four findings were formulated:

 The first finding deals with the intuitive tendency of developers to start programming
with coding rather than with testing. An expected behavior in the beginning of the
log is Test - TestFailed - Code where Test means writing test lines, TestFailed means
that running JUnit causes a failure, and Code means writing code lines. Four logs out
of twelve include Code - DeviationMessage - Test at the beginning of the log (mean-
ing that they start directly with code as they used to, noticed the AOPS deviation

3 The given task is a simplified version of a well-known TDD example by Kent Beck and Erich

Gamma (http://junit.sourceforge.net/doc/testinfected/testing.htm).

 The TDD-Guide Training and Guidance Tool for Test-Driven Development 69

message that appears and responded by starting to test). This tendency to start with
coding was also found in the middle of the task when instead of the expected Code -
TestSucceeded - Test we found Code - TestSucceeded - Code - DeviationMessage -
Test. These cases show that novice developers can benefit from TDD-Guide mes-
sages and by following them they overcome their tendency to start coding without
testing, and thus adhere to the TDD practice. Since this rule can be overruled in edit
mode, we found two cases of Code - DeviationMessage - Code meaning the devia-
tion message was ignored by the developers who continued to work on the code al-
though there was no failed test. This can be also explained as a refactoring activity
and was marked by us for further investigation.

 The second finding concerns getting used to actually run the tests before moving to
code. We found eight cases in six logs where developers did Test - Code - Devia-
tionMessage - TestFailed - Code meaning they worked on the test and switched to
code without receiving the feedback of running JUnit. Following the deviation
message they ran the test, causing a test failure, and went back to code.

 The third finding relates to the learning curve that can be observed especially when
adding the time measure of the different activities. The following series of events
was found starting at the beginning of a specific log:

o Code - DeviationMessage for 1 minute; no work for 2 minutes;
o Test for 15 seconds;
o Code - DeviationMessage for 4 seconds; no work for 7 seconds;
o Test for 8 minutes;
o Code - DeviationMessage for 1 second;
o TestFailed - Code

The deviation message was used three times to correct the development in this
trace. We observed here and elsewhere that the time to respond to the deviation
messages decreased while the time invested in testing increased.

 The fourth finding reveals strong emotions against testing and can be seen as anec-
dotal: one group used “i dont want to test” as part of their test file name.

3.2.2 Participants’ Reflection on the Experiment
After completing the task, participants filled in their level of agreement with state-
ments related to the experiment. Table 1 summarizes their answers; a clear majority is
marked in grey. As can be observed most participants felt that the Eclipse IDE works
as usual (statement 1) and that TDD-Guide helped them in working according to the
TDD technique (e.g., statement 6). However, statements for which no clear majority
exists reveal issues that may suggest rule refinement. For instance, statements 2 and 4
reveal usability issues, and statements 8 and 13 disagreement with the TDD guiding
rules (we refer to these issues in Section 4). Statements 7 and 16 uncover resistance to
the TDD concept. We believe this only emphasizes the necessity of the guidance, in
particular for novices who are not yet familiar with the advantages of TDD.

To assess the longer-term impact of this experience, we asked for feedback one
week after the experiment. As noted, participants were asked to indicate two features
of TDD-Guide that they perceived as most significant and two possible improvements
or extensions to the tool. Thirty two participants responded to this phase.

70 O. Mishali, Y. Dubinsky, and S. Katz

Table 1. Reflecting on the experiment activity

Statement Agree Tend to
agree

Tend to
disagree

Dis-
agree

No
answer

1 During development, I felt that the Eclipse
interface responded as usual

9 15 8 2

2 Paying attention to the AOPS messages
was a burden

3 14 14 3

3 I have hardly had any AOPS Deviation
(Error) messages

1 12 11 8 2

4 Some of the AOPS messages were not
comprehensible

5 12 11 5 1

5 Sometimes I didn’t agree with what an
AOPS message was saying

2 4 15 12 1

6 The AOPS messages helped me to develop
test-first

11 13 8 1 1

7 I find test-first an annoying technique 5 14 13 2

8 Sometimes, I just ignored an AOPS mes-
sage

9 9 8 8

9 Sometimes, I felt that an AOPS message
was needed but it didn’t show up

3 5 18 8

10 I think that accompanying the develop-
ment with messages and alerts is not a
good idea and just interferes with the
fluent work

1 8 17 8

11 Several times, AOPS messages led to a
change in my behavior

4 16 10 4

12 I looked several times at the reference
page to figure out how to develop test-first

3 6 10 15

13 When a failing test does not exist, the
AOPS system should always disallow any
coding

5 13 13 3

14 I got several “false alarms” (incorrect
AOPS messages)

2 3 14 14 1

15 The AOPS view was more useful than the
AOPS bar

2 18 11 3

16 I will definitely develop test-first in the
future

2 15 10 6 1

17 Most of the AOPS Warning messages
were justified

6 24 5 -

Most of them indicate the main tool features, though some mixed the TDD tech-
nique itself with the features of the guiding tool. Following are some of their sugges-
tions for improvements: “A feature can be added to mark code that is already covered
by tests thus help with the testing management”; “Better indication of the current
stage in the development process, sometimes it was difficult to understand what the
environment expects us to do”; “Introduce development tasks into the environment in
order to enable the planning of the product roadmap according to the list of tests that
should be written”; “An error should not always be created in order to go forward,
there can be an option to skip the obvious errors in the beginning or at least to mark

 The TDD-Guide Training and Guidance Tool for Test-Driven Development 71

them for example as ‘preliminary development remarks’”; “In my opinion no signifi-
cant improvements/extensions are needed”; “I suggest to emphasize the status
marker”; “Possible extension is an automatic correction offer when a problem is diag-
nosed”; “Add voice alert when there is a warning”.

4 Conclusion and Future Work

We conclude this paper by describing the implications of the outcomes presented on
the TDD-Guide rules, the user-interface, and the log used to gather information.

As previously mentioned (Section 3.1), after the first experiment we added a warn-
ing to the rule NeverWriteCodeWithoutFailingTest that is activated when the devel-
opers write code while having only broken tests. Its purpose was to remind them that
the JUnit bar is red due to a compilation error and not because of a failing test. The
logs show that although the warning was presented, usually the developers did not
execute the test again after the missing declarations were created but continued to
code in that state, without knowing for sure that the test fails. One possible remedy
could be to activate the warning again after some time. We should also examine
whether the warning message is clear enough.

The addition of time-stamps to the logs discovered that a significant aspect of a
correct TDD trail is related to time. For instance, we found several cases where tests
were developed (for the first time) for more than ten minutes before moving to the
code, and cases where the first successful test execution took place only after fifteen
minutes, both indicating that the initial TDD steps are too complex. A new story de-
fined for the third development iteration of TDD-Guide is to provide timing alerts,
e.g., if the developer stays too long in the testing space.

Although Section 3.2.1 discussed the NeverWriteCodeWithoutFailingTest rule, of
course the other rules were examined and guidelines for their refinements exist. The
rule HaveOneActiveTest was defined to be activated when the developer is in the
coding space and has more than one failing test. However, one log revealed that cod-
ing while having several failing tests is not always a deviation; that may happen when
coding indeed starts with one failing test however changes made in the code cause the
failure of others. Although it may indicate tests that are not reasonably independent, it
should not be classified as a deviation. Thus, the first improvement is to distinguish
between that case and the case where the deviation is certain, that is, where coding
starts with several failing tests. The logs report on three occurrences of the latter and
show that the rule’s notification was ignored, i.e., the developers continued to code.
The reason may be that the guidance was applied in retrospect, i.e., when the devel-
opers already had the tests written. The lesson learned here is that a deviation should
be reported as early as possible, when its correction is practical.

As noted in Section 3.2.1, the pattern Code - DeviationMessage – Code could also
be a sign for a refactoring activity and in that case the TDD rules should not report a
deviation. Therefore, another new story for the third iteration is to define refactoring
as a new state where modified TDD rules apply.

There is a need to emphasize the user interface indications (see statement 2 in Ta-
ble 1 and the last feedback in Section 3.2.2). In the next iteration we plan to add vo-
cal indications. Another point to consider is the use of interactive communication with

72 O. Mishali, Y. Dubinsky, and S. Katz

the developer, e.g., pop-ups asking for real-time developer feedback or a button
whose pressing indicates moving to a refactoring state.

The performance logs were the primary aid for reasoning on the development and
the effectiveness of TDD-Guide. During their analysis, we noted that different views
of the logged data are needed, e.g., to identify recurrent patterns and to analyze all
activations of an individual rule. These views were created manually and we plan to
add their automatic creation. We are also considering the use of a relational database
that will store the data and allow queries and reports.

As confirmed by the experiments, after two iterations TDD-Guide is already an ef-
fective tool for guiding test-driven development. Its flexibility and light-weight inte-
gration into the Eclipse IDE, provided by the AOPS framework, increases the poten-
tial of widespread adoption for this tool and its extensions to additional agile software
processes.

References

1. Beck, K.: Test-Driven Development By Example. Addison-Wesley, Reading (2003)
2. Dubinsky, Y., Hazzan, O.: Measured Test-Driven Development: Using Measures to Moni-

tor and Control the Unit Development. Journal of Computer Science, Science Publication 3,
335–344 (2007)

3. George, B., Williams, L.A.: A structured experiment of test-driven development. Informa-
tion & Software Technology 46, 337–342 (2004)

4. Mishali, O., Katz, S.: Using aspects to support the software process: XP over Eclipse. In:
International Conference on Aspect-Oriented Software Development, pp. 169–179. ACM,
Bonn, Germany (2006)

5. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwin,
J.: Aspect-Oriented Programming. In: European Conference on Object-Oriented Program-
ming, pp. 220–242. Springer, Heidelberg (1997)

6. Bandinelli, S., Braga, M., Fuggetta, A., Lavazza, L.: The Architecture of SPADE-1-
Process-Centered SEE. In: Third European Workshop on Software Process Technology, pp.
15–30. Springer, Heidelberg (1994)

7. Junkermann, G., Peuschel, B., Schafer, W., Wolf, S.: MERLIN: Supporting Cooperation in
Software Development Through a Knowledge Based Environment. In: Software Process
Modelling and Technology, pp. 103–129. John Wiley and Sons, Chichester (1994)

8. Dix, A., Finlay, J., Abowd, G.D., Beale, R.: Human-Computer-Interaction, 3rd edn. Prentice
Hall, Englewood Cliffs (2003)

9. Sharp, H., Rogers, Y., Preece, J.: Interaction Design: Beyond Human-Computer Interaction,
2nd edn. John Wiley & Sons, Chichester (2007)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

