
Using Aspects to Support the Software Process:
XP over Eclipse

Oren Mishali and Shmuel Katz
Department of Computer Science

Technion, Israel Institute of Technology
{omishali, katz} @cs.technion.ac.il

ABSTRACT
Usually, aspects enhance a software product by being com-
posed - or woven - into it. Here, on the other hand, we use
aspects to support the software development process itself.
The underlying system, i.e., the system to which the aspects
are woven, is not the software product but the environment
where it is developed. We define aspects to support both
software process management and software process model-
ing. As we show, the aspects can monitor, enforce, or even
partially implement compliance with desired development
practices. They also provide a basis for a precise description
of a software development process. As a case-study, we con-
sider Extreme Programming (XP) and the Eclipse platform.
XP is a software development methodology described by un-
derlying values, principles and practices. We present exam-
ples of AspectJ aspects that support XP guidelines such
as “compose tests before coding” or “provide rapid feed-
back”. Their abstract definitions are shown to be platform
independent and correspond to the XP ontology. Their con-
crete implementation and weaving is connected to Eclipse,
an open-source development environment. The design and
a prototype implementation of aspects for XP over Eclipse
is described.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments—
Integrated environments ; D.2.9 [Software Engineering]:
Management—Software process models, Programming teams,
Life cycle; K.6.3 [Management of Computing and In-
formation Systems]: Software Management—Software de-
velopment, Software process

General Terms
Languages, Management

Keywords
Aspects, Software Process, Extreme Programming, Eclipse

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD 06, March 20–24, 2006, Bonn, Germany
Copyright 2006 ACM 1-59593-300-X/06/03 ...$5.00.

1. INTRODUCTION

1.1 Aspects for software process support
Aspect-Oriented Programming (AOP) languages provide

constructs to represent cross-cutting concerns as modular
units (aspects) and then enable their composition (weav-
ing) into an underlying system. Usually, aspects are used as
direct support to the software product under development
by being woven into it. Here, on the other hand, aspects
are used to support the Software Process (SP) and are in-
tended to be woven into the environment where the product
is developed. The class of aspects considered, which we call
SP-aspects, can support both software process management
and software process modeling.

The software process is the set of tools, methods, and
practices used to produce a software product [13]. In order
to master the growing complexity of software development,
an improved software process is crucial. For an organiza-
tion with a defined software process, there is always a gap
between the defined process and the actual behavior of the
participants, and it is the main objective of software process
management to reduce this gap as much as possible. A com-
mon way to do this is by integrating software process sup-
port into software development environments.

SP-aspects can augment development environments with
a variety of management strategies such as measurement
of the actual behavior, enforcement of policies and stan-
dards, and automation of procedures. Such an integra-
tion, if done without AOP, results in less flexible tools and
other undesired impacts like scattering and tangling. More-
over, the SP-concerns are especially difficult to implement
integrally because of their broader interpretation of cross-
cutting: multiple development tools and/or process partici-
pants are spanned.

SP-aspects are also useful for software process modeling
[6]. That is, these aspects can be a basis for an abstract rep-
resentation of the software process. Such a model, beyond
facilitating automated process support, is also intended to
promote process understanding and communication among
process participants, and to serve as a vehicle for training
and education. This novel non-functional role has several
implications with respect to the design of SP-aspects, as
shown in the rest of the paper.

Since the early days of software development environ-
ments, they were implemented with some sort of process
support. With most environments, the emphasis was (and
is) to provide improved coordination and integration among
the different tools in order to facilitate partial automation of

tasks, and to maintain consistency among artifacts through
different development phases [21]. The major problem of
such environments is their inflexible process support which
is usually restricted to a small family of software processes
[12].

Consequently, process-centered software engineering envi-
ronments (PCEs) were developed. PCEs are environments
that support a wide variety of software processes by consid-
ering a description of a software process as a parameter and
behaving accordingly. As in SP-aspects, they can support
both software process management and modeling. Unfortu-
nately, despite their promising potential, PCEs are not pop-
ular, and only a few have been transferred into industrial
practice [12, 10]. A detailed description and comparison of
such environments is given in Section 4.

1.2 SP-aspects repository
We envision the development of a reusable SP-aspects

repository which provides support for different methodolo-
gies. The repository keeps its own set of SP-aspects for
each methodology and each aspect in the set supports one
or more facets of the methodology. SP-aspects are platform-
independent and have general abstract definitions that can
be realized in a variety of concrete forms. Therefore, the
repository provides its users with a mechanism to generate
concrete implementations of SP-aspects suitable for their
needs.

SP-aspects model a software development methodology
based on its ontology. Each methodology has its own de-
scriptions and terminology which define an ontology of sig-
nificant events during system development, as well as enti-
ties (artifacts or human participants), activities to be done,
and meaningful predicates. In practice, abstract pointcuts
and advices represent key events and activities respectively,
and they use an independent set of types which represent the
entities during the development. The predicates are repre-
sented by abstract boolean methods.

A general usage scenario of generating concrete SP-aspects
starts with a user specifying the desired facets of the method-
ology to be supported and the target development platform.
Then, relevant SP-aspects are presented, and the user is
requested to refine their ontology elements. That is, the
user must choose the desired refinements to relevant ab-
stract key events, activities, and predicates. Finally, con-
crete SP-aspects, which are intended to be woven into the
target development platform, are generated.

A key event, for example, an abstract pointcut describing
creation of elements that belong to the coding phase, could
be refined to (i.e., implemented as) the creation of certain
Java packages and classes. Refining the activity part in-
volves choosing a desired management strategy that should
be taken when an event occurs. Various management strate-
gies are represented in the repository. These vary from a
‘non-interventionist’ policy that only monitors and reports
violations, to a stricter enforcement policy that forbids ac-
tivities violating the desired SP rules, to an activist policy
that puts conformance activities in the aspect itself.

1.3 Outline
In the rest of this paper, we describe a case-study which is

a first step toward the proposed vision. We chose Extreme
Programming (XP) as the software development method-
ology for the case-study and thus define XP-aspects, i.e.,

aspects to support XP. The concrete implementation of the
aspects is connected to the Eclipse platform, an open-source
extensible development environment. XP-aspects are devel-
oped using the AspectJ language [17] and we assume the
reader is familiar with it. The following section begins with
an overview of XP and then presents several definitions of
XP-aspects. Section 3 introduces the Eclipse platform and
presents a prototype implementation of XP-aspects over it,
along with a discussion of the difficulties that have been
encountered. In Section 4 related works are discussed and
compared to SP-aspects. Finally, we provide some future re-
search directions, briefly describe some user experience with
XP-aspects over Eclipse, and conclude in Section 5.

2. DEFINITION OF XP-ASPECTS

2.1 Extreme Programming (XP)
XP [3], originated by Kent Beck, is supposed to be a

fun, scientific, low-risk, and flexible way to develop soft-
ware by small-to-medium-sized teams in the face of unclear
and changing requirements. XP is based on four values
which serve as its most fundamental guidelines: commu-
nication, simplicity, feedback and courage. XP encourages
constant and honest communication between team members
and customers, and calls for the simplest system that actu-
ally works. The approach also emphasizes the importance
of concrete feedback to continuously know where the team
is.

Since these values are too vague, several more concrete
guidelines known as basic-principles are derived from them.
These guidelines, such as “small initial investments”, “rapid
feedback”, “incremental change”, and “honest measurement”,
are meant to give the team much clearer guidance of how to
behave, but they still lack practicability. Hence, XP defines
practices which are the materialization of the values and
principles in the actual development activities. According
to Beck, none of these practices is either novel or considered
to be perfect, but applying them all together is supposed
to create an interplay where the practices complement each
other’s weaknesses.

XP defines twelve different practices. Most of them are
directly related to the development activities, e.g., develop-
ing code in pairs (pair programming), integrating it often
(continuous integration), and writing it according to agreed
coding standards. Other practices have a more global view,
e.g., using a system metaphor to improve understanding and
communication, and delivering a working product each few
months (small releases). Moreover, planning is also empha-
sized in a planning game where customers provide “user-
stories” (descriptions of features), developers estimate their
development time, and the scope of the release is deter-
mined.

All of the practices, including several not listed here, can
be modelled by XP-aspects, explicitly or implicitly. Here,
we concentrate on a detailed description of only a few of
them. We define XP-aspects to support test-first and col-
lective ownership practices and the rapid feedback principle.
Generally, test-first means that testing should drive coding,
and collective ownership calls for the involvement of the de-
velopers in the whole system and not only a small part of
it. Rapid feedback emphasizes the importance of having
feedback as soon as possible. More details are given in the
relevant following definitions.

2.2 Requirements analysis
Following the repository vision in Subsection 1.2, XP-

aspects should have general abstract definitions based on
the XP ontology. Hence, their definitions are not restricted
to a particular tool or development environment. As an ex-
ample of a restrictive definition, consider the pointcut cre-
ationOfJUnitTests(). This pointcut defines the creation of
tests that belong to JUnit, which is a common testing frame-
work for Java developers. Of course, XP does not mention
JUnit or any other specific testing framework. Hence, re-
naming the pointcut creationOfUnitTests() is much more
reasonable since XP does mention the creation of unit-tests
during the development.

XP-aspects are defined as abstract AspectJ aspects. As
such, they provide only the general shape of the solution
without getting into specific implementation details such as
join-point specifications. Still, XP-aspects require the use
of some context from the development environment where
they are operating. To remain general, and to be based
only on the XP ontology, XP-aspects do not use any under-
lying types such as classes or methods directly. Instead, XP-
aspects use an independent set of types called XP-Elements,
also derived from the XP ontology. These XP-Elements are
a set of Java interfaces which represent the entities of an
XP project. The elements are intended to be exposed by
abstract pointcuts and then to be used by the advice part
of XP-aspects. XP-Elements are designed according to the
“XP way”: with the simplest design which meets the current
needs and extending or refactoring it when needed.

A partial list of XP-Elements is presented in Listing 1.
The interface XPElement represents any existing entity in
an XP project, and provides the most basic distinction be-
tween humans and artifacts. Artifact represents an element
made by humans and is classified according to the phase
to which it belongs. CodingElement and TestingElement
represent elements that belong to the coding and testing
phase respectively. UnitTest represents any internal (non-
customer) test, and finally the interface PairProgrammers
represents a pair of programmers who develop together.

Besides their functional role, XP-Elements also serve as an
important vehicle for the understanding of XP. For exam-
ple, the methods getPilotName() and getNavigatorName()
in PairProgrammers imply that two different roles exist in
each pair: pilot and navigator. The pilot “owns” the key-
board and does the actual coding, while the navigator thinks
more strategically hence providing a global point of view.

2.3 Test-first example
Test-first (also known as “test-driven development”) is

one of the core practices of XP. At the beginning of each de-
velopment iteration, each developer is assigned several tasks
derived from user stories. Then, a partner is found and to-
gether they start to implement the tasks, where each task is
implemented in a series of steps. Working test-first means
that in each step a test (unit-test) is first written and only
then the pair writes the minimal portion of code that makes
it pass that test. Test-first means that testing drives coding
and not vice versa. This ordering is considered to have many
advantages such as forcing simplicity, leading to a simple de-
sign, and providing a “safety net” from changes in the code.
Test-first is not considered to be an easy practice since it re-
quires new and unfamiliar thinking. Steinberg and Palmer
state [26]: “testing first is one of the more difficult practices

Listing 1: XP-Elements

public interface XPElement {

public boolean i s A r t i f a c t () ;
public St r ing getName () ;
. . .

}

pub l i c interface Ar t i f a c t
extends XPElement {

public stat ic f ina l int PLANNING = 1 ;
public stat ic f ina l int DESIGN = 2 ;
public stat ic f ina l int CODING = 3 ;
public stat ic f ina l int TESTING = 4 ;
. . .

public int getPhase () ;
. . .

}

pub l i c interface CodingElement
extends Ar t i f a c t {

public stat ic f ina l int CLASS = 1 ;
public stat ic f ina l int METHOD = 2 ;
. . .

public int getKind () ;
. . .

}

pub l i c interface TestingElement
extends Ar t i f a c t {

public stat ic f ina l int UNIT = 1 ;
public stat ic f ina l int ACCEPTANCE = 2 ;
. . .

public int getKind () ;
public boolean i sPas sed () ;
. . .

}

pub l i c interface UnitTest
extends TestingElement {
. . .

}

pub l i c interface PairProgrammers
extends XPElement {

public St r ing getPilotName () ;
public St r ing getNavigatorName () ;
. . .

}

Listing 2: Test-first example
pub l i c abstract aspect Tes tF i r s t {

protected abstract pointcut creat ionOfUni tTest s (UnitTest t e s t) ;

protected abstract pointcut creat ionOfCodingElements (CodingElement element) ;

after (UnitTest t e s t) : c reat ionOfUni tTest s (t e s t){
ex i s t i ngUn i tTe s t s . add (t e s t) ;

}

before (CodingElement element) : creat ionOfCodingElements (element){
i f (! hasUnitTest (element , ex i s t i ngUn i tTe s t s)){

d i sapprova l (element) ;
}

}

protected abstract boolean hasUnitTest (. . .) ;
protected abstract void d i sapprova l (. . .) ;
. . .

private Co l l e c t i o n ex i s t i ngUn i tTe s t s ;
}

to embrace. However, because of its wide-ranging impact,
it is also the most important”.

The TestFirst aspect in Listing 2 provides partial support
for test-first by expressing a more restricted policy:

• Upon creation of a coding-element there should already
be a corresponding unit-test.

TestFirst monitors the creation of UnitTests and saves them
in existingUnitTests. Then, when a CodingElement is cre-
ated, it checks the existence of a corresponding unit-test,
and disapproval(..) is called if the unit-test does not ex-
ist. The definition of TestFirst is very general and does not
provide an answer to several immediate questions such as:

• What kind of coding-elements are affected by the pol-
icy?

• What kind of unit-test should a coding-element have?

• What does disapproval(..) do? Does it only monitor
or does it enforce?

By being general, TestFirst allows many possible imple-
mentation options and it is the responsibility of the con-
crete sub-aspect to choose one. The abstract method disap-
proval(..), for example, only suggests that it is “not good” to
create coding-elements without having corresponding unit-
tests. Hence it leaves open options for several different man-
agement strategies. As noted earlier, one strategy could be
simply to monitor compliance with the practice. Here, dis-
approval(..) would be refined to a method that logs and
reports the violation and the pair involved to management.
In a more activist strategy, compliance could be enforced,
disallowing conduct not consistent with the practice. Then
disapproval(..) would announce to the pair that no test ex-
ists and not allow proceeding with the creation of the coding
element. Moreover, in some cases, the aspect itself could
have code that applies the practice, removing this obliga-
tion from the developer (or at least helping in the task).
Here, disapproval(..) could itself create an empty unit-test,
prompting the user to fill in specific details.

TestFirst does not cover the whole test-first practice but
only provides a starting point. For broader coverage it
should also treat the changes of coding-elements rather than
only their initial creation. By doing that, the entire behavior
of the developers may be analyzed to recognize deviations
from test-first practice and to draw other important conclu-
sions.

2.4 Collective ownership example
In describing the collective ownership practice, Beck ex-

plains [3]: “In XP, everybody takes responsibility for the
whole of the system. Not everyone knows every part equally
well, although everyone knows something about every part”.
In practice this means that the involvement of a pair in the
project should not be restricted to a specific segment of it.
As a result, “expert-only” segments are avoided and thus the
project has greater potential to evolve smoothly. The Col-
lectiveOwnership aspect in Listing 3 expresses the following
policy derived from the collective ownership practice:

• A pair not highly involved with an artifact should be
encouraged to make changes to it.

This simple aspect monitors change events of different project
artifacts, logs them together with the pair that made the
change, and then encourages the pair if its involvement in
that artifact is limited. This is in contrast to a pair already
involved in it. The log which is maintained by the aspect
can provide the XP coach (one who manages the team) with
valuable knowledge related to the practice. For example, it
may be inferred from the log, possibly as additional meth-
ods local to this aspect, whether there are any “expert-only”
project segments and their location, developers who have
knowledge about a specific segment or those who restrict
their work to only a few segments. Again, CollectiveOwn-
ership does not specify which are the directly monitored
project artifacts or what is the meaning of a change, nor
does it address the method of encouragement or the defini-
tion of “highly involved pairs”. As before, these open issues
are left for the concrete aspect.

Listing 3: Collective ownership example
public abstract aspect Col l ect iveOwnersh ip {

protected abstract pointcut changeOfArt i f ac t s (PairProgrammers pair , A r t i f a c t a r t i f a c t) ;

after (PairProgrammers pair , A r t i f a c t a r t i f a c t) :
changeOfArt i f ac t s (pair , a r t i f a c t){

l og . add (pair , a r t i f a c t) ;
i f (! h i gh ly Invo lved (pair , a r t i f a c t , l og))

encourage (pair , a r t i f a c t) ;
}

protected abstract boolean h igh ly Invo lved (. . .) ;
protected abstract void encourage (. . .) ;
. . .

private Log log ;
}

Listing 4: Rapid feedback example
public abstract aspect RapidFeedback {

protected abstract pointcut execut ionOfTest ingElements (TestingElement t e s t) ;

after (TestingElement t e s t) : execut ionOfTest ingElements (t e s t){
communicate (t e s t) ;

}
. . .
protected abstract void communicate (. . .) ;

}

2.5 Rapid feedback example
Rapid feedback is one of the basic principles of XP. In

general, feedback means to have a response to a certain ac-
tion. Rapid feedback means to get this response as soon
as possible and thus improve learning time. In XP, this
principle is expressed in several dimensions. For example,
having small releases and short iterations provides the cus-
tomer with rapid feedback about the team performance and
the state of the product, and also feeds the team with the
customer reaction.

The RapidFeedback aspect in Listing 4 deals with the au-
tomation of feedback, hence it makes feedback particularly
rapid. RapidFeedback reports to the team on significant
events that occur during development. By that, team mem-
bers are provided with crucial knowledge about the current
state of the project which may result in “online” decision
making and contributes to the involvement of team mem-
bers in the project. RapidFeedback uses an activist manage-
ment strategy to achieve the XP principle, and the burden of
remembering to report events is lifted from the developers.

In XP, both unit-tests and acceptance-tests provide con-
tinuous feedback on the current state of the system and
RapidFeedback provides the team members with the results
of those tests. Note that the pointcut executionOfTestin-
gElements(..) does not mention which kind of executed tests
are monitored. Possible refinements may monitor only those
tests answering some criteria, e.g., tests belong to a specific
module or following a check-in operation. RapidFeedback
may be extended to provide the team with more informa-
tion such as the last integration time, new added tasks or
customer feedback.

3. XP-ASPECTS OVER ECLIPSE

3.1 The Eclipse platform
The Eclipse platform is an open-source extensible devel-

opment environment [7]. Eclipse provides tools and frame-
works that span the whole software development life-cycle.
The basic functionality of Eclipse is very generic, and Eclipse
becomes what it is, i.e., a full-functioning development plat-
form, by being constantly extended by additional function-
ality. These extensions are comprised of plug-ins. A plug-in
is a module that adds functionality to Eclipse by extending
well defined points called extension-points. In addition, a
plug-in may also introduce new extension-points to be ex-
tended by other plug-ins. A plug-in consists of several re-
sources where usually one of them is a library that contains
its Java byte-code (a.k.a. JAR library). Usually, a com-
plex extension is composed from several plug-ins whereas a
simple one is written as a single plug-in. JDT (Java Devel-
opment Tooling), which provides Eclipse with the capability
to develop Java applications, is an example of a complex ex-
tension composed from several plug-ins.

3.2 AJEER
In this paper, XP-aspects are intended to be woven into

Eclipse. Since Eclipse is a collection of plug-ins, the weav-
ing is actually into the Eclipse plug-ins. One way to do the
weaving is by using AspectJ Development Tools (AJDT) [5],
which is an extension that provides Eclipse with support for
development with AspectJ. Although usually used with ap-
plications, there is no obstacle to using it for plug-ins of the
development environment itself or even to AJDT. However,

Figure 1: Class creation wizard

at least up to AJDT 1.3, such an approach means that when-
ever we want to weave an aspect into a group of plug-ins, or
we want to remove or update it, we need to recompile all of
them.

Thanks to Martin Lippert, the contributor of the AspectJ-
Enabled Eclipse Runtime (AJEER)[20], we have another
way to do the weaving which is much smoother. AJEER
is an extension that adds support for load-time weaving of
Eclipse plug-ins. With AJEER, AspectJ aspects are writ-
ten (using AJDT) in a separate plug-in which extends a
provided extension-point. Then, upon Eclipse initialization
the aspects are activated and woven into the relevant plug-
ins when these plug-ins are loaded. Thus no recompilation
is needed. The use of this load-time weaving mechanism
makes the removal or update of an aspect very easy: we
just need to remove the aspect’s plug-in from the system or
to change its code. The next time Eclipse is activated, the
aspect will, respectively, not be used, or be updated.

With AJEER, new plug-ins which are added dynamically
to Eclipse are also affected by the installed aspects, without
the need to restart Eclipse. The implementation of AJEER,
based on AspectJ, keeps an intensive type-information cache
in memory in order to realize the weaving itself. Thus
currently using AJEER requires workstations with at least
512MB of RAM. (This memory consumption is supposed
to be improved in upcoming versions of AspectJ.) The user
experiments described in Section 5 confirm that, given such
workstations, the overhead of using SP-aspects during the
ongoing use of Eclipse is negligible, and may only be no-
ticed during the initialization of Eclipse or when plug-ins
are loaded.

3.3 Implementing TestFirst
The following concrete regulation is derived from the vague

test-first policy (Section 2.3) of the TestFirst aspect:

• Upon creation of a Java class there should already be a
corresponding JUnit test-case named Test{ClassName}.

JUnit [14] is a popular framework for writing and executing
unit-tests for Java applications, and a JUnit test-case is a
container of unit-tests. The idea behind the regulation is
that each class in the project should have a JUnit test-case
that serves as a “frame” for testing it, and contains the unit-
tests for that class. The test-case is also related to the class
with a naming convention.

As stated earlier (Subsection 1.2), a concrete implemen-
tation of SP-aspect is generated by refining its abstract
key events (pointcuts), activities (advices), and predicates
(boolean methods). Hence, to implement the above regula-
tion, a user first needs to tell the repository to implement
the abstract pointcuts creationOfCodingElements(..) and
creationOfUnitTests(..), defined in TestFirst, with concrete
pointcuts corresponding to a creation of a Java class and a
JUnit test-case respectively. The second step is to specify a
concrete management strategy instead of the abstract dis-
approval(). In our example, we choose a strategy of type
enforcement, i.e., the developer will not be able to create
the class unless the relevant test-case exists. Finally, the
abstract boolean method hasUnitTest(..) should be refined
to handle the desired naming convention. However, it is
important to recall that this is only one particular form to
realize the TestFirst aspect, and many other forms exist as
well.

In Listings 5 and 6 we see two fragments of the defi-
nition of the aspect EclipseTestFirst, extending TestFirst.

Listing 5: EclipseTestFirst (Implementation of pointcuts and methods)
protected pointcut creat ionOfCodingElements (CodingElement element) :

execution (∗ org . e c l i p s e . j f a c e . wizard . IWizard . per formFin i sh (. .))
&& this (element) && within (NewClassCreationWizard) ;

protected pointcut c reat ionOfUni tTest s (UnitTest t e s t) :
execution (∗ org . e c l i p s e . j f a c e . wizard . IWizard . per formFin i sh (. .))

&& this (t e s t) && within (NewTestCaseCreationWizard) ;

protected void d i sapprova l (CodingElement element){
en f o r c e (”JUnit TestCase Named Test ” + element . getName () + ” Does Not Exis t ”) ;

}

protected boolean hasUnitTest (CodingElement element , Co l l e c t i on ex i s t i ngUn i tTe s t s){
return i sTestNameExists (”Test ” + element . getName () , e x i s t i ngUn i tTe s t s) ;

}
. . .

Listing 6: EclipseTestFirst (Inter-type declarations)
de c l a r e parents : NewClassCreationWizard implements CodingElement ;

d e c l a r e parents : NewTestCaseCreationWizard implements UnitTest ;

public int NewClassCreationWizard . getKind (){
return CodingElement .CLASS;

}

public int NewClassCreationWizard . getPhase (){
return Ar t i f a c t .CODING;

}

public St r ing NewClassCreationWizard . getName (){
return getNameFromWizardPage () ;

}
. . .

EclipseTestFirst is realized by packing it as an Eclipse plug-
in which extends AJEER. When Eclipse is launched, AJEER
takes care of weaving it into the relevant plug-ins: JDT and
JUnit. In order to implement the abstract pointcuts cre-
ationOfCodingElements(..) and creationOfUnitTests(..) we
need to search in Eclipse code for join-points that corre-
spond to creation of a Java class and a JUnit test-case. As
a starting point for the search we consider the developer’s
perspective.

In Eclipse, the most common way for a developer to create
a class or a test-case is by using a wizard, which is a graphical
user interface that guides the developer through a sequenced
set of tasks. An example of a wizard for creation of a Java
class is presented in Figure 1, and a similar wizard is also
used to create a test-case. After filling in the relevant fields,
the developer “requests” the creation of the class by pressing
the finish button. Then, after some processing, the devel-
oper gets feedback that the request is accomplished. This
analysis infers that the concrete pointcuts may be based on
the event which corresponds to the pressing of the finish
button. A related investigation of Eclipse code reveals that
both wizards are represented by classes that implement the
interface IWizard. Furthermore, IWizard declares a method
called performFinish(..) which is invoked right after the de-
veloper presses the finish button.

As seen in Listing 5, the method performFinish(..) is
used in both concrete pointcuts. However, the pointcuts are

based on different join-points. The first is based on the cre-
ation of a Java class while the second on the creation of a
JUnit test-case. The distinction is made by the primitives
this() and within(). In the first pointcut the primitive this()
captures events where the ’this’ object implements Codin-
gElement, while in the second it relates to events where ’this’
implements UnitTest. The same primitive also exposes the
context to be used by the advice of the abstract aspect.
That is, element of type CodingElement and test of type
UnitTest, respectively. The primitive within() also guaran-
tees that similar but irrelevant methods of super-types are
not captured.

Recall that both CodingElement and UnitTest are not
Eclipse built-in types but are XP-Elements (Section 2.2).
Hence, we need to explicitly add these interfaces to the rele-
vant classes “behind” the generic IWizard interface. As seen
in Listing 6, we use AspectJ inter-type declarations to add
the interface CodingElement to class NewClassCreationWiz-
ard and the interface UnitTest to class NewTestCaseCre-
ationWizard. The rest of the code adds to the classes the
methods which are defined by the interfaces. In particular,
the method getNameFromWizardPage() extracts the name
of the newly created type from the relevant wizard page
which is retrieved from IWizard.

The code fragment in Listing 5 also implements the de-
sired management strategy and the predicate. The abstract
method disapproval(..) is refined by the method enforce(..)

which handles the enforcement by displaying an error mes-
sage and then throwing an exception. The abstract method
hasUnitTest(..) is implemented to indicate whether a test
with the name TestClassName exists.

3.4 Implementation notes

3.4.1 Relating key events to Eclipse
As shown in the previous example, in order to define key

events during the development process in the form of con-
crete pointcuts, we first need to understand how these key
events are related to Eclipse. In the example, the event is
initiated by pressing a button and then waiting for feedback
that the task is accomplished. This simple sort of “press
and wait” event is quite common during development and
is relatively well-defined. That is to say, it is quite clear
when the event starts (right after the pressing and before
the task is started) and when it ends (right after the related
task is accomplished). Hence, it is reasonable to surround
these events with before or after advice.

But other less defined key events exist as well. For ex-
ample, consider the event changeOfArtifacts(..) in Listing
3, and suppose we deal with change of classes. Although in
Eclipse some changes of classes do belong to the “press and
wait” family (such as automatic refactoring), most of them
are handled by hand using the editor. These “editorial”
events are much less trivial for definition and handling. We
need to define what a change of a class is, whether it is the
addition or change of a single character, an entire string, or
perhaps the addition or change of a method. Moreover, for
interactive changes to text, there are obvious difficulties in
analyzing additions or changes that have not yet been made
by the user, so before advice may be restricted.

3.4.2 The need for expert knowledge
The most difficult task in implementing XP-aspects (or

SP-aspects) is to find the appropriate concrete join-points
in Eclipse (or any other development environment) which
correspond to the abstract pointcuts. For a join-point to
be suitable, it should first satisfy the desired pre and post
conditions derived from the abstract pointcut. For exam-
ple, consider a pointcut that represents creation of certain
types (e.g. creationOfUnitTests(..), creationOfCodingEle-
ments(..)). In this case, an appropriate join-point is one
that just before its occurrence the type has not been created
yet, and right after that the type is already created. Indeed,
the method performFinish(..) in Listing 5 satisfies both of
these conditions. Another requirement from an appropriate
concrete join-point is that the context we wish to expose will
be accessible. For example, a suitable join-point for execu-
tionOfTestingElements(..) (Listing 4) should provide access
to the test results.

Writing abstract XP-aspects in AspectJ is quite easy. But
the implementation of these aspects certainly requires ex-
pert knowledge of the underlying system and is time con-
suming. In the general case where the implementors of the
aspects do not have the required expert knowledge, this re-
sembles searching for a needle in a haystack. In our case,
the fact that Eclipse is open-source, has a supportive de-
velopment community, and is relatively well-documented,
definitely made the search easier but not trivial.

3.4.3 Maintenance of XP-aspects
During the development process, changes to XP-aspects

are likely to occur. The first class of changes to consider is
due to updates in the software process itself. Here, changes
to both abstract XP-aspects and their concrete implemen-
tations are possible. However, due to their general defini-
tions, changes in abstract XP-aspects are considered to be
less common. Changes in concrete XP-aspects, on the other
hand, are much more common and reflect changes in the way
that abstract policies are realized. These frequent changes
are to be supported by the repository.

Another class of changes is related to the inevitable mod-
ifications in the implementation of the underlying environ-
ment. XP-aspects depend on Eclipse in two ways. First,
they use its services, e.g., EclipseTestFirst in the previous
example uses Eclipse services to open an error dialog. Such
dependencies are stable since the aspects use programmatic
interfaces (APIs) supplied by Eclipse plugins and thus a
’contract’ is made. However, a second class of dependen-
cies, namely augmenting the environment code, is not (yet)
contracted. Most Eclipse plugins do not have an API and
even for those that do, their API definitely does not provide
all the desired events or expose the relevant context. Hence,
XP-aspects advise Eclipse code that is considered ’internal’.
That is, this code is not supposed to be used by clients and
is unstable, i.e., might be changed in subsequent releases.
As a result, in each major release of Eclipse plugins, some
sort of review and validation is required for the links to the
relevant unstable parts of the aspects.

A similar problem is discussed in [11] which suggests creat-
ing a middle layer of aspects called XPIs (no related to XP),
that hold the unstable details along with constraints on the
advised code. Concrete XP-aspects already serve as a layer
that separates the details from the abstract aspects. XPIs
do provide some useful design techniques that may ease the
maintenance of the aspects. However, there still would be
an unstable layer that needs to be reviewed and validated
when underlying changes occur. This problem is also ad-
dressed by Aldrich who suggests the idea of Open Modules
[1], which are modules that have more awareness to AOP.
Open Modules extend the familiar API with pointcuts that
represent internal events that are semantically important.
This solution definitely makes the dependencies between as-
pects and the underlying system more stable but restricts
the power of AOP.

4. RELATED WORK
In this section, SP-aspects are compared with existing ap-

proaches. In subsection 4.1 we discuss approaches related to
the field of process-centered software engineering environ-
ments. Subsection 4.2 evaluates our approach compared to
Eclipse-based solutions, and in the final subsection, other
works that relate AOP with the software process are con-
sidered.

4.1 PCEs/PMLs
In the landmark paper “software processes are software

too” [22], Osterweil argues that software processes should
be treated like software: they should be specified, designed,
implemented, etc. Among others, the paper initiated the
development of process centered software engineering envi-
ronments (PCEs). A PCE does not provide built-in sup-
port for a single fixed software process. Instead, it may be

customized to support a variety of processes by considering
a description of a process (a process model). The process
model is described in a language supported by the PCE
called a process modeling language (PML). To provide such
support, a PCE is typically composed of a user interac-
tion layer encompassing the development tools available to
the users, a repository holding the process artifacts, and
a process server controlling and managing the other parts
according to the process model. Research in this field has
provided many important contributions, but as stated in
Section 1, despite their promising potential, commercially
available PCEs are rare.

The problem of most PCEs is that adopting them re-
sults in significant changes to the working environment of
an organization, especially from the developers’ perspective.
This occurs because PCEs (as their name suggests) usu-
ally replace an existing development environment instead
of seamlessly integrating into it. In practice, the develop-
ers, who are accustomed to their current environment and
want to use their favorite tools, do not welcome such a
change, especially if the new environment is not yet proven
to be helpful. Significant exceptions are Process Weaver and
Provence. Process Weaver [8], which is commercially avail-
able, does not itself constitute an environment platform, but
it adds work-flow process support to UNIX-based environ-
ments. The developers are provided with a new tool (called
Agenda) that controls their work on their favorite UNIX
tools according to a workflow defined by the process model.

Provence [18] defines an architecture for process support
that preserves the original working environment of the de-
velopers. As in SP-aspects, Provence is based on monitor-
ing significant events during development and acting upon
them. In practice, a smart file system reports low-level
events such as file changes and tool invocations to an event
manager. Then, they are filtered and events of interest are
passed to a process server which acts according to a defined
process model. Provence introduces an interesting architec-
ture but it has several drawbacks. First, it is quite difficult
and even impossible to identify significant high-level process
events based on low-level monitoring. Second, Provence is
mainly an observer and its process support is limited to mon-
itoring and very partial automation. Finally, using Provence
depends on several components such as a smart file system,
an event manager, and a process server.

SP-aspects are woven into existing development tools and
thus, like Provence, they preserve the original working en-
vironment. Unlike Provence, SP-aspects are based on high-
level events (join-points) which are closely related to the
development activities. Furthermore, since SP-aspects act
directly on the tools, they can include improved process sup-
port beyond monitoring, i.e., enforcement and enhanced au-
tomation. SP-aspects pose one critical demand on the un-
derlying environment: it should be “weavable”, i.e., there
should be a mechanism which enables the weaving of as-
pects into it.

To operate properly, a PCE (actually the process server
part) should be able to control the tools in the user inter-
action layer. Usually, a PCE provides its own set of tools
and an infrastructure to integrate external tools. Under this
configuration, achieving effective control is not easy. For ex-
ample, Marvel/Oz [16, 4] and Merlin [15] support invocation
of external tools by encapsulating them in tool envelopes (an
interface). Such integration results in limited control since

the process server cannot control the tools during their exe-
cution. In SPADE-1 [2], the process server, which communi-
cates with a message-based integration environment called
DEC FUSE, may also take control during tool execution.
However, in DEC FUSE, like other message-based integra-
tion environments (e.g. FIELD [24]), the level of integration
of each tool is predefined by the tool. SP-aspects, on the
other hand, capture events during tool execution by aug-
menting their code. There is no need to anticipate desired
events in advance and no cooperation or explicit “hooks” are
required from the tools. However, in SP-aspects, manipula-
tion of the tools is only possible if the tools have an API.
Otherwise, monitoring and enforcement is still possible, but
the level of automation support decreases.

A PML, beyond facilitating automated support, is an im-
portant vehicle for process understanding and communica-
tion between process participants. Curtis et al. [6] pointed
out that PMLs cannot be used if they cannot be understood.
They also mentioned that facilitating human understand-
ing has received less attention from the research community
than has machine automation. PMLs have various modes
of expression such as programming languages based PMLs
(APPL/A [27]), petri-net based (SPADE,Process Weaver),
and rule-based (Marvel, Merlin). However, eight years after
the above remark of Curtis et al., Fuggetta stated: “existing
PMLs are complex, extremely sophisticated, and strongly
oriented toward detailed modeling of processes” [10]. We be-
lieve that aspects are potentially more comprehensible than
existing modeling paradigms, especially for developers fa-
miliar with the tools of the underlying environment, with
Java, and with aspects.

Still, a modeling notation cannot by itself automatically
provide improved comprehensibility. To do that, the process
model should be defined considering also cognitive tech-
niques. Some of these techniques have been used in our
application of SP-aspects to the XP paradigm. First, the ap-
proach encourages partial (abstract) modeling of the process
that can hide unnecessary detail, to be revealed only when
needed. Second, the natural terminology of the paradigm
can be easily incorporated, and third, the flexibility of the
approach allows easy adjustments and reevaluation. A more
detailed analysis of such techniques is out of the scope of this
paper.

4.2 Eclipse-based solutions
Recall that plugins may introduce extension points to be

used by other plugins. Potentially, a plugin may introduce
extension points that correspond to important events during
its execution, e.g., JUnit introduces an extension point that
corresponds to an execution of a unit-test. Other plugins, by
extending it, may monitor test executions. The Eclipse core
and JDT also offer an expressive API to be used by other
plugins. For example, they offer an API to register change-
events on different resources. Basically, these APIs may be
used to provide some sort of process support. However, in
practice extension-points of the type described above are
rare, and most of the plugins do not provide an API at
all. Even if they did provide extension-points or APIs, it
would be limited, since it is impossible to foresee all the
places where process support is needed. Furthermore, such
approaches do not provide a coherent and uniform process
model.

The notion of software process is gaining more and more

importance. The Eclipse Process Framework project [9],
which is in its very early stages, aims to provide an ar-
chitecture and web-based tools allowing to incorporate and
exchange software process related knowledge, emphasizing
agile software development. Obviously, SP-aspects related
knowledge may also be incorporated, including the SP-aspects
repository itself.

4.3 AOP and the software process
The first work to connect AOP to the area of software

process modeling was [23]. Aspect-oriented concepts were
proposed to complement and to assist the design of exist-
ing process modeling languages. The idea is investigated
in the context of a specific PCE and PML called APSEE.
The main difference from our work is that we use aspects
as the process model itself acting directly on the develop-
ment environment, whereas in the cited work AOP is used
to complement an existing PML, which still requires the in-
volvement of a special-purpose environment.

In [25], Shomrat and Yehudai address the possibility of us-
ing AOP to solve the problem of design enforcement. They
investigate whether AOP in general and AspectJ in partic-
ular, are adequate. To do that, they define aspects that
are intended to be woven into the software product un-
der development. They find that AOP in general seems to
be adequate but AspectJ is only partially adequate. They
show, for example, that although enforcing coding standards
would seem to be naturally treated by AOP, AspectJ cannot
handle it. By attacking this problem from the side of the de-
velopment environment, as seen in this paper, the problem
they identify can be solved.

5. CONCLUSIONS
Aspects for XP over Eclipse are only one case study for

applying aspects to aid in a development process. Another
prime candidate for such a treatment is the Rational Uni-
fied Process (RUP) [19]. RUP is both a collection of devel-
opment tools emphasizing UML design, and guidelines for
using them. It seems natural to encapsulate the guidelines
into a collection of RUP-aspects, along with a variety of
enforcement strategies.

As noted, connecting the abstract pointcuts and entities
to the specific join-points and types of the development en-
vironment is a non-trivial task. It should be conducted by
a domain expert on the development environment imple-
mentation. However, it is a one-time activity for each (ma-
jor version of a) development environment, with updates
needed only as new abstract pointcuts and entities are de-
fined. These concrete connections are hidden from the users,
namely managers defining specific aspects to be applied and
a strategy in terms of the abstract entities, and developers
working in a team according to a given methodology.

Aspects of the type presented here for XP have been im-
plemented as described over Eclipse and construction of a
fuller repository for XP has begun. Preliminary experiments
have been made with a number of users who were requested
to perform several tasks using the Eclipse development en-
vironment and then to fill in a survey. Each task was per-
formed twice, with and without XP-aspects. For example,
the users were requested to create a specific Java project
layout (i.e., packages and classes) including and excluding
the TestFirst aspect. In the survey, they were asked about
the differences between the scenarios regarding performance,

about their understanding of the augmented policies, and on
the advantages and disadvantages of the implementation.

The results verify that (due to the use of AJEER) there
is noticeable delay in the initialization of Eclipse and when
Eclipse plug-ins are loaded. However there is negligible over-
head in the ongoing use of the Eclipse tools after they are
loaded. The aspects indeed applied the desired strategy.
However, the users tended to object to the enforcement pol-
icy of the TestFirst aspect that simply forbids continuing
if a test class has not been created before a coding class
and found it too restrictive. A more sophisticated version of
enforcement could allow the user to override the policy occa-
sionally, with a short justification reported to management.
In general, either monitoring or activist policies (where the
aspect takes over part of the task itself) were felt to be more
user-friendly.

Special-purpose environments with Process Modeling Lan-
guages have not gained general acceptability and are not
widely used. Yet there is a real need for greater support for
the practices of any software development process desired
by management. Bringing the flexibility, modularity, and
reusability of aspects to bear on the software development
process as applied in standard development environments
has the potential of being one of the future major applica-
tion areas for AOSD.

Acknowledgements
The authors thank Martin Lippert for his help with AJEER.
This work is partially supported by the EU Network of Ex-
cellence AOSD-Europe.

6. REFERENCES
[1] Jonathan Aldrich. Open modules: A proposal for

modular reasoning in aspect-oriented programming. In
Curtis Clifton, Ralf Lämmel, and Gary T. Leavens,
editors, FOAL: Foundations Of Aspect-Oriented
Languages, pages 7–18, March 2004.

[2] S. Bandinelli, M. Braga, A. Fugetta, and L. Lavazza.
The architecture of SPADE-1 process-centered SEE.
In B. Warboys, editor, Software Process Technology -
Proceedings of the 3rd European Software Process
Modeling Workshop, pages 15–30, Villard de Lans,
France, 1994. Springer.

[3] Kent Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley, Reading, Massachusetts,
2000.

[4] Israel Z. Ben-Shaul and Gail E. Kaiser. A paradigm
for decentralized process modeling and its realization
in the Oz environment. In Proceedings of the Sixteenth
International Conference on Software Engineering,
pages 179–188. IEEE Computer Society Press, May
1994.

[5] Andy Clement, Adrian Colyer, and Mik Kersten.
Aspect-oriented programming with AJDT. In Jan
Hannemann, Ruzanna Chitchyan, and Awais Rashid,
editors, Analysis of Aspect-Oriented Software
(ECOOP 2003), July 2003.

[6] Bill Curtis, Marc I. Kellner, and Jim Over. Process
modeling. Communications of the ACM, 35(9):75–90,
September 1992.

[7] Eclipse. http://www.eclipse.org/.

[8] Christer Fernström. Process WEAVER: Adding

process support to UNIX. In Proceedings of the Second
International Conference on the Software Process,
pages 12–26. IEEE Computer Society Press, February
1993.

[9] Eclipse Process Framework.
http://www.eclipse.org/epf/.

[10] Alfonso Fuggetta. Software process: a roadmap. In
ICSE - Future of SE Track, pages 25–34, 2000.

[11] William G. Griswold, Kevin Sullivan, Yuanyuan Song,
Macneil Shonle, Nishit Tewari, Yuanfang Cai, and
Hridesh Rajan. Modular software design with
crosscutting interfaces. IEEE-SOFTWARE,
23(1):51–60, 2006.

[12] Volker Gruhn. Process-centered software engineering
environments, a brief history and future challenges.
Ann. Software Eng, 14(1-4):363–382, 2002.

[13] Watts Humphrey. Managing the Software Process.
Addison-Wesley, 1989.

[14] JUnit. http://www.junit.org.

[15] G. Junkermann, B. Peuschel, W. Schäfer, and S. Wolf.
MERLIN: Supporting cooperation in software
development through a knowledge-based environment.
In B. Nuseibeh A. Finkelstein, J. Kramer, editor,
Software Process Modelling and Technology, pages
103–129. John Wiley and Sons, 1994.

[16] G. E. Kaiser. Experience with Marvel. In D. E. Perry,
editor, Proceedings of the 5th International Software
Process Workshop, pages 82–84, October 1989.

[17] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersen, Jeffrey Palm, and William G. Griswold. An
overview of AspectJ. In Proceedings European
Conference on Object-Oriented Programming, volume
2072 of Lecture Notes in Computer Science, pages
327–353, Berlin, Heidelberg, and New York, 2001.
Springer-Verlag.

[18] Balachander Krishnamurthy and Naser S. Barghouti.
Provence: a process visualization and enactment
environment. In Ian Sommerville and Manfred Paul,
editors, Proceedings of the Fourth European Software
Engineering Conference, pages 451–465. Lecture Notes
in Computer Science Nr. 717, Springer–Verlag, 1993.

[19] Philippe Kruchten. The Rational Unified Process.
Addison-Wesley, third edition, 2004.

[20] Martin Lippert. AJEER: an AspectJ-Enabled Eclipse
Runtime. In OOPSLA Companion, pages 23–24, 2004.

[21] Harold Ossher, William H. Harrison, and Peri L. Tarr.
Software engineering tools and environments: A
roadmap. In ICSE - Future of SE Track, pages
261–277, 2000.

[22] Leon Osterweil. Software processes are software too.
In Proceedings of the Ninth International Conference
on Software Engineering, pages 2–13. IEEE Computer
Society Press, 1987.

[23] R. Q. Reis, C. A. Lima Reis, H. Schlebbe, and D. J.
Nunes. Towards an aspect-oriented approach to
improve the reusability of software process models. In
Awais Rashid, Bedir Tekinerdoğan, Ana Moreira, Joao
Araujo, Jeff Gray, Jan Gerben Wijnstra, and Paul
Clements, editors, Workshop on Early Aspects:
Aspect-Oriented Requirements Engineering and
Architecture Design (AOSD-2002), March 2002.

[24] Steven P. Reiss. Connecting tools using message
passing in the Field environment. IEEE-SOFTWARE,
7(4):57–66, July 1990.

[25] Mati Shomrat and Amiram Yehudai. Obvious or not?
Regulating architectural decisions using
aspect-oriented programming. In Gregor Kiczales,
editor, Proc. 1st Int’ Conf. on Aspect-Oriented
Software Development (AOSD-2002), pages 3–9. ACM
Press, April 2002.

[26] Daniel H. Steinberg and Daniel W. Palmer. Extreme
Software Engineering: A Hands-On Approach.
Pearson/Prentice Hall, 2004.

[27] S. Sutton, D. Heimbigner, and L. Osterweil. APPL/A:
A language for software process programming. ACM
Transactions on Software Engineering and
Methodology, 4(3):221–286, July 1995.

