
Towards IDE Support for Abstract Thinking
Oren Mishali

Department of Computer Science
Technion, Haifa Israel

32000

omishali @ cs.technion.ac.il

Yael Dubinsky
IBM Haifa Research Lab

Haifa, Israel
31905

dubinsky @ il.ibm.com

Itay Maman
Department of Computer Science

Technion, Haifa Israel
32000

imaman @ cs.technion.ac.il

ABSTRACT
Abstract thinking is considered to be a high level cognitive skill
that enables a comprehensive understanding of a specific concept
or a problem using different levels of detailing. Based on a lab
activity we conducted on the matter of abstraction, we present
guidelines for enabling an Integrated Development Environment
(IDE) to promote abstract thinking. The guidelines are defined in
the context of an Aspect-Oriented Process Support (AOPS)
framework that aims at customizing IDEs to automatically support
various software development practices. Specifically, we suggest
two kinds of guidelines. The first is concerned with a positive
feedback from the IDE in cases where abstraction is used. The
second kind is concerned with cases in which the developer is
encouraged to move to a different level of detailing, that is,
promoted to use abstract thinking.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments –
Integrated environments; K.6.3 [Management of Computing
and Information Systems]: Software Management – Software
development, Software process; K.3.1 [Computers and
Education]: Computer Uses in Education – Computer-assisted
instruction (CAI)

General Terms
Management, Performance, Design, Human Factors.

Keywords
Abstract thinking, process support, aspects

1. INTRODUCTION
Abstract thinking is defined as the ability to generalize, or focus
on the significant details while ignoring the less significant ones
[9]. It is considered to be a key skill for software engineers as
reported in some preliminary educational initiatives [1,3]. In this
paper, we suggest using concrete IDE support for abstract
thinking and present guidelines for the definition of rules that can
be integrated into the IDE. The goal is to provide the developer
with notifications and alerts during the course of development.

The definition and deployment of the rules is facilitated by the
Aspect-Oriented Process Support (AOPS) framework [6], which

aims at providing automatic guidance for following the best
practices of software development. Test-driven development
(TDD) is one of the practices already supported by AOPS over the
Eclipse platform. User evaluation experiments showed that
accompanying the development with notifications and alerts in
general, and TDD support in particular, is indeed effective [5].

Defining support for abstract thinking is challenging. Unlike
TDD, abstract thinking is an informal practice, which cannot be
easily captured by a set of well-defined rules. In order to
understand the nature of the support needed, we conducted a
three-part lab activity. In the first part, thirty-three participants
studied the notion of abstraction, namely abstract thinking. Then
they worked on real-life development tasks, where their
development steps as well as their visible thinking processes were
logged by observers. Finally, a reflection on the activity [7,8] was
collected.

Analyzing the data from the logs and reflection, we conclude that
concrete IDE support for abstract thinking is practical and suggest
two kinds of such support. The first is concerned with a positive
feedback from the IDE in cases where abstraction is used, and the
second with cases where the developer is encouraged to use
abstract thinking. We believe that such support may increase the
awareness of abstraction and encourage further utilization.

In the next section we give an overview of the AOPS framework
and in Section 3 we describe the lab activity and its findings.
Finally, in Section 4, we provide a discussion as well as
conclusion.

2. AOPS FRAMEWORK
The AOPS framework facilitates the definition and deployment of
support for a large variety of software processes in the form of
rules. The framework uses aspect-oriented technology [2] to
expose significant development events (e.g., creation of a Java
class, a refactoring operation) from the underlying development
environment. These events are called key-events and serve as a
basis for the definition of the rules. Each AOPS rule consists of a
condition part and an action part. The condition part specifies
when the rule is activated and contains a set of key-events and a
Boolean condition. During the development, a rule is activated
when one of its key-events occurs and the Boolean condition
holds. The action part of the rule specifies what happens when a
rule is activated and usually provides the developer with a
message of a certain type (e.g., Error, Warning).
Internally, the framework translates the set of defined rules into
automatically generated code in the form of classes and aspects.
This code is then automatically integrated into the target
development environment (currently, Eclipse) thereby modifying
the environment to support the practices described by these rules.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ROA’08, May 11, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-028-7/08/05...$5.00.

In Figure 1, we see an example of an AOPS message given to the
developer due to the activation of a TDD rule. The key event
occurs when the developer attempts to code while not having a
failing test; this is a violation of the TDD practice. As seen in the
figure, the feedback is both textual and visual. The feedback may
also be presented within Eclipse wizards. In Figure 2, for
example, the class creation wizard prohibits the developer from
creating a new class when a corresponding failing test does not
exist.

We use a metaphor to guide the definition of AOPS rules. A
software development process is viewed as a trail shaped by
recommended methods and practices, and the developers are
hikers who are supposed to follow the trail. Consequently, an
AOPS rule can be either an on-track rule or a deviation rule. An
on-track rule is triggered when the trail is followed and it provides
the developer with positive feedback. Similarly, if the developer
deviates from the trail, a deviation rule is triggered and a negative
feedback is provided. As presented in the next Section, we
analyzed the activity logs in light of this metaphor. More
precisely, we searched for cases where abstract thinking was used
(on-track), and for cases where abstract thinking was needed but
not exercised (deviation).

3. LAB ACTIVITY
We conducted a lab activity on the matter of abstraction in
software development. The participants were thirty three fourth-
year students who were computer science majors in an advanced
Software Engineering project course. The activity had three parts:

 Lecture – in which participants learned and discussed the
notion of abstraction and how it is related to software
engineering.

 Development activity – in which participants heard about the
pair programming practice and were distributed into groups
of two or three developers in order to perform a development
task in solo or pairs, respectively, where the additional
person in each group served as an observer. This part was
performed in the lab where the course was taught.

 Reflection – in which participants reflected on the complete
activity using a web-based feedback mechanism familiar to
the students. The feedback was given during the week after
the activity.

 As part of the work in the course, about two months before the
activity we asked the participants to fill in a questionnaire about
their level of familiarity and experience with programming
concepts and tools. Twenty seven participants answered. The
results showed that participants felt knowledgeable with Java
programming and object-oriented design, less knowledgeable with
Eclipse IDE and unit testing, and as novices with respect to JUnit
and TDD. Regarding the development process, participants felt
they were less experienced with measuring the development
process and product, but felt knowledgeable and even expert with
working in pairs.

In what follows we elaborate on the development activity itself
and the findings.

3.1 Development Activity
Participants were distributed into thirteen groups: seven groups of
three participants (a pair of developers and an observer) and six
groups of two participants (a developer and an observer). All
developers were asked to pick a development task from their on-
going project and to develop it during this phase of the activity.
Solo developers were asked to think aloud – i.e., talk while
working – about whatever they were doing. The observers were
asked to be non-participatory observers, i.e., not to talk with the
solo/pair or interfere in their work. Their task was to document the
development activity. Table 1 presents the kind of pages observers
were asked to fill during the activity.

Table 1. Observer page

Time
stamp Conversation Activity Comment

Once the lab activity started, all developers began working on
their tasks and observers began to record their observations. This
lasted for exactly one hour, after which we stopped the
participants asking them to upload the code and test files that were
changed to the course's web site. The observers’ pages were
collected and an open discussion was guided in order to receive an
initial feedback.

Figure 1. AOPS message presented in the AOPS
View and the AOPS Bar

Figure 2. AOPS message presented within Java class
creation wizard

3.2 Findings
Overall we collected thirteen activity logs each spanning two to five
observation pages; Observers of solo developers filled a total of
fourteen pages (2,2,2,2,3,3 – average of 2.3) where observers of
pairs filled a total of twenty-five pages (2,2,2,4,5,5,5 – average of
3.6).

We analyzed the logs and found cases of abstraction usage (i.e.,
cases in which abstract thinking is used) and cases of abstraction
necessity (i.e., cases in which abstract thinking can help).

3.2.1 Abstraction Usage
We found four categories of abstraction usage that are characterized
by the use of generalization or by the process of ignoring details in
order to advance the development work. In what follows we
describe each category and illustrate it using the data from the
activity log.
Searching. To perform a search operation, one needs to select
keywords that adequately represent the problem domain. This
selection of searching keywords is an abstraction of type removing
details. Here, in the process of solving a problem, participants
selected keywords from the problem domain and searched for these
in Google or in the API documentation in order to find a solution.
Tables 2 and 3 present such a case as reported by observers of a solo
and a pair, respectively. When no data appears in the comment
column it is not presented.
Table 2. Searching in solo programming

Time
stamp Conversation Activity

11:04

Open meta-inf in order to
add extension point

Looks in Google,
studies how to add the
required action

11:05 Use popupMenu as
extension -> view
contribution – add a unique
..

Continues to move
between Eclipse and
Google in order to
build the extension.

Table 3. Searching in pair programming

Time
stamp Conversation Activity

11:12 Discussion about how to
implement the server

11:16 Adding Jars to the
client project

11:20

 Searching Google for
permission in RMI

11:24 First trial to solve the
permissions problem

11:27 Second search in
Google for a solution

11:28 One suggests solving the
problem using a policy file.
Also suggests refining the
search according to the
Eclipse error.

We can see that in both cases there is a move between coding and
searching activities. In the pair observation there is also a
conversation on which keywords to use and about refining these
keywords.

Naming. When choosing a proper name for an underlying coding
element (e.g., classes, methods), one captures the essence of the
element in a short yet meaningful term. The process of choosing a
name involves abstract thinking of type removing details. In Tables
4 and 5 we show naming-related excerpts from two different pairs:
naming of a class and renaming class members.
Table 4. Naming a class

Time
stamp Conversation Activity

11:00

How to name the class? Creating LoginDialog
Class

Table 5. Renaming class members

Time
stamp Conversation Activity

11:35

Performing refactoring to
member names that are
more correct in IOAutoX

Update of
gui_integration_objects.
IOAutoX

Testing. We claim that writing a test for a specific unit requires a
different level of abstraction than writing the code of the unit
itself. Instead of focusing on the implementation details of the
unit, writing the test triggers thinking about how to check the unit
functionality. Table 6 presents such a case.
Table 6. Testing a class

Time
stamp Conversation Activity

11:14

A slight argument on the
right location of classes
under the different
packages.
Talk about testing the
AutoXlog class using
JUnit.

Move AutoXlog to
Model_Experiments
package.
Adding a test for
AutoXlog named
AutoXlogTest.

11:20 Making a decision on the
correct protocol between
the GUI and the model.

Add
GenerateAutoXStatistics
Event in the Event
Enum.

In this case the test code was written only after the application
class was written. Once the testing class was finished, the
developers moved back to the application code to develop a
different functionality.
In JUnit, the setUp() method holds initialization code common to
all test methods. Therefore, the time when setUp() is introduced
(see Table 7) is an example of abstraction of type generalization
since common initialization code for all existing test methods
should be identified.

Table 7. Implementing setUp()

Time
stamp Conversation Activity

11:31

Consulting with each
other about the way of
testing

Implement setUp(), add
a new test, write test
function named
testGetExperimentID()

Using diagrams and views. The phrase “a picture is worth a
thousand words” hints at why moving from writing lines of code

to looking at a diagram one can actually change one's level of
abstraction and gain meaningful insight while doing so. The
diagram can be a UML-like representation of a class (Table 8) or
an Eclipse view (Table 9) depicting the packages in a program.
Table 8. Using a diagram

Time
stamp Conversation Activity

10:54

A conversation among the pair
developers with respect to the
requirements. What one object needs
from the model and vice-versa. The
conversation involved sketching and
designing an additional class to
represent the AutoX object

11:01 Talking about code that is
automatically generated as a result of
an inheritance …
Talking about performing
refactoring to part of the code as a
result of moving from iteration 1.
Using a previous diagram in order to
define the class members.

Adding classes
to the code
…

Table 9. Using an Eclipse view

Time
stamp Conversation Activity

11:03

One refers to some packages with
errors and discusses with the other
how to handle them, i.e., define new
tasks.

Table 8 (10:54) denotes a conversation that led to the drawing of a
class diagram and to a subsequent design discussion. This diagram
was then used (Table 8, 11:01) by the developers when they coded
in the members of that class. In Table 9 the developers readily
evaluate their project's status, from Eclipse's Package-Explorer
view, in terms of amount of pending errors. This evaluation leads to
the definition of a yet another development task.

3.2.2 Abstraction Necessity
We identified two categories of abstraction necessity in the activity
logs. A more elaborate discussion of AOPS support for abstraction
necessity is presented in Section 4.
Searching. We identified events in which the developers searched
for types in their code in order to perform their task (see Table 10).

Table 10. Searching for types

Time
stamp Conversation Activity Comment

11:02

A conversation on
where to add the
solution in the
code

Erasing existing
code and a
discussion on the
solution
implementation

Search for
the
solution
location

11:06 How to
implement the
solution and using
which existing
classes in the
project or in Java

Begin to write the
new code and
search for a
specific method

Begin
implement
ing and
search
classes
that can
help

Searching for a type can be performed using several methods. It
can be done by navigating through the project’s file tree or by
using higher-level search facilities such as the Search-Type-
Dialog. We therefore suggest that a lengthy browsing through the
project’s file-tree should serve as an AOPS key-event that will
open a dialog recommending higher-level searching aids.
Testing. A testing-related necessity is characterized by the
creation of several test methods in a test class. We suggest that
this key-event trigger a recommendation dialog suggesting the
creation of setUp() and tearDown() methods to enable a common
initialization and finalization of the test fixture, thus encouraging
abstract thinking of type generalization.
Another necessity stems from the fact that we have activity logs
where not even a single testing-related activity was recorded. This
obviously implies that the developers are not looking at their
program from a test-centric standpoint. Such situations can be
identified by a timer-based AOPS key-event that is associated
with a testing-oriented recommendation dialog.

3.3 Reflection
In this phase, participants were asked to reflect on the activity.
Specifically, they were asked what they had learned, how they
planned to use abstraction, and to give an example of a pair
conversation that includes abstraction. Twenty six such reflections
were examined.
The following are some answers by participants with respect to
how they planned to use abstraction.
 “When I explain the project goal to my friends I use a level

of abstraction that can give them a concept without delving
into the details. At work, when we plan a project we go over
all abstraction levels in the UML and do them all.”

 “I will use abstraction in the following case: there is a need
to implement classes for different kinds of messages that are
transferred in the network. All messages need the
functionality of converting the message from stream class to
bytes and vice versa. In this case I will create an abstract
class that includes the abovementioned functionality and
common definitions where every message will inherit it and
implement the functionality according to its needs.”

 “In the design phase of iteration 2 we used abstraction of the
code for a static diagram (classes) of the software in order to
be able to talk about what will be in the code from a high
level perspective.”

 “Working in a large team, in order to reach the biggest
common denominator I will use abstraction to explain the
project essence and its tasks.”

Most participants answered this question by referring to high-level
design activities. In the last example, there is a use of abstraction
for simplifying communication. In reply to this question, only
four out of twenty six participants mentioned IDE-level activities,
such as the ones mentioned in the second example above.
Eighteen participants out of twenty six answered the question to
describe a pair protocol that includes the use of abstraction.
Among them fourteen indicated coding activities. We present two
specific answers in which participants used a metaphor as the
abstraction usage in the conversation. Metaphor [4] can be viewed
as an abstraction kind since it uses one set of terms in order to
better explain concepts expressed in another set of terms. The
following are parts of the answers of participants.

 Developer A: We need to develop software to implement the
communication between two stations.
Developer B: Let’s think as if we have here two people that
talk one with each other. How the conversation begins?
Developer A: One says hello and the other answers.

 Person A: I would like to implement a communication
protocol between server and clients.
Person B: What do you mean?
Person A: I would like to develop a program that implements
a connection that is similar to a father who distributes roles
among his sons; he can give a role only to one son
simultaneously and cannot answer questions of more than
one son simultaneously.

4. DISCUSSION AND CONCLUSION
In this section we reflect on our findings and describe how these
findings can be used to define concrete AOPS rules for abstract
thinking.
We believe that abstract thinking is an important cognitive tool
that is required in the field of software engineering. In order to use
this tool, a developer must be aware of its existence and of its
applicability to the task at hand. Examining the issue of awareness
we see that the majority of participants in our activity associated
abstract thinking with activities that are external to the use of the
IDE (see Section 3.3). The answers – in the reflection part of the
activity – primarily mentioned design activities and sentences
regarding the nature of the project or the initial definition of large
modules thereof. Despite the fact that our activity logs show many
events where abstract thinking was used during coding-time, the
participants largely ignored events of this kind in the reflection.
This suggests that our participants’ awareness regarding the role
of abstract thinking during actual coding activities is low.
Therefore, in what follows we suggest AOPS rules that will
enable the IDE to improve the developer’s awareness to coding-
time abstract thinking.
 AOPS on-track rules. Such rules identify certain events

where the developer moves between different levels of
abstraction and provide a positive feedback that may
encourage further usage of abstract thinking. Moreover,
bringing into awareness the use of abstraction may lead to a
more professional usage of this cognitive tool.
As an example, an AOPS rule can detect cases where after a
long editing session the developer consults a related design
diagram and then go back to coding. We see this as a good
use of abstract thinking since the developer decided to move
from a detailed view of the program to a less detailed one
and vice versa.

 AOPS deviation rules. Such rules relate to abstraction
necessity. These rules can monitor the developer’s activity
and can provide a recommendation whenever a different
level of detailing may be helpful.
For example, we can define a rule that detects cases where
several tests have failed together. As a result, the AOPS may
pop up a dialog box that shows the following
recommendation: “Try to find what these tests have in

common”. Further assistance can be provided by showing the
intersection of the code coverage of these failing tests.
Naturally, the developer does not have to follow this
recommendation. However, if he/she chooses to accept the
recommendation he/she will be able to think about the task
from a different point of view (with a different level of
detailing).

We conclude with one subtle point that is related to the interplay
of pair programming and abstract thinking. Observers of pairs
recorded significantly more observations than observers of a solo
developer. This is clearly indicated by the average number of
pages filled by the observers (2.3 vs. 3.6). We attribute this to the
fact that the pair-programming practice promotes verbal
communication, which in turn promotes abstract thinking. The
developers had to explain their intentions instead of simply
writing them in code. This process of explanation requires
abstraction, as well as self reflection, and is expected to enhance
the pair’s quality of work. Implementing support for verbal
communication within the IDE is left as food for thought.

Acknowledgements. We would like to thank Orit Hazzan who
contributed to our activity by teaching and discussing the notion
of abstraction with the students and by suggesting reflection
questions.

5. REFERENCES
[1] Hazzan, O., Kramer, J. 2007 Abstraction in Computer Science

& Software Engineering: A pedagogical perspective. Featured
Frontier Columnist, System Design Frontier - Exclusive
Frontier Coverage on System Designs, 4(1) 6-14.

[2] Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes,
C., Loingtier, J.-M., and Irwin, J. 1997 Aspect Oriented
Programming, in European Conference on Object-Oriented
Programming, Springer-Verlag, pp. 220-242 .

[3] Kramer, J. 2007 Is Abstraction the Key to Computing?
Communication of the ACM 50(4) 37-42.

[4] Lakoff G, Johnson M. 1980 Metaphors We Live By. The
University of Chicago Press.

[5] Mishali, O., Dubinsky, Y. and Katz, S. 2008 (submitted) The
TDD-Guide Training and Guidance Tool for Test-Driven
Development, The International Conference on Agile
Processes and eXtreme Programming in Software Engineering
(XP), Limerick, Ireland, June 10-14, 2008.

[6] Mishali, O., and Katz, S. 2006 Using aspects to support the
software process: XP over Eclipse, in International
Conference on Aspect-Oriented Software Development,
ACM, Bonn, Germany, pp. 169-179.

[7] Schön, D. A. 1983 The Reflective Practitioner, BasicBooks.
[8] Schön, D. A. 1987 Educating the Reflective Practitioner:

Towards a New Design for Teaching and Learning in The
Profession. Jossey-Bass, San Francisco.

[9] The Free Dictionary 2008 Farlex Inc.,. http://www.-
thefreedictionary.com.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

