
A Debug Interface for Debugging Multiple
Domain Specific Aspect Languages ∗

Yoav Apter David H. Lorenz Oren Mishali
Open University of Israel,

1 University Rd., P.O.Box 808, Raanana 43107 Israel
yoav.ap@gmail.com, {lorenz,omishali}@openu.ac.il

Abstract
Research in the area of multi-DSAL development has been
mainly devoted to enabling the interoperability of multiple
aspect mechanisms. Less attention has been given to making
programming with multiple aspect languages practical. For
domain specific aspect languages (DSALs) to be used in prac-
tice, there is a need for tools that make multi-DSAL develop-
ment effective. This paper focuses on one such tool: a debug-
ger. We define a multi-DSAL debug interface (MDDI) for in-
specting the composition specification and the runtime state
and behavior of applications written in multiple DSALs. To
implement the interface, a multi-DSAL debug agent and spe-
cial debug attributes are introduced into the weaving process.
A concrete implementation of MDDI over the AWESOME as-
pect composition framework is presented. For validation we
demonstrate a simple command line AWESOMEDEBUGGER
that uses the debug interface.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Debuggers; D.2.5 [Software En-
gineering]: Testing and Debugging—Debugging aids.

General Terms Design, Languages.

Keywords Aspect-Oriented Programming (AOP), Aspect-
Oriented Software Engineering (AOSE), AspectJ, Awesome,
Cool, Debugger, Domain Specific Languages (DSLs), Do-
main Specific Aspect Languages (DSALs), Validate.

∗ This research was supported in part by the Israel Science Foun-
dation (ISF) under grant No. 926/08.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
AOSD’12, March 25-30, 2012, Potsdam, Germany.
Copyright c© 2012 ACM 978-1-4503-1092-5/12/03. . . $10.00

1. Introduction
An aspect-oriented extension to a programming language
is labeled domain specific (DSAL) when some (general
purpose) expressiveness is surrendered for more (domain
specific) conciseness in describing a specific crosscutting
concern in the terminology of the domain. For example,
COOL [12, 13] is a DSAL with high level constructs just
for specifying declaratively the synchronization of threads
in the program. To regain the lost expressiveness, DSALs are
used with other DSALs and collectively with general purpose
aspect languages.

The development of aspect-oriented software systems us-
ing multiple DSALs has gained attention in recent years (e.g.,
the DSAL workshop series in AOSD). This mode of devel-
opment is denoted here as multi-DSAL development [1]. A
major research effort in this area is to coordinate the collab-
orative operation of the aspect mechanisms [9] implement-
ing the various DSALs. The research has led to the creation
of aspect composition frameworks, e.g., Pluggable AOP [8],
Reflex [20], Awesome [10], JAMI [6], Crosscutting Compo-
sition [4], and others.

Less research attention has been devoted to making the
mode of multi-DSAL development practical. For DSALs to be
used in practice, we need tools that make the actual develop-
ment with multiple DSALs effective. This paper focuses on
one such tool—the debugger.

1.1 Runtime State and Behavior
Modern debuggers provide by default standard facilities for
examining the state and behavior of an application at run-
time. However, when the object of debugging is a multi-
DSAL application, additional unique investigation facilities
are required from the debugger. For instance, when a break-
point is placed on a method-execution join point, the devel-
oper should be able to examine the list of applied advice of
all the aspect languages. Moreover, the developer needs to
be able to distinguish between advice of different languages.

Today, debuggers are unaware of these requirements and
do not provide such facilities. The only exception is the
aspect-oriented debugging architecture (AODA) [2]. The

AODA debugger lets the developer investigate the application
in terms of its AOP abstractions, namely, aspects, pointcuts,
and advice. However, AODA is designed for a single aspect
mechanism. When AODA is used to debug multi-DSAL ap-
plications, only ASPECTJ advice is listed during the debug
process. Of course, the source code of the other aspect lan-
guages could be translated to ASPECTJ. However, even if
such a translation occurs, the developer might be able to ob-
serve the whole list of advice, but they would all seem to
belong to ASPECTJ. Moreover, source-to-source translation
in general may introduce and expose synthetic join points
that do not exist in the original source code, resulting in in-
correct application behavior [11]. Hence, even AODA is not
suited for multi-DSAL debugging.

1.2 Composition Specification
A multi-DSAL debugger should also provide the developer
with the ability to reason about the composition specifica-
tion [10, 14]. Composing multiple aspect mechanisms into
a coherent weaver is a complex process that is facilitated
by an aspect composition framework. In a typical composi-
tion process, the framework is provided with multiple aspect
mechanisms, one for each aspect language. A composition
designer then uses the framework to configure the interac-
tions among the mechanisms, based on a particular compo-
sition specification. The specification may set, for instance,
a specific order on advice of different aspect mechanisms
that operate at the same join point. The composition frame-
work produces as an output a single multi-DSAL weaver that
behaves according to the specification.

It may be difficult for the composition designer to for-
mulate in advance a complete composition specification that
achieves the desired application behavior flawlessly. It may
also be difficult to communicate the specification to the de-
veloper. Therefore, in addition to normal bugs whose cause
lies in the application layer due to improper use of language
constructs or incorrect application logic, composition bugs
may exist due to an incorrect or misunderstood composition
specification. Thus, the debugger should let the developer in-
spect the composition specification. Again, none of the de-
buggers currently supports this feature.

1.3 Contribution
This work presents a Multi-DSAL Debug Interface (MDDI).
The interface comprises two sets of debug operations. The
first set of operations can be used to examine the runtime
state and behavior of a multi-DSAL application. The oper-
ations in this set enhance the debug features found in the
AODA [2]. The second set of operations can be used to
inspect the application from the composition specification
point of view. The operations defined in this set are based on
prior work that characterized abstract features of an aspect
mechanism, and in particular, features of the composition of
several mechanisms [9, 11]. These abstract features are ma-
terialized in terms of concrete debug operations in MDDI.

We provide an implementation of MDDI over a specific
aspect composition framework called AWESOME [10]. We
modified the AWESOME framework to produce a multi-
DSAL weaver that is “debug aware.” The weaver inserts into
the woven files special debug attributes, which a debugger
can access via MDDI to provide runtime state and behavior
information and details about the composition specification.

Our scope of investigation for multi-DSAL development
targets a dominant family of reactive aspect mechanisms [9].
This family includes the set of AOP languages known as join
point and advice.

Outline. Section 2 presents an introductory example to
concretely illustrate the problem and the solution. This ex-
ample demonstrates use of MDDI to identify and locate the
cause for a bug in a multi-DSAL application. Section 3
presents the debug operations in MDDI. In Section 4, a
concrete implementation of the MDDI over the AWESOME
framework is described. In Section 5, the debug interface is
evaluated.

2. Motivating Example
To illustrate the issues involved in debugging a multi-DSAL
application and to outline our solution, we first present a sim-
ple example. The application in our example comprises a
base system, written in JAVA, with three concerns, each ex-
pressed in a different aspect language. ASPECTJ contributes
tracing; COOL handles thread synchronization; and VALI-
DATE—a DSAL that we have defined ourselves—enforces
validation of input parameters.

Recall that the source of bugs or surprising behavior in a
multi-DSAL application is either erroneous implementation
somewhere in the source code, or incorrect or misunderstood
composition of the aspect mechanisms. In this section we
provide an example for a bug of the latter sort. In the exam-
ple, an unexpected behavior of the application is observed.
We describe how the developer might utilize a multi-DSAL
debug interface to: (1) identify a bug caused by an incorrect
composition, and (2) understand the essence of the bug.

We provide as we go brief explanations that are necessary
for understanding the part of the interface that is being dis-
cussed. A more complete specification of the debug interface
is presented and explained in Sections 3 and 4.

2.1 A Multi-DSAL Application
Our running example is a multi-DSAL application, which
is also multi-threaded. The base system is a JAVA class
that implements a bounded stack. The class Stack (List-
ing 1) defines two public methods, push and pop, where
an ArrayIndexOutOfBoundsException is thrown upon
an attempt to pop objects off an empty stack or push objects
onto a full stack.

In addition, three aspects are defined, each expressed in a
different aspect language. Note that the term aspect is used
here and throughout the paper in a broader meaning, and

1 public class Stack {

2 public Stack(int capacity) {

3 buf = new Object[capacity];

4 }

5 public void push(Object obj){

6 buf[ind] = obj;

7 ind++;

8 }

9 public Object pop() {

10 Object top = buf[ind-1];

11 buf[--ind] = null;
12 return top;

13 }

14 private Object[] buf;

15 private int ind = 0;

16 }

Listing 1. A stack implementa-
tion in JAVA

1 public aspect Tracer {

2 pointcut scope(): !cflow(within(Tracer));
3 before(): scope() {

4 out.println("before " + thisJoinPoint);
5 }

6 Object around(): scope() {

7 out.println("around " + thisJoinPoint);
8 return proceed();
9 }

10 after(): scope() {

11 out.println("after " + thisJoinPoint);
12 }

13 }

Listing 2. A tracing aspect in ASPECTJ

1 validator Stack {

2 validate Stack(int capacity):

3 $1 > 0;

4 validate push(Object obj):

5 string($1), email($1);

6 }

Listing 3. A validator in VALIDATE

1 coordinator Stack {

2 selfex {push, pop};

3 mutex {push, pop};

4 int len=0;

5 condition full=false, empty=true;
6 push: requires !full;

7 on_exit {

8 empty=false;
9 len++;

10 if (len==buf.length)

11 full=true;
12 }

13 pop: requires !empty;

14 on_entry { len--; }

15 on_exit {

16 full=false;
17 if (len==0)

18 empty=true;
19 }

20 }

Listing 4. A synchronization coor-
dinator in COOL

refers to the language construct introduced by any aspect
language to encapsulate a crosscutting concern. In ASPECTJ
this construct is called aspect. COOL calls it coordinator,
and in VALIDATE the aspect construct is denoted validator.

The first aspect is defined in ASPECTJ, a general purpose
aspect language. The aspect enhances Stack with tracing
facilities (Listing 2).

The second coordinator aspect (Listing 4) is written in
COOL, an off-the-shelf DSAL that facilitates synchronization
of JAVA methods. The coordinator enforces the following
synchronization policy for each instance of Stack:

• neither push nor pop may be executed by more than one
thread at a time (selfex declaration);

• push and pop are prohibited from being executed con-
currently (mutex declaration);

• push may be called only if the stack is not full (condition
full); and

• pop may be called only if the stack is not empty (condi-
tion empty).

The on_entry and on_exit clauses express the bookkeep-
ing required to implement the last two items.

The third aspect language is called VALIDATE, a simple
in-house DSAL that the developer defines. VALIDATE sup-
ports validation of input arguments passed to methods, con-
structors, and fields (field assignments). As a motivation for
using such a language, consider a development team that is
interested in involving domain experts in the implementation
of the security concern of the system (one facet of security is
input validation). Furthermore, assume that the domain ex-
perts are familiar with the Unix shell. To accommodate the

experts, VALIDATE takes on a syntax that resembles shell
commands. The input validation of a particular program ele-
ment, e.g., a method, is contained in a validation command.
Within a command, $(i) is used to access the i’th input argu-
ment. In addition, a library of predicates exists for defining
the validation criteria. Validation commands for one or more
classes are grouped in a validator aspect.

In Listing 3, a validator for the Stack class is presented. It
validates the constructor and the push method. The validator
specifies that the constructor’s first argument (the capacity
of the stack) should be a positive integer. It also specifies
that the element that is added to the stack via the push

method should be a String object conforming to the format
of an email address (string and email are predicates of the
language).

2.2 A Multi-DSAL Debug Scenario
Consider the following scenario. During the development
of our multi-DSAL application, it is tested and executed
against different input sets. On one of the input sets, an unex-
pected behavior is observed: an exception is thrown from the
push(Object) method indicating a validation error. This
indicates that the VALIDATE aspect mechanism identified an
invalid input argument. However, unexpectedly, the execu-
tion (of other threads) does not progress and it seems like
the program is stuck. The developer initiates a debug ses-
sion, ready to investigate the cause of the problem.

The exception was thrown from the push method, thus
it becomes the natural suspect and a breakpoint is placed
on the method entry. When the breakpoint is reached, the
program suspends and waits for additional debugging com-
mands. The developer first asks the multi-DSAL debugger

for all the pieces of advice that were applied to this method-
execution join point. The developer expects the advice of all
the aspect mechanisms to be present, but discovers instead
that the COOL advice seems to not have been applied. This
is surprising, since the program explicitly specifies that push
should be synchronized (Listing 4, lines 2-3).

Understanding the Composition Generally, when debug-
ging a multi-DSAL application, the basic guideline is to un-
derstand the feature interactions that are relevant to the por-
tion of code under investigation. The developer should al-
ways look for the cause of the problem in the application
code, but should also be open to the possibility that the un-
expected behavior is a matter of a composition specification.
In our case, it should be examined whether or not the unex-
pected absence of COOL advice originated from the compo-
sition. To find this out, the developer uses dedicated debug
operations for inspecting the composition.

Join point granularity and join point visibility are two of
several features that characterize a reactive aspect mecha-
nism [11]. The join point granularity feature specifies what
kinds of join point computations may be intercepted by the
aspect mechanism. The granularity of ASPECTJ includes,
for example, computations of kinds method-call, method-
execution, field-set, etc. The join point visibility feature
maps join point computations to actual join point instances.
That is, each potential join point in the granularity is classi-
fied as either visible or invisible. For example, the visibility
feature of ASPECTJ hides all the join points within the lexi-
cal scope of an if pointcut expression.

Based on these abstract features, MDDI defines concrete
debug operations: granularity and visibility. These opera-
tions operate on code elements in a particular program. In
the ASPECTJ language execution model, each dynamic join
point has a corresponding static shadow in the bytecode of
the program. Advice code may be inserted at these shad-
ows to modify the behavior of the program [7]. Provided
with a code element, e.g., a method, the granularity opera-
tion returns all the join point shadows in that method that
a particular mechanism may plausibly advise. The visibility
operation returns the join point shadows in the method that
the mechanism may actually advise.

Returning to our example scenario, the developer re-
quests from the debugger the join point shadows in push

that are visible to COOL. Since COOL advice operate on
methods, the method-execution(push) shadow is expected
to be visible. However, the visibility operation returns an
empty shadow set. This means that there are no join point
shadows in push that are advisable by COOL. Just to make
sure that the method-execution(push) shadow is visible
to the other mechanisms, the developer asks the multi-
DSAL debugger for the shadows in push that are visi-
ble to all the mechanisms. The operation returns the ex-
pected result: field-get(ind), field-set(buff), field-get(ind),
field-set(ind), method-execution(push).

This means that these five join point shadows are weav-
ing targets for ASPECTJ and VALIDATE. The developer con-
cludes that it is not a coding error that causes the omission
of the COOL advice. Rather, it is a design composition deci-
sion that prevents the advice from being applied. However,
it is not yet clear whether this is caused by the granularity
feature, i.e., that all method-execution join points are by def-
inition not advisable by COOL, or by the visibility feature,
which means that only certain join points of this kind are fil-
tered out. Therefore, the developer asks the debugger for the
granularity operation applied to push. An empty set is re-
turned again, which improves somewhat the understanding:
COOL may not intercept method executions at all.

Resolving the Bug Armed with this knowledge, the devel-
oper can consult the composition designer to confirm that
indeed the granularity of COOL includes join points of kind
method-call (and not method-execution). The COOL mecha-
nism defines two types of advice, lock and unlock, which
are executed before and after the synchronized method, re-
spectively. Thus, COOL’s lock and unlock advice are in-
serted in the context of the caller method and not in the con-
text of the callee.

The developer concludes that this particular organization
of the advice is the cause for the bug. When a thread Ti calls
push, the lock advice is executed first in the context of the
caller. When Ti is allowed to execute push (hence acquiring
the lock), the validate advice is executed in the context of
the callee. If the argument to push is found to be invalid, an
exception is thrown (like in our case). This exception causes
the termination of Ti, but without releasing the lock. From
there on, any other thread Tj which attempts to call push is
blocked. Hence the program enters a deadlock.

The analysis implies that for the program to function
properly, the validate advice should execute before the
lock advice. Indeed one of the feature interactions that a
composition designer should solve is so-called emergent ad-
vice ordering [11]. It is where the designer specifies an or-
der between advice of different mechanisms. However, in
our case the desired order cannot be set. An advice order
can only be specified when the advice operate on the same
join point. Here, lock advice will always execute before
validate because a caller’s before advice precedes any
callee’s advice. Therefore, it should be first specified that
both lock and validate operate on the same join point
(be it a method-call or a method-execution). This is done
by modifying the granularity of COOL or that of VALI-
DATE. Then, the desired advice order should be set, i.e., that
validate should occur before lock.

Note that the analysis also suggests that the COOL mech-
anism should be refined to release an acquired lock upon a
thrown exception. Although such a refinement may solve the
bug, the proposed solution is still more desirable, because a
solution at the composition level is more robust and does not
depend on a specific implementation approach.

3. Multi-DSAL Debug Operations
The multi-DSAL debug interface (MDDI) defines debug op-
erations for inspecting a multi-DSAL application at runtime.
In this section, the debug operations in MDDI are described
in an abstract platform-independent terms. The description
is organized in two parts: debug operations for examining
the runtime state and behavior of a multi-DSAL application,
and debug operations for inspecting the composition speci-
fication. In Section 4, the concrete implementation of MDDI
for the AWESOME composition framework is presented.

3.1 Examining Runtime State and Behavior
Like a typical debugger, the debugging process of the multi-
DSAL debugger is based on stopping the program at a certain
breakpoint and then examining the runtime state and behav-
ior using dedicated debug operations.

The AODA [2] defines an aspect-oriented breakpoint
model with debug operations that support stopping at a join
point shadow in three modes: before, after, and during the
execution of the advice woven at that shadow. When a break-
point is reached, AODA offers three debug operations for
inspecting the list of advice:

1. Inspection of woven advice. This operation lists advice
that are woven at a join point shadow. Note that a woven
(applied) advice does not necessarily get executed, e.g.,
an advice associated with an if pointcut in ASPECTJ.

2. Inspection of executing advice. This operation lists ad-
vice that are currently executing on the stack. Note that
several advice may be executing simultaneously, e.g.,
when an around advice calls proceed and, while it waits
for the call to return, another before advice takes con-
trol.

3. Inspection of past advice. This operation lists advice
that were already processed, indicating whether each ad-
vice on the list was actually executed or not.

The multi-DSAL debugger adjusts the AODA breakpoint
model for debugging multi-DSAL applications. In compari-
son to the AODA, the multi-DSAL debugger displays the list
of advice woven by all the aspect mechanisms. The multi-
DSAL debugger indicates for each presented advice its orig-
inating aspect mechanism and the type of the advice. Each
aspect mechanism defines its own advice types. ASPECTJ
has three advice types, namely before, after, and around.
COOL declares two advice types, lock and unlock, which
are executed before and after the invocation of a synchro-
nized method, respectively. The VALIDATE mechanism has
a single advice type called validate, which is executed be-
fore the validated code element. Indicating the advice type
and the originating mechanism may help the developer to
get a clearer picture of the interactions involved.

Like the AODA, the multi-DSAL debugger produces mir-
ror objects for the advice declared in the program. These are
objects created during the debug process to reflect the state

of corresponding objects in the debugged application [3, 16].
Each advice mirror is linked to the related source code. In
ASPECTJ, the mapping is straightforward. Each advice mir-
ror is simply mapped to the related advice construct in the
source code. However, when DSALs are involved, this map-
ping is often implicit. For instance, the COOL advice types,
lock and unlock, are concepts that are a part of the im-
plementation model of COOL, but without an explicit repre-
sentation in the source code. The COOL language designer
should decide to which source code abstractions each ad-
vice type is mapped. For instance, a reasonable mapping is
to associate a lock advice with operations defined in mutex,
selfex, requires, and on_entry expressions (Listing 4).
Therefore, the multi-DSAL debugger provides support for
implicit source code mappings of this kind.

3.2 Inspecting the Composition Specification
The other part of MDDI includes operations for investigating
the composition specification of a multi-DSAL weaver. These
include granularity and visibility operations for investigat-
ing which join point shadows within a particular program
element an aspect mechanism may affect. A third kind is ad-
visability operations for determining how the aspect mecha-
nism may affect those shadows.

Granularity Operations The join point granularity fea-
ture of an aspect mechanismM, denoted granularity(M),
specifies in abstract terms the kinds of join point com-
putations that the mechanism may intercept. For instance,
granularity(COOL) includes computations of kind method-
invocation. This indicates that COOL may affect the program
only when methods are invoked. When the mechanism is im-
plemented in the context of a specific environment, the gran-
ularity is normalized according to a shared join point scheme
(in our case ASPECTJ). A method-invocation join point com-
putation in COOL may be mapped to either a method-call or
a method-execution join point in ASPECTJ. Both mapping
options are reasonable normalization choices, yet, as illus-
trated in Section 2, the decision may change the collective
behavior. Therefore, the mapping may be subjected to ad-
justments by the composition designer.

The granularity operation in MDDI is defined in relation to
a particular code element in the program, such as a method,
a class, or an aspect. The debug operation is of the form:

GRANULARITYM : Elements → P (Shadows)

Given a code element C and an aspect mechanism M, the
operation returns the join point shadows in C that are in the
granularity ofM:

GRANULARITYM(C) =
{
S ∈ C

| shadow(S) ∧ S.kind ∈ granularity(M)
}

Note that the operation returns join point shadows, since it
relates to code elements and not to the dynamic execution of
the program.

As a usage example for this granularity operation, con-
sider the method push defined in the Stack class (Listing 1,
lines 5–8). The method includes five join point shadows: a
field-get and a field-set in line 6, another field-get and field-
set in line 7, and a method-execution shadow. The granular-
ity operations of the different mechanisms evaluate to:

GRANULARITYASPECTJ(push)

=
{

field-get(ind), field-set(buff), field-get(ind),

field-set(ind),method-execution(push)
}

GRANULARITYCOOL(push)

=
{

method-execution(push)
}

GRANULARITYVALIDATE(push) =
{

field-set(buff),

field-set(ind),method-execution(push)
}

Note that the result returned by the COOL granularity op-
eration reflects a change that was made to the compo-
sition in order to resolve the bug detected in Section 2.
COOL and VALIDATE were reconfigured to operate on
the same method-execution join points. The granularity
of VALIDATE includes join point computations in which
input validation makes sense, namely, computations of
kinds method-invocation (mapped to method-call or to
method-execution), object-creation (constructor-execution),
and field-assignment (field-set).

Another unified operation, GRANULARITY(C), re-
turns the join point shadows in code element C that any of the
mechanisms may affect. It is the union of all the mechanism-
specific granularity features. In the case of push,

GRANULARITY(push)

= GRANULARITYASPECTJ(push)

However, should ASPECTJ be excluded from the composi-
tion, the resulted set would be different: the field-get shad-
ows would not be included, since shadows of this kind are
neither part of the granularity of COOL nor of VALIDATE.

Visibility Operations The join point visibility feature of an
aspect mechanism classifies join points in the granularity
as either visible or invisible. Invisible join points are not
available for advising. The visibility operation in MDDI has
the form:

V ISIBILITYM : Elements → P (Shadows),

1 public aspect ConditionalTracer {

2 public static boolean trace = false;
3 before() : execution(* BoundedStack.pop())

4 && if(trace) {

5 System.out.println(thisJoinPoint);
6 }

7 }

Listing 5. A conditional tracer in ASPECTJ

where V ISIBILITYM(C) denotes the set of join point
shadows in C that are visible toM. A unified visibility op-
eration, V ISIBILITY(C), returns the set of shadows in C
that are visible to any of the aspect mechanisms. For a mech-
anism M and a code element C, the following proposition
holds:

V ISIBILITYM(C) ⊆ GRANULARITYM(C)

To illustrate the difference between granularity and visi-
bility, consider a ConditionalTracer aspect in ASPECTJ
(Listing 5). In ASPECTJ by design join point shadows within
an if pointcut (line 4) are invisible. Therefore, whereas
applying the ASPECTJ granularity operation on the aspect
ConditionalTracer results in:

GRANULARITYASPECTJ(ConditionalTracer)

=
{

field-set(trace), advice-execution(before),

field-get(trace),method-call(println), . . .
}
,

the visibility operation returns:

V ISIBILITYASPECTJ(ConditionalTracer)

=
{

field-set(trace), advice-execution(before),

method-call(println), . . .
}
.

Note that the field-get(trace) shadow, which corresponds
to the read operation of the Boolean trace field in line 4, is
in the granularity but not in the visibility.

Advisability Operations The join point advisability feature
defines advising constraints for various types of join points,
or even for specific join points [11]. Recall that each mech-
anism declares one or more advice types. For instance, AS-
PECTJ defines three types of advice: before, after, and
around. By default, an aspect mechanism may apply any
type of advice on a visible join point. However, in some
cases the composition designer may be interested in restrict-
ing the potential effect of a particular aspect mechanism,
that is, preventing advice of certain type from being applied
at certain join points. For instance, it may be defined that
ASPECTJ cannot declare an around advice at executions of
COOL’s lock and unlock advice. This may be essential in

order to prevent ASPECTJ aspects from overriding COOL’s
synchronization logic.

ADV ISABILITYM lets the developer investigate how
an aspect mechanism may affect a particular join point
shadow in the program. The operation returns the advice
types that the mechanism may apply at the shadow:

ADV ISABILITYM : Shadows → P (AdviceTypes)

Given an aspect mechanismM and a shadow S, the advis-
ability operation is defined by:

ADV ISABILITYM(S) =
{
T ∈M

| adviceType(T) ∧ applicable(T,S)
}

Continuing the example, if S is advice-execution(lock)
shadow in COOL, then its advisability in relation to AS-
PECTJ would be:

ADV ISABILITYASPECTJ(advice-execution(lock)) =

=
{
before, after

}
This means that ASPECTJ may only apply before or after
advice at a lock execution. Another unified advisability op-
eration, ADV ISABILITY(S), returns the advice types
that may be added by any aspect mechanism. In a config-
uration that includes ASPECTJ, COOL, and VALIDATE,

ADV ISABILITY(advice-execution(lock)) =

= ADV ISABILITYASPECTJ(advice-execution(lock))

The same result is returned because advice-execution join
points are not in the granularity of COOL nor of VALIDATE,
hence by specification they cannot affect the join point.

4. MDDI Implementation
MDDI is implemented as a multi-DSAL extension to AJDI, a
debug interace for aspect-oriented applications introduced in
the AODA. AJDI itself is an extension to the Java Debug In-
terface (JDI). The implementation of MDDI requires debug
information, which should be attached to the target multi-
DSAL application. A common technique which we use is
to add debug attributes to the class files of the application.
We formulate the debug attributes that are needed for imple-
menting the MDDI operations. For the operations that query
the runtime state, we extend existing AODA debug attributes.
For the composition specification operations, we define new
debug attributes.

The debug attributes should be added to the class files of
the application during the weaving process. In a multi-DSAL
setup, the weaving process is controlled by an aspect com-
position framework. Since none of the existing frameworks
handles debugging as part of its weaving process, we extend
the AWESOME composition framework for that purpose.

Weaver
Multi-DSAL

Debug Agent
Multi-DSAL

ASPECTJ

COOL

VALIDATE

Source Files

Mechanism
VALIDATE

Mechanism
ASPECTJ

Specification
Composition

Debugger
Multi-DSAL

Files

Attributes
Debug

Woven

Mechanism
COOL

AWESOME

MDDI

Figure 1. The multi-DSAL debugging process

The overall multi-DSAL debug process over AWESOME
is illustrated in Figure 1. AWESOME is provided with multi-
ple aspect mechanisms and with a composition specification,
and outputs a single multi-DSAL weaver. AWESOME is cus-
tomized such that the produced weaver is embedded with a
multi-DSAL debug agent. The weaver is provided with an
application written in multiple aspect languages, and dur-
ing the weaving process the agent adds the dedicated debug
attributes to the woven class files of the application. These
attributes are then consumed by MDDI, which is utilized by
the multi-DSAL debugger.

The embedded multi-DSAL debug agent is significantly
different than that of AODA. In AODA, in order to add debug
support for a particular aspect language, one must implement
an appropriate debug agent. This is a difficult task since it
requires to understand the structure of the debug attributes,
as well as knowing how to embed them in the resulting class
files. In contrast, the multi-DSAL debug agent that is added
to AWESOME relieves the designer of the aspect mechanism
from this tedious implementation task. Instead, the process
of adding the debug attributes is handled by the agent. The
information needed for producing the attributes that enable
the composition operations is extracted by the agent from
the composition specification. The information needed for
the attributes of the state and behavior operations is fetched
from dedicated interfaces that should be implemented by the
developer of each mechanism.

In the rest of this section, we present the implementation
of the debug operations for inspecting the composition spec-
ification, and for investigating the runtime state and behav-
ior. For each kind of operation, we describe the correspond-
ing MDDI elements, and the changes made to the AWESOME
weaving process and to AJDI.

4.1 Composition Specification Operations
MDDI extends AJDI with several methods and types for in-
specting the composition specification. The methods, listed
here, realize the debug operations that were described in Sec-
tion 3.

1 JoinPointComputation[] *.granularity();

2 JoinPointComputation[] *.granularity(Mechanism);

3 JoinPointComputation[] *.visibility();

4 JoinPointComputation[] *.visibility(Mechanism);

5 AdviceType[] JoinPointComputation.advisability();

6 AdviceType[] JoinPointComputation.advisability(Mechanism);

The methods let the debugger inspect the granularity, vis-
ibility, and advisability of the composition in relation to
specific program elements. Each of the granularity or vis-
ibility methods (lines 1-4) is added to the AJDI elements
ClassType, Aspect, and Method. The first granularity
method (line 1) returns the granularity with respect to all as-
pect mechanisms. The second (line 2) returns the granularity
in relation to a specific mechanism. The same applies to the
visibility methods (lines 3-4). The advisability methods op-
erate on a join point computation (shadow). The first method
(line 5) returns all the advice types that may be applied at
the shadow, of all aspect mechanisms. The second method
(line 6) returns the advice types of a specific mechanism.

The implementation of the methods is facilitated by three
debug attributes that are added to the woven class files of
the multi-DSAL application during the weaving process:
GranularityAttribute, VisibilityAttribute, and
AdvisabilityAttribute.

GranularityAttribute During the extended AWESOME weav-
ing process, the granularity of each method, class, or as-
pect, is calculated with respect to each aspect mechanism
in the composition. The result is saved in a debug attribute
(GranularityAttribute) that is attached to each corre-
sponding code element in the woven class files. The fol-
lowing pseudo code shows the calculation of the granularity
attribute for a method or a class element C in the base sys-
tem:

1 GranularityAttribute att;

2 Shadow[] shadows = reify(C);
3 foreach s in shadows

4 att.append(s);

5 foreach mech in mechanisms

6 if(granularity(mech) includes s.kind)

7 att.append(mech);

8 endforeach
9 att.append(newline);

10 endforeach

The reify method in line 2 returns all the join point shadows
in C. In line 4, the signature of each shadow is appended to
the debug attribute (a debug attribute is simply a string that is
later added to a class file). Afterward, we check for each of
the mechanisms in the composition whether its granularity
includes the kind of the current shadow (lines 5-6). If so, the
name of the mechanism is written to the attribute (line 7).
By that, we are able to tell, for each of the shadows in C, to
which of the granularities of the different aspect mechanisms
it belongs. We may also infer the shadows that do not belong
to any granularity.

This calculation works for methods and classes in the
base system. The calculation of the granularity attribute for
aspects is slightly different. For an aspect A, the second line
in the calculation is replaced by the line:

2 Shadow[] shadows = exposed_shadows(A);

An aspect language, in particular a domain-specific one,
may operate in a higher level of abstraction. As a result,

some of the shadows of its aspects may be considered in-
ternal. It is the responsibility of the composition designer
to decide which shadows in the aspects of each mecha-
nism should be exposed for the use of others. For instance,
a COOL coordinator reads and writes to local conditional
and ordinary variables, and to fields of the coordinated ob-
ject. Therefore, it is reasonable to expose in a coordina-
tor the corresponding field-get and field-set shadows. How-
ever, the designer may decide not to expose the constructor-
execution and initialization computations because they do
not reflect COOL’s visible operation process. Hence, the con-
trolled exposed_shadows method is used instead of reify.
The method returns all the shadows in the aspect A that the
designer decided to expose.

VisibilityAttribute The calculation of the visibility at-
tribute is similar to that of the granularity attribute. For a
given program element, all its shadows are first retrieved
(either by reify or by exposed_shadows). Then, for each
shadow and aspect mechanism, it is checked whether or not
the shadow is in the visibility of the mechanism.

The check is made against the composition specification,
which is available during the AWESOME weaving process.
The designer of each aspect mechanism defines the granu-
larity, i.e., the kinds of join points that the mechanism may
potentially affect. The designer also provides, for each join
point kind in the granularity, a predicate that tells in which
circumstances join points of this kind are not visible.

AdvisabilityAttribute This attribute indicates, for each
code element to which it is attached, the advice types that
may affect the visible join point shadows in the element.
Each line in the attribute describes the advisability of a par-
ticular visible shadow. It holds the shadow’s signature, and
a list of the advice types that may be applied to it.

Also here, the calculation of the attribute is based on con-
sulting the composition specification. The composition de-
signer defines in the composition specification advisability
restrictions. Each restriction consists of a join point kind,
and a list of the disallowed advice types. For example, con-
sider the following restriction:

advice-execution(validate) aspectj.around

This restriction specifies that an ASPECTJ around advice
cannot be applied at executions of a validate advice. The
restriction prevents the validate advice from being over-
ridden.

4.2 Runtime State and Behavior Operations
In this section we describe the modifications made in order
to implement the part of MDDI that deals with the inspection
of runtime state and behavior.

Extending the AspectAttribute An extended AODA debug
attribute called AspectAttribute is attached to each class
file that represents an aspect of any mechanism. This debug

attribute includes general information about the aspect (e.g.,
the defining mechanism), and about the different advice that
it defines (e.g., their type and source code locations). The at-
tribute is generated by the multi-DSAL debug agent. For that,
the agent queries each mechanism for information about its
aspects via an extended AWESOME API, which is described
next.

Extending the Awesome API In AWESOME, the inter-
face IMechanism represents an abstract aspect mechanism.
IMechanism is implemented by each of the concrete aspect
mechanisms in the composition. We extended IMechanism

with several methods needed by the multi-DSAL debug agent
to retrieve structural information about aspects in the appli-
cation. Examples of methods that were added are:

1 String getName();

2 boolean handledByMe(Aspect azpect);

3 List<IEffect> getEffects(Aspect azpect);

The debug agent, when producing an AspectAttribute for
a particular aspect, first calls the handledByMe method of
each mechanism for determining to which of them the as-
pect belongs. Then, information is retrieved from the rele-
vant mechanism, e.g., the name of the mechanism (by calling
getName), and the list of the effects (advice) that the mecha-
nism may apply to program code (via method getEffects).

The interface IEffect is also extended:
1 AdviceType getType();

2 ISourceLocation[] getSourceLocations();

The first method returns the type of the advice. For example,
it returns lock or unlock for a COOL advice. The second
method returns the locations in the source code to which the
advice is mapped. The method returns an array type since
in some cases an advice may be mapped to several different
locations in the source code (recall Section 3.1).

The author of each aspect mechanism must implement
these methods to enable the creation of the debug attributes.
However, the implementation effort is reasonable, since the
data that the methods need is already required for the weav-
ing process. In our multi-DSAL composition example, a total
addition of 25 lines-of-code were needed for the ASPECTJ
mechanism to be debuggable; for the COOL mechanism 35
new lines-of-code were added, and making VALIDATE de-
buggable required 30 lines-of-code.

5. Evaluation
To evaluate the MDDI implementation we built a simple,
command line, AWESOMEDEBUGGER, capable of debug-
ging multi-DSAL programs. We demonstrate the debugging
process on the Stack example (Section 2).

5.1 Blame Assignment
In the example, an exception was thrown from the push

method and then the program deadlocked. Here, we replay
the debugging scenario of Section 2, and illustrate it con-
cretely using the AWESOMEDEBUGGER.

We use the debugger to observe that COOL related ad-
vice are not applied at the push method. Next, we investigate
whether the absence of the advice is a matter of the compo-
sition specification or not. We inspect the shadows in push

that are visible to COOL:

(awdb) show visibilty COOL

[ID] [Joinpoint type] [Source location]

--

An empty shadow set is displayed. We proceed to inspect the
shadows in push that are visible to all the mechanisms:

(awdb) show visibility

[ID] [Joinpoint type] [Source location]

--

0 Field Get Stack.java:6

1 Field Set Stack.java:6

2 Field Get Stack.java:7

3 Field Set Stack.java:7

4 Method Execution Stack.java:5

We then use the granularity operation to understand why the
method-execution shadow is not visible to COOL:

(awdb) show granularity COOL

[ID] [Joinpoint type] [Source location]

--

An empty set is displayed again. We conclude that the reason
that COOL advice are missing is because the COOL mecha-
nism was not designed to affect method-execution join point
shadows. Once the cause for the bug is understood and we
know whom to blame, we can report our findings to the com-
position designer. The fix is straightforward: the granularity
of COOL is modified, and an appropriate advice order is set.

5.2 Debugging Foreign Advising
Foreign advising [11] refers to the case where an aspect of
one mechanism advises join points in foreign aspects, i.e.,
aspects that belong to other mechanisms. The scope point-
cut defined in the Tracer aspect (Listing 2) includes advice-
execution join points contained in other foreign aspects, e.g.,
executions of COOL’s lock and unlock advice. When ap-
plying an advice around join points in the scope, Tracer
calls proceed (line 8). This is essential in order to resume
the execution of the traced join points.

Consider a case where Tracer defines another advice
that only monitors executions of COOL’s unlock advice;
and the call to proceed is mistakenly omitted. As a result,
the unlock advice is not executed and thus the acquired
lock is not released. The next thread that requests the lock
is halted, and eventually the program may enter a deadlock.

When attaching the debugger to the deadlocked program
we see the following stack trace in one of the halted threads:

(awdb) where

[0] Stack.pop Stack.java:13

[1] WriteReadThread.accessBuffer WriteReadThread.java:14

[2] BufferClientThread.run BufferClientThread.java:8

We further examine the advice that affect the execution of
the pop method (in frame 0):

(awdb) show advice

[Aspect] [Location] [Type] [Skipped] [Mechanism]

--

cool.StackCoord (2, 3, 13, 14) Lock 0 COOL

aspectj.Tracer (3) BEFORE 0 AJ

aspectj.Tracer (6) AROUND 0 AJ

aspectj.Tracer (10) AFTER 0 AJ

cool.StackCoord (2, 3, 15) Unlock 1 COOL

The Skipped column indicates whether an advice was ex-
ecuted or skipped (‘0’ means executed, ‘1’ means skipped).
We can see (in the last line) that the COOL unlock advice
was skipped. We can either fix our around advice to al-
ways proceed, or change the composition specification so
that COOL operations cannot be advised by an around ad-
vice.

5.3 Debugging Co-Advising
Co-advising [11] refers to the case where advice belonging
to different mechanisms are applied at the same join point.
Often, a specific advice order should be set or the program
may behave unexpectedly. For instance, if ASPECTJ advice
are allowed to execute before COOL’s lock advice or after
COOL’s unlock advice, then the ASPECTJ advice may un-
safely access program resources.

To illustrate such a situation, suppose we add a new top

method to class Stack:

1 Object top() {

2 return buf[ind-1];

3 }

Calling top from such an ASPECTJ advice can yield a wrong
result or an ArrayIndexOutOfBoundsException, since
the access of both buf and ind is not synchronized.

When examining the advice executed at top we get:

(awdb) show advice

[Aspect] [Location] [Type] [Skipped] [Mechanism]

--

aspectj.Tracer (3) BEFORE 0 AJ

cool.StackCoord (2, 3, 13, 14) Lock 0 COOL

aspectj.Tracer (6) AROUND 0 AJ

cool.StackCoord (2, 3, 15) Unlock 0 COOL

aspectj.Tracer (10) AFTER 0 AJ

It may be inferred that the cause for the problem is an
incorrect advice execution order that allows unsafe stack
accesses. Hence we change the specification and set lock
(unlock) to execute before (after) any ASPECTJ advice.

5.4 Debugging Advice Code
Another source for bugs is coding errors in the base pro-
gram or in the aspects of the different DSALs. As an ex-
ample, the coordinator in Listing 6 contains a simple bug:
len is mistakenly decremented instead of being incre-
mented (line 9). As a result, full is never set to true

1 coordinator Stack {

2 selfex {push, pop};

3 mutex {push, pop};

4 int len=0;

5 condition full=false, empty=true;
6 push: requires !full;

7 on_exit {

8 empty=false;
9 len--;

10 if (len==buf.length) full=true;
11 }

12 pop: requires !empty;

13 on_entry { len--; }

14 on_exit {

15 full=false;
16 if (len==0) empty=true;
17 }

18 }

Listing 6. Stack coordinator with a bug

(line 10). The requires condition in line 6 is thus al-
ways met, allowing new elements to always be added to
the stack. However, buff has a limited capacity and an
ArrayIndexOutOfBoundsException will eventually be
thrown.

We suspect that the problem lies in some advice code. We
begin with checking the advice applied at the push method:

(awdb) show advice

[Aspect] [Location] [Type] [Skipped] [Mechanism]

--

validator.Stack (4) Validate 0 Validator

cool.StackCoord (2, 3, 6) Lock 0 COOL

aspectj.Tracer (3) BEFORE 0 AJ

aspectj.Tracer (6) AROUND 0 AJ

aspectj.Tracer (10) AFTER 0 AJ

cool.StackCoord (2, 3, 7) Unlock 0 COOL

The Location column links each advice to the correspond-
ing source code (the numbers in parenthesis indicate the
source lines relevant for each advice). The information helps
in locating the specific advice code segments where the bug
should be searched for. We check the code of each advice
for errors, and eventually the bug is located in the on_exit

declaration of the unlock advice.

6. Related Work
We first discuss works related to debugging of AOP pro-
grams. We then discuss the composition of multiple aspect
mechanisms.

AOP debugging The debugging of AOP programs has
been considered before. One approach is omniscient debug-
ging [19]. Under this kind of debugger, a bytecode level
trace is generated for the program execution. The trace in-
cludes synthetic code, woven advice, and other technology
specific entities. Annotations on the trace indicate the origin
of the bytecode, whether it is base code, residue or advice
applications. While this kind of debugging can handle the

execution of multiple aspects, it does not offer source level
debugging, nor does it aid in solving problems that result
from feature interactions between aspects or from the com-
position specification.

Another debugging approach used by Wicca [5] is provid-
ing a source-level representation of the woven source code.
The representation is generated by a dynamic source weaver.
However, even for the case of a single AOP language, this
approach is limited, because the code presented is not the
original source code written by the developer but the one
generated by the source weaver. It also does not provide de-
bugging in terms of source level abstractions, such as aspects
and advice. In the case of a multi-DSAL program, a transla-
tion of the different source files to a common base language
is required, which brings back the problems related to the
composition of multiple aspect mechanisms [8].

Unlike Wicca, AODA [2] enables debugging that is aware
of AOP source level abstractions, such as aspects and ad-
vice. It features a modular design that allows designing new
debug agents to support different AOP languages. However,
it does not address the unique problems presented by multi-
DSAL programs. First, it does not provide a way for examin-
ing the composition specification. Second, it does not recog-
nize AOP artifacts in the context of the original mechanisms,
but only in a common base language abstraction (for exam-
ple, when COOL coordinators are represented as ASPECTJ
aspects). In addition, developing a new debug agent for a
new mechanism is a difficult task, requiring implementation
knowledge of AODA itself and how to add debug attributes
to class files.

In comparison, our debugging infrastructure supports de-
bugging multi-DSAL programs with source level abstractions
in the context of each mechanism, including the inspection
of the composition specification. We also provide a generic
way to support debugging of new mechanisms without hav-
ing to dive into the details of the debug attributes or class file
structure.

Composition Frameworks Pluggable AOP [8] introduced
the problem of aspect language extension compositions. The
work presents a framework for third-party composition of ar-
bitrary dynamic aspect mechanisms into an AOP interpreter.

AWESOME [10] is a composition framework that directly
weaves DSAL code without an intermediate translation to a
common base language. AWESOME provides a default com-
position specification. For example, by default aspects will
advise a foreign aspect by advising only JAVA statements
within its source code. AWESOME allows the composition
designer to specify how to resolve feature interactions be-
tween aspect mechanisms in case the default specification is
not the desired one. While AWESOME addresses the com-
position problem, it does not deal with the problem of de-
bugging the woven multi-DSAL programs. The developer is
required to use regular debugging tools, such as the JAVA
debugger (jdb). However, such tools expose the synthetic

constructs of AWESOME and of the mechanisms, and they
also do not provide debugging in terms of AOP source level
abstractions.

A different approach for multi-DSAL composition is pre-
sented by Dinkelaker et al. [4]. They propose an architec-
ture for embedded DSLs (EDSLs) that makes use of meta-
object protocols and aspect-oriented concepts to support
crosscutting composition of EDSLs. This enables writing
modularized EDSL programs where each program addresses
one concern. Their proposed architecture is implemented in
Groovy, and like AWESOME, the architecture does not ad-
dress the debugging problem at all, relying instead on the
standard Groovy debugging tools.

7. Conclusion
In order for DSALs to be used in practice, multi-DSAL de-
velopment has to be cost-effective. Cost effectiveness is a
requirement that applies not only to the implementation
of DSALs, but just as much to the effective use of these
DSALs [15]. While significant progress has been made on
the language implementation front, less attention has been
given to making the development of applications with mul-
tiple DSALs practical.

Effective development of a multi-DSAL application re-
quires appropriate tool support. One standard tool is a dedi-
cated debugger. A multi-DSAL debugger should support the
inspection of a running application in terms of the AOP ab-
stractions introduced by the different DSALs, as well as their
collaborative interaction. Additionally, the debugger should
support inspection of the composition specification, since
the composition of the various aspect mechanisms itself may
be the source for unexpected behavior in the composed pro-
gram.

In this paper the unique problems associated with de-
bugging multi-DSAL applications were illustrated. A multi-
DSAL debug interface (MDDI) was specified, and a corre-
sponding implementation for the AWESOME composition
framework was presented. The different implementation
parts of MDDI include the formulation of dedicated debug
attributes, and a generic multi-DSAL debug agent that is inte-
grated into the AWESOME weaving process. MDDI consumes
the debug attributes and offers a set of debug operations to be
used by a multi-DSAL debugger. An AWESOMEDEBUGGER
command line tool was implemented to validate the over-
all debug infrastructure. The tool was used to analyze the
source of different bugs that may be found in multi-DSAL
programs.

We have focused on the debugging of a dominant fam-
ily of reactive aspect mechanisms known as join point and
advice [9]. The multi-DSAL debug infrastructure was imple-
mented for an ASPECTJ-based environment. Yet, a major
portion of the implementation may be reused in other se-
tups as well. For example, MDDI may be utilized in a JBoss
AOP environment [18]. For that, one would need to imple-

ment a multi-DSAL debug agent that provides the defined
debug information to MDDI. While the multi-DSAL debug
agent in AWESOME is integrated into the weaver, the JBoss
debug agent will be a remote agent included in the JBoss
AOP runtime, similar to the approach taken in the AODA [2].
Debugging other non-reactive aspect mechanisms is a topic
left for future work.

References
[1] Y. Apter, D. H. Lorenz, and O. Mishali. Toward debug-

ging programs written in multiple domain specific aspect
languages. In Proceedings of the 6th AOSD Workshop on
Domain-Specific Aspects Languages (DSAL’11), Porto de
Galinhas, Brazil, 2011. ACM.

[2] W. D. Borger, B. Lagaisse, and W. Joosen. A generic and
reflective debugging architecture to support runtime visibility
and traceability of aspects. In Proceedings of the 8th Interna-
tional Conference on Aspect-Oriented Software Development
(AOSD’09), pages 173–184, Charlottesville, Virginia, USA,
March 2009. ACM.

[3] G. Bracha and D. Ungar. Mirrors: Design principles for meta-
level facilities of object-oriented programming languages. In
Proceedings of the 19th Annual ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, and Ap-
plications (OOPSLA’04), pages 331–344, Vancouver, British
Columbia, Canada, October 2004.

[4] T. Dinkelaker, M. Eichberg, and M. Mezini. An architec-
ture for composing embedded domain-specific languages. In
Proceedings of the 9th International Conference on Aspect-
Oriented Software Development (AOSD’10), pages 49–60,
Rennes and Saint-Malo, France, 2010. ACM.

[5] M. Eaddy, A. Aho, W. Hu, P. McDonald, and J. Burger. De-
bugging aspect-enabled programs. In Proceedings of the 6th

International Symposium on Software Composition (SC’07),
number 4829 in Lecture Notes in Computer Science, pages
200–215. Springer Verlag, 2007.

[6] W. Havinga, L. Bergmans, and M. Aķsit. Prototyping
and composing aspect languages: using an aspect interpreter
framework. In Proceedings of the 22nd European Confer-
ence on Object-Oriented Programming (ECOOP’08), number
5142 in Lecture Notes in Computer Science, pages 180–206,
Paphos, Cyprus, July 2008. Springer Verlag.

[7] E. Hilsdale and J. Hugunin. Advice weaving in AspectJ. In
Proceedings of the 3rd International Conference on Aspect-
Oriented Software Development (AOSD’04), pages 26–35,
Lancaster, UK, March 2004. ACM.

[8] S. Kojarski and D. H. Lorenz. Pluggable AOP: Designing
aspect mechanisms for third-party composition. In Proceed-
ings of the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA’05), pages 247–263, San Diego, CA, USA,
October 2005. ACM Press.

[9] S. Kojarski and D. H. Lorenz. Modeling aspect mechanisms:
A top-down approach. In Proceedings of the 28th Interna-
tional Conference on Software Engineering (ICSE’06), pages
212–221, Shanghai, China, May 2006. ACM Press.

[10] S. Kojarski and D. H. Lorenz. Awesome: An aspect co-
weaving system for composing multiple aspect-oriented ex-
tensions. In OOPSLA’07 [17], pages 515–534.

[11] S. Kojarski and D. H. Lorenz. Identifying feature interaction
in aspect-oriented frameworks. In Proceedings of the 29th In-
ternational Conference on Software Engineering (ICSE’07),
pages 147–157, Minneapolis, MN, May 2007. IEEE Com-
puter Society.

[12] C. V. Lopes. D: A Language Framework for Distributed
Programming. PhD thesis, Northeastern University, 1997.

[13] C. V. Lopes and G. Kiczales. D: A language framework
for distributed programming. Technical Report SPL97-010,
Xerox PARC, Palo Alto, CA, USA, Feb. 1997.

[14] D. H. Lorenz and O. Mishali. Spectackle: Toward a
specification-based DSAL composition process. In Pro-
ceedings of the 7th AOSD Workshop on Domain-Specific As-
pects Languages (DSAL’12), Potsdam, Germany, March 2012.
ACM.

[15] D. H. Lorenz and B. Rosenan. Cedalion: A language for
language oriented programming. In Proceedings of the
26th Annual ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOP-
SLA’11), pages 733–752, Portland, Oregon, USA, October
2011. ACM.

[16] D. H. Lorenz and J. Vlissides. Pluggable reflection: Decou-
pling meta-interface and implementation. In Proceedings of
the 25th International Conference on Software Engineering
(ICSE’03), pages 3–13, Portland, Oregon, May 2003. IEEE
Computer Society.

[17] Proceedings of the 22nd Annual ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA’07), Montreal, Canada, October 2007.
ACM Press.

[18] R. Pawlak, J.-P. Retaillé, and L. Seinturier. Foundations of
AOP for J2EE Development. APress, 2005.

[19] G. Pothier, Éric Tanter, and J. Piquer. Scalable omniscient
debugging. In OOPSLA’07 [17], pages 535–552.

[20] É. Tanter. Aspects of composition in the Reflex AOP ker-
nel. In Proceedings of the 5th International Symposium on
Software Composition (SC’06), number 4089 in Lecture Notes
in Computer Science, pages 98–113, Vienna, Austria, March
2006. Springer Verlag.

	Introduction
	Runtime State and Behavior
	Composition Specification
	Contribution

	Motivating Example
	A Multi-DSAL Application
	A Multi-DSAL Debug Scenario

	Multi-DSAL Debug Operations
	Examining Runtime State and Behavior
	Inspecting the Composition Specification

	MDDI Implementation
	Composition Specification Operations
	Runtime State and Behavior Operations

	Evaluation
	Blame Assignment
	Debugging Foreign Advising
	Debugging Co-Advising
	Debugging Advice Code

	Related Work
	Conclusion

